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We report on Rayleigh-Bénard convection with strongly varying fluid properties exper-
imentally and theoretically. Using pressurized sulfur-hexafluoride (SF6) above its critical
point, we are able to make measurements at mean temperatures (Tm) and pressures (Pm)
along Prandtl-number isolines in the (T, P) parameter space. This allows us to keep the
mean Rayleigh- (Ram) and Prandtl number (Prm) constant while changing the temperature
dependences of the fluid properties independently, e.g., probing the liquidlike or gaslike re-
gion that are left and right of the supercritical isochore. Hence, non-Oberbeck-Boussinesq
(NOB) effects can be measured and analyzed cleanly. We measure the temperature at
midheight (Tc) as well as the global vertical heat flux. We observe a significant heat
transport enhancement of up to 112% under strong NOB conditions. Furthermore, we
develop a theoretical model for the global vertical heat flux based on ideas of Grossmann
and Lohse (GL) in OB systems, adjusted for nonconstant fluid properties. In this model,
the NOB effects influence the boundary layer and hence Tc, but the change of the heat
flux is predominantly due to a change of the fluid properties in the bulk, in particular
the heat capacity cp and density ρ. Predictions from our model are consistent with our
experimental results as well as with previous measurements carried out in pressurized
ethane and cryogenic helium.

DOI: 10.1103/PhysRevFluids.5.103502

I. INTRODUCTION

Rayleigh-Bénard convection (RBC), where a horizontal fluid layer of height H is heated from
below and cooled from above, is often studied under the Oberbeck-Boussinesq (OB) approxima-
tion, which assumes constant fluid properties except for the density, which changes linearly with
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temperature, constituting buoyant driving [1–3]. Under such simplification, the system is controlled
by only two dimensionless parameters, namely the Rayleigh number, Ra = αg�H3/(κν), and the
Prandtl number, Pr = ν/κ . Here, � = Tb − Tt is the temperature difference between bottom (Tb) and
top (Tt ), g is the gravitational acceleration, α is the thermal volume expansion, ν is the kinematic
viscosity, and κ is the thermal diffusivity. Numerous models and predictions on global scaling and
turbulent characteristics were developed for turbulent RBC under OB conditions in recent years [4].

In many natural and industrial systems, however, large temperature and pressure differences
occur, resulting in variations of fluid properties throughout the cell and a violation of the OB
approximation. For example, the density of plasma inside the solar convection layer has a 105-
fold discrepancy, which hampers current Rayleigh-Bénard models being applied [5]. In industrial
applications, supercritical fluids with their large heat capacity and small viscosity are of great
interest for efficient heat transport, as, for instance, in coal-fueled or nuclear power plants of
Generation IV [6–8]. Furthermore, using supercritical fluids in power plants permits to operate at
larger temperatures, which helps to increase the thermal efficiency of the cooling circuit drastically
compared to two phase flows.

However, the fluid properties of supercritical fluid are particularly sensitive to temperature and
pressure variations, and thus no longer constant throughout the system. It is therefore important
to understand how such nonconstant fluid properties effect the flow field and the thermal transport
properties of these systems and how current models need to be adapted for the non-OB cases.

Non-OB (NOB) convection has been studied in the past, both experimentally and numerically.
The two most important responses are (i) the horizontally averaged center temperature at midheight,
Tc = 〈T (x, y, z = 0.5H )〉x,y,t , and (ii) the global vertical heat flux. The former parameter measures
the up-down asymmetry of the system, while the latter is a global easily measurable quantity that is
particular important in industrial applications and natural systems.

While NOB-convection close to convection onset (i.e., for laminar flows) is somehow understood
[9], for turbulent convection – despite some effort – the results are sparse and so far no simple
conclusion can be drawn. This is to some extent due to the large amount of control parameters that
become relevant in NOB-convection (see, e.g., [10]).

In general, the variations of fluid parameters between the warm bottom and the cold top destroy
the up-down symmetry of the system, resulting in Tc �= Tm, with Tm being the average temperature
Tm = (Tt + Tb)/2. For liquids, Tc > Tm was observed [11–17], while Tc < Tm was found for gases
as the working fluid [14,18–21]. Various models predicting Tc as a function of �, Tm, and fluid
parameters have been proposed and predict Tc more or less accurately. Most of the models consider
the boundary layers at the top and bottom. For example, Wu and Libchaber [18] proposed that either
the temperature scale, a velocity scale, or a corresponding boundary Rayleigh number evaluated at
the bottom and top have to match, leading to three different models for Tc. Ahlers et al. [14,19]
assumed laminar boundary layers at the bottom and top and solved numerically the momentum and
heat equation assuming temperature-dependent fluid properties, while neglecting buoyancy. There
is also the virtual cell model [20] that predicts Tc by assuming that the top part and the bottom part
of the convection system can be described as two separate OB systems that both follow the same
Nu(Ra) relation.

While different observations on the influence of NOB effects on Tc are in good agreement,
results for the heat transport in NOB convection are not conclusive and at first seem contradicting.
Measurements in pressurized gases usually show an increase in the vertical heat flux under NOB
conditions, as shown in [14,19,22,23]. Investigations using water resulted in a heat transport
reduction of just a few percent compared to the OB case [11,15], whereas investigations using
glycerol [13,16,17] and air at atmospheric pressure [21] do not show any clear trend, despite a
significant change in Tc.

While there are a handful of models developed to predict Tc in NOB fluids [11,12,18–20], there is
a wide research gap in modeling the global heat flux theoretically. For example, the extended mixing
zone model by Wu and Libchaber [18] is based on the same assumption that led to a Nu ∝ Ra2/7

scaling in the OB case, which is experimentally observed only in a rather narrow range of Ra and
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Pr. Hence, the same model is not expected to hold in general for NOB systems. The model proposed
by Ahlers et al. [11] based on the temperature gradient at the sidewalls of the cell assumes that
the viscous boundary layer thickness is unchanged, which is not expected to hold in strong NOB
systems. And the virtual cell model [20] only predicts Tc but not the heat flux. So far, none of these
models is available to explain the strong global heat flux enhancement mentioned above.

In the next section, we introduce the governing equations and the most important dimensionless
parameters. In Sec. III and IV, we describe our measurement scheme and the experimental setup. In
Sec. V, we present our theoretical model for the vertical heat flux for NOB fluids, and we compare
it with our measurements and the results of others. The paper ends with a conclusion in Sec. VI.

II. DIMENSIONLESS PARAMETERS

In the NOB system, next to Ra and Pr, also the temperature (T ) and pressure (P) -dependent
fluid properties determine the state of the system. Here, we only consider T -dependent fluid
properties and neglect spatial variations of P. Thus, we write the fluid properties as X(T, Pm) ≡
μ(T, Pm),�(T, Pm), α(T, Pm ), ρ(T, Pm ), cp(T, Pm), where μ is the dynamic viscosity, � is the
thermal conductivity, α is the isobaric expansion coefficient, ρ is the density, and cp is the isobaric
heat capacity, evaluated at a given pressure Pm. Usually a violation of the OB approximation results
in changes of Tc and the vertical heat flux q.

Equations for momentum, temperature, and mass can be written as

ρ
∂

∂t
ui + ρu j

∂

∂x j
ui = − ∂

∂xi
p + ∂

∂x j

(
μ

∂

∂x j
ui

)
− g(ρ − 〈ρ〉V )δiz, (1)

cpρ
∂

∂t
T + cpρui

∂

∂xi
T = ∂

∂x j

(
�

∂

∂x j
T

)
, (2)

∂

∂t
ρ + ∂

∂x j
(ρu j ) = 0, (3)

where the indices i, j denote the horizontal (x, y) and vertical (z) coordinates, 〈· · · 〉V is the volume
average, and p = P + ∫ z

z0
ρ(z′)gdz′. One can show [10] that by introducing proper length, time, and

temperature scales, x̃i ≡ xi/H , t̃ ≡ t/(H/
√

αmg�H ), ũi ≡ ui/
√

αmg�H , θ ≡ (T − Ttop)/�, X̃ ≡
X/Xm, where Xm ≡ X(T = Tm), the system is determined by the OB control parameters evaluated
at (Tm, Pm), i.e., Ram ≡ αmg�H3/νmκm, Prm ≡ νm/κm, and by the equation of states for the fluid
properties, X̃(θ, Tm, Pm).

As mentioned already, next to the averaged temperature at midheight (Tc or θc), the global vertical
heat flux q is the most important response parameter. It is usually expressed dimensionless as
the Nusselt number Nu = q/qcond, with qcond being the heat transport that would occur without
convection. While for the OB case the heat conductivity � is constant and hence it is simply
qcond = qOB = �m�/H , for the NOB case, i.e., when � depends on T , one needs to integrate over
the entire conductivity profile as shown in [24], qcond = H−1

∫ Tb

Tt
�(T )dT .

For the analysis presented in Sec. V, we define a mean Nusselt number as Num = q/qOB, which
compares the heat flux with the conductive heat flux in the OB case. This is only for simplicity later
on, and since Nu = Numq/qcond both Nusselt numbers can easily be converted into each other.

In a very similar way, we will also define a mean Reynolds number as Rem ≡ UH/νm. Here, U
is the characteristic velocity scale in the turbulent bulk, i.e., the velocity of typical eddies of the size
of the energy injection scale. While we cannot measure velocities in our setup, Rem is an important
global response parameter in turbulent RBC, and as such it will play a role later on in Sec. V.

The definitions for Num and Rem are chosen to be consistent with our normalized fluid properties,
i.e., X̃ = X/Xm.
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FIG. 1. (a) Pressure-temperature phase space for SF6 with the vapor pressure (solid white line), the super-
critical isochore (white dashed line), and different isocontour lines of Pr (dashed line). Their color represents
Prm = 3.5 (blue), 3.0 (green), and 1.5 (orange). Horizontal lines indicate the temperature range {Tt , Tb} at
which experiments were conducted. For all measurements it was Ram = 2.8 × 1011. (b) P-T phase space with
the lines of extreme values, i.e., where ∂α/∂T = 0, ∂ν/∂T = 0, ∂λ/∂T = 0, ∂κ/∂T = 0, ∂cp/∂T = 0, as well
as the supercritical isochore ρ = ρ∗. These lines separate the liquidlike from the gaslike region. We also show
the isolines of Pr = 1.5, 3.0, and 3.5 as gray lines for comparison.

III. EXPERIMENTAL PROGRAM AND THE DESCRIPTION OF THE SETUP

For quantitatively comparing Num in NOB and OB convection, the fluid properties X̃ should
be varied while keeping Ram and Prm fixed. This is nontrivial and has so far not been done
experimentally because Prm and X̃ are both intrinsic properties of a fluid. Previous experiments and
simulations have been conducted at fixed Tm with varying X̃ by changing � and Pm, thus causing
also changes in Ram and Prm [11,14,17,19,25,26]. Manipulating the degree of the NOB effect in
such a way always results also in a change of Ram, which also changes the heat flux. Thus, any
observation of heat flux changes is difficult to interpret because the non-uniform fluid properties,
i.e. X̃(θ ) is not the only independent variable. Furthermore, changing � at a specific Tm and Pm also
limits the shape of X̃(θ ) to be explored as part of the profile is always being retained in the same set
of experiments.

Here, we use the fact that one can draw contour lines of constant Prm in the T -P- phase diagram
near the critical point (T ∗, P∗) of a fluid as shown in Fig. 1. We perform experiments along these
contour lines using sulfur hexafluoride (SF6) as the working fluid by varying Tm and Pm and adjusting
� such that both Prm and Ram are kept constant for a set of experiments (horizontal lines in Fig. 1).
In this way, one can not only change the strength of the NOB effects, i.e., the difference between
the fluid properties at the warm bottom and the cold top, but one can even change the monotonic
behavior of X(T ). For example, at small P and large T , many fluid properties behave similarly to
gases [α decreases while ν and κ increase with increasing T ; see also Fig. 1(b) and Fig. 2(a)]. For
large P and small T , on the other hand, the monotonic behavior of the fluid properties is similar
to that of liquids [α increases while ν and κ decrease with increasing T ; see also Fig. 1(b) and
Fig. 2(b)].

We note that the gaslike and liquidlike areas in the supercritical phase space are not separated by
a sharp line, but rather by a wedgelike transition area [shown in Fig. 1(b)]. This is because lines of
extreme values are different for different fluid properties. In this region, for example, the kinematic
viscosity ν might decrease with T as for liquids, whereas the expansion coefficient α decreases as
well with T , as is the case for gases. We make measurements in the liquidlike, the gaslike, as well
as the transition region while keeping Prm and Ram constant.
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FIG. 2. Normalized fluid properties X̃ (see legend) as a function of the normalized temperature θ for
four representative experimental runs (i.e., Tm, Pm) and Prm = 3.5. Vertical dash-dotted line: experimentally
measured θc. Horizontal dotted line: X̃ (θ ) = 1, i.e., the OB case. Inset: zoomed-in plot showing ρ̃, �̃, μ̃.
(a) Gaslike fluid at Tm = 50.79 ◦C and Pm = 40.47 bar. (b) Liquidlike fluid at Tm = 50.789 ◦C, Pm = 45.79 bar.
(c) Fluid with the most OB-like properties, i.e., slightly above the critical isochore at Tm = 58.98 ◦C and
Pm = 49.41 bar. (d) Mostly liquidlike fluid at Tm = 45.26 ◦C and Pm = 40.56 bar.

For a better illustration, we show in Fig. 2 the profiles X̃(θ ) for five important fluid properties
and at four typical experimental conditions. We see that some parameters, like ρ̃, �̃, and μ̃, show a
monotonic decrease for all conditions. However, for ratios such as κ = �/(cpρ) or ν = μ/ρ (best
seen in the insets) or derivates like α̃ and c̃p, we observe opposite monotonic trends in the gaslike
[Fig. 2(a)] and liquidlike regions [Fig. 2(b)]. Figure 2(c) shows fluid profiles at a point farthest away
from the critical point, where fluid properties are nearly symmetric and the system is closest to an
OB system. Very often in the experiment, we have a situation as in Fig. 2(d). The fluid is mostly
liquidlike, but the temperature at the warm bottom plate crosses slightly the lines of maximal α̃ and
c̃p. Both values, however, are still larger at the bottom plate than at the top, which will result in an
increase of θc similar to liquids.

For the study presented here, we have carried out experiments at fixed Ram = 2.8 × 1011 and
Prm = 1.5, 3.0, 3.5. In each set of experiments for a given Prm, X̃(θ ) is changed by going along the
isocontour line of Prm from the gaslike (small Pm and ρm) to the liquidlike side (large Pm and ρm).

The experimental setup is similar to the one used in [14,19]. The cylindrical convection cell of
diameter D = 10.16 cm and height H = 5.08 cm (� = D/H = 2) has stainless steel sidewalls and
copper top and bottom plates. The cell is placed in a dry container filled with thermal insulating foam
surrounded by a temperature-regulated circulating water bath that cools the top plate to its desired
temperature. The cell is connected to a temperature-regulated gas bottle through a capillary tube
for pressure regulation. Two thermistors were placed in each of the top and bottom plates roughly
a millimeter away from the fluid and roughly 2 cm away from the cylinder axis. In addition, four
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thermistors were placed outside of the sidewall at midheight for measurements of Tc. Each mea-
surement lasted 24 h with the top and bottom plate temperature being kept constant at their desired
values within 0.05 K and pressure within 0.02 bar. The heat transport was measured via the Ohmic
heat dissipation into the bottom plate heater Qheater. However, not all of the heat was transported
from the bottom to the top by the turbulent flow, but there was a significant heat flux through the
insulation material into the surrounding water bath (Qloss). We determined Qloss as a function of �

by conducting measurements in an evacuated cell for different � and fitting a quadratic function to
the measured sampling points. To obtain the correct heat flux between the bottom and top plate Q,
we corrected the measured Ohmic heat input accordingly, Q = Qheater − Qloss. In our experiment,
Qloss can account for up to 20% of Qheater.

We note that this correction also accounts for the heat transport inside the stainless steel sidewall.
This contribution, however, is significantly smaller than the heat flux through the insulation material,
and it accounts for not more than a few percent of the total Qloss. We also note that there are
additional, higher-order contributions for the heat transport through the sidewall (see [27,28]) for
which we do not account. These contributions result from different thermal gradients in the fluid and
in the sidewall due to its high thermal conductivity. As a consequence, the sidewall damps temporal
and spatial fluctuations of the fluid close to it and acts as a bypass for the heat flux close to the
top and bottom plate. Correcting these higher-order contributions is a nontrivial task that requires
numerical simulations. We refrain from doing so because such corrections potentially introduce
other uncertainties and also because we always compare our results with the OB case and hence we
expect the influence of the sidewall on this deviation to be negligible, and deviations of Num and Tc

due to NOB effects can be captured reliably.
As pointed out before, we use SF6 as the working fluid. SF6 has an experimentally convenient

critical point at T ∗ = 45.6 ◦C and P∗ = 37.6 bar, it has a high density (hence a small ν and κ),
and subsequently it enables experimentation at larger Ra. However, most importantly, its fluid
properties close to the critical point have been studied extensively and are well known. We use
the fluid properties reported by NIST (REFPROP database [29]) in our analysis.

IV. EXPERIMENTAL RESULTS

Figure 3 shows measurements of θc and Num as a function of the normalized density ρm/ρ∗
for different Prm. The vertical dashed lines denote ρm/ρ∗ for which θc = 0.5, i.e., where the fluid
is expected to be most OB. The relative density ρm/ρ∗ is chosen as the control parameter as it is
best suited to represent the monotonic change of the NOB effects. At small ρm/ρ∗, the system is
close to its critical point (i.e., large NOB effects) but the fluid properties have a gaslike temperature
dependency. With increasing ρm/ρ∗, the system moves further away from the critical point, and
thus closer to the OB system. There, the fluid properties depend only weakly on T and are nearly
symmetric between bottom and top. With increasing ρm/ρ∗, the fluid properties behave more
liquidlike and the NOB effects become stronger as the system gets closer to its critical point.

The first column in Figs. 3(a), 3(c) and 3(e) shows measurements of θc as a function of ρm/ρ∗
(black crosses). We see that θc increases monotonically with increasing ρm/ρ∗ and that in general it
is θc < 0.5 in gaslike (ρm/ρ∗ < 1) and θc > 0.5 in liquidlike (ρm/ρ∗ > 1) fluids. This observation is
consistent with previous measurements in liquids (e.g., [11]) and gases (e.g., [14,19]). Note that the
point with ρm/ρ∗ ≈ 1 is not the point where the system is closest to an OB system, as can clearly
be seen in Fig. 1 by comparing the points where the Pr-isolines have the strongest curvature and
the critical isochore of the system (white dashed line). As a result, θc = 0.5 is observed for ρm/ρ∗
slightly larger than 1.

We compare our results with different models for θc, and we find that the third model by Wu
and Libchaber (mixing zone model) [18] and the virtual-cell model [20] hold well in a weakly
NOB system, but they fail at strongly NOB systems [30]. This is because both models assume
characteristic temperatures for the top and bottom boundary layers, which is not enough to describe
a rather complex function X̃(θ, Tm) inside the BL. The extended-boundary-layer theory [14,19],
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FIG. 3. Experimental results. In the left column (a), (c), (e), the measured center temperature (black
crosses) is plotted with a prediction from the extended-boundary-layer theory (cyan line), the virtual-cells
model (red dashed-dotted line), and the mixing zone model (gray dashed line). In the right column (b), (d), (f),
measured Num(black cross) and real Nusselt number (white dot) are plotted with prediction from the proposed
extended GL model by using the boundary layer predicted θc (blue solid line) and using measured θc (green
dashed line). The standard GL model is also plotted as the OB reference (black dotted line). The vertical line
marks the measurement at which NOB effects are smallest (θc = 0.5). The shaded region shows the sensitivity
of Tc measurement by displaying the effect of a ±50 mK error. Note that the Nu shown here are already
corrected by 10% so that the most OB-like measurements coincide with the GL prediction.

in contrast, agrees better in all of our measurements as it takes the exact shape of X̃(θ, Tm) into
account.

In the second column of Figs. 3(b), 3(d) and 3(f), we show Num (black crosses). While Num

is minimal close to the OB case (vertical dashed line), it is always enhanced under stronger NOB
conditions, i.e., at larger (liquidlike) and smaller (gaslike) ρm/ρ∗ with heat transport enhancement
of up to 100%. The heat flux increase in the gaslike side was expected and was found multiple times
before [14,18–21]. However, the enhancement in the liquidlike region is in contrast to measurements
in liquids (water), where a small heat transport reduction (≈1%) was observed [11]. We note that
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such a small reduction is within the uncertainty of our measurements. We also use circles in each
plot to show the real Nusselt number, i.e., Nu = q/qcond (as defined in [24]). We see that, while Nu
is close to Num and shows the same trend, it is visibly smaller in the gaslike regime, which is due to
the positive curvature of the heat conductivity, i.e., ∂2�̃/∂θ2 > 0.

To estimate the OB reference for a given Prm, we consider the experiment (or interpolations)
with min(|θc − 0.5|), e.g., for Prm = 3.5 it is the one carried out at Tm = 58.98 ◦C, P = 49.41 bar,
and � = 3.10 ◦C. For this case, all the relevant fluid properties X̃ are varying within 10% of their
mean value and there is very little asymmetry in the experiment. There is no reason to assume that
this experiment will have heat transport that is noticeably different from that under OB conditions.
Nevertheless, we found that this reference heat flux is roughly 10% higher than the GL model
prediction [31]. As such a deviation is easily explained by the conductive sidewalls, we will correct
all measurements by this value in the following [32]. This correction is necessary, since in the next
section we will compare these measurements with our own model, which includes fit parameters
from the GL theory for OB convection.

V. THEORY

A. Derivation

In the remainder of the paper, we want to develop a quantitative model for NOB turbulent
convection. For this, we first calculate the volume averaged dissipation rates from Eqs. (1) and (2),

Eu ≡
〈
μ

(
∂ui

∂x j

)2〉
V,t

= −g〈(ρ − ρc)uz〉V,t , (4)

ET ≡
〈
�

(
∂T

∂x j

)2〉
V,t

= q�

H
. (5)

Here, we have assumed no-slip boundaries and constant pressure such that cpdT = dh, with h being
the enthalpy density, expressed as a Taylor series: h = ∑∞

n=0 anT n. Furthermore, we only assume
small pressure fluctuations such that T ∂i p ≈ ∂i(pT ) − Pm∂iT . This can be justified as the pressure
variation caused by advection can be estimated as ρmαmg�H , which is three orders of magnitude
smaller than Pm in our system. The exact relations for Eu and ET are similar to the one derived for
OB systems (see, e.g., [33]). Following ideas from the GL model, we separate contributions from
the boundary layers and the well-mixed turbulent background,

Eu = Eu,bl + Eu,bg, (6)

ET = ET,bl + ET,bg. (7)

This method is well-established and has been successfully applied to numerous different systems,
including horizontal convection [34] and magnetoconvection [35].

First, we consider the contribution from the turbulent background (bg). We assume the back-
ground to be well mixed such that its temperature is T = Tc with only small fluctuations. This
assumption is valid when thermal plumes are excluded. This idea is inherent from the GL theory [36]
that plumes are a detached boundary layer. Their dissipations are dominated by material properties,
thus they scale the same as the boundary layers that will be considered in the next section. In
the turbulent background region, the turbulent momentum dissipation is rather independent of the
kinematic viscosity, thus

Eu,bg ∼ ρc
U 3

H
=

(
ρc

ρm

)
ρm

ν3
m

H4
Re3

m, (8)
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and the turbulent thermal dissipation rate is independent of the thermal diffusivity, thus

ET,bg ∼
(

cpcρc

cpmρm

)
cpmρmκm

�2

H2
RemPrm f

(
2a NuOB

Re1/2
OB

)
. (9)

Here, NuOB and ReOB are obtained by solving the standard GL model. The function f (x) = (1 +
x4)−1/4 describes the transition between regimes from small to large Prm [37]. Note that for now we
assume this function to be identical to the one in the OB case. Here, we have furthermore neglected
the other crossover function g(x) from the GL model, as only turbulent systems are considered.
From both expressions, one sees that the NOB effects on turbulent dissipation are only due to the
shift of Tc.

In OB convection, the boundary layer and the dissipation therein are usually modeled as a
Prandtl-Blasius-Pohlhausen (PBP) type [33], which assumes a self-similar velocity profile with
the characteristic length lu = √

νmH/U∞. NOB effects alter the boundary layers in two ways:
(i) The characteristic velocity becomes asymmetric, as found in previous numerical [13,16,17] and
experimental studies [25,26], and (ii) the shape of the velocity and temperature profiles inside the
boundary layers changes due to temperature-dependent fluid properties.

To address the first point, we introduce different characteristic free stream velocities U∞ for the
top and bottom plates such that

U∞,top

btop
= U∞,bot

bbot
= U = Remνm

H
, (10)

where btop and bbot are some undetermined factors. To describe the velocity and temperature profile
in the boundary layer, we use the extended PBP, which was suggested in [14,19]. The normal-
ized stream function ψ , defined such that

√
b(Remνm/H )∂z(luψ ) = ρ̃ux,

√
b(Remνm/H )∂x(luψ ) =

−ρ̃uz, is modeled as a function of the normalized vertical distance ξ ≡ √
bz/lu as

μ̃
∂3ψ

∂ξ 3
+

{
1

2
ψ + ∂μ̃

∂ξ
− 2

μ̃

ρ̃

∂ρ̃

∂ξ

}
∂2ψ

∂ξ 2
+

{
− ψ

2ρ̃

∂ρ̃

∂ξ
+

[
2

(
1

ρ̃

∂ρ̃

∂ξ

)2

− 1

ρ̃

∂2ρ̃

∂ξ 2

]
μ̃ − 1

ρ̃

∂ρ̃

∂ξ

∂μ̃

∂ξ

}
∂ψ

∂ξ

= 0, (11)

�̃
∂2θ

∂ξ 2
+

{
1

2
c̃pPrmψ + ∂�̃

∂ξ

}
∂θ

∂ξ
= 0, (12)

with boundary conditions

ψtop/bot(0) = 0, (13)

(∂ξψ )top/bot(0) = 0, (14)

(∂ξψ )top/bot(∞) = ρ̃c, (15)

θtop(0) = 0, θbot(0) = 1, (16)

θtop/bot(∞) = θc. (17)

By integrating Eqs. (11) and (12) (see the Supplemental Material for details [38]), one receives
expressions for the laminar viscous dissipation:

Eu,bl ∼ ρm
ν3

m

H4
Re5/2

m

(
b5/2

top Jtop + b5/2
bot Jbot

2JPBP

)
(18)
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and the thermal dissipation:

ET,bl ∼ cpmρmκm
�2

H2
Re1/2

m Pr1/2
m f 1/2

(
2a NuOB

Re1/2
OB

)(
b1/2

top Ktop + b1/2
bot Kbot

2KPBP

)
. (19)

Here, we have introduced the dissipation shape factors:

J ≡
∫ ∞

0
dξ μ̃

[
∂

∂ξ

(
∂ξψ

ρ̃

)]2

, (20)

K ≡
∫ ∞

0
dξ �̃

(
∂θ

∂ξ

)2

. (21)

Now, we consider the correction of the buoyancy term. Under constant pressure, the average
convective heat flux is 〈ρuzh〉V and the average conductive heat flux is

∫ Tb

Tt
dT �/H , so that

Num = 〈ρuzh〉V + (�m�/H )
∫ 1

0 dθ�̃

�m�/H
. (22)

With (22) one can write the buoyancy term in (4) as

−g〈(ρ − ρc)uz〉V = ρm
ν3

m

H4
RamPr−2

m

(
Num −

∫ 1

0
dθ �̃

)(−〈(ρ − ρc)uz〉V /αm

〈ρuzh〉V /cpm

)
. (23)

Here, two new global terms appear, namely 〈(ρ − ρc)uz〉V and 〈ρuzh〉V . We will estimate these two
terms by first-order expansion around Tc as these two terms represent the advective mass and heat
transport, respectively, which happen predominantly in the bulk. Inside the bulk, deviation of ρ, h
from ρc, hc due to temperature fluctuations can be approximated to the first order of T ′ as T ′ =
T − Tc. First, −〈(ρ − ρc)uz〉V ≈ ρcαc〈uzT ′〉V . Next, to utilize 〈ρuz〉V = 0, first-order expansion of
h around hc is taken first, so that 〈ρuzh〉V ≈ hc〈ρuz〉V + cpc〈T ′ρuz〉V ≈ ρccpc〈uzT ′〉V . This leads to

−〈(ρ − ρc)uz〉V /αm

〈ρhuz〉V /cpm

≈ (αc/αm)〈uzT ′〉V

(cpc/cpm)〈uzT ′〉V
= αc/αm

cpc/cpm

. (24)

Combining Eqs. (4)–(9), (18), (19), and (23), one gets the final expression with all correction terms
indicated,

⎛
⎝Num − ∫ 1

0
dθΛ̃

Conduction

⎞
⎠ RamPr−2

m

⎛
⎜⎜⎜⎝

Buoyancy

αc/αm

cpc/cpm

Convection

⎞
⎟⎟⎟⎠ = c1Re5/2

m

(
b
5/2
topJt+b

5/2
botJb

2JOB

)
Viscous bl

+ c2Re3
m

(
ρc

ρm

)
Bulk K.E.

(25)

Num = c3Re1/2
m Pr1/2

m f1/2

(
2aNuOB

Re1/2
OB

) (
b
1/2
topKt+b

1/2
botKb

2KOB

)
Thermal bl

+ c4PrmRemf

(
2a NuOB

Re1/2
OB

) (
cpcρc

cpmρm

)
Bulk Thermal

(26)

with the coefficients c1 = 8.05, c2 = 1.38, c3 = 0.487, c4 = 0.0252, and a = 0.922 obtained from
Stevens et al. [31]. These coefficients were obtained by fitting the GL model to available data from
experiments in cylinders with aspect ratio � = 1. While our experiments were conducted in a cell of
� = 2, we believe that the influence of the aspect ratio is small for � � 1, as suggested by studies
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for OB convection [39]. While we cannot exclude a stronger �-influence on the heat transport in
NOB convection, this question is beyond the scope of this study.

To solve the set of Eqs. (25) and (26), one needs to evaluate the fluid properties at Tc and hence
one needs to know Tc. This can either be done from direct measurements or from a model such as the
extended boundary-layer model ([19]). However, there are also the two unknown coefficients btop

and bbot, for which we currently do not have a model. However, given that the system we consider
is in the GL-regime IVu, where both dissipation rates are dominated by their corresponding bulk
contributions, the influence of variations of b on the dissipation rates is small. To compare our
model predictions with experimental data, we consider two different schemes to approximate btop

and bbot:
(i) When the boundary-layer theory accurately predicts θc, we take the theoretically predicted θc

(based on [14]) and have btop = bbot = 1.
(ii) When the boundary-layer theory underestimates the measured θc, we take the measured θc and

set bbot = 1 and btop = bbot(�̃∂ξ θ |
ξbot=0)2/(�̃∂ξ θ |

ξtop=0)2 in order to keep the heat flux conserved.
For our own data, btop falls within the range between 0.8 and 1.2 under this scheme.

B. Comparison with experimental data

In Figs. 3(b), 3(d) and 3(f), we compare results from the model with our measurements. The
blue solid line uses Tc as predicted from the extended boundary-layer theory, and the green dashed
line uses the measured Tc. As one can see, the difference between these two schemes is minimal.
Furthermore, the model predictions agree well with our measured Num. Only for the smallest
ρm/ρ∗ at Prm = 1.5 are discrepancies clearly visible. These measurements were taken very close
to the critical point with very strong changes in the fluid properties due to small fluctuations in the
temperature field.

To show the universality of our concept, we also test our theory against other measurements
with different X(θ ), Ram, and Prm. The studies selected in the following all show significant heat
flux enhancement, while the underlying cause has not been quantitatively discussed. Ahlers et al.
[19] performed experiments using pressurized ethane with Prm ranging from 1.79 to 3.67. The
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FIG. 4. (a) NOB Nusselt number enhancement in gaseous ethane at Tm = 40 ◦C plotted against the mean
Rayleigh number. Measurement data for Pm = 1.104P∗

ethane (red triangles), Pm = 1.062P∗
ethane (teal diamonds),

and Pm = 0.991P∗
ethane (gray squares) are adapted from [19]. Model predictions by the proposed model for Pm =

1.104P∗
ethane (red dotted line), Pm = 1.062P∗

ethane (teal dashed line), and Pm = 0.991P∗
ethane (gray dashed-dotted

line) are plotted for comparison. (b) Compensated mean Nusselt number in cryogenic helium vs mean Rayleigh
number measured by [23] (black cross) and our model prediction (red dots). Dotted line: GL prediction for OB
reference. The Ram and Num have been recalculated using REFPROP 9.1 [29].
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convection experiments were carried out at Tm = 40 ◦C in a � = 1 cell. Three sets of experiments
were performed at different pressure, and the degree of NOB effects was controlled by changing
the applied temperature differences �. In Fig. 4(a), we show that our model agrees well with their
experimental data. We used scheme (1) to obtain Tc as it is claimed that the boundary-layer theory
predicts Tc reasonably well in the paper.

Urban et al. [23] performed experiments using pressurized cryogenic helium with Prm ranging
from 0.68 to 11.29 in an � = 1 cell. Tm, Pm, and � are varied to achieve measurements in over
two decades of Ram. Detailed experimental conditions can be found in the Appendix of the paper.
In Fig. 4(b), we show that our model also agrees well in such a wide range of Prm and Ram. We
used scheme (2) to obtain Tc as we found that the boundary-layer theory did not provide accurate Tc

shifting.
Apart from these two studies, we also tested our model with studies on ordinary fluid such as

water [11]. While our current model predicts that NOB effects do not lead to large heat flux changes,
we do not believe that the effect is well captured. This is because despite the drastic Tc change, its
effect on cp and ρ is negligible. In such a case, secondary effects, namely the Pr number transition
[described by f (x) in the GL model], and the relative characteristic velocity at the top and bottom
plate (described by bt and bb) become important.

VI. CONCLUSION

In this paper, we propose an experimental scheme to study the influence of NOB effects on the
heat flux in turbulent Rayleigh-Bénard convection at a constant Rayleigh (Ra) and Prandtl number
(Pr). This is done by using compressed SF6 above its critical point, where it is neither a liquid
nor a gas. There, one can find isolines in the T -P phase space, along which the Prandtl number
is constant. The mean Rayleigh number can be held constant as well by choosing the temperature
difference between bottom and top � appropriately. Thus one can vary the differences in the fluid
properties between bottom and top while keeping Ram and Prm constant. In particular, one can study
liquid- and gaslike fluids at large and small ρ, which show qualitatively different NOB effects.

In doing so, we have explored thoroughly how the temperature-dependent material properties,
i.e., X̃(θ ), affect the midheight temperature Tc and the global heat flux Num without the influence of
the change of Ram and Prm. We found that Tc is smaller than the average temperature Tm for gaslike
fluids and larger for liquidlike fluids. This finding is in good agreement with previous measurements
in liquids and gases. However, we also found that the vertical heat flux does not show a monotonic
behavior. Instead, we have observed a strong heat transport enhancement for both the liquid- and
the gaslike region, by up to 112%.

Furthermore, we have addressed the long-standing question of what causes this significant heat
flux enhancement by developing a predictive extended Grossmann-Lohse model for the heat trans-
port under NOB conditions. Our model predictions not only agree well with our own experimental
measurements, but also with previous measurements in pressurised ethane and cryogenic helium
for a wide range of Ram and Prm. Our model suggests that the heat capacity cp and density ρ in the
midheight, which is often overlooked in existing boundary-layer-based theories, significantly affect
the global heat flux. We believe that our model is useful for applications and experiments performed
under a high variation of ρ and cp.
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