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Traditional models of electrokinetic transport in porous media are based on ho-
mogenized material properties, which neglect any macroscopic effects of microscopic
fluctuations. This perspective is taken not only for convenience but also motivated by
the expectation of irrotational electro-osmotic flow, proportional to the electric field, for
uniformly charged surfaces (or constant ¢ potential) in the limit of thin double layers. Here,
we show that the inherent heterogeneity of porous media generally leads to macroscopic
vortex patterns, which have important implications for convective transport and mixing.
These vortical flows originate due to competition between pressure-driven and electro-
osmotic flows, and their sizes are characterized by the correlation length of heterogeneity
in permeability or surface charge. The appearance of vortices is controlled by a single
dimensionless control parameter, defined as the ratio of a typical electro-osmotic velocity
to the total mean velocity.

DOI: 10.1103/PhysRevFluids.5.103701

I. INTRODUCTION

Flows in porous media are everywhere around us [1]. From the small scale of nutrient and
heat transport in biological tissues [2] to the geological scale of subsurface flows [3], involved
transport processes share common principles. Many transport processes in porous media can be
recast in terms of driving forces and corresponding fluxes. This idea is at the heart of nonequilibrium
thermodynamics, in which fluxes and driving forces are coupled through Onsager relations that
enforce symmetry of the linear response matrix [4]. The nonlinear coupling between various
driving forces can result in rich, and sometimes unexpected, behavior. Indeed, recent works indicate
electrokinetic phenomena in porous media could be exploited to control viscous fingering [5,6],
suppress instabilities in the growth of nanowires [7,8] and porous electrodeposits [9], and drive
over-limiting current [10,11] and deionization shock waves [12—14], which enable water purification
by shock electrodialysis [15-20].

A unique aspect of transport in porous media is the role of randomness in the pore geometry
and network topology [3]. A familiar example is flow channeling in a heterogeneous medium.
When subjected to pressure gradient, fluids preferentially flow along the path of least resistance
and avoid regions of low permeability, leading to the formation of “flow channels.” Similarly,
in two-phase flows, randomness leads to the formation of two well-known phenomena, i.e., the
viscous fingering and capillary fingering [21,22]. These instabilities can increase mixing and are

“bazant @mit.edu

2469-990X/2020/5(10)/103701(20) 103701-1 ©2020 American Physical Society


https://orcid.org/0000-0003-2781-1033
https://orcid.org/0000-0002-1766-719X
https://orcid.org/0000-0003-3301-6255
https://orcid.org/0000-0002-5869-3263
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.5.103701&domain=pdf&date_stamp=2020-10-12
https://doi.org/10.1103/PhysRevFluids.5.103701

MOHAMMAD MIRZADEH et al.

often deemed undesired, e.g., in secondary oil recovery [23]. Quantifying mixing in porous media
is also critical to understanding reactive transport [24,25], as well as dissolution trapping in pore
fluid following geologic CO, sequestration [26,27].

“Passive” control of fluid flow is possible via careful geometrical manipulation, e.g., in patterned
micro-fluidic devices to enhance mixing [28,29], or in Hele-Shaw cells [30] and porous media [31]
to suppress interfacial instabilities. In passive control, the extent of flow manipulation is limited
and difficult to adjust externally or dynamically. Conversely, “active” control may be possible by
exploiting the coupling between competing driving forces. One possibility is using electric fields to
manipulate fluid flow via electrokinetic phenomena [32]. This idea was recently shown to enable the
active control of viscous fingering [5,6] by modifying the effective hydraulic resistance experienced
by the fluids.

Traditional models of electro-osmosis in porous media and micro-fluidic devices assume irrota-
tional flow with strongly screened hydrodynamic interactions [33], based on formal homogenization
[34] or the mathematical limit of thin double layers and uniform ¢ potential, in which the fluid
velocity is proportional to the (irrotational) electric field [35,36]. Indeed, the assumption of uniform
electro-osmotic flow driven by a uniform electric field underlies models of various industrial pro-
cesses, such as electrokinetic soil remediation and ionic separations [37—-41]. Even in situations of
stochastic electrotransport with fluctuating electric fields [42], used to accelerate chemical transport
for the imaging of biological tissues and organs [43—45], the instantaneous velocity field is assumed
to be spatially uniform. The limit of thin double layers is also invoked to justify the approximate
independence of electrophoretic mobility on particle shape [46—49], which makes particle separation
challenging, unless symmetry is broken by nonuniform [50,51] or induced [52,53] surface charge.
Inhomogeneity in surface charge or shape can further be utilized for steady pumping [54,55] or
patterning flow fields in microfluidic devices [56,57]. Recently, similar ideas have been proposed
for pattering flow fields in Hele-Shaw cells and microfluidic devices using gate electrodes [58-60],
although such a strategy would be difficult to achieve in a porous medium.

Here, we demonstrate that a heterogeneous permeability field has a similar effect on pat-
tering the flow field and creating vortical flows, which are beneficial for enhanced mixing.
This phenomenon occurs due to strong internal pressure generated by the electro-osmotic flow.
Although the concept of electro-osmotic flow reversal is understood for individual pores [32],
here we demonstrate similar patterns at the much larger macroscopic scale. Through detailed
analyses, we show that the size of vortical structures directly scale with the length scale of
heterogeneity in the domain. More importantly, we find that the structure of flow field can be
described in terms of the “electro-osmotic coupling coefficient,” a nondimensional parameter
measuring the relative strength of electro-osmotic velocity to total mean velocity and which is
tunable experimentally. Finally, recent work on coupled nonlinear electrokinetics in random pore
network also demonstrate similar vortical flow structures and their interactions with deionization
shock waves [61]. In this article, we neglect nonlinear effects and instead provide a clear physical
explanation for the formation of vortical structures.

II. PHYSICAL PICTURE

A. Electrokinetic phenomena and electro-osmotic pumping

When charged surfaces are brought in contact with an electrolyte solution, a diffuse cloud of
ions, namely, the electric double layer (EDL), is formed which screens the surface charge. The EDL
is characterized by its thickness, the Debye length (Ap), which, for a binary electrolyte, is

A — SkB T (l)
b 2c9z2€?’

Here, ¢ is the permittivity of the electrolyte, kg is the Boltzmann constant, 7 is the absolute
temperature, c is the salt concentration, z is the ion valence, and e is the elementary charge. Despite
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Electro-osmotic Flow Streaming Current

FIG. 1. Many surfaces are charged in aqueous solution. When ions are present in the solution, a thin cloud
of mostly counter-ions accumulate near the surface to screen the surface charge and form the electric double
layer (EDL). Left: An electric field drives electro-osmotic flow due to electrostatic force on the ions in the EDL.
Right: Conversely, streaming current occurs due to advection of charges in the EDL by the pressure-driven flow.

being very thin, the interactions between the ions and solvent molecules in the EDL lead to a myriad
of processes that are collectively termed “electrokinetic phenomena” [32] (see Fig. 1). An external
electric field parallel to the surface drives “electro-osmotic flow,” with a far-field velocity which, for
small driving forces, scales linearly with the electric field E = —V ¢:

Ueo = KeoE = _K€0V¢' (2)

Here, ¢ is the electrical potential and K, is the electro-osmotic mobility. Similarly, advection of
ions in the EDL due to pressure-driven flow generates “streaming current,” with an area-average
current density isc = —K.V p. When the driving forces are small, the Onsager symmetry requires
that electrokinetic phenomena are symmetric with respect to driving forces, i.e., Ks. = K, [4]. For
thin EDL, e.g., compared to the pore size in a porous medium or the gap size in a Hele-Shaw cell,
the electro-osmotic mobility is given by the Helmholtz-Smoluchowski relation:

Keo= 2%, 3)

I
where u is the electrolyte viscosity and ¢ is the potential difference across the EDL, which for many
surfaces varies in the range of —100 < ¢ < 50mV at room temperature [32,62].

When both pressure gradients and electric fields are present, the total velocity is the sum of
pressure-driven and electro-osmotic components,

u=u, +u, = —K,Vp— KoV, 4)

where the hydraulic conductivity is given by the Darcy relation, K, = k/u, and k is the Darcy
permeability. Equation (4) could be understood as the macroscopic velocity in a porous medium,
the area-averaged velocity in a cylindrical pore, or the depth-averaged velocity in a Hele-Shaw
cell. When electro-osmotic flows are driven into tight pores, strong adverse pressure gradients are
generated if the pore cannot sustain the flow rate. This is a consequence of different scaling of
pressure-driven and electro-osmotic velocities with the characteristic length-scale h ~ Vk. While
the electro-osmotic velocity is independent of geometrical length-scales, the pressure-driven veloc-
ity scales quadratically, Uj, ~ h%. From Egs. (3) and (4), the maximum pressure gradient occurs
when the total velocity is zero, e.g., in a dead-end pore,

&g
n”
Equation (5) indicates that electro-osmotic flow can “pump” the fluid in the opposite direction of

pressure gradient. It is well known that electro-osmotic pumping leads to flow reversal in a dead-end
pore or near a bottle-neck [63], which is a possible mechanism for sustaining over-limiting currents

Apeo ~ = Ag. (&)
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FIG. 2. Flow reversal occurs when pressure-driven and electro-osmotic flows compete. Left: Schematic of
two reservoirs “A” and “B,” connected via two parallel “pores” of different sizes A; and A,. Right: When an
electric field is applied from reservoir “A” to “B,” electro-osmotic flow creates an adverse pressure gradient,
which drives backward pressure-driven flow. Because the hydraulic and electro-osmotic conductivities scale
differently with the pore size, the flow in the smaller pore is always in the opposite direction of the larger pore,
leading to a net circulation.

[10,11]. Adverse pressure gradient and internal flow re-circulation also limit the performance of
electro-osmotic pumping, which must be circumvented to achieve fast pumping [64—66]. Consider
a hypothetical situation where two reservoirs, “A” and “B,” are connected via a small and large
pore placed in parallel (see Fig. 2). If an electric field is applied from reservoir “A” to “B,” the
electro-osmotic flow creates an adverse pressure difference,

Apeo = S (6)

Peo = PB pA—R1+R2 eo\/1] 2)

where A| » and R , are the cross-sectional area and hydraulic resistance of the pores, respectively.
This pressure difference drives fluid flow in both pores that are in the opposite direction of electro-
osmotic flow, leading to the total area-averaged velocities given by

APeo R, A +A;
Ui = Ueo — = (1 - ——) 7
! °TRA R +R, A @
Apeo R] A] +A2
Uy = Usy — =0, (1———>. 8
PTE T RA, Ri+R, A, ®)

From Darcy’s law, R,/R; = (A;/A,)?, and therefore the area-averaged velocities may be ex-
pressed in terms of relative pore size, A;/A,. Figure 2 illustrates that the average velocity in the
larger pore is always in the opposite direction of the smaller pore. This is easy to understand in
the limit when A; < A;. In this case, the electro-osmotic flow primarily reverses through the pore
with least hydraulic resistance (larger area). The simple analysis presented here is the basis of flow
reversal and circulation in a random porous medium as will be shown in the following section.
A porous medium with a heterogeneous permeability field may be idealized using a collection of
different-sized pores that are connected in series and parallel. While series connection can lead to
flow reversal at the pore scale, it is the size variation between parallel pores that lead to flow reversal
at the macroscopic level.

It is well known that pore network connectivity impacts fluid flow [22,67,68], ion transport
[69], and electrokinetics [61,70] in porous media. Recently, the concept of “accessivity” [71] was
introduced to characterize the role of pore network connectivity in explaining the origins of capillary
hysteresis in porous media. This concept has also been used to quantify the impact of network
heterogeneity on sustaining over-limiting currents through ion-selective membranes [61]. Therefore,
it should not be surprising that pore network connectivity also impacts vortex formation. As we
shall see, the circulation region in a heterogeneous porous medium roughly scales with the size
of heterogeneity, i.e., the length-scale over which the permeability field changes in the domain.
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FIG. 3. Flow characterization in a Hele-Shaw cell of variable gap. (a) Schematic of a Hele-Shaw cell with a
nonuniform gap. We use “1” and “2” subscripts to refer to parameter and variables defined in each sub-domain.
(b) Center: The state of flow field is fully determined by two parameters: the gap ratio, &, and the electro-
osmotic coupling coefficient, «.,. For any gap ratio, circulation is possible if the electro-osmotic velocity is
sufficiently strong. The direction of electro-osmotic flow, denoted by the sign of «,, dictates the direction of
the dipolar flow field and the sign of circulation. (b) Left, Right: Representative examples of the flow field for
the gap ratio of 4 = 0.1. The green dashed line represents the extent of circulation region given via Egs. (25)
and (26), which grows in an unbounded fashion as |&e,| — 00.

However, before turning to porous media, we will first consider a simpler problem in a Hele-Shaw
cell with nonuniform gap thickness which allows for analytical solution.

B. Nonuniform Hele-Shaw cell

Flows in Hele-Shaw cells have been traditionally studied as a two-dimensional idealization of
more complex flows in porous media. Moreover, flows in Hele-Shaw cells are considerably easier
to visualize experimentally. Recently, several works have shown that by controlling the ¢ potential
through gate electrodes, it is possible to control flow patterns in a uniform Hele-Shaw cell [58-60].
These experiments clearly illustrate the formation of circulation regions around gate electrodes.
Here, we consider a Hele-Shaw cell with a disk-like region of narrower gap thickness, but constant
¢ potential (see Fig. 3). As we will see, the depth-averaged velocity for this problem also exhibits
similar circulating flow pattern around the disk region.

We assume a Hele-Shaw cell with a variable gap thickness H(x) = Hy — AH x(x), where x = 1
inside the disk of radius @ and x = 0 outside. Note that, throughout this articles, lowercase boldface
symbols represent vector quantities, e.g., X = (x, y) represents a point in two dimensions. The Hele-
Shaw cell is subjected to uniform fluid flow and electric current far away from the disk. The presence
of the nonuniformity in the gap thickness affects the hydraulic and electrical resistance near the disk
and perturbs the pressure and electric potential fields. To obtain the depth-averaged velocity, we
must first solve for the electric potential which satisfies the depth-averaged Ohm’s law,

V . [H(X)o V] = 0. 9)

Here, o is the electrolyte conductivity which is assumed to be uniform. Notice that we have
ignored the contribution from streaming current in Eq. (9). This assumption is justified for Hele-
Shaw cells in which the gap thickness is considerably larger than the Debye length (H > Ap).
We will further comment on this assumption in the next section where we define a nondimen-
sional parameter to quantify the strength of streaming current. The solution to Eq. (9) in polar
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coordinates is

b = —Eoorcose(i), (10)
1+h
a*l—h
¢2 = —EOOVCOSQ(l—‘rr—Zm), (11)

where E is the far-field electric field, # = H,/H, is the gap nonuniformity parameter, and ¢; and
¢, are the solution inside and outside the disk, respectively. Using this solution, the electro-osmotic
velocity is given by

2U,
ul = l:(;l(cosé?é,—sin@éa), (12)
) a*1—h\, . a’1—h),
oo = Uewcost(1 =5, Jo —Ueosind {1+ 57, )& 9

where U, = KeoEo is the uniform far-field electro-osmotic velocity.
For a Hele-Shaw cell, Eq. (4) gives the total depth-averaged velocity with k(x) = H (x)?/12p.
Mass conservation then requires that

H(x)*
V. Vp|+V [HX)K,V¢] =0, (14)
12
which combined with Eq. (9) further simplifies to
H(x)*
V. Vp| =0. (15)
121

Note that the apparent decoupling between the pressure and potential fields in Eq. (15) is simply a
result of assuming uniform electro-osmotic mobility and electric conductivity. As we will discuss
in the next section, this assumption may not hold in general. Nevertheless, the coupling between
the two fields is still enforced through the boundary conditions. The solution to Eq. (15), subject to
uniform far-field velocity, is given by

12pU, 2
pL=- H02 rcos9(—1 +h3>’ (16)
12U, a?l1—-n
pr=— H02 rCOSQ(]—i—r—zm s (17

where U, = U — U, is the pressure-driven part of the uniform far-field velocity, U. From Egs. (16)
and (17), the pressure-driven velocity is found as

2h2U,

u = e (cosf &, —sinf &), (18)
> _ geost(1- S e —vsing (14 S (19)
u, = COS - = ]€¢ — sin — = | €.
h h r21+4+h3 h 21+m)
Finally, the total velocity is
u,=u’ +ull (20)

The velocity field in Eq. (20) is the sum of a uniform background flow and a dipole-like term
due to nonuniformity in the gap thickness. This velocity field depends on two nondimensional
parameters: the ratio of the gap thickness between inside and outside &7 = H;/H,, and the “electro-
osmotic coupling coefficient,”

UCO

Qeo = 7, 2D
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which measures the relative strength of electro-osmotic velocity with respect to the total velocity.
For a fixed geometry, the electro-osmotic coupling coefficient can be tuned independently and
affects the flow field. When o, > 0, the electro-osmotic and far-field velocities are in the same
direction, whereas negative values (o, < 0) indicate opposite directions. Irrespective of the sign of
Oeo, flow reversal is expected when the electro-osmotic velocity is sufficiently strong, as illustrated
in Fig. 3. To characterize the flow behavior, we consider the & component of the total velocity along
0 =m/2,

ui (r) Ueo 1 - aeo)hz
=2 , , 22
U (1+h+ 1+ r=d (22)
ur (r) n a® 1—nh L )1 - (23)
= — | deo—— — Qo) ——= |, r>a.
U r2 1+nh 1+ h3

We detect the presence of circulation if u;(a)uz(a) < 0, i.e., the 8-component of velocity switches
sign across the disk region. Figure 3 illustrates the regions in the (4, ., ) phase space for which flow
circulation is possible,

—h? 1

circulation possible: o, < —— or

S 24
1—h %o Z hd —h) @4

Note that when ., > 0, the direction of the dipolar flow field is aligned with the pressure-driven
flow and we say the circulation is “positive.” Conversely, when o, < 0, the dipolar and pressure-
driven flow fields are in the opposite direction and we call the circulation to be “negative.” The
extent of the circulation region is computed by requiring that only the radial (when «, < 0) or both
components (when «,, > 0) of velocity are zero at (r, 7 /2),

roo1—m h(l — h) e 05
a Vigm Yeqyp e 1w
P, mi=h 1= 1 6
- = — , > —
P YT T 1+m T wd—h

Here, we have shown that electro-osmotic flows can generate circulating regions in a Hele-Shaw
cell with a nonuniform gap thickness. Although the analysis was more involved than the previous
section, the fundamental physical picture remains unchanged: electro-osmotic flows create adverse
pressure gradient, which subsequently drive pressure-driven flows in the opposite direction. This
can lead to flow reversal and circulation in regions where the gap thickness is nonuniform. The
spatial extent of this circulating region scales linearly with the size of nonuniformity.

III. ELECTROKINETIC TRANSPORT IN RANDOM POROUS MEDIA

A. Electrokinetic transport in porous media

The fully coupled electrokinetic transport equations describe a linear relationship between
macroscopic, volume-averaged fluxes, i.e., fluid velocity, u, and electric current density, i, and
thermodynamic driving forces, i.e., pressure, p, and electric potential, ¢ [1,4]. Combined with
statements of mass and charge conservation, the governing equations read

V.F=0, F=-KV®, Q7

where we use F = (u, i) and & = ( D, d))T notation for brevity and K 1is the electrokinetic coupling
tensor:

k= (% %)
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Equation (27) indicates that the macroscopic fluid velocity is the sum of pressure-driven, u;, =
—K;,Vp, and electro-osmotic, ue, = —K., V¢, terms. Similarly, the macroscopic electric current
density is the sum of Ohmic, i, = —K,V¢, and streaming current, i, = —K,Vp, terms. The
symmetry of the electrokinetic tensor, K, is a result of microscopic reversibility and can be directly
verified using Stokes and Poisson-Nernst-Planck equations [4,72]. Here, Kj;(x) = k(x)/u is the
hydraulic conductivity, where k(x) denotes the permeability coefficient at a point X = (x,y). As
discussed later, we use Gaussian random fields to generate the permeability coefficient from a known
autocorrelation function to simulate the effects of heterogeneity on the electrokinetic response.

In this article, we focus on linear electrokinetics and thin EDL approximation. Therefore, we
express the macroscopic electrokinetic mobility, K.,, according to the Helmholtz-Smoluchowski
relation, K., = —&¢ /. Here, { may be interpreted as a macroscopically averaged surface potential
for the entire porous medium and assumed to be uniform [72-74]. The macroscopic electrical
conductivity, K., is related to the electrolyte conductivity, o, through K, = o¢/t, where € and 7
are the porosity and tortuosity coefficients, respectively [75,76]. Here, we have ignored effects of
surface conductivity [69], which is consistent with the assumption of linear electrokinetic response.
Furthermore, we assume the macroscopic electrical conductivity to be uniform. This assumption is
justified for a porous medium with uniform t /e ratio, the so-called “formation factor” [1,77], and
saturated with an electrolyte of uniform concentration. More realistically, both the electro-osmotic
and electrical conductivities could be nonuniform in the medium. Variations in surface charge
density, electrolyte concentration, or formation factor can all lead to a complex, and possibly
dynamic, electrokinetic response such as propagation of deionization shock waves [13,61]. In this
article, we only consider heterogeneity in the permeability coefficient to focus on basic ideas. As
we will see, even the simple linear model can lead to rich and chaotic fluid behavior.

The strength of electrokinetic coupling is measured in terms of the nondimensional coupling
coefficient:

K,
KK,

o 29)
which also controls the efficiency of electrokinetic energy conversion [78]. The second law of ther-
modynamic requires that 0 < o < 1(det K > 0). In the limit of thin EDLSs, the coupling is typically
weak, i.e., @ < 1. In this “weak coupling” limit, only the streaming current or electro-osmotic flow
can be large but not both at the same. This can be verified by introducing two nondimensional
parameters:

Kool KU

~ U. —
K.U o/ e K.l

~ I /1, (30)

which measure the relative importance of electro-osmotic velocity and streaming current, respec-
tively. By comparing to Eq. (29), it is clear that o = oorsc and therefore, in the limit of weak
coupling, both effects cannot be strong at the same time.

In our numerical simulations, we solve the fully coupled Eqs. (27). However, to better understand
the role of electro-osmotic flow, we can simplify these equations in the limit of weak streaming
current, i.e., age < 1:

V - [Ki(x)V pl + Ko V¢ = 0, 31)
K.V?¢ = 0. (32)
Equation (31) can further be simplified by using Eq. (32):
k
V. [@Vp] —o, (33)
"
Vi = 0. (34)
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The apparent decoupling of pressure and potential fields is again due to assuming uniform elec-
trokinetic and electric conductivity coefficients. As discussed earlier, and more realistically, all
of the terms in the conductivity tensor in Eq. (28) could be heterogeneous, leading to fully
coupled system of equations. Variation in the ¢ potential is possible due to heterogeneous surface
chemistry. Furthermore, spatiotemporal variations in the electrolyte properties, such as pH and salt
concentration, can lead to nonlinear electrokinetic response and formation of deionization shocks,
which cause heterogeneous ¢ potential and solution conductivity [61]. Nevertheless, the pressure
and electric potential are still coupled through the boundary conditions when fluxes are prescribed:

k
k™, Vp=U,+Keoh - Vo, (35)
"

—K.f - Vo =1, (36)

where i denotes the normal to the boundary, and U,, and I, are the total velocity and electric current
density, respectively. Here, the term “boundary” refers to the side boundary of the computational
domain (see Sec. III C). Combining Eqgs. (35) and (36) yields the following simple boundary
condition for the pressure:
_@ﬁ.Vp= U, — Keo
w K

(4

L, = U,(1 — aeo). 37

Equation (37) suggests that the pressure field and fluid velocity can be directly controlled by
adjusting the current density at the boundaries. Finally, once the pressure and electric potential are
known, the fluid velocity in the domain is given via

k(x)
u= —TVP — KooV = (1 — aeo)ug + g, (38)
where uy is the fluid velocity for the same problem but at zero electric field and e, = —K., V.

Because ., is controlled by the electric current, it can be tuned independent of the fluid velocity.
Remarkably, when «, = 1, the fluid velocity is independent of pressure field and is entirely dictated
by the electro-osmotic velocity.

B. Random field generation

We use random fields to represent heterogeneous properties in a random porous medium.
Specifically, we assume the permeability field is given via

k(x) = ko explz(x)], (39)

where kj is a reference value and z(x) is a random field with a known autocorrelation function & (x):
£00 = [ 20 - x)ax. (40)

We further assume the random field z(x) to be statistically isotropic, i.e., £(x) = £(|x]|), although
this restriction can be easily lifted. Different correlation functions may be assumed depending on
the statistical properties of the medium. Here, we assume Gaussian correlations, i.e.,

E(Ix]) = & exp(—[x|*/€), (41)

where &, controls the variance of the random field z(x). Indeed, we have & = o2 + u? where o
and p are the variance and mean of the random field z(x). The “correlation length” ¢, defines a
length-scale over which the correlations in the random field decay and could be understood as
defining a “feature size” in the random field (see Fig. 4).

We use fast Fourier transform (FFT) to generate random fields efficiently. This approach is
similar to the algorithm presented by the authors of Refs. [79,80] and based on the Wiener-Khinchin
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FIG. 4. We use Gaussian random fields to represent heterogeneity in the permeability function k(x). Top:
A sequence of random fields are generated from a known autocorrelation function [Eq. (41), with & = 1] with
increasing correlation length, £. When ¢ — 0, the random field appears as a white noise but increasing the
correlation length reduces large variations in nearby points and results in a smoothly varying random field.
Bottom: The probability density function (PDF) for the spatial distribution of log-permeability [z(x) = In k(X),
with kg = 1]. The red dashed curve is the standard normal distribution. When ¢ — 0, the log-permeability
function has a normal distribution, as expected. As correlation length becomes larger, the spatial distribution is
distorted due to correlations and finite-size effects.

theorem, which states that the autocorrelation and power spectral density functions are Fourier
transform pairs,

£(x) < sk) : FEx) = |Fzx)? = S(k), (42)

where F denotes the Fourier transform and k = (k,, k) is the wave vector in two dimensions. For
the Gaussian autocorrelation function defined in Eq. (41), the power spectral density is given via

S(k|) = / E(Ix]) e ™ ¥ dx = m&l* exp(—L2[Kk|*/4). (43)

With a known power spectral density, we generate the random field z(x) by taking inverse Fourier
transform while randomizing the phase of individual modes:

2(x) = FVS(K]) ] = 4% f V(K] e’ e dk, (44)
T

where 6(k) is the random phase angle for mode k, which is drawn from a uniform distribution,
ie., 0(k) ~ U(0, 2r). We also require that 6(—k) = 6(k), so that z(x) is real valued. Equation (44)
could be understood as a superposition of plane waves with amplitude /S(|k|) and randomized
phase angles. Alternatively, Eq. (44) could also be understood as smoothing a white noise field using
a filter whose power density is S(|k|). Figure 4 illustrates a sequence of random fields generated
using Eq. (44) with &y = 1 and different correlation lengths.

C. Numerical simulations

We numerically solve the system of Eqgs. (27) in nondimensional form. This is achieved by
introducing the following nondimensional variables:
X .o k(x) Pko ~ 9K, u

. i
X=— ) k - ) p = ) ) i=— ) i=- ) 45
X=p KO==7 PEy, e "Tu 't (45)
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where L is a reference macroscopic size, ky is a reference permeability coefficient, and U and [ are
reference velocity and electric current density values. For brevity, we will omit the hat notation in
the remaining of this article and treat all variables as nondimensional unless otherwise noted. The
resulting nondimensional equations are given via

V - [k(X)Vp] + @eo V2 = 0, (46)

aseVip + Vi =0, (47)

with the coupling coefficients defined in Eq. (30).
As discussed earlier, the nondimensional coupling coefficient,

K2 &%k
KeKh I‘LKe ’

measures the overall coupling between pressure and potential field and is often very small in
practice. For instance, assuming a reference permeability ko = 10mD ~ 10~'*m?, surface po-
tential ¢ = —50mV, electrical conductivity K, ~ 7.5mSm~! and dielectric constant & ~ 7 x
1071 Fm~!, the coupling coefficient is & &~ 1.6 x 1072,

As discussed in the previous section, we expect the vortical structures to first appear when |oeo| ~
1. From Eq. (30), this condition corresponds to a critical injection ratio of

(48)

A = Oeollsc =

K, mA cm™>
I/U)y=— ~212——— (49)
Ko cms™!

For a velocity of U &~ 0.1 mms™!, the critical current is relatively small I, ~ 2.1 mA cm~2. We
also note that the right-hand side of Eq. (49) is reciprocal of an important quantity in the geophysics
community, i.e., the “electrokinetic coupling coefficient,” C = K,,/K, [81]. This quantity is often
determined directly through streaming potential measurements. For many reservoirs, measured
values fall in the range of C ~ 107°~107> V Pa~! depending on the pore fluid salinity, with typical
value of C &~ 107 at salinity level of ~1 mM [82].

We solve the coupled Eqs. (46) and (47) in a square domain 2 = [—1, 1]? subjected to prescribed
flux values at the left and right boundary,

0 0
k£l P W I (50)
e — Y | et
SPV/:A B 51)
Y li—t1 0Y =t

and no flux conditions at the top and bottom boundaries. Figure 5 illustrates the formation of vortical
structures for different values of electro-osmotic coupling coefficient and correlation length. At zero
electro-osmotic coupling, the fluid flow is dictated by the pressure field and the heterogeneous
permeability field. As the coupling coefficient is increased, the velocity field initially becomes
uniform, assisted by the electro-osmotic flow in the same direction. From Eq. (38), when o, = 1,
the flow field is entirely determined by the electro-osmotic component, which is uniform due
to uniform electric field. When «,, > 1, strong electro-osmotic flows through regions of low
permeability create backward pressure-driven flow through regions of high permeability, resulting in
a circulating flow field. The size of vortical structures is therefore directly related to the separation
distance between low and high permeability values, which is controlled by the correlation length
parameter £.

Figure 6 illustrates the flow patterns when the electro-osmotic and pressure driven flows are
in the opposite direction. This is simulated by reversing the sign of the electro-osmotic coupling
coefficient, which has the same effect as reversing the sign of electric current in boundary condition
Eq. (51). Unlike Fig. 5, vortical structures can appear for any value of electro-osmotic coupling, even
when |oe,| < 1. Nevertheless, the number of vortices grows as the magnitude of electro-osmotic

103701-11



MOHAMMAD MIRZADEH et al.

71‘“71',0 05 00 05 10 -0 05 00 05 10 -10 05 00 05 10 -10 05 00 05 10

FIG. 5. Effects of electro-osmotic coupling coefficient («.,) and correlation length (¢) on the vortex size.
The solid lines are the streamlines and the background color is the normalized vorticity, i.e., ®/|®|max, Where
w =V x u is the fluid vorticity and |®|y,y is the maximum absolute value of vorticity in the domain. When
teo = 1, the flow field is entirely determined by the electro-osmotic flow, which is uniform due to uniform
electric field [cf. Eq. (38)].

coupling is increased. These results indicate that vortex generation is a consequence of nonuniform
competition between electro-osmotic and pressure driven flows and occurs when electro-osmotic
flows are sufficiently strong.

From Figs. 5 and 6, it appears that the vortex size directly scales with the correlation size. To
quantify this relationship, we generate different realizations for fixed correlation length and compute
the ensemble average number of vortices. We define a vortex center as the maximum or minimum

7 —0.4

o) @ I\ -0.8

210 7('),5 0.0 05 1.0 71',0 7('),5 0.0 0.5

FIG. 6. Vortical structure persist when the electro-osmotic and pressure driven flows are in the opposite
directions. The solid lines are the streamlines and the background color is the normalized vorticity, i.e.,
W/|®|max, Where @ = V x u is the fluid vorticity and |@|m.x 1S the maximum absolute value of vorticity in

the domain. Note that, unlike Fig. 5, the vortical structures appear even when |a,| < 1.
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FIG. 7. Statistical analysis of vortex size. Left: The number of vortices (both clockwise and counter-
clockwise) increases as the correlation length is decreased and scales as n, ~ £~ for sufficiently small
correlation lengths. The electro-osmotic coupling coefficient was set to o, = —3. The symbols represent
ensemble averages and error bars are one standard deviation involving 100 simulations for each value of
correlation length. The discrepancy at larger correlation length might be due to finite size effects and strong
interaction of vortices in the periodic domain. Right: A representative example illustrating the applicability of
our algorithm in detecting vortex centers for £ = 0.2.

of the stream function, v,

)
"= (% -%> . (52)
ay ox

In this definition, clockwise vortices are associated with the minima of the stream function (negative
vorticity) and counterclockwise vortices are associated with the maxima of the stream function
(positive vorticity). To detect vortices, first a collection of candidate critical points are selected by
thresholding the velocity magnitude, i.e., [u] < 5 x 1073 Uypax where Upy is the maximum velocity
magnitude in the domain. Next, the saddle points are rejected by computing the eigen-values of the
Hessian matrix:

Py Py
X2 X
(W) )
axdy 3y
given via
12 — tr(H)A + det(H) = 0. (54)

The critical points of the stream function are then classified accordingly:
maximum : A; > 0, A, >0, minimum : A, <0,A; <0, saddle: X1, <O. (55

Figure 7 illustrates the ensemble averaged number of vortices as a function of correlation length.
The number of vortices (n,) increases as the correlation size is decreased, and for sufficiently small
values, scales as n, ~ £~2. This scaling further suggests that the average vortex size scales with the
correlation length, i.e., £, ~ 1/,/n, ~ £. Interestingly, the appearance of adjacent counter-rotating
vortices resembles the vortical patterns often observed in “bacterial turbulence” [83]. Similar
alternative charge ordering is also observed in the ionic positions of cations and anions in ionic
liquids [84]. It would be interesting to see if similar “antiferromagnetic” ordering also applies for
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electrokinetic vortices and whether the ideas presented in Ref. [84] can be used to reconstruct the
flow field.

D. Electrokinetic mixing

We finish this paper by pointing that the ideas presented in this article might be helpful in
controlling and enhancing mixing in porous media. Mixing in porous media is important in engi-
neering applications and geological processes such as secondary oil recovery, contaminant transport,
and soil and groundwater remediation [24,25]. When reactions are fast, transport processes are
diffusion-limited and will benefit from enhanced mixing. Recently, there has been renewed interest
in the role of heterogeneity in enhancing the mixing rate [85]. In a heterogeneous media, mixing
is improved due to increased velocity fluctuation and material stretching [86,87]. Nevertheless, in
passive mixing, it is difficult to control the degree of mixing due to small Reynolds number.

As we have shown in this paper, electrokinetic phenomena can generate strong vortical flows,
which are easy to control. Combined with a suitable control strategy, electrokinetic vortices could
enhance chaotic mixing in porous media and improve existing remediation techniques [37,38]. Note
that our proposed idea is different from chaotic electrokinetic flows in microfluidic channels [88,89]
and near ion-selective membranes [90-92], which are generated due to nonlinear interactions. It is
also different from stochastic electrotransport in porous media subjected to randomly fluctuating
electric fields [42], which are used to deliver and purge chemicals in preparation for imaging of
large tissue sample, such as whole mouse brains [43—-45], although the dispersion caused by any
electrokinetic vortex patterns could ideally be added to effective diffusion coefficient associated
with random electrophoretic drift.

To provide a concrete example, consider a rotating electric field defined as

E = Ey[cos(wr), sin(wt)]", (56)

with constant frequency w = 2 /T . For simplicity, we assume the period is equal to the advection
timescale, i.e., T = L/U. This electric field can be realized by placing two sets of perpendicular
electrodes, with AC signals at constant frequency and phase shift of v /2. To obtain the flow field, we
solve the nondimensional electrokinetic Egs. (46). For simplicity, we neglect the effects of streaming
current by setting o, = 0 while the electro-osmotic coupling coefficient is used to control the degree
of mixing. Experimentally, this corresponds to adjusting the electric field magnitude Ey via Eq. (30).
The boundary condition for the total velocity is given via Eq. (47), in the x direction, and no-flux
condition in the y direction, as before. For the electric potential, we instead impose rotating electric
fields [Eq. (56)] at the boundaries, which in nondimensional form reads

—8—¢ = cos(2mt), —8—¢ = sin(27t). &0

0x ly==1 Y ly=t1

Finally, we use correlation length of £ = 0.15 to generate the permeability function as discussed in
Sec. III B.

The rotating electric field generates a periodic unsteady flow field, which can cause strong
mixing, especially in applications where the field rotation is stochastic, caused by random motion of
a porous sample [42]. We characterize the effectiveness of electro-osmotic mixing via Lagrangian
advection of tracers with the local velocity field,

& uen) (58)

— =u(x,1?).

dt
Figure 8 illustrates consecutive snapshots of advecting N = 50000 tracers during one period of
rotating field for different values of electro-osmotic coupling coefficient [93]. The tracers are ini-
tially distributed uniformly and randomly inside a disk region and are colored to better demonstrate
the mixing process. As the strength of electro-osmotic flow is increased (larger o), the mixing is
enhanced due to stronger vortical flow. Although mixing still occurs without electric field (top row)
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FIG. 8. Effect of electro-osmotic vortices on mixing. A rotating electric field, shown by the small arrow in
the last row, generates an unsteady flow field that causes strong mixing. This is demonstrated by advection of
50000 Lagrangian markers with the local flow field. Mixing is enhanced as the strength of electro-osmotic flow
is increased. The background permeability field (omitted for clarity) is the same in all cases and corresponds
to a random field with £ = 0.15.

due to spatial velocity fluctuations, it is significantly enhanced by the presence of electro-osmotic
vortices as evident in the bottom row.

IV. CONCLUSIONS

In this article, we have demonstrated that electro-osmotic flows in heterogeneous porous media
can lead to the formation of vortex patterns. This phenomenon occurs due to competition be-
tween pressure-driven and electro-osmotic flows. Because the pressure-driven and electro-osmotic
flows scale differently with the pore size, large internal pressure gradients are created when
electro-osmotic flow is pushed through tight pores. When the permeability field is nonuniform,
the generated pressure creates backward flow through regions of high permeability. Although this
mechanism has been widely known for a single pore, here we demonstrated that a similar flow
reversal also occurs on the macroscopic scale, much larger than individual pores. Through detailed
analyses, we showed that the spatial extent of vortical structures directly scales with the length scale
of the heterogeneity in the permeability field. We also introduce a nondimensional parameter, the
electro-osmotic coupling coefficient, oo, Which describes the relative strength of electro-osmotic
flow and controls the flow pattern. When ., ~ 1, the electro-osmotic flow is comparable to
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pressure-driven flow and vortical structures first appear. Importantly, the electro-osmotic coupling
coefficient may be tuned by adjusting the applied current or electric field, independently from the
flow rate and pressure difference.

The analysis we have presented here may be extended in several ways. First, we have assumed
that only the permeability field is heterogeneous while other material properties are uniform in
the domain. In practice, ¢ potential could also be heterogeneous due to nonuniform chemical
composition. Moreover, several material properties could change dynamically with flow field.
In single-phase flows, variation in salt concentration or pH can lead to changes in electrolyte
conductivity and ¢ potential, leading to nonlinear coupling and formation of deionization shock
waves. The problem is even more complex in two-phase flows, where the immiscibility can lead to
unequal partitioning of ions and nonuniform electrokinetic response. Recent works in Hele-Shaw
cells suggest these interactions can be exploited to control viscous fingering, but their applicability
to porous media is still unknown. Both the nonlinear response and two-phase electrokinetic flow in
porous media are novel problems that require further theoretical and experimental investigations.

Finally, we have shown that strong electro-osmotic flows generate vortical structures that pro-
mote fluid mixing. Although several mixing strategies have been proposed in microfluidic systems,
controllable mixing in porous media is more difficult to achieve. This is because such techniques
often rely on geometrical modifications, which are usually not possible in a porous medium. By
contrast, electrokinetic mixing relies on the inherent heterogeneity of the medium and is easily
controlled externally. The ideas presented in this article may therefore be exploited in applications
where controllable mixing is desired, e.g., in enhancing reaction rates in porous electrodes, im-
proving the effective diffusivity of molecules in biological tissues, and diluting contaminants in soil
during electrokinetic remediation.
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