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The development of a separated bottom boundary layer in the footprint of a
large-amplitude internal solitary wave of depression, propagating against an oncoming
barotropic current, is examined in detail using high-resolution implicit large eddy simula-
tion. The wave is supported by a continuous two-layer stratification. The Reynolds number
based on the water column height is 1.6 × 105. This numerical simulation is the first to
reproduce the self-sustained three-dimensional vortex shedding, resultant transition, and
turbulence under an ISW, which have long been hypothesized to occur in field experiments.
No artificial noise is inserted into the flow domain. Part I of this study focuses on a
structural description of the sequence of flow regimes developing from a wave-induced,
long, high-aspect-ratio, laminar separation bubble. Three illuminating topological features
are identified. (a) The spatial development of the self-sustained turbulence is composed of
three transitional stages: (i) spontaneous excitation of a global instability in the separation
bubble that emanates trailing vortices, (ii) vortex breakup and degeneration into turbulent
clouds, and (iii) relaxation to a spatially developing turbulent boundary layer. (b) In
the separation bubble, there exists a three-dimensional linear global oscillator, which is
primarily excited by the two-dimensional absolute instability of the separated shear layer.
This global mode possesses a transverse coherent structure. The transverse perturbation
subsequently excites an elliptic instability mode inside the shed vortex, resulting in an
axial distortion of the vortex core. (c) A shortwave secondary instability is excited in the
form of a series of coherent streamwise vortex streaks that wrap around each shed vortex,
leading to rapid break up and burst of the vortex.

DOI: 10.1103/PhysRevFluids.5.103801

I. INTRODUCTION

Internal solitary waves (ISWs) are commonly occurring phenomena in the stratified coastal
ocean. In the off-shore region, ISWs of vertical mode-one predominantly occur as waves of
depression. The wave-induced horizontal current is largest at the wave trough and decreases in
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accordance with the reduction of pycnocline displacement away from the trough. This results in a
local minimum pressure beneath the wave trough. The bottom boundary layer (BBL) at the trailing
side of the wave thus experiences an adverse pressure gradient (APG), where the boundary layer
thickens; if the APG is sufficiently large (i.e., large wave amplitude), then the boundary layer can
separate. In the immediate aft of the separation point, the flow is reversed, forming a separated shear
layer with an inflectional profile, where a local absolute instability is favorably exited. When such a
local pocket of absolute instability is large enough, a global instability can be excited, resulting in a
spontaneous shedding of a train of vortices.

The above instability mechanism was first proposed by Bogucki et al. [1] in a study of
contaminant and turbidity transport by ISWs of elevation at the Los Angeles basin. Soon thereafter,
the existence of global instability was verified by means of a two-dimensional (2D) direct numerical
simulation (DNS) [2]. Wang and Redekopp [3] assessed the dependence of the global instability
on the wave-based Reynolds number and ISW amplitude. Stastna and Lamb [4] demonstrated,
by means of a 2D DNS with use of a fully nonlinear ISW model, that the amplitude of the
background barotropic current, and the strength of the vorticity in the associated boundary layer, is
also an important determining parameter for the occurrence of global instability. Further exploring
the sensitivity of global instability to the strength of background current, the same authors later
examined the resuspension of neutrally buoyant particles seeded over the bed [5]. All of the
aforementioned studies are based on waves of elevation. For a wave of depression, the global
instability mechanism is essentially the same as that of a wave of elevation. This was verified by
means of a 2D DNS by Diamessis and Redekopp [6] for a weakly nonlinear wave of depression
in the absence of the background current. Later, Aghsaee et al. [7] confirmed the global instability
by means of high-resolution 2D DNS for a series of fully nonlinear ISWs and also explored the
evolution of the vortex shedding during the wave shoaling onto a sloping boundary.

An experimental study was conducted by Carr and Davies [8] with the objective of verifying
the presence of a global instability mode. They measured the reverse flow of a separated shear
layer in the footprint of a wave of depression (see Ref. [9] for the cases of wave of elevation), but
no manifestation of global instability was observed. The stated explanation was that the Reynolds
number they considered was not high enough; viscous dissipation hence suppressed the formation
of instabilities. Later this claim was verified by Theim et al. [10] in their 2D numerical simulations.
In a follow-up paper, Carr et al. increased the Reynolds number using waves of larger amplitude,
which was enabled by placing a rigid lid over the top boundary that was originally free, and
detailed measurements of the near-bed velocity field [11]. They observed a highly coherent vortical
wake flow shed by the separated BBL under the ISW. In terms of environmental effects in the
footprint of an ISW of depression generated in a laboratory tank, Aghsaee and Boegman [12]
reported nonnegligible values of transverse velocities within the near-bed vortex wake, visualized
the resuspension of noncohesive sediment and proposed predictive criteria for such resuspension.

Vershaeve and Pedersen [13] conducted a parabolic instability analysis for the spatially depen-
dent bottom boundary layer under surface solitary waves. They extended this analysis to the BBL
under fully nonlinear ISWs of depression and identified a convective instability in the case of no
oncoming current and no separation bubble under the wave. Their analysis does not account for the
potential for global instability and does not give any insight on the 3D dynamics of transition to
turbulence.

Extensive recent work by Stastna and coworkers [14–16] has examined the transient 3D response
of the ISW-induced BBL to either excitations by localized small-scale perturbations in bottom
bathymetry or variable bottom slope [17]. Using bottom-fixed coordinate reference frames, these
studies have identified secondary transverse instabilities emerging within vortices within the ISW-
driven BBL which, in some cases, appear to become turbulent.

The review article by Boegman and Statsna [18] provides an overview of the instability
mechanisms associated with ISW-BBL interaction and a review of all relevant studies to this point.
To the best of the authors’ knowledge, no studies and none of these particular studies tracked the
ISW-induced turbulent BBL over a flat bottom in uniform depth water and over long-development
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distances and long-evolution times in a wave-following reference frame. As such, the self-sustained
nature of turbulence in the wave footprint has not yet been explored.

A crucial and hitherto unanswered question is whether there exists an intrinsic, self-excited
oscillator within the BBL that leads to a self-sustained turbulent flow without any externally
inserted perturbations. This question constitutes a nontrivial, quite challenging problem from a
computational point of view, in terms of both formulation and cost; the broad range of scales within
the transitioning and turbulent bottom boundary layer require a nontrivially large number of degrees
of freedom for high-fidelity simulation as we found in a preliminary study [19].

The primary objective of the present work is to document the 3D structure of instability,
transition, and the turbulence ultimately resulting in the ISW-induced BBL. A critical unique
contribution is the simulation of the wave-induced BBL over long development distances and long
integration times. As such, to the best of the authors’ knowledge, the simulation reported here
is the first highly resolved one of self-sustained 3D instability, transition, and turbulence in the
BBL under an ISW. Because the computational cost of this type of simulation is very high and
requires significant resources on high-performance computing (HPC) infrastructure, we restrict the
study to an optimal model flow configuration, involving a highly nonlinear ISW and sufficiently
strong oncoming barotropic current, which reliably reproduce the instability and transition into a
self-sustained turbulent BBL at a wave-induced Reynolds number typical of the laboratory.

In an effort to reduce the nontrivially high computational cost and exhaustively long wall-clock
time of the final target 3D simulation, we configure an ISW-induced separated flow in a domain
of reduced vertical extent that can reproduce realistic initial vortex shedding which mimics what is
observed in the equivalent full-size 2D domain. As will be emphasized in Sec. III B, even in such a
reduced domain, the target 3D simulation has ultimately expended a total 10 million CPU hours on
state-of-the-art HPC platforms. As subsequently described in the remainder of Sec. III, the reduced
model configuration is numerically simulated by means of a high-accuracy and resolution, implicit
large eddy simulation (LES). In Sec. IV, by examining the coherent structures across all stages of
BBL development, we elucidate the flow mechanisms of the self-excited and self-sustained bottom
turbulent boundary layer. Relying on the data set obtained in this study, our companion paper (Part
II) will examine the mean flow properties and turbulence statistics in the contexts of relaxation of
the bottom turbulent wake and bottom sediment resuspension potentially induced by the wave.

II. FORMULATION OF NUMERICAL MODEL

A. Configuration of basic flow model

Focusing on the study of the fundamental physics of ISW-induced BBL development, we
consider a 3D channel constituting a nonrotating, nondeformable and smooth wave guide of length
Lx = 26H in the streamwise x direction, span of Ly = 0.15H in the transverse y direction and
constant depth of H in the vertical z direction. The corresponding velocity field components are
denoted as u, v, and w, respectively, as depicted in Fig. 1. A fully nonlinear ISW of vertical mode
one of depression propagates in the negative x direction (leftward) with a propagation speed c
oriented against the oncoming, barotropic, parallel background current U of a permanent form.
The frame of reference is fixed to the ISW, with the origin set to the bottom boundary underneath
the local extremum of the wave trough stationed at 6H distance from the left (inflow) boundary. The
ISW is stably sustained by a two-layer density stratification as defined by

ρs(z)

ρ0
= 1 − 1

2

(
�ρ

ρ0

)
tanh

(
z − z0

d

)
, (1)

where z0 = 13H/15, d = H/15, and �ρ/ρ0 = 40/1020.
The basic wave field, which is assumed to be held fixed in time, is modelled by a solution of the

2D Euler equation subject to a uniform, oncoming background current U0 in the absence of vertical
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FIG. 1. Schematic diagram of physical model. The frame of reference is fixed to the wave propagating
leftward (negative x direction). Lz is a reduced height used for computational domain. In the wave-fixed
reference frame, in addition to the background barotropic current, one experiences a uniform current c oriented
in the left-to-right x direction. For the sake of visual clarity, in any subsequent figures showing the along-wave
velocity, this uniform contribution is omitted.

shear, as described by the Dubreil-Jacotin-Long (DJL) equation,

∇2η + N2(z − η)

(c + U0)2
= 0, (2)

where η(x, z) is the isopycnal displacement field; N is the Brunt-Väisälä frequency defined as N2 =
−gρ ′

s(z)/ρ0, where g is the gravitational constant; and c is the Doppler-shifted wave speed. The
wave-induced velocity field is defined as

u(w) = (u(w), 0,w(w) ) = (c + U0)(−ηz, 0, ηx ) (3)

(see Ref. [20]). The DJL equation is solved numerically by employing a freely available computer
code (see Ref. [21] for details) that implements Turkington’s algorithm [22]. The wave amplitude
that we choose for this study is 0.346H , with a wave length λw of 2.33H which is defined as λw =∫ ∞
−∞ ηp dx/ηp min, where ηp is the vertical displacement of the pycnocline and −ηp min is the wave

amplitude. Relative to the conjugate state limit [23], the amplitude is of 85% and the wave-induced
velocity at the bottom boundary is of 74%, and the wave phase speed is of 99%, representing a large
amplitude ISW.

In terms of stability of such a large ISW, the minimum gradient Richardson number Ri =
N2/(∂u/∂z)2 = 0.26 (>0.25) is attained in the pycnocline at the wave trough. Consequently, shear
(Kelvin-Helmholtz type) instability is not expected along the pycnocline [24–27]. Additionally, the
maximum velocity at the upper layer, denoted as uwt , as uwt/c ≈ 0.87 (<1), is below the breaking
limit, suggesting that the wave is well below the convective instability limit [28], a potential driver
of subsurface recirculating cores [26,29–31]. The ISW considered here, therefore, can be deemed
to sustain its waveform over long propagation distances.

The wave-induced current field is independent of the strength of the background barotropic
current, that is, the sum of the Doppler-shifted wave propagation speed (c) and the background
current (U0) is constant. Here we denote cw0 ≡ c + U0, which corresponds to the ISW propagation
speed in the case of vanishing background current. Moreover, the wave-induced velocity is
proportional to cw0, whereby cw0 can serve as a reasonable scaling measure for the bottom velocity
field. In this study, we set the dimensionless background current, defined as Û0 = U0/cw0, to 0.5.
The wave-based Reynolds number, defined through cw0, the water depth, and the kinematic viscosity
ν,

Rew = cw0H

ν
= (c + U0)H

ν
, (4)

is 1.6 × 105. For reference, the Reynolds number defined in terms of the wave-induced velocity in
the lower layer, uwb, and the water depth is Rewb = uwbH/ν = 1.85 × 105. These Reynolds number
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values are comparable, in order of magnitude, to those in laboratory (cf. Refs. [11,12]) and are two
to three orders of magnitude smaller than values associated with the oceanic continental shelf.

The wave and background current amplitudes used here, while not uncommon in the ocean
[29,32,33], are somewhat large, which is a choice motivated by the limitations of available compu-
tational resources. Taking into account the multiscale nature of the problem under consideration and
the numerous nontrivial trial simulations, spanning values of Rew = O(104–105) and 0 � Û0 � 0.6
and a range of medium- to large-amplitude ISWs, carried out prior to the highly costly main
production run examined here, our choice of ISW and background current converged toward larger
amplitudes for both. As such, the instability of the ISW-induced BBL, subsequent transition and
the development of a near-bed turbulent wake, can be reproduced in a domain with dimensions
which are optimal, in terms of localizing resolution at the near-bed part of the water column,
allowing sufficient downstream BBL development and long integration times and ensuring sufficient
resolution of all physically important scales across all stages of BBL evolution.

In order to reduce the computational cost down to a more affordable level, the upper 70% depth
of the domain is truncated. Such a choice is particularly driven by the fact that our target flow is the
bottom-focused ISW-induced BBL, in a two-layer continuous stratification with a characteristically
large-scale separation between the ISW and the motions within the BBL. Consequently, the 3D
numerical simulation is performed for the lower, unstratified domain, i.e., Lx × Ly × Lz = 26H ×
0.15H × 0.3H . A preliminary numerical experiment using 2D DNS simulations (not shown) has
shown that the reduced domain is able to produce a similar flow, in terms of the structure and
frequency of the global instability, compared to that obtained with the full-depth (stratified) domain.
The 3D effects, including higher-order instability and turbulence, can eventually drive the resulting
turbulent wake to reach locally to the vicinity of top boundary of the reduced domain; yet such local
irregularities are suppressed by means of a sponge layer (see a related discussion in Sec. IV A).

As will be shown in Sec. IV, the domain width Ly = 0.15H , which is kept to minimal due to
computational resource constraints, is sufficiently large to reproduce a self-sustained turbulent wake.
However, the 3D instability mechanism of the resulting separation bubble beneath the wave tail is
primarily driven by the 2D global oscillator, which may be a result of choice of such a narrow
spanwise domain size. A larger domain width, e.g., comparable to the wavelength or bubble length,
is expected to excite a centrifugal global oscillator [34], which can be excited by a much smaller
reverse flow ratio in the separation bubble (7% of free stream velocity, see Ref. [34]) compared to
our case (over 20% of free stream velocity, not shown). Such a conjecture suggests a possibility
that BBL instability and transition may occur for smaller wave amplitude and weaker background
current than what is considered here. Moreover, the resulting flow topology change driven by
the centrifugal instability can excite a secondary instability [35], leading to a different transition
regime that possibly influences the relaxation distance to the developing turbulent boundary layer.
Characterization of such 3D global modes and associated flow topology and its bifurcation for
ISW-induced separation bubbles under different environmental conditions is the subject of future
work.

B. Mathematical model

In terms of mathematical formulation, we follow the same approach as that presented in the
earlier work of Diamessis and Redekopp [6]. Several points that are specific to the present study are
noted in this section.

The governing equation in the unstratified computational domain involves conservation laws of
incompressible flow, with the frame of reference fixed to the wave propagating negative x direction:

∇ · u = 0, (5a)

∂u
∂t

+ (u · ∇)u = − 1

ρ0
∇p + ν∇2u − g + F(u), (5b)
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where g = gk̂, where (î, ĵ, k̂) are the standard unit vectors and p is the pressure. F(u) appearing in
the momentum equation is the forcing term that is primarily intended to enforce the wave base flow
to sustain a permanent form (see Ref. [6]).

We express the dependent variables in terms of the perturbation to the wave base flow, i.e.,

u = cî + u(B) + ũ,

p = p(B) + p̃,

}
, (6)

where the variables with tilde are perturbation variables. The variables (u(B), p(B) ) represent the
wave base flow, as defined by

u(B) = U (z)î + u(w),

p(B) = ps(z) + p(w),

}
, (7)

where U (z) is a reference background current for which we allow some vertical variation from U0

to account for a no-slip shear adjacent to the bed; ps is the hydrostatic pressure. The wave-induced
field (u(w), p(w) ) and the associated eigenvalue c are of a solution set of the DJL equation with the
uniform background current U0.

The field equation (5) can now be written in terms of the perturbation variables as follows:

∇ · ũ = 0, (8a)

∂ũ
∂t

+ [(ũ + c) · ∇]ũ = − 1

ρ0
∇ p̃ + ν∇2ũ − {(u(B) · ∇)ũ + (ũ · ∇)u(B)}, (8b)

where c = cî is the wave propagation velocity. The forcing terms do not explicitly appear in the
equation after cancellation of terms.

For the background current U (z), while it is arbitrary in nature, we particularly choose a Blasius
profile not only because it is a well-defined laminar flow solution but also because it has been
well studied in terms of instability and laminar-to-turbulent transition, which can provide useful
diagnostic tools in assuring a quiescent inflow state. The thickness of the Blasius boundary layer is
set to 0.05H . For the Blasius boundary layer, applying the Michel’s method [36], an empirical
correlation to locate a laminar-to-turbulent transition point, we find that the critical Reynolds
number based on the momentum thickness is 940. In our case, the corresponding Reynolds number
at the inflow is 500 (see Part II), which is well below the threshold of laminar-to-turbulent transition.
An examination of the effect of the Blasius boundary layer thickness on wave-induced BBL
instability is outside of the scope of the present study.

It is possible to directly solve the DJL equation with a nonuniform background current U (z)
to obtain the wave-induced field (e.g., see Ref. [20]). However, since the near-bed shear of U (z)
is essentially a viscous contribution, it is physically inconsistent to incorporate such a viscously
generated bottom shear in the DJL equation which is purely dictated by inviscid dynamics. To this
end, the DJL equation is solved with a uniform background current (U0) and the resulting interaction
between the near-bed shear and the inviscid (DJL) wave-induced field is eliminated by the forcing
terms.

In contrast to laboratory experiments, full-scale flows in typical coastal ocean environments are
turbulent [37]. One may be tempted to introduce turbulence in the background flow upstream of the
ISW, at least in the BBL. To this end, any additional modification that can cause bypass transition,
such as artificial forcing and superposition of disturbance noise to the flow field, is not performed.
This conscious choice is made to demonstrate the development of intrinsic and spontaneous BBL-
induced global instability and subsequent transition to self-sustained turbulence. The dynamical
response of the global instability and subsequent development of turbulent BBL, subject to distrubed
or turbulent background current with arbitrary mean velocity profile, is deferred to future work.

At the bottom boundary, an impermeable, no-viscous-slip condition is applied (i.e., u = c at
z = 0). The perturbation velocity field thus develops through the mismatch of the DJL-generated
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ISW horizontal current field with the no-slip condition at the bed. At the upper boundary (z = Lz), a
stress-free, impermeable boundary condition is imposed, and a sponge layer with a thickness of 10%
of the computational domain height (Lz = 0.3H) is inserted in order to suppress flow reflection at the
boundary. The computational domain is chosen to be periodic in both streamwise (x) and spanwise
(y) directions, with a sponge layer of thickness H being inserted at the both streamwise boundaries
of the domain, which ensures a laminar, unperturbed incoming flow.

III. NUMERICAL METHOD SPECIFICS

A. Numerical method

A high-accuracy and-resolution parallelized flow solver [38], based on a spectral multidomain
spectral penalty method in the vertical, Fourier discretization on the horizontal plane and stiffly
stable, and high-order variable time stepping, is employed for the time integration of the field
equations. Along with dealiasing of the nonlinear terms, additional stabilization is enabled through
application of an exponential spectral filter to suppress spurious energy build-up at the smallest
resolved scales and to ensure stable long-time integration. The filter function used for the spectral
filter is defined as σ = exp[−α(m/M )q], where α = − ln εM with εM being the machine precision,
m is the mode index, and M is the maximum mode index. The order of the filter is chosen to be
qF = 12 in both streamwise and spanwise directions and qL = 14 in vertical directions over the
lower-half portion of the computational domain with a smooth transition to qF = qL = 8 in all three
spatial directions over the upper half of the domain. The horizontal filter is applied once at every
time step, and the vertical filter is applied after each fractional step of the operator splitting scheme
(advection, pressure, and viscous step) for every time step.

B. Grid resolution

The numerical resolution is chosen to be Nx × Ny × Nz = 12 288 × 128 × 480 (approximately
750 million points). Twelve spectral subdomains are used in the vertical with 40 points per
subdomain. The time-step value ranges from 0.00011δs/cw0 to 0.0013δs/cw0, resulting in a total
of approximately 1.1 million time steps. The model configuration is simulated from the undisturbed
state for 0 < t < 9.0λw/c (where c = 0.5cw0). The initial spin-up up to time t = 6.1λw/c is used
for saturation of the domain with a developed wake flow. The time thereafter is allotted for statistical
data collection. This remaining time has a duration of t = 2.9λw/c which corresponds to a total of
80 vortex shedding cycles.

The resulting total computational time has accumulated to approximately 10 million CPU hours.
This number includes time associated with model setup, preliminary, and production runs. There
are several factors that necessitate such a long computer time. First, an unusually long domain
is required because the BBL develops several wavelengths downstream. In parallel, one needs to
ensure that the spanwise domain is wide enough to resolve a near-gravest transverse instability
mode. The nonperiodic vertical domain requires a very small near-wall mesh sufficient to resolve
the near-wall physics. Vigorous vortex shedding and subsequent ejection of a faster fluid across
the BBL ultimately reduce the early-time time-step value by an order of magnitude. Compared
to the domain length, the spanwise domain dimension is two orders of magnitude smaller. The
resulting significantly smaller value of Ny, with respect to Nx, constrains the maximum number of
MPI processes to Ny. Finally, the number of OpenMP threads has been restricted to no more than
two per MPI process because threading has been found to be inefficient on 1024 or more cores for
the present model configuration and flow solver.

In Table I, the grid resolution is compared to that used in published numerical investigations of
aerodynamic separated flows. N in the table represents the number of grid points within nine wall
units in the vertical direction. In the calculation of the viscous wall unit in Table I, the maximum
value of time- and-spanwise-averaged bottom friction coefficient c f (see Part II) has been used [i.e.,
�x+

i ≡ �xi/lτ , where lτ ≡ ν/(u∞ − c)
√

c f max/2]. Taking into account that the high-order spectral
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TABLE I. Comparison of grid resolution of current study in viscous wall units with that of previous
aerodynamic investigations

Case �x+ �y+ �z+ N |z+<9 Reθs
b Rexs

b Class

Spalart and Strelets [39] 20 6.7 1.0 10 – 105 DNS
Alam and Sandham [40] 20.7 6.2 0.9 16 246 – DNS
Cadieux et al. [41] 26.4 27.5 1.0 – – 105 LES, near-wall-resolution
Present study 8.2 4.6 0.027 27 1260 4 × 105c Implicit LES, high-resolution

aMomentum thickness Reynolds number at the flow separation point.
bRexs ≡ U0xs/ν, where xs is the streamwise distance between the flow inlet and the upper wall suction.
cCalculated using xs as the distance from the flow inlet to the wave trough.

filters identified above leave undamped the lower 50% of Fourier and Legendre modes, the present
study is still comparable with a DNS, particularly in terms of the near-wall region which is actually
far more better resolved than what is achieved in published DNS. There are 18 vertical grid points
within the viscous sublayer (z+ < 5) and 123 points in the viscous wall region (z+ < 50). Such a
high resolution clearly obviates the need for any wall modelling.

IV. RESULTS AND DISCUSSIONS

A. Spatial flow development

Figure 2 shows a typical picture of the instantaneous spanwise perturbation vorticity ωy taken
at the midspan over the entire region of the BBL wake. The vorticity is scaled by using the
characteristic velocity cw0 and the boundary layer thickness at the point of separation (i.e., a
point at which the mean skin friction vanishes), measured as δs = 0.136H . Laminar vortices are
spontaneously and continually shed from the separated shear layer with a period of 0.169H/cw0,
which is slightly shorter than that measured in 2D simulations (0.174H/cw0). The shed vortices are
first ejected upward and advected downstream, interacting with the bottom boundary, generating
vortices of opposite sign along the way, where the majority of the vortices are paired and merge
into larger vortices (see at x = 3.5H in the same figure). Some vortices pair and merge on more
than one occasion as they advance downstream, depending on their vorticity strength and distance
relative to neighboring vortices. The grown vortices then quickly break up into chaotic 3D motions
and transition to turbulence in the form of a localized cluster of small-scale motions, referred to
as a turbulent “cloud” hereafter. The turbulent cloud further undergoes a rapid expansion in both
the streamwise and vertical directions. Further downstream the turbulent clouds become weaker
by smearing out (diffusion) at the interface between turbulent and nonturbulent regions and by the
associated dissipation of turbulent kinetic energy; the topmost portion of such weakened clouds
slightly reach into the top sponge layer.

The development of such a thick turbulent wake is surprising because, for the corresponding
2D simulation (not shown), the vertical extent of the resulting vortex train is much smaller (less
than a half) than that of the turbulent cloud, which was another reason for us to decide the height
of the reduced computational domain. While the sponge layer at the top boundary damps out the
local turbulence entering into the layer and prevents reflections, the presence of the artificial rigid
upper wall can modify the mean flow, as inferred by a weak forward pressure gradient along the
developing turbulent boundary layer (see Part II). Nevertheless, as will be described in Part II, such
a weak pressure gradient is negligibly small compared to the wave-induced pressure gradient in the
wave footprint.

To facilitate further discussion, the flow domain is characterized roughly into the three regimes:
(i) global instability and transition: 2.5 < x/H < 6 (1.1 < x/λw < 2.6); (ii) vortex breakup and
formation of turbulent clouds: 6 < x/H < 13 (2.6 < x/λw < 5.6); and (iii) developing turbulent
boundary layer: x/H > 13 (x/λw > 5.6).

103801-8



SELF-SUSTAINED INSTABILITY, TRANSITION, AND …

FIG. 2. Spatial development of instantaneous spanwise perturbation vorticity ωyδs/cw0 over 1.5 < x/H <

19 split equally. Each window has a length of 1.5λw . The flow domain is characterized roughly into the
three regimes: (i) two- and three-dimensional instability and transition: 2.5 < x/H < 6 (1.1 < x/λw < 2.6);
(ii) vortex breakup and formation of turbulent clouds: 6 < x/H < 13 (2.6 < x/λw < 5.6); (iii) developing
turbulent boundary layer: x/H > 13 (x/λw > 5.6). The symbol R together with an arrow in the top panel
indicate the mean reattachment point.

A 3D view of the instantaneous spanwise vorticity, taken at the same time as in Fig. 2, over the
transition stage is shown in Fig. 3. The shed vortices appear to be initially two dimensional. They
roll over the bottom surface as they translate downstream, where they grow through pairing and
merging. The grown vortices then deform, initially bending. The associated isovorticity surfaces
strain and ripple axially and circumferentially, in a three-dimensionally complex fashion, leading to
ultimately a vigorous breakup into a turbulent cloud. Figure 3 also suggests that the 2D simulation is
relevant only for two ISW wavelengths (or in this case about 5H) downstream from the wave trough.
Thereafter, three-dimensionality dominates the flow. It is noted that even the two-dimensional stage
of the BBL development cannot be simulated by a 2D code because of different downstream
feedback.

As per the discussion of Sec. II B, we reiterate that the wave-induced BBL is not seeded with any
external disturbances aimed to both initialize vortex shedding and drive its subsequent downstream
three-dimensional development and that the inflow Blasius boundary layer state is well below the
critical point of laminar-to-turbulent transition. The wave-induced forward pressure gradient ahead
of the wave trough accelerates the boundary layer, enhancing stabilization. Moreover, the high-order
discretization methods used in all three spatial directions are subject to no or minimal numerical
dispersion, a likely source of numerical “noise” that could indirectly play an equivalent instability-
generating role; if any such weak very fine-scale disturbances of numerical origin are present in
the separating BBL, then they are most likely damped out by the spectral filters. Hence, we are
confident that the turbulent wake generated by the ISW-induced BBL is spontaneously generated
and self-sustained.
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FIG. 3. Spatial development of instantaneous spanwise perturbation vorticity ωyδs/cw0 in the transition
region over 3 < x/H < 7.5 equally split. Each window has a length of 0.64λw . Isosurfaces of ωyδs/cw0 = 3.0
(in red) and ωyδs/cw0 = −3.0 (in blue) are shown with a contoured background. All coordinates are scaled by
H . Vortex pairing can be seen at x/H ≈ 3.5. Vortex bending through elliptic instability can be seen at x/H ≈ 5
and x/H ≈ 5.75.

It should be added that, at the inflow, the Blasius boundary layer is unstable to external
disturbances with frequencies ranging from 0.34cw0/δs to 1.07cw0/δs [42], where δs is the boundary
layer thickness at the separation point. These intrinsic (Tollmien-Schlichting wave) modes of the
Blasius boundary layer are far from the characteristic frequency of the global instability, measured
at 5.07cw0/δs (see Sec. IV D), suggesting that their mutual dynamical interaction with the global
mode, such as the triggering instability by one mode exciting another mode, is not feasible. Thereby,
we reemphasize that the global instability is a dominant dynamical response in the flow regime (i)
which drives the self-sustained instability.

B. Presence of three-dimensional global mode

Self-sustenance of turbulence of a spatially developing flow requires an intrinsic, three-
dimensionally synchronous eigenstructure beyond the parallel-flow-based counterpart (e.g., see
Theofilis [43]). This section provides evidence for the existence of a 3D global mode in the flow
under consideration.
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FIG. 4. Contours of instantaneous transverse v velocity scaled by cw0 sampled with several instantaneous
streamlines at two different downstream locations on the midspan plane: (a) near the maximum reverse flow
region. The lower half streamlines flow upstream (to the left) and upper half ones flow downstream; (b) near the
aft end of the separation bubble. Boxes in the the top panel delineate the location of panels (a) and (b) within
the separation bubble.

Figure 4 shows the three-dimensional structure of the instantaneous, transverse v-velocity field
taken at the midspan section near the strongest reverse flow region and near the trailing end of
the separation bubble, with several instantaneous streamlines superimposed. It is clear from the
figure that inclined lobes of alternating sign of the transverse velocity perturbation are oriented
along the shear layer of the separation bubble (centered at z/H = 0.02; the lower half portion of the
streamlines correspond to reverse flow) where the streamlines are nearly parallel. Thereafter, each
pair of alternating sign transverse v-velocity perturbations develops into a spanwise vortex core
with a spatial growth ratio (defined as ∂ ln |v|/∂x) of roughly 10/H ≈ 1.35/δs; the perturbation pair
remains in the vortex core as it advances downstream. This axial disturbance in the vortex core
excites an elliptic instability mode, as will be discussed later in this section.

The transverse v-velocity disturbance is associated with distinct streamwise vorticity ωx, as
shown in Fig. 5; the v-velocity contour reveals an inclined vorticity layer, similar in structure, though
of opposite sign to the shear layer at the center of the separation bubble, at the immediate vicinity
of the bottom boundary. In the same figure, horizontal slices of the vorticity field taken at the shear
layer and the bottom boundary are also shown. An alternating, coherent spatial structure is clearly
observed both at the shear layer and the bottom boundary in the form of antisymmetric pairs.

The fastest transverse mode reported above has a wavelength equal to the spanwise domain
length. However, prior examination of different spanwise domain size (Ly up to 0.4H , not shown)
indicated that the fastest-growing mode has a wavelength roughly twice the present domain width.

This observed coherent, three-dimensional eigenstructure extends over the greater length of the
separation bubble, which is merely a manifestation of a self-excited global mode. The present
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FIG. 5. Contours of instantaneous streamwise vorticity ωxδs/cw0 near the maximum reverse flow region:
(a) cross section at the midspan plane (this section corresponds to the region (a) in Fig. 4), (b) horizontal slice
along the primary vorticity layer (z = 0.02H ), and (c) horizontal slice along the bottom boundary.

stationary global mode is structurally different from one that was found by Rodríguez and Theofilis
[44] in their 3D global analysis of a laminar separation bubble which is about an order of magnitude
shorter in length (in term of the bubble aspect ratio) than that of the present case, where the
bubble aspect ratio is approximately 85. Their gravest global mode occupies the entire region of
the separation bubble, having a cellular structure, with the streamwise length scale coincident with
that of the bubble and the transverse length scale about twice the streamwise bubble length. In
the present case the streamwise wavelength of the eigenmode is, again, shorter by one order of
magnitude, about 1/30 relative to the streamwise bubble length.

According to Rodríguez et al. [34], there exist two classes of bubble-induced linear global
instability mechanisms. The first class pertains to a linear global oscillator driven by a local pocket
of absolute inflectional instability of two-dimensional base flow. The second class pertains to the
oscillator driven by a centrifugal instability that has a purely 3D cell structure spanning over the
bubble recirculation region. The global oscillator structure of the present flow thus falls into the first
class.

Each wave of spatially developing spanwise eigenmode synchronizes with a trailing billow-like
vortex that is ejected from the separated shear layer together with one single wave of the spanwise
eigenmode inside of the vortex. The shed vortex rolls over the bottom boundary along its way
downstream, in a high-strain field exerted by the bottom boundary and neighboring vortices, through
which the circumferential streamline is deformed into an elliptical shape. The axial disturbance in
the vortex core immediately excites the leading mode of elliptic instability [45]. The spatial structure
of the axial perturbation [see Fig. 4(b)] resembles the analytical solution of the gravest elliptic
eigenmode for a strained vortex tube in the unbounded domain found by Waleffe [46] (cf. Fig. 2
in Ref. [46]). This axial perturbation bends the vortex core (e.g., see Ref. [47] for similar effects in
a corotating vortex pair and Ref. [48] a counterrotating vortex pair), which is manifested as vortex
bending revealed in the middle panel (e.g., around x/H = 5 and 5.75) in Fig. 3.

C. Subsequent evolution of three-dimensional instability

To further monitor the downstream evolution structure of a global instability mode discussed in
the previous section, Fig. 6 tracks the streamwise vorticity for one arbitrary shed vortex. Isosurfaces
of a representative pair of positive and negative streamwise vorticity at several different time instants
are shown. In each panel, different contour levels have to be used because of exponential growth of
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FIG. 6. Isosurface of instantaneous streamwise vorticity ωxδs/c0 tracking the same vortex (a) t = t0 with
ωxδs/cw0 = −0.03 (blue) and ωxδs/cw0 = 0.03 (red), (b) t = t0 + 9.9δs/cw0 with ωxδs/c0 = −0.06 (blue) and
ωxδs/cw0 = 0.06 (red), (c) t = t0 + 13.2δs/cw0 with ωxδs/cw0 = −0.5 (blue) and ωxδs/cw0 = 0.5 (red), and
(d) t = t0 + 17.1δs/cw0 with ωxδs/cw0 = −2.0 (blue) and ωxδs/cw0 = 2.0 (red). All coordinates are scaled
by H .

the instability. In the figure, a pair of laminar vortices is already merged into one single vortex. It
can also be observed that the initially flat streamwise vortex sheet [see Fig. 4(a)] becomes stretched
circumferentially and it is rolled around the vortex core [Fig. 6(a)]. The associated vorticity sheet
at the bottom boundary is also stretched and wraps around the vortex. After this stage, a short-wave
instability is observed in the form of a row of streaks oriented along the outer shell of the vortex
[Fig. 6(b)]. The streaks rapidly grow almost entirely and simultaneously from interior to exterior of
the vortex [Figs. 6(c) and 6(d)]. The transverse wavelength of the short-wave instability is roughly
0.06δs, which corresponds approximately 30 viscous-wall lengths.

It is well known that visualizations of vorticity in chaotic or turbulent flows may not reveal
as clearly as desired any coherent vortices within such flow fields. On one hand, the choice of
the appropriate threshold is not necessarily objective. On the other hand, visualization of vorticity
magnitude cannot separate vortex sheets from coherent vortices. Although both such flow structures
support strong rotation, the former involve strong strain fields which are negligible in the case of
the latter [49]. To circumvent these issues and enable a clearer perspective on coherent structures
resulting from the instabilities under consideration, the same vortex is visualized in term of the
λ2 criterion (see Jeong and Hussain [50] for more details) in Fig. 7. This criterion identifies a
vortex tube by capturing the local minimum pressure along the vortex axis. In terms of the vortex
tracked in Fig. 6, the sheet of streamwise vorticity that appears at the early stage of the spanwise
disturbance evolution is not identified as a vortex tube; but the short-wave streaks are identified
as vortex filaments in finer scale (compared to the streamwise vorticity counterpart) that appear
mostly around the exterior surface of the parent vortex core; the vortex core is quickly filled by
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FIG. 7. λ2 representation of Fig. 6. Isosurface of λ2 = −0.5 in all cases: (a) t = t0, (b) t = t0 + 9.9δs/cw0,
(c) t = t0 + 13.2δs/cw0, and (d) t = t0 + 17.1δs/cw0. All coordinates are scaled by H .

smaller vortex filaments, presumably through highly nonlinear instability. This cluster of coherent
motions associated with the vortex is energetic, as it proceeds with a rapid expansion (increase in
size) observed in the bottom panel of Figs. 3 and 8 described below.

In Fig. 8, the spatial evolution of the turbulent clouds is visualized through the λ2 criterion by
coloring the contours of the vertical velocity in the range |w/cw0| < 0.05 onto the λ2 isosurfaces.
For 7.5 < x/H < 9 (3.2 < x/λw < 3.9), each cloud is relatively distinct. Within each cloud, there
is a clear separation of an upwelling (positive w) and downwelling (negative w) region, which
implies that the clouds are still in the process of spatial expansion and that the kinetic energy of
the parent vortex has not yet fully cascaded to smaller turbulent eddies. For 10.8 < x/H < 12.3
(4.6 < x/λw < 5.3), the division into upwelling or downwelling regions may still hold, though it
is far less clear. For 15.8 < x/H < 17.3 (6.8 < x/λw < 7.4), the turbulent coherent structure over
the upper portion of the domain becomes less distinct due to dissipation and diffusion. A virtually
uniform turbulent boundary layer is formed over the bottom boundary. Upwelling and downwelling
motions have become less intense as compared to the turbulent events upstream.

D. Energy spectra

For the purpose of exploring the development of relevant physical timescales in the turbulent
wake evolution, single-point time series of the velocity field are recorded at selected streamwise
locations in the wave-fixed reference frame. Figure 9(a) shows typical time series of the wall-normal
velocity w sampled at depth z = 0.2H (=0.183δs), at the streamwise stations x = 3H (≈1.3λw ), x =
9H (≈3.9λw ), and x = 17H (≈7.3λw ), all at the midspan (y = 0.075H ). The particular streamwise
sampling locations are chosen as representative of the different flow regimes shown in Fig. 2.
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FIG. 8. Spatial development of turbulent coherent structures over selected windows (top) 7.5 < x/H <

9, (middle) 10.8 < x/H < 12.3, and (bottom) 15.8 < x/H < 17.3 (each window has a length of 0.64λw).
Isosurface of λ2 = −0.5 on which the contour of w/cw0 is rendered. All coordinates are scaled by H . Pairs of
positive and negative w velocities indicate distinct “memory” of vortices shed from the separated shear layer in
the upstream (top and middle). Such distinct memory of parent vortices is blurred further downstream (bottom).

Large upwelling velocities are clearly observed, with largest instantaneous values of w ≈ 0.2cw0 at
x = 3H (near the trailing edge of the separation bubble), w ≈ 0.3cw0 at x = 9H (expansion stage
of the turbulent cloud), and w ≈ 0.05cw0 at x = 17H (developing turbulent boundary layer stage).
For reference, the largest vertical velocity of the wave-induced vertical current is approximately
w(w) = 0.3cw0 which is comparable to the wall-normal velocity values observed in the BBL over
the downstream interval extending from the vortex ejection point to the turbulent burst region. At
x = 3H , the signal exhibits temporal coherence with modulation of amplitude, but the signal at
x = 9H exhibits a longer-period oscillation with large amplitude in the background with short-
period random fluctuation superimposed on it. At the developing turbulent boundary layer stage
(x = 17H), the signal has a random fluctuation structure typical of turbulent flows.
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FIG. 9. (a) Typical time series of wall-normal velocity w sampled at x = 3H (≈1.3λw ), x = 9H (≈3.9λw ),
and x = 17H (≈7.3λw ), all at z = 0.025H (≈0.183δs ) at the midspan. The signals are equally separated
vertically by one half unit. (b) Single-point frequency spectra of turbulent kinetic energy for fluctuation signals
sampled at the same locations presented in (a). The spectrum for x = 9H is shifted by twofold upward, the
spectrum for x = 17H is shifted by fourfold upward, all relative to one for x = 3H . Reference lines with
slopes of −1, −5/3, and −7 are included. Vertical dashed line indicates the vortex shedding frequency.

The maximum vertical velocity associated with the shed vortices of an ISW propagating in
the absence of background current has been measured within the range of 0.02 < w/cw0 < 0.06
in the laboratory measurement conducted by Carr et al. [11] and 0.1 < w/cw0 < 0.7 in the two-
dimensional numerical simulation conducted by Aghsaee et al. [7]. According to Aghsaee et al.,
such a difference is attributed to the Reynolds number effect. The Reynolds number resides in
the range 0.6 × 105 < Rew < 0.65 × 105 for the former case and in 1.8 × 105 < Rew < 5.8 × 105

for the latter case. The present study (Rew = 1.6 × 105), with a finite background current and
demonstrated three-dimensionality and turbulence, cannot be directly compared to these previous
investigations. Restricting one’s perspective to Reynolds number, however, the vertical velocity
in the present case compares relatively well with the numerical results of Aghsaee et al. to the
leading order, at least in the earlier stages of wave-induced BBL development. The large vertical
velocity reported by Aghsaee et al. might be attributed to a two-dimensional artifact in addition
to the Reynolds number effect. Compared to their two-dimensional counterparts, three-dimensional
vortices are effectively less coherent in the transverse, with the degree of coherence further impacted
with increasing Reynolds number.

Figure 9(b) shows frequency spectra of turbulent kinetic energy processed from the field signals
at the same locations discussed above. Spectra are calculated by adopting the same methodology
used by Jones et al. [51]. The signals are sampled at every time step, and the sampling interval
is of 3.27λw/c, which corresponds to approximately 90 vortex shedding cycles. At the tail of the
separation bubble (x = 3H) the vortex shedding frequency of ω = 5.07cw0/δs is dominant. In the
burst stage (x = 9H) higher frequency components gain much more energy due to the down-scale
cascade, and the largest energy is attained at the frequency ω = 1.65cw0/δs that is much lower than
the fundamental shedding frequency. This up-scale energy cascade is a manifestation of pairing
and merger of the shed vortices that still operate embedded in a turbulent flow background. At the
developing turbulent boundary layer stage (x = 17H), such a low-frequency energy is substantially
diminished.

In the same figure, reference lines with slopes of −1, −5/3, and −7 are also included. A wide
frequency range of −5/3 spectral slope is visible in the turbulent-cloud formation stage. In the
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FIG. 10. Time-averaged one-dimensional turbulent kinetic energy spectra at z/δs =
{0.015, 0.033, 0.15, 0.37, 0.73} together with −5/3 slope. (a) Streamwise spectra. All cases are separated
by threefold in vertical direction starting from the case z/δs = 0.015. (b) Spanwise spectra. All cases are
separated by 2.5-fold starting from the case z/δs = 0.015.

developing turbulent boundary layer stage, a −1 slope spectrum emerges at low frequencies. These
spectral slopes (−1, −5/3, and −7) are also observed by Wu and Moin [52] in their DNS simulation
of a zero-pressure-gradient flat-plate boundary layer flow. The −1 slope is also reported by Turan
et al. [53] for a flat-plate turbulent boundary layer and by Perry et al. [54] for a turbulent pipe
flow.

A complementary perspective in terms of relevant spatial scales is also gained by examining one-
dimensional turbulent kinetic energy spectra in the streamwise and spanwise direction. Figure 10(a)
shows such time-averaged, one-dimensional, streamwise-computed energy spectra obtained at
several different wall-normal offsets in the range 0.015 � z/δs � 0.73. These spectra are computed
over the full streamwise extent of the computational domain. Following a flat spectrum at the lowest
wave numbers, the intermediate wave numbers have a steeper spectral slope, which becomes larger
than −5/3, as it approaches the bottom boundary; a −5/3 spectrum is recovered away from the
boundary, at z = 0.73δs. Such a faster rate of spectral energy decay near the wall has an important
implication to the wake relaxation in the viscous-wall region, as will be discussed in detail in Part
II of this study. Although the streamwise spectra drop off by four to five orders of magnitude across
wave numbers not directly impacted by the spectral filter, they are less smooth when compared to
the transverse spectra discussed below. In particular, a small band of very low-amplitude noise is
visible near the highest resolved wave numbers. This noise can be reduced by sampling across more
statistically independent snapshots of the flow, a task necessitating nontrivial computational cost in
the form of additional time integration of the governing equations. Given the spectral drop-off of
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over 10-fold across all resolved scales; nevertheless, this high-wave-number noise is negligible for
practical purposes.

In Fig. 10(b) the corresponding energy spectra in the transverse direction are shown. Contrary
to their streamwise counterpart, the spectral curves have a much smoother structure across the
entire range of wave numbers. There is a slight indication of a −5/3 range near the lowest wave
number for the case of z = 0.73δs. The lack of the inertial range in the transverse energy spectrum
is not uncommon in numerical simulations of turbulent flows, such as DNS simulations of turbulent
boundary layer by Spalart [55] and of self-similar mixing layer by Rogers and Moser [56], in which
insufficient Reynolds number (Spalart) and insufficient spanwise domain size (Rogers and Moser)
are typically suggested as the potential causes. Nevertheless, the domain width of the present study
is sufficient with respect to its objectives. On one hand, it has been confirmed that the transverse
correlation drops down to negative in the turbulent boundary layer (not shown). Moreover, the
present domain width is sufficiently large to resolve the self-excited instabilities which lead to a
self-sustained turbulent flow.

V. CONCLUDING REMARKS

The separated boundary layer flow in the footprint of a large-amplitude ISW of depression prop-
agating against an oncoming barotropic current is investigated numerically using high-resolution
implicit LES. To the authors’ best knowledge, this is the first systematic three-dimensional
investigation of the self-sustained generation of episodic vortex shedding, the resulting transition
and ultimate formation of a turbulent BBL under an ISW. The present work (Part I) mainly focuses
on the three-dimensional flow structure of all the above stages in BBL development.

The vortex shedding is intrinsically excited by an asymptotically two-dimensional instability of
the nearly parallel separated shear layer in the long separation bubble formed at the downstream
side of the wave footprint. This two-dimensional, linear global oscillator is self-excited by a
three-dimensional, stationary global mode possessing a transverse coherent structure along the shear
layer and bottom boundary; such a three-dimensional instability is evidently not accessible in 2D
simulations.

Each excited transverse instability wave at the shear layer is periodically shed, together with a
vortex, from the tail of the separation bubble; the wave remains inside of the vortex core. Such
an axial disturbance, which is manifested as a layer of streamwise vorticity in the shed vortex,
subsequently excites an elliptic instability mode, bending the vortex core.

As the shed vortices pair, merge, and roll over the bottom boundary downstream, the layer of
streamwise vorticity is stretched circumferentially, virtually forming a roll of the vorticity layer
inside of the vortex. (Note here that the vorticity layer stretching does not refer to an axial
stretching of the vortex core; descriptively, it is more like a stretching of a material surface.)
The associated vorticity layer at the bottom boundary also stretches and wraps around the vortex.
Such a roll of stretched circumferential vorticity sheets starts to degenerate through formation of
coherent, streamwise vortex streaks excited by a short-wave instability, and the primary vortex
is populated by such coherent vortices. The primary vortex then rapidly and entirely breaks up
through strong nonlinear processes from interior to exterior, forming a “cloud” of small eddies. The
turbulent cloud further expands downstream. Through these physical processes, the wave-induced
near-bed turbulence is both self-excited and self-sustained: No external perturbations are needed
to trigger the vortex shedding and to continually drive the turbulent BBL under the propagating
ISW.

The vigorous vortex shedding is a characteristic signature of the ISW-impressed adverse pressure
gradient exerting over the bed beneath the aft half of the wave. Following the turbulent cloud
formation stage, around 15 water column depths downstream of the wave, this discrete signature
becomes obscured and nearly lost, such that the agglomerated turbulent clouds lose their alternating
pattern of local updraft and downdraft; and the turbulent wake is relaxed to a flat-plate turbulent
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boundary layer (Fig. 8). Such a relaxation process is similar to the case of a shorter separation
bubble encountered in an aerodynamic separating flow [40]. This will be detailed by analyses of
flow statistics given in the companion paper of this study (Part II). As will be shown in Part II, the
Blasius boundary layer profile at the oncoming flow is also completely “forgotten” and altered to
that of a zero-pressure-gradient turbulent boundary layer in the regime (iii), in which the Blasius
boundary layer may appear not primarily important in sustaining the turbulence. Nonetheless, the
near-bed vertical shear of the background current U ′(z), not limited to the Blasius boundary layer in
general, implicitly and continually supplies kinetic energy to the turbulence through the production
term (−u′w′∂u/∂z), which is expected to contribute to sustain the turbulent boundary layer far
downstream of the wave. Future investigation is needed, to verify such a role of near-bed vertical
shear of the background current.

A fundamental difference of the experimental studies conducted by Carr and Davies [9] and
Aghsaee and Boegman [12] with the work reported here is that no background current is, at
least intentionally, introduced. As reported in our previous work [19], a two- or three-dimensional
numerical simulation with no background current with sufficient resolution of the relevant near-bed
scales cannot generate spontaneously any vortex shedding; specific volumetric forcing needs to be
introduced [51] and is kept active at all times. Such an observation is consistent with the analysis
of Vershaeve and Pedersen [13] who found that the BBL under an ISW propagating into quiescent
water is convectively unstable: Any instantaneously inserted disturbances into the BBL will produce
a transient instability, with any vortical structures advected downstream of the wave trough; the BBL
then relaminarizes.

Because of the highly expensive computational cost, the present study focuses on one repre-
sentative case in a nontrivial parameter space which consists of the wave-based Reynolds number,
or variants thereof, the ISW amplitude, the structure and strength of the stratification profile and
strength (which directly impacts wave polarity) and the associated BBL structure of background
current. The physical properties of the near-bed wake examined here are found to be largely
dependent on the mean flow structure, itself intimately connected to the background current
strength. As such, the corresponding physical properties would be considerably different for flow
configurations residing in radically different parts of the above parameter space. In the longer term, a
characterization of the wave-induced turbulence under such different and oceanically representative
environmental base-states is imperative and is expected to provide useful insights in modeling the
wave drag and wave-induced sediment resuspension. Such a characterization, inevitably involving a
broad sweep of parameter space, would be enabled by the availability of more powerful computing
resources together with reduced resolution LES. The reduced resolution LES would critically need
to be coupled to an optimally chosen subgrid scale turbulence model whose fidelity has been
demonstrated for separating flows, much like the study of Cadieux et al. [41] conducted for a
canonical separation bubble.
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