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Flow-reversal phenomena in a classical two-dimensional (2D) Rayleigh-Bénard con-
vection, in a square enclosure, are usually explained through growth and merging of
diagonally opposite counterrotating corner rolls. To probe further the corner-roll growth
dynamics, we have altered the square enclosure edges by additional slanted conduction
walls, so that the enclosure resembles an octagonal shape. We have performed a series of
2D numerical simulations by varying the slanted wall inclination angle (α) from 0◦ to 45◦,
to construct a detailed flow map in thermal convection in a range 5 × 105 � Ra � 108 and
0.8 � Pr � 2.0, where Ra is the Rayleigh number and Pr is the Prandtl number. Depending
on Ra, Pr, and α, flow features in the octagonal enclosure can exist in the form of a
uniform circulation, a two-roll, a mixed, a periodic, a quasiperiodic, or multiple flow states
superimposed on each other. The flow reversals in the octagonal enclosure take place in
several ways, for example, by the ejection of mushroom-shaped plumes alternatively from
the opposite slanted walls at low Ra (≈105) and high Pr (≈2), by the corner-roll growth at
high Ra (≈108) and low Pr (≈1.2), and by the dipole at high Ra (≈108) and high Pr (≈2).
Strikingly, the dimensionless flow-reversal frequency scales linearly with an increase in
α, and the slope varies from 1.04 at low Ra = 5 × 105 to 0.328 at high Ra = 108. We
have shown the flow reversals are a consequence of competition between the dipole (a
two-roll state where a cold roll sits above a hot roll) and the quadrupole (the four corner
rolls) modes with the monopole mode. A uniform circulation with flow-reversal results if
the quadrupole mode wins, and a two-roll state with a reversal results, if the dipole wins.
At high Ra (�108), the dipole strengthens, and the core bulk region shows hydrodynamic
instabilities in the form of turbulent-like engulfments. We have uncovered the mechanism
responsible for the observed engulfments due to the increase in turbulence production in
the core bulk region by the buoyancy. As a result, we have observed that total heat transport
also increases up to 14% when α is varied from 0◦ to 45◦.

DOI: 10.1103/PhysRevFluids.5.103501

I. INTRODUCTION

Fluid motion driven by temperature gradient is of fundamental interest due to its wide range
of applications in solar energy [1,2], nuclear reactors [3], heat-recovery systems [4], room ven-
tilation [5], and nature-inspired phenomena [6–9]. A classical example of thermal convection is
a fluid layer heated from below and cooled from above, widely known as Rayleigh-Bénard (RB)
convection [10–13], in which if the applied temperature difference (�T ) across the fluid layer
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is higher than a certain critical value [14], one may see convective motions in the form of rolls,
thermal plumes, and large-scale circulations (LSCs) [15–17]. The control parameters which govern
the flow in RB convection are, namely, the Rayleigh number (Ra), defined as the ratio of buoyancy
and damping mechanisms (i.e., viscous and thermal diffusion); the Prandtl number (Pr), defined as
the ratio of the kinematic viscosity to the thermal diffusivity; and the aspect ratio (�), defined
as the ratio of width to height of the enclosure. At low Ra (105 � Ra < 106), the convective
motions show distinct flow patterns and spatiotemporal chaos [18,19], whereas thermal plumes
and organized motions [20] are observed at slightly high Ra (>106). With a further increase
in Ra, large-scale motions and random fluctuations develop in the flow with unexpected flow
transitions [11]. For very high Ra, if one hypothesizes the convection similar to the Kolmogorov
theory of turbulence, then universality in the small-scale motions would be expected [21], and
the scientific community has engaged to verify it [22]. In recent studies on high Ra convection
in small aspect ratio (� < 1) enclosures [23,24] and in other high Reynolds number flows such as
in rotating cylinders [25,26] and spherical enclosures [27], the coexistence of different flow states
was observed. The wall boundaries of the enclosure played a significant role in the generation of
the multiple flow states [23,24], especially, flow reversals like the sloshing, azimuthal meandering,
corner-roll growth, and other forms [15,28,29]. Understanding flow reversals has major implications
for nature-inspired buoyancy-driven flows such as the Earth’s geomagnetic fields, atmospheric
circulation, and oceanic currents [30–33].

First, we briefly overview earlier theoretical works which have highlighted the flow-reversals
phenomena in thermal convection [34,35]. For example, Sreenivasan et al. [34] have proposed
flow reversals as a Brownian process with the switching of two metastable states, whereas
Araujo et al. [35] have derived simplified a Lorenz-like model by balancing force and thermal
energy on a single plume. The flow-reversal frequency in Ref. [35] was shown proportional to
Ra0.44±0.01 Pr−(0.65±0.01) in the range 109 � Ra � 1012 and 0.7 � Pr � 316. However, 3D experi-
ments [29,36] revealed the flow reversals were due to the azimuthal meandering and the sloshing
modes, whereas the growth of the corner rolls is responsible for the reversal in two dimen-
sions [16,17]. The flow reversals were observed only in a limited range of Ra and Pr parameter
space, and they were not possible at low Pr (� 0.6) due to high thermal diffusion and at high
Ra (> 109) due to strengthened LSC [15]. To explain the mechanism of flow reversals, Chandra
and Verma [16,17] have used the Fourier decomposition technique to represent the LSC in the
form of various modes and their interactions. The LSC takes different forms such as the monopole
(ellipse), the dipole (as two vertically or horizontally stacked rolls), or the quadrupole (as four
corner rolls). In general, the flow reversals in a square enclosure consist of three phases, namely,
the accumulation, the release, and the acceleration [37]. In the accumulation phase, the corner rolls
draw thermal energy from the boundary layers and grow with time. In the release phase, the potential
energy transforms into the LSC’s kinetic energy. In the acceleration phase, the LSC self-organizes
itself into the form of a large roll assisted by two additional corner rolls, and thus completes the
flow-reversal cycle. During the flow reversals, both the velocity and the temperature fields show
coherent oscillations with a mean period (which depends on Ra and Pr) different from the plume
free-fall time by at least two orders of magnitude. The overall convective heat flux shows a sudden
jump from a positive to a negative and vice versa [16,17]. However, recent experiments [38] on a thin
vertical disk surprisingly showed flow reversals even when the corner rolls were absent. Similarly,
Chen et al. [39,40] have shown that flow reversal in a square enclosure is possible by placing inclined
(or slanted) partitions, which have eliminated the corner rolls. The flow-reversal frequency ( f ) in
Ref. [40] showed a power-law relation in the form of f tE ∝ Raφ , where φ is the scaling exponent,
and tE is the large eddy turnover time. Interestingly, around the transition Rayleigh number RaT

(≈2 × 108), φ changes from −1.08 to −2.83 when the slanted walls were absent, and from −1.53
to −5.05 when the walls were present. The lower limits of φ are for Ra < RaT and the higher limits
for Ra > RaT . The change in the scaling exponent is attributed to the bulk zone instabilities, instead
of the corner-roll growth. The precise mechanism for the emergence of these instabilities is yet
unexplored to our best knowledge, and our work is a step in exploring those features.
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FIG. 1. Schematics of a square (a) and an octagonal enclosure (b). The square is D in width and H in
height, with D = H . We have inscribed an octagon in a square as a geometry and studied thermal convection.
The slanted (or inclined) walls are of length l1, which make an angle α with the horizontal walls (of length
l2). Note, hot walls (in red) at bottom, cold walls (blue) at top, and adiabatic sidewalls (black). The walls of
the octagonal enclosure satisfy 2l1 cos α + l2 = D. The geometry origin is taken at the bottom left corner, and
directions are x in the horizontal direction and y in the vertical direction. The gravity acts along the negative
y direction. Three square subdomains (shown by dash lines) are chosen to extract the Fourier modes. The
subdomain areas in dimensionless square units are 0.4624 (for green box), 0.36 (for blue box), and 0.2704
(for cyan box). The blue box region with 0.2D � x � 0.8D and 0.2H � y � 0.8H is considered as a bulk
region. Small black square symbols represent numerical probe locations, and their (x, y) coordinates are the
probe P1 at (0.1465, 0.0852), the probe P2 at (0.5, 0.02), and the probe P3 at (0.8535, 0.0852). (c) A typical
computational mesh used for a regular octagonal enclosure (with α = 45◦). Total number of computational
meshes used is 102 400. Close-up views of computational mesh near the bottom wall and in the core bulk
region are also shown. Slant represents additional conduction walls used.

From the above discussion, a natural question arises whether a flow reversal is due to the corner-
roll growth in the 2D enclosure, or is it due to the bulk core region instability? How does that
transformation happen? To answer that, we need to understand the interaction of the corner rolls
with the enclosure walls. The corner rolls in a square enclosure grow in size with time by exchanging
heat with the thermal boundary layers near the conduction walls, whereas the insulated vertical walls
apply strong viscous resistance not to let corner rolls move away from their initial location. In that
situation, if we relax the wall conditions, mainly, either by providing additional heat to the corner
rolls or by changing the wall corner angle, will that lead to any significant change in the corner-roll
growth process? We can guess that supplying additional heat to the corner rolls may help in its
growth and, thus, frequent flow reversals. Also, the corner rolls may be washed away by the LSC
if the wall corner angle is changed from 90◦ to any other value. To understand whether the corner
rolls ultimately govern the flow reversals or not, we have explored a geometry in the form of an
octagonal enclosure (see Fig. 1) different from the square. We have studied thermal convection in the
proposed geometry in the range 5 × 105 � Ra � 108 and 0.8 � Pr � 2. The octagonal enclosure
is very similar to the square in terms of the thermal and velocity boundary conditions; however,
additional heat can enter or leave from the slanted (or inclined) walls. Total conduction wall length
in the octagonal enclosure is longer than the adiabatic wall length. We have systematically varied
the slanted wall angle (α) from 0◦ to 45◦. The lower limit represents a square enclosure and the
upper limit a regular octagon. On one hand, the proposed octagonal geometry is an addition to the
existing studies on thermal convection. On the other hand, it allows us to explore the role played
by the corner rolls. Even at a fundamental level, our geometry helps to mark which aspects of
thermal convection may be universal and which may depend on the spatial confinement. From our
simulations, we have found both flow reversals and heat transport increase (up to 14%), if we use the
octagonal enclosure instead of a square cell. For thermal convection in the octagonal enclosures, we
have explored answers to the following questions: Why does the reversal frequency increase? Are
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the corner rolls still responsible for the flow reversals? What are the dominant flow features? What
explains an increase in heat transport? What is the role played by the slanted walls in changing the
overall flow features? How do thermal plumes from the horizontal and slanted walls interact with
the bulk core region?

We have organized our work as follows: In Sec. II we have introduced the octagonal geometry,
the mathematical framework, and the computational methods. In Secs. III and IV we have compared
flow features and dominant flow modes for the square and the octagonal enclosures, respectively.
We have addressed the flow-reversal frequency in Sec. V and heat transport in Sec. VI. By using the
vorticity dynamics and the turbulent kinetic energy budget, we have explained the core bulk region
instabilities in Sec. VII. Finally, in Sec. VIII we have summarized our results.

II. GOVERNING EQUATIONS AND COMPUTATIONAL METHOD

We have shown schematics of a square and an octagonal enclosure in Figs. 1(a) and 1(b),
respectively. The bottom conduction walls (marked in red) are maintained at a temperature Th (hot),
and the top walls (marked in blue) at Tc (cold). The sidewalls (marked in black) are thermally
insulated. We have maintained a no-slip velocity condition on all the walls. The square enclosure has
a width D, equals to height H , such that the aspect ratio � = D

H = 1. In the octagonal enclosure, we
have additional conduction walls of length l1, arranged at an inclination angle (α) to the horizontal
conduction walls of length l2. We have chosen l1 and l2 in such a way that an octagon is always
inscribed in a square. The geometric relation 2l1 cos α + l2 = D is always enforced with a fixed
length l2 = 0.4142D. Note, l1 < l2 for α < 45◦, and l1 = l2 for α = 45◦.

The conservation of mass, momentum, and the thermal energy equations under the Boussinesq
approximation are

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = − 1

ρm
∇p + ν∇2u + gβ(T − Tm), (2)

∂T

∂t
+ u · ∇T = κ∇2T, (3)

where u = (u, v) is the velocity field, T is the temperature, and p is the dynamic pressure after
subtracting the hydrostatic component. We have taken the fluid properties at the reference (mean)
temperature Tm, at which the density is ρm, the kinematic viscosity is ν, the thermal expansion
coefficient is β, and the thermal diffusivity is κ . The acceleration due to gravity g acts in a negative
y direction. The operators ∂

∂t , ∇, and ∇2 are the time derivative, the spatial derivative, and the
Laplacian, respectively. The Rayleigh number, Ra = |g|β�T H3/νκ , is defined based on maximum
separation distance between the conduction walls (H) and the temperature difference �T = Th − Tc.
The Prandtl number is Pr = ν/κ . The governing equations (1) to (3) are solved by using an open-
source finite-volume code OpenFOAM [41]. We have used the first-order implicit Euler scheme
to integrate temporal terms and the Gauss linear scheme for the spatial terms. In our simulations,
nonuniform meshes are used with a minimum of 16 to 20 grid points to resolve the boundary layers.

In Fig. 1(c) we have shown a typical computational mesh used in our simulations for Ra = 108

and Pr = 0.8. We have shown the grid resolutions used to resolve core bulk and the boundary layer
zones in insets of the same figure. The maximum Courant number in our simulations never exceeded
a value of 0.2. We have varied control parameters in the range 5 × 105 � Ra � 108, 0.8 � Pr � 2,
and 0◦ � α � 45◦. The total number of computational cells in our simulations vary from 26 244 (for
Ra = 105) to 102 400 (for Ra = 108). The free-fall velocity, U = √|g|β�T H , the characteristic
time, τ = H/U , and the characteristic angular momentum per unit mass, Lchar = UH , are used to
nondimensionalize variables mentioned at a later stage. After reproducing the RB convection results
in a square enclosure (both the global Nusselt number and the flow features), we have proceeded
further to explore details on convection in the octagonal enclosures. We have also carried out a
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FIG. 2. Left panels for instantaneous temperature and velocity fields. Panels (a) to (c) for uniform circu-
lation (UC) at Pr = 0.8, panels (d) to (f) for a stable two-roll structure (TRS) at Pr = 1, and panels (g) to (i)
for uniform circulation with reversals (UCR) at Pr = 1.8. Time increases from left to right in each row; see
animation 1 in the Supplemental Material [45]. Color bar for dimensionless temperature, (T − Tc )/�T , which
ranges from 0.3 (blue) to 0.7 (red). Black small arrows for the velocity field. White dashed lines with arrows
indicate large-scale (dominant) rolls with their direction of rotation and approximate size. In right panel (j),
normalized angular momentum vs time: UC state at Pr = 0.8 (red), TRS at Pr = 1 (blue), and UCR at Pr = 1.8
(black). Simulations for a square enclosure at Ra = 107.

grid-independence test for Ra = 108, Pr = 0.8, and α = 45◦ using two different mesh sizes 65 536
and 102 400, for which the calculated Nusselt numbers are within 0.8% error. The numerical code
used in our work is validated extensively in other earlier works [42–44]. We have used the overline
of a quantity to represent a statistically stationary state or a long-term average for more than 10 000τ .

III. FLOW FEATURES IN A SQUARE ENCLOSURE

In this section, we describe flow features observed in a square enclosure (α = 0◦). In Figs. 2(a)
to 2(i) we have shown instantaneous temperature fields and velocity vectors at a fixed Ra = 107. The
shown flow features represent three different dynamical states, namely, the uniform circulation (UC)
at Pr = 0.8, the two-roll structure (TRS) at Pr = 1, and the uniform circulation with reversals (UCR)
at Pr = 1.8. In the UC state, we have observed a single large-scale roll in the form of an ellipse with
its major axis aligned on one of the diagonals, and two small counterrotating corner rolls confined
on the other diagonal. The observed UC state is stable without any flow reversals in the time range
from 1000τ to 20 000τ , and the core bulk region is at a uniform temperature (≈Tm) see Fig. 2(a) to
Fig. 2(c). The corner rolls rotate opposite to the direction of LSC, and continuously exchange heat
with the conduction walls. The thermal plumes frequently detach from the conduction walls, swept
along the LSC, or get trapped by the corner rolls. Sometimes, the plumes may intermittently burst
into the core bulk region. For Pr � 1, the thermal boundary layers are thick in comparison to the
viscous boundary layers [15], and due to that the corner rolls, even if present, may not exchange heat
by the convective motions. For Pr � 1, the thermal boundary layers are thin in comparison to the
viscous boundary layers, and thus, the corner rolls do not grow [15]. In our simulations, we found the
stable UC state, without corner-roll growth in the range 0.7 � Pr � 0.95 and 5 × 105 � Ra � 108.
Note, the stable or unstable state behavior can be revealed only by evolution of the disturbances, and
within our simulation time limits, i.e., for more than 20 000τ , we did not observe any flow reversal
in the mentioned UC state.

For 1 � Pr � 1.6, we have observed a two-roll state (TRS), where a cold roll (of high density)
floats stably over a hot roll (of low density). The falling cold and the rising hot plumes collide at the
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midpoint of the insulated wall to form a stagnant-like region. The interface between the hot and the
cold rolls in the core bulk zone shows flapping like oscillations; see Fig. 2(d) to Fig. 2(f). Notably,
the two rolls are asymmetric in the left-right directions about the enclosure vertical midline, and
they support additional four tiny rolls at the corners. By further increasing Pr(� 1.8), the corner
rolls grow unevenly and develop into the uniform circulation state with flow reversals (UCR); see
Fig. 2(g) to Fig. 2(i). With an increase in time, the corner rolls grow in size and squeeze the LSC
by breaking it into two parts. At that stage, the corner rolls (or the quadrupole) span the enclosure
completely, and the LSC halts. We have shown the mentioned flow states in animation 1 in the
Supplemental Material [45].

To understand the flow reversals in a better way, we have calculated global angular mo-
mentum per unit mass concerning the enclosure center as L(t ) = 〈(x − 0.5H )v(x, y, t ) − (y −
0.5H )u(x, y, t )〉, where 〈·〉 represents the area average. Any sudden jump from a positive to a
negative value (or vice versa) on the angular momentum signal indicates the flow reversal. From
Ref. [46], we can note that for each flow reversal, the flow should persist in the other direction (of
rotation) for at least one eddy turn over time. In Fig. 2(j) we have shown dimensionless L versus
time for the discussed UC, TRS, and UCR states. In the UC state, L shows the same sign (here it
is negative) but with fluctuations. In the case of TRS, the angular momentum is negligible with,
L ≈ 10−3Lchar. In the UCR state, L fluctuates highly with time from a positive to a negative value
with sudden jumps, which indicates the cessation-led chaotic reversals [15,47]. The average time
duration spent by the large-scale motion in either of the directions represents mean flow-reversal
time, and we found the flow reversals take place approximately after every 415τ for Ra = 107 and
Pr = 1.8. In Ref. [16], the mean flow-reversal time for Ra = 2 × 107 and Pr = 1 is mentioned as 0.6
times the thermal diffusive time units, which corresponds to 0.6τ

√
Ra Pr ≈ 2683τ . The observed

difference in mean flow-reversal time between our simulations and Ref. [16] is due to an abrupt
change in flow features for a given small variation in Ra and Pr values. In the latter part of this
section, we show that Ra = 2 × 107 and Pr = 1 corresponds to the combined UCR and occasional
TRS state, whereas at Ra = 107 and Pr = 1.8, it is the UCR with the mixed-mode state. Based on
Ra and Pr values, the mean flow-reversal time varies.

To highlight timescales involved with the flow reversals, here we briefly revisit some of the
important works [48–50]. Howard [48] has proposed an analytical model in which the thermal
boundary layer thickness (δ) near the conduction walls becomes unstable with time, and the thermal
plumes detach at a frequency, fH ∼ κ/δ2. Just for discussion, if the local boundary layer thickness
grows to half of the enclosure size, i.e., δ ≈ H/2, then fH ∼ 4κ/H2, which corresponds to a mean
flow-reversal time 1

fH
= τ ( δ

H )
2√

RaPr ≈ 1060τ at Ra = 107 and Pr = 1.8. One can also estimate
the boundary layer thickness based on the time-averaged wall thermal gradient computed at the en-
closure vertical midline. For Ra = 107 and Pr = 1.8, we found the boundary layer thickness, δDNS ≈
H/24, based on the time-averaged temperature at the midline. Then the corresponding frequency,
fDNS ∼ κ/δ2

DNS, and the time period 1
fDNS

≈ 3.81τ . Note, the observed mean flow-reversal time in the
UCR state (≡ 415τ ) is different from the Howard’s estimation by an order of magnitude, indicating
the thermal boundary layer instabilities alone cannot explain the flow reversals. Villermaux [49] has
also proposed a 2D deterministic model, in which the incoming thermal plumes cause the boundary
layer instabilities, which are carried along the enclosure periphery by the LSC. The unstable thermal
plumes in the upper and the lower boundary layers interact through a delayed nonlinear coupling,
and the plumes emit alternatively at a frequency fV = 1/(2τ ) or a time duration 1

fV
= 2τ . Recently,

Brown and Ahlers [50] have shown that the LSC deviates from its preferred orientation when the
resonant frequency is minimum around the local potential, i.e., fA ≡ U/H , which corresponds to
a period 1/ fA ≈ τ . From the above discussion, we can note that the mean reversal time observed
in a 2D square enclosure in the UCR state is very different from the coherent oscillations observed
through either the thermal boundary layer instabilities or the associated coupling mechanisms. Note,
the flow reversals observed in the UCR state take place chaotically, and any estimation of the mean
flow-reversal time is an approximation considered in the time-averaged sense.
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FIG. 3. (a) Instantaneous thermal and velocity fields in a square enclosure at Ra = 5 × 105 and Pr = 2: (1)
for two-roll state (TRS), (2 and 3) for a mixed state (MS), and (4) for a uniform circulation state (UC). White
dashed lines with arrows indicate large- and small-scale rolls with their direction of rotation and approximate
size. (b) Angular momentum vs time. Vertical dash lines in angular momentum plot indicate the time at which
panel (a) snapshots are taken. (c) Flow map pattern on Ra-Pr plane. Symbols are circles for UC, pentagrams for
TRS, upward triangles for UCR, and leftward triangles for MSR. Black crosses correspond to flow reversals
mentioned in Sugiyama et al. [15]. To guide the eye, we have shown the hand-drawn demarcation regions with
dashed lines.

By decreasing Ra from 107 to 106 and 1.8 � Pr � 2, we have observed a mixed roll state with
flow reversals (MSR); see Fig. 3(a). In this MSR state, the monopole, the dipole, and the quadrupole
interact with each other. We have observed the thermal plumes can rise or fall along the enclosure
midline in addition to the sidewalls. We have provided more details of the flow fields in animation 2
in the Supplemental Material [45]. In Fig. 3(b) we have shown the angular momentum versus time
in the MSR state (which is a combination of higher modes). To have a better idea of possible flow
states in a square enclosure, we have demonstrated a flow map on the Ra-Pr plane in Fig. 3(c). There
we have drawn boundaries for the possible four states in the chosen range of parameters. The UC
and the TRS are stable states and do not show any flow reversals, whereas the MSR and the UCR
states show sudden (or abrupt) flow reversals. The UCR state is present only in a narrow parameter
range, i.e., 107 � Ra � 108 and 1 � Pr � 2, consistent with the findings of Sugiyama et al. [15].
The mixed state with reversal is visible in the range 5 × 105 � Ra < 107 and Pr � 1.7.

IV. FLOW FEATURES IN AN OCTAGONAL ENCLOSURE

By using an octagonal enclosure instead of a square cell, we have observed flow states and
the reversals even at low Ra(< 106). In Fig. 4(a) instantaneous temperature and velocity fields for
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FIG. 4. (a) Instantaneous temperature and velocity fields in octagonal enclosures at Ra = 5 × 105 and Pr =
2. A quasiperiodic reversal state (QPR) for α = 24◦, and a periodic reversal state (PR) for α = 45◦. In the same
panel, snapshots before and after the flow reversal are also shown. Magenta arrows indicate mushroom-shaped
plume ejections. In panels (b) and (c), angular momentum vs time, spectral energy (E ) vs frequency ( f ), and
phase plot of L vs dL/dt are shown. Note, variables are shown as dimensionless. (b) Periodic reversal (PR)
with α = 45◦, with a blue line for Ra = 5 × 105, red line for Ra = 6 × 105 and Pr = 2. (c) The same but a blue
line for Ra = 5.55 × 105 and Pr = 1.8, red line for Ra = 106 and Pr = 2, and gray line for Ra = 7.143 × 106

and Pr = 1.4 for QPR with α = 45◦.

α = 24◦ (left panels) and 45◦ (right panels) are shown. Instead of a mixed state reversal (as observed
in a square), we have observed quasiperiodic flow reversals (QPR) for α = 24◦, and periodic flow
reversals (PR) for α = 45◦. In both cases, two mushroom-shaped thermal plumes eject alternatively
from the side inclined walls and drive the LSC. We find long corner rolls on the slanted walls, which
are different from that observed in the square enclosure. The giant mushroom-shaped plumes enter
the core bulk region and release a significant amount of thermal energy; see animation 2 in the
Supplemental Material [45]. It is interesting to understand whether the plume detachment drives the
flow reversals or whether it is driven by hydrodynamic instabilities in the bulk core region.

In Figs. 4(b) and 4(c) we have shown global angular momentum (L) with time. The Fourier
transform-based energy spectra (E ) computed for L shows a peak at a frequency 0.024/τ in the case
of the periodic reversal (PR), and two peaks at 0.024/τ and 0.0005/τ in the case of the quasiperiodic
reversal (QPR). Note, the flow-reversal frequency is high in the octagonal enclosure by an order of
magnitude compared to the same in a square cell. To give the dynamical system’s perspective, we
have also shown as dimensionless L versus dL

dt in the same figure. By increasing Ra from 5 × 105 to
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FIG. 5. Comparison of flow reversals in a square (α = 0◦) and octagonal (α = 45◦) enclosures at Ra =
108 and Pr = 1.8. In top panels: (a) angular momentum vs time, (b) spectral energy (E ) vs frequency ( f ),
and (c) phase plot of L vs dL/dt are shown. Red lines for the square enclosure and blue lines for octagon
(α = 45◦). Note, variables are shown in as dimensionless. Time spent in a given state (in which L is nearly
constant) is measured between a circle followed by a square symbol. Inset of panel (b) indicates E ∼ 1/ f
at high frequencies. Bottom panels for snapshots of thermal and velocity fields (for before and after flow
reversals).

106, the closed orbits on L versus dL/dt show nonunique curves with dumbbell-like shapes, which
indicate that the flow reversals may be governed by a low-dimensional, weakly nonlinear damped
oscillator [49,51].

In Fig. 5 we have compared instantaneous thermal fields before and after a flow reversal for
α = 0◦ and 45◦, at a relatively high Ra (= 108). In the octagonal enclosure, the corner rolls move
freely without anchored to the walls; see animation 3(a) and 3(b) in the Supplemental Material [45].
The quadrupole competes with the monopole in the square enclosure, whereas the dipole does that
in the octagonal enclosure. Due to the dipole action, thermal plumes of a length comparable to the
enclosure size engulf into the core bulk region. From the same figure, we can note that the energy
spectrum shows a power-law relation in the form of E ( f ) ∝ f −η, where η is the spectral slope.
A zero spectral slope corresponds to the white noise with no correlation in time, whereas η = 2,
corresponds to the random walk process with no correlation between increments [52]. A spectral
slope of η = 1 is a unique process that shows long-range dependence, and it is not a result of any
linear stochastic differential equation by either integration or differentiation. Moreover, the spectral
slopes in the range 0.5 < η < 2 represent multifractal processes [52], which are governed by the
nonlinear stochastic equations. We also observed zig-zag orbits on L versus dL

dt , which indicate the
existence of a chaotic attractor in the flow.

In Fig. 6 we have shown a flow map for the octagonal enclosures (with different slanted angles
α = 12◦, 24◦, and 45◦) on the Ra-Pr plane. In addition to the possible four flow states such as
the UC, the TRS, the MSR, and the UCR, we have observed additional flow states in the form of
periodic reversals (PR), quasiperiodic reversals (QPR) and two-roll state reversals (TRSR). As α

increases from 0◦ to 45◦, an additional two-roll state and a quasiperiodic state emerge in the range
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FIG. 6. Flow pattern map on Ra-Pr plane for octagonl enclosures: (a) α = 12◦, (b) α = 24◦, and (c) α =
45◦. Seven distinct flow states such as uniform circulation (UC), uniform circulation with reversal (UCR),
stable two-roll state (TRS), mixed state reversal (MSR), periodic reversal (PR), quasiperiodic reversal (QPR),
and a combination of UCR+TRSR states are observed. Symbols are for UC (in circles and shaded red), UCR
(upward triangles shaded in cyan), TRS (in pentagrams shaded green), MSR (in leftward triangles shaded
blue), QPR (in squares shaded magenta), UCR+TRSR (in upward triangles shaded dark cyan) states, and PR
(in diamonds shaded yellow). To guide the eye, hand-drawn curves are shown to demarcate the flow states.

2 × 106 < Ra < 2 × 107 and 0.8 � Pr � 1.6. For large slanted wall angles (α � 36◦), most of the
flow map is shared by the quasiperiodic state at low Ra (� 107) and by the UCR+TRSR states at
high Ra (> 3 × 107). At high Pr (> 1.8) and very low Ra (< 106), a state in the form of periodic
flow reversals appears for α = 45o. The mixed state, which is visible at high Pr (> 1.8), is narrowed
on the flow map with an increase in α.

The Fourier mode decomposition is one of the popular choices to extract the energy content
and the large-scale flow features [16,17,53]. A particular Fourier mode can be computed from the
vertical velocity as

v̂(m,n)(t ) =
∫∫

v(x, y, t ) cos(mπx) sin(nπy) dx dy, (4)

where v̂(m,n)(t ) is the instantaneous mode amplitude with the mode having m rolls in the x di-
rection and n rolls in the y direction. The incompressibility condition connects both the vertical
and horizontal velocity components; therefore, one of them is sufficient to understand the flow
behavior [16,17,44,47,54]. The Fourier mode (1,1) corresponds to the monopole, and the (2,2)
corresponds to the quadrupole. The (1,2) and the (2,1) modes correspond to a two-roll structure
in the form of a dipole. Any other modes such as (1,3) and (3,1) consist of three roll structures.
Also, the mentioned Fourier decomposition does not satisfy the no-slip condition [16], and it is
strictly applicable for a rectangular or a square domain with the periodic boundary conditions. First,
we have identified three square subdomains separately in the core bulk region of the enclosure
(see Fig. 1) to extract the Fourier modes. The (x, y) limits of the green square zone ranges from
x = 0.16D to 0.84D and y = 0.16H to 0.84H . Similarly, the (x, y) limits of the cyan square zone
ranges from x = 0.24D to 0.76D and y = 0.24H to 0.76H . If we mention limits in terms of the
area spanned by a square, then the green dash line covers a larger area (of 0.4624 square units),
and the cyan covers a smaller area (of 0.2704 square units). The blue dash line covers an area of
0.36 square units, which is between the green and cyan lines (or limits). We have carefully chosen
these subdomains so that the large-scale modes are not absent due to the presence of random (or
turbulent-dominated) fluctuations. We have estimated the instantaneous Fourier modes in each of
the domains with the integration limits taken on the respective domain of interest. We found the
mode amplitude shows a similar trend for all three subdomains; see Fig. 25 in the Appendix. With
these inferences, we have described the Fourier mode results in our work here based on the blue
square subdomain (which is between the green and cyan domains).
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FIG. 7. Fourier mode amplitude vs time in the PR state for α = 45◦, Ra = 5 × 105, and Pr = 2. Zoomed
view of highlighted rectangular box in panel (a) is shown in panel (b). Instantaneous temperature and velocity
fields at different times (i), (ii), (iii), and (iv) are shown in insets.

In Fig. 7 we have shown instantaneous Fourier mode amplitudes of the modes (1,1), (2,2), (1,2),
(2,1), (1,3), and (3,1), during a periodic flow reversal in the octagonal enclosure. The monopole (1,1)
is dominant most of the time except during a flow reversal. The quadrupole (2,2) always shows
a positive amplitude. The mode (2,2) shows in-phase oscillation during the LSC formation and
the out-phase oscillation while breaking it. However, the modes (1,3) and (3,1) show out-of-phase
oscillations with the mode (1,1). We have seen similar mode dynamics, even in the case of the QPR
state. In the case of the MSR state, the dominant mode switches between (1,1) and (1,2) chaotically;
see Fig. 26 in the Appendix.

At high Ra(� 3 × 107) and for Pr � 1, we have observed chaotic flow reversals in both the
square and the octagonal enclosures; see Fig. 8. The UCR state in the octagonal enclosure is shorter
in time duration and smaller in the Fourier mode amplitude when compared to the same in the
square enclosure. In Figs. 8(c) and 8(d) we have shown zoomed views of the UCR and the TRSR
states. With an increase in α, the importance of the modes (1,2) and (2,1) increases, and the mode
(2,2) decreases. We have shown instantaneous thermal fields during the UCR, and the TRSR states
in the insets of Figs. 8(c) and 8(d), respectively.

Flow reversals in the square enclosure are identified mainly from the monopole mode (1,1) when
the mode amplitude changes sign from the positive to the negative or vice versa [16]. Due to the
positive and negative fluctuations in the mode amplitudes, we have computed the root-mean-square
(RMS) amplitude for each of the modes. In Fig. 9(a) we have shown RMS of a particular mode
(m, n) in comparison to the mode (1,1), as a function of α. In the square enclosure, the quadrupole
mode (2,2) is 60% in strength when compared to the monopole (1,1), whereas the modes (3,1) and
(1,3) have strengths 38% and 20%, respectively. The dipoles (1,2) and (2,1) are weak and have a
strength less than 10%. With an increase in α, the quadrupole strength decreases from 60% to 45%,
whereas the modes (3,1) and (1,3) strength increases to 40%. The dipoles (1,2) and (2,1) strengthen
with an increase in α, and their strengths can even reach up to 80%. The importance of the dipole
mode becomes evident beyond α > 12◦.

During a flow reversal, the kinetic energy (which is proportional to the mode amplitude square)
redistributes from the monopole to the other flow modes and vice versa. As time progresses, the
mode (1,1) correlates either positively or negatively with other modes. To quantify the correlation
between the flow modes during a flow reversal, we have computed the cross-correlation coefficient,
CC = v̂(m,n) · v̂(1,1)/[RMS(v̂(m,n) )RMS(v̂(1,1))], where · is the inner product and the overline is the
time average computed within the flow reversal. The CC ranges between −1 (negatively correlated)
and +1 (positively correlated). If CC = 0, then change associated with the mode (1,1) is not felt by
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FIG. 8. The Fourier mode amplitude vs time: (a) α = 0◦ in the UCR state and (b) α = 45◦ in combined
UCR+TRSR state. Dashed rectangular boxes in panels highlight flow mode features. Zoomed views of panel
(b) are shown in panels (c) and (d), along with corresponding flow fields. Simulations are for Ra = 108 and
Pr = 1.8.

the mode (m, n). Note, the CC reveals only the statistical connection between the modes, whereas
the mode amplitude (or strength) reveals the dominant flow structure at a given instant of time. In
Fig. 9(b) we have shown CC versus α. In a square enclosure (α = 0◦), the corner-roll growth leads to
the LSC breakup, so the quadrupole mode (2,2) correlates negatively with the mode (1,1). The dipole
mode (2,1) correlates positively with the monopole, whereas the mode (1,2) does not correlate. The
other modes (1,3) and (3,1) are correlated negatively with the monopole mode (1,1) mode. With
an increase in α, the negative correlation of the quadrupole mode (2,2) decreases significantly, and
we have observed CC ≈ 0 at α = 45◦. With an increase in α, the dipole mode (1,2), which does
not correlate with the monopole mode (1,1) in a square enclosure, correlates negatively, and, thus, a
competition between the modes (1,2) and (1,1) takes place. The other modes (1,3) and (3,1) always
show negative correlation with the mode (1,1). The modes (1,3) and (3,1) play a negligible role
in flow reversals due to the strong dipole mode (1,2). A summary of flow patterns and their mode
nature is mentioned schematically in the Appendix; see Fig. 30.

V. FLOW-REVERSAL FREQUENCY

Sugiyama et al. [15] have shown flow reversals in a 2D square (or quasi-2D) enclosure in the
range 5 × 106 � Ra � 109 and 0.8 � Pr � 10 are driven by the growth of counterrotating corner
rolls. Wang et al. [38] had shown reversals are possible in a thin vertical circular enclosure when the
corner rolls were absent. Recently, Chen et al. [40] have shown that flow reversals can be possible
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FIG. 9. Comparison of the Fourier mode amplitudes: (a) RMS[v̂(m,n)]/RMS[v̂(1,1)] vs α, and (b) cross-
correlation coefficient (CC) between v̂(m,n) mode and v̂(1,1) mode. Symbols: circles for (2,2) mode, squares
for (1,2) mode, triangles for (2,1) mode, diamonds for (1,3) mode, and crosses for (3,1). Simulations are for
Ra = 108 and Pr = 1.8.

due to instability of the LSC in addition to the corner-roll growth process. In a square enclosure for
Pr = 5.7, the dimensionless flow-reversal frequency follows a power-law relation in the form f tE ∝
Ra−1.08 for 1.18 × 108 � Ra � 2 × 108, and f tE ∝ Ra−2.83 for 2 × 108 < Ra � 1.12 × 109 [40].
By arranging additional slanted adiabatic plates at the four corners of the square enclosure, in the
form of an octagon (see geometric construction in the Ref. [40]), the reversal frequencies show
f tE ∝ Ra−1.53 for 2 × 108 < Ra � 3.71 × 108 and f tE ∝ Ra−5.05 for 2 × 108 < Ra � 3.71 × 108

for Pr = 5.7. From Ref. [40], we can observe that the flow-reversal frequency decreases in an
enclosure with the adiabatic slanted walls. The absence of corner-roll growth is the reason attributed
to the decrease in flow-reversal frequency. Note, the mentioned power-law scalings in Ref. [40] are
limited in range.

In our work, we have used slanted conduction walls (instead of adiabatic walls) in four corners
of the square enclosure; see Fig. 1(b). For Ra < 107, the flow reversals take place by an alternate
ejection of mushroom-shaped plumes from the slanted walls. For Ra > 107, the reversals take place
by both the corner-roll growth and the two-roll state [see Fig. 8(b) and Fig. 32 in the Appendix]. To
compute the flow-reversal frequency, we have used the angular momentum (L) signal. We denote the
start time of a reversal by ts [black square marker symbols in Fig. 5(a)] and the end time of a reversal
by te [black circle marker symbols in Fig. 5(a)]. The time interval between two successive reversals
n and n + 1 is computed as tint = ts(n + 1) − te(n). We have considered the mean reversal frequency
as f = 1/t int . In Fig. 10 we have shown the mean reversal frequency as a function of Ra for different
α and compared our results with the previous findings of Refs. [15,39,40,46]. From the figure, we
can note that the dimensionless reversal frequency decreases with an increase in Ra, similar to
Refs. [15,46]. The small difference between our work and the mentioned other works can be due
to variation in Pr. For Ra � 108, the reversal frequency follows, f tE ∝ Raφ , where φ ≈ −0.358 for
α = 0◦ (red dashed line) and φ ≈ −0.281 for α = 45◦ (cyan dashed line). From our simulations, we
can infer that the flow-reversal frequency increases with an increase of α. Note, the flow-reversal
frequencies and the associated modes highly depend on the location on the Ra-Pr flow map. We
have also computed the reversal frequencies separately for the UCR and the TRSR states when both
the flow states coexist; see Fig. 31 in the Appendix. In the octagonal enclosure, both the UCR and
the TRSR states strengthen with an increase in α, and, thus, the flow-reversal frequencies are high.
We have shown f versus α for different Ra in the inset of Fig. 10. The frequency increases linearly
with an increase of α. The linear slope varies from 1.04 to 0.328 as Ra increases from 5 × 105 to
108, respectively. For very high Ra (i.e., >109) Araujo et al. [35] have modeled a single plume
detachment from the boundary layers in terms of the force and thermal energy balance on a single
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FIG. 10. Dimensionless flow-reversal frequency ( f tE ) as a function of Ra on a log-log plot. Open black
circles for experiments in quasi-2D square cell with Pr = 5.4 [39], which follow f tE ∼ Ra−1.08 in the range
1.18 × 108 � Ra � 2 × 108, and follow f tE ∼ Ra−2.83 in the range 2 × 108 < Ra � 1.12 × 109. Filled black
circles for experiments in quasi-2D cornerless cell with Pr = 5.4 [40], which follow f tE ∼ Ra−1.53 in the range
9.58 × 107 � Ra � 2 × 108. Yellow diamonds for numerical data of Sugiyama et al. [15] at Pr = 4.3. Magenta
asterisks for experimental data of Ni et al. [46] at Pr = 5.7. Magenta dashed line approximately fits the magenta
asterisks and is obtained from stochastic model proposed by Brown and Ahlers [50]. Our numerical data at
Pr = 2 are shown as upward triangles: Red for α = 0◦, blue for α = 12◦, green for α = 24◦, and cyan for
α = 45◦. We have shown best power-law fits of our data with dashed lines. Red dashed line for α = 0◦ follows
f tE ∼ Ra−0.358, and cyan dashed line for α = 45◦ follows f tE ∼ Ra−0.281. In the inset, we have shown f tE

vs α/π , where plus, pentagram, cross, and square symbols are for Ra = 5 × 105, 5 × 106, 5 × 107, and 108,
respectively. Inset shows the reversal frequency scales linearly with an increase in α. The corresponding linear
slopes are shown above the best fits. The eddy turnover time (tE ) decreases from 40τ to 15τ as Ra increases
from 105 to 108, respectively, which is consistent with the results of Ref. [55,56].

plume, for which the reversal frequency increases with Ra in the range 109 < Ra < 1012. From our
results and from the experiments of Ref. [40], we can note that a single plume description may be
a simplified approximation to describe the flow reversals. In the next section, we have explored the
heat transport dynamics.

VI. EFFECT ON HEAT TRANSPORT

Heat transport in thermal convection depends on Ra and Pr and on the geometry [58,59].
The dimensionless heat transport in a system is quantified by the Nusselt number, Nu(t ) =
1 + 〈v(T − Tm)〉/(κ�T/H ), where 〈 ·〉 is the total area average in the 2D enclosure. We have
also separately calculated the Nusselt number based on the wall thermal gradients Nu(t )|h,c =
[−k

∫∫
∂T
∂n · n dl]|h,c/[kl�T/H], where n is the unit vector normal to the conduction wall, dl is the

infinitesimal conduction wall length, l is the total conduction wall length (which can be either hot or
cold), and |h,c represents the thermal gradient computed at the hot and the cold walls, respectively.
The average Nusselt number based on the wall gradients is taken as Nu(t ) = 1

2 [Nu(t )|h + Nu(t )|c].
In our work, the difference in the Nusselt numbers based on the convective flux and the thermal wall
gradients is less than 0.3%. We have shown the time averages in the statistically stationary state by
an overline.
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FIG. 11. (a) Nu vs Ra: blue circles for square (α = 0◦) and red diamonds for octagon enclosure (α = 45◦)
at Pr = 1. Green squares for Ref. [44] at Pr = 1. Magenta stars for Ref. [57] at Pr = 5.3. Dashed lines to guide
the eye. (b) Nuα/Nusq vs α/π . Continuous lines are best least-square fits in the form Y = aX 2 + bX + c, where
X = α/π , and Y = Nuα/Nusq. The fit parameters range is −0.65 � a � −0.31, 0.39 � b � 0.63, and c = 1.
Dashed lines represent a linear trend along with their corresponding slopes. (c) Effective increase in Nusselt
number vs increase in wall conduction area of the octagon. (b) and (c) Simulations of Ra = 108 and different Pr.
Symbols are red diamonds (Pr = 1), magenta upward triangles (Pr = 1.4), cyan rightward triangles (Pr = 1.6),
green leftward triangles (Pr = 1.8), and blue circles (Pr = 2.0).

Between a square and an octagonal enclosure, which one is better in terms of high heat transport?
To address this, in Fig. 11(a) we have shown Nu versus Ra for α = 0◦ and 45◦. We find the octagonal
enclosures show high heat transport (up to 14% increase) when compared to the square cell. In the
inset of the same figure, we have shown Nu/Ra1/3 as a function of Ra. Based on the best power-law
fit, we can approximate the heat transport in the form Nu ∼ Raγ , where 0.29 � γ � 0.31 in the
range 107 � Ra � 108 for both square and the octagonal enclosures. The scaling exponent γ is
consistent with earlier findings on heat transport [14,17,44,60].

In Fig. 11(b) we have shown the relative heat transport Nuα/Nusq as a function of α, where
Nusq and Nuα are the time-averaged Nusselt numbers for the square and the octagonal enclosures,
respectively. Our numerical data follow Y = aX 2 + bX + c, where X = α/π and Y = Nuα/Nusq.
The parameters a, b, and c are in a range −0.65 � a < −0.31, 0.39 � b < 0.63, and c = 1, based
on the best quadratic fits. The lower bounds in the mentioned fit parameters are for Pr = 1, and the
upper bounds are for Pr = 2. Additionally, we have shown two dash lines with linear slopes 0.2 and
0.7, which pass through the data point (α = 0◦ and Nuα = Nusq), to indicate the lower and upper
limits on the heat transport.

It is natural to expect that the dimensional heat transport is high in the octagonal enclosure due
to an increase in wall conduction length when compared to the square cell. However, we have
presented our results based on dimensionless heat transport, i.e., the Nusselt number, which has
already taken care of the increase in wall conduction length (or area in 3D). For example, when we
calculate the Nusselt number based on the thermal gradients at the wall, the integral in the numerator
is compensated by the total conduction length in the denominator. So any increase in the Nusselt
number (or the dimensionless heat transport) is not due to the increase in the wall conduction area.
In Fig. 11(c) we have shown percentage increase in the Nusselt number [(Nuα − Nusq )/Nusq], as a
function of percentage increase in conduction area [(Aα − Asq )/Asq]. From the figure, we can note
that a power-law scaling with an exponent 0.4 governs the relative heat transport dynamics. The
mentioned power-law scaling is a statistical fit to the data and does not have any physical basis.
However, it is interesting to note that for an increase in the conduction area, the Nusselt number
does not increase proportionately. The scaling relation may have practical relevance in choosing
better engineering designs.

Though, the scaling exponent γ is nearly the same for both the square and the octagonal
enclosures; still, the instantaneous heat transport, Nu(t ), is very different. For α > 6◦, the heat
transport shows intense fluctuations when compared to the square cell. The slanted conduction walls
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FIG. 12. (a) Convective heat flux ( j) vs time for α = 0o (blue) and 45◦ (red). In inset, zoomed view of j
with time during a flow reversal. Vertical dashed lines indicate times at which six snapshots of the velocity and
temperature fields are taken. The snapshots are timed at (i) t = 6526τ , (ii) 6536τ , (iii) 6542τ , (iv) 6545τ , (v)
6550τ , and (vi) 6574τ . The flow-reversal process is described as (i) and (ii) for growth of corner rolls; (iii) for
corner-roll reconnection; (iv) for flow reconfiguration; (v) for hot plumes falling and cold plumes rising; and
(vi) for hot plumes rising and cold plumes falling. (b) PDFs of normalized convective heat flux ( j − j)/σ j .
Blue line is for α = 0◦, green for 12◦, magenta for 24◦, and red for 45◦. The normal Gaussian is represented
by long dashed lines. The standard deviation (σ j) vs α is shown in inset of panel (b). Simulations for Ra = 108

and Pr = 2.

of the octagonal enclosure provide easy access for the heat to enter the fast-moving large-scale
circulation. To understand the connection between the flow states on the heat transport, we have
computed dimensionless convective heat flux in the enclosure, j(t ) = 〈v(T − Tm)/(κ�T/H )〉, as a
function of time; see Fig. 12(a). The fluctuations in j(t ) indicate rising and falling plume motions.
Whenever the hot (cold) plumes get trapped in the down-falling (uprising) motions, we observe
negative j, and the large-scale motion ceases to exist [17]. In the inset of Fig. 12(a) we have shown
a zoomed view of the heat flux and the associated thermal fields for the octagonal enclosures. The
standard deviation (σ j) increases from 9 to 11 with an increase in α; see the inset of Fig. 12(b). For
the square enclosure, j ≈ 25 and σ j ≈ 0.36 j, whereas we find j ≈ 28.5 and σ j ≈ 0.37 j at α = 45◦.
In both cases, the standard deviation is more than 36% of the mean value, and such high values for
σ j indicate the presence of turbulent fluctuations. The probability density functions (PDFs) of the
normalized heat flux ( j − j)/σ j are shown in Fig. 12(b). The PDFs are non-Gaussian at the tails
and show intermittency.

In a 2D enclosure, the aspect ratio � = D/H , is defined as a ratio between the conduction wall
length and the separation distance between the hot and the cold walls; see Fig. 1 for the notation.
For a square enclosure, D = H , and hence � = 1. For a wider enclosure, � > 1, whereas, for a
taller enclosure, � < 1. In the case of an octagonal enclosure, a single aspect ratio definition is not
appropriate, because both the conduction wall length and the distance of separation depend on the
spatial location. For example, in the case of α = 12◦, the total conduction wall length (either the hot
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FIG. 13. Nu (time-averaged Nusselt number) dependence on � in 2D thermal convection. For Ra = 108,
Pr = 1 and � = 1, we find Nu = 24.89 from our simulations (see magenta circle), which agrees with the results
of Ref. [44] (open black diamond). We have also collated data from other works to understand � dependence
and show these data: cyan dashed line from Ref. [62]; cyan circles from Ref. [23] for Ra = 108 and Pr = 0.7;
black stars from Ref. [23] for Ra = 108 and Pr = 4.3; black crosses from Ref. [24] for Ra = 108 and Pr = 1;
black leftward triangle from Ref. [61] for Ra = 108 and Pr = 4.38; and black upward triangle from Ref. [54]
for Ra = 108 and Pr = 0.71. Our numerical data for the octagonal enclosures are shown with continuous lines:
red for α = 12◦, green for α = 24◦, and blue for α = 45◦. Note, for a given α, we have a Nu and a range of
aspect ratios with a lower limit and an upper limit (which are connected by a horizontal line).

or the cold wall) is 1.013H , and the insulated (adiabatic) wall length is 0.8754H . Based on these
wall lengths, we get � = 1.013H/0.875H = 1.1571 > 1. If the aspect ratio is computed based on
the horizontal conduction wall length (by excluding the slanted walls) and the maximum distance of
separation between the walls, then � = 0.414H/H = 0.414. So the actual aspect ratio for α = 12◦
enclosure varies between 0.414 and 1.1571. Based on the α value, the minimum and the maximum
limits of the aspect ratio of the octagonal enclosure changes, thus there is no unique aspect ratio
definition. The earlier works on the RB convection highlighted the importance of the aspect ratio in
terms of the multiple flow states and the heat transport [24,61], so we have explored further details
in that regard.

In Fig. 13 we have shown Nu as a function of �, in which data from various thermal convection
studies are mentioned [23,24,44,61,61–63]. Ching and Tam [62] proposed that ∝ f (�), where the
function f (�) decreases monotonically with � (see cyan dash line in the same figure). Van der Poel
et al. [23,24] explored the aspect ratio dependence on the heat transport by using 2D simulations
and found sudden jumps in Nu. A noteworthy observation from the earlier works is that a maximum
Nu is observed at � ≈ 1.1. For the octagonal enclosures, a single aspect ratio is not possible, and
hence, we have drawn a continuous line that joins the minimum and the maximum aspect ratio limits
(as discussed earlier). For example, we have shown a red horizontal line ranges from � = 0.414
to 1.1571 at Nu = 25.3 and α = 12◦. Similarly, we have drawn a horizontal line in green from
� = 0.414 to 1.4 at Nu = 25.8 and α = 24◦. We have also drawn a blue line from � = 0.414 to 2.4
at Nu = 26.5 and α = 45◦. Our results clearly show that the octagonal enclosures transport more
heat when compared to the square cell.

In our simulations, at α = 0◦, the corner rolls trap most of the thermal plumes and thus thick
thermal boundary layers near the corners. With an increase in α, the importance of the quadrupole
mode (2,2) decreases, and the dipole emerges as a dominant flow feature. Indeed, the dipole mode
(1,2) helps in achieving better flow circulation in the octagonal enclosure; see animation 4 in
the Supplemental Material [45]. In Figs. 14(a)–14(f) we have shown time-averaged temperature
fields for α = 0◦, 24◦, and 45◦. At Ra = 107 and Pr = 1, in a square enclosure, we find a stable
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FIG. 14. Long-time-averaged temperature fields for more than 7000τ : Top panels (a, b, and c) for Ra =
107, and bottom panels (d, e, and f) for Ra = 108. Panels (a) and (d) for α = 0◦, panels (b) and (e) for α = 24◦,
and panels (c) and (f) for α = 45◦. Color bar for dimensionless temperature, (T − Tc )/�T , in the range 0.3
(blue) to 0.7 (red). Time-averaged temperature profile along the vertical midline of the enclosure: panel (g) for
Ra = 107 and panel (h) for Ra = 108. Thermal gradient at the walls increases with increase in α. Simulations
for Pr = 1.

dipole state. With an increase in α, the combined UCR and the TRSR states replace the dipole. In
Figs. 14(g) and 14(h) we have shown time-averaged temperature profiles taken along the vertical
midline in the enclosure. We can note that the time-averaged thermal gradient at the walls increases
with an increase of α.

In Fig. 15(a) we have shown time-averaged thermal gradient computed normal (n) to the hot
wall, i.e., ∇T · n, for three different α. Note, the wall-normal gradient varies along the conduction
wall. In the square enclosure, the wall gradient is a direct function of x, the horizontal coordinate.
The octagonal enclosure consists of inclined conduction walls in addition to the horizontal walls.
So we have first computed the wall-normal gradient at each point on the conduction wall and shown
the result as a function of the corresponding x coordinate. In a square enclosure, the gradient is high
in the midportion of the conduction wall between 0.3D < x < 0.7D, and it is low near the left and
right corner portions. Within the simulation time limits, we found the large-scale circulations are
asymmetric in shape about the midline of the enclosure, and that leads to the nonuniform thermal
gradient on the conduction walls. For α = 45◦, the dipole mode strongly shears the flow, and the
corner rolls move freely, which result in nearly uniform thermal gradient on the conduction wall.
In Fig. 15(b) we have shown the wall-length averaged thermal gradient, ξ = 1

li

∫ ∇T · dli, as a
function of α. Here the integration is carried out along a particular wall li, which can be the left
slanted wall, the middle horizontal wall, or the right slanted wall. With an increase in α, the heat
transport decreases at the middle wall and increases at the slanted walls. The additional buoyancy
provided by the slanted walls is the reason for the observed increase in heat transport.
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FIG. 15. (a) Wall thermal gradients measured normal to the bottom conduction walls (∇T · n = ∂T
∂n ) for

α = 0◦, 12◦, and 45◦. (b) Wall-length-averaged thermal gradient (ξ = − 1
li

∫ ∇T · dli) for the left, right, and the
middle (horizontal) conduction walls. Here li is the length of a particular conduction wall. The plus symbols in
panel (b) show Nu as a function of α. Simulations for Ra = 108 and Pr = 2. We have considered time averages
from 500τ to 15 000τ with a time gap of 50τ to compute wall thermal gradients. Within this time average, we
did not observe the expected left-right symmetry in wall-thermal gradient on the conduction wall.

VII. THE TURBULENT MECHANICAL ENERGY BUDGET TO UNDERSTAND PLUME
ENGULFMENT INTO THE BULK REGION

From the earlier section, we have observed that heat transport increases with an increase of
α. In general, either by increasing the flow circulation over the conduction walls or by inducing
turbulence, one can increase the convective motions in the enclosure. In a square RB convection for
Ra � 107, the plumes rise or fall on the enclosure (square) walls, and they rarely penetrate the core
bulk region. For α > 12◦, we have observed the thermal plumes engulfed into the core bulk zone;
see animation 5(a–d) in the Supplemental Material [45]. To understand thermal plume engulfment
into the bulk core region, we have computed the turbulent mechanical energy budget at a relatively
high Rayleigh number, Ra = 108. Inspired by the Fourier mode analysis, we have separated the flow
information into two separate zones: Zone I and the Zone II; see Fig. 1. The chosen zone partition
is not entirely arbitrary. From the Fourier mode analysis, we can note these zones capture the large-
scale modes very well. First, we have computed various flow quantities such as the kinetic energy,
local buoyancy force, local probe information of the velocity, and the temperature fields. The probe
information clearly shows intense fluctuations in the core bulk region. Further, we have computed
the local vorticity and the Richardson numbers to understand the importance of the buoyancy in the
different zones. Finally, we have calculated the turbulent energy budget to understand the transport
mechanism to explain the thermal plumes’ engulfment into the core bulk region.

A. Zone-area-based kinetic energy in the flow

We have computed the zone-based average kinetic energy (per unit mass) in the flow as Ekin(t ) =
1

2AZ

∫∫
AZ

u · u dx dy, where
∫∫

AZ
is the area integral chosen separately in Zone I and Zone II. In

Figs. 16(a) and 16(b) we have shown Ekin versus time for two different α, in comparison to the
square enclosure. In both Zones I and II, Ekin shows fluctuations with the time. The rising and
falling motions near the sidewalls in the square enclosure set the high kinetic energy in the Zone II
region. With an increase in α, a strong dipole circulation emerges in the enclosure, and the kinetic
energy increases in both Zones I and II; see Fig. 16(c). For α > 12◦, the inertial forces in the core
bulk region become important, and thus the kinetic energy in Zone I is more than in Zone II. Later,
we show that in Zone I, hydrodynamic instabilities arise due to the plume ejections from the slanted
walls.
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FIG. 16. Panels (a) and (b) for zone-area-averaged instantaneous kinetic energy per unit mass (Ekin) vs time.
We have compared Zone I and Zone II information of the octagonal enclosures with the square enclosures. In
panel (c), time-averaged kinetic energy (E kin) as a function of α. Note, Zone I for core bulk region and Zone II
for near wall shear layers. Symbols are circles (for Zone I) and squares (for Zone II). Note, the kinetic energy
is normalized with κ2Ra Pr/H2 to make it dimensionless. Simulations for Ra = 108 and Pr = 1.

In Fig. 17 we have shown time series of the velocity and the temperature fluctuations taken at
three different probe locations. In the figure, the first row is for the horizontal velocity (u), the second
row is for the vertical velocity (v), and the third row is for the temperature. We have chosen three
probes, P1, P2, and P3, outside the thermal boundary layers to track transport process between
the zones; see Fig. 1. For example, the time-averaged temperature profile along the midline of
the enclosure, i.e., T (x = H/2, y = 0), is a useful measure to estimate the thermal boundary layer
thickness, δDNS. From our simulations, we have computed the thermal gradient at the hot conduction
walls from the time-averaged temperature profile and then estimated the thermal boundary layer
thickness as δDNS = [TH − Tm]/| ∂T

∂y |wall . Note, the thermal boundary layer thickness estimation
varies locally along the conduction walls, and the midline based estimation which we have taken is a
reasonable choice. In the square RB convection, δDNS ≈ 0.02 based on midline temperature profile

FIG. 17. Time series of velocity and temperature at probe P1, probe P2, and probe P3 locations. Probe
locations can be noted from Fig. 1. Top row for horizontal velocity, middle row for vertical velocity, and bottom
row for temperature. Dark blue lines for α = 0◦ and light gray lines for α = 24◦. Simulations for Ra = 108

and Pr = 1.
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FIG. 18. Zone-area-averaged instantaneous work done by buoyancy WB. Panels are for (a) α = 12◦ and
(b) α = 45◦ in comparison to a square RB convection (α = 0◦). Panel (c) is for time-averaged work done
by buoyancy (WB/WC). Here WC = ρmβ�T |g|U . Symbols are circles (for Zone I and Pr = 1), squares (for
Zone II and Pr = 1), triangles (for Zone I and Pr = 2), and stars (for Zone II and Pr = 2). Simulations are for
Ra = 108.

at Ra = 108 and Pr = 1, and the estimate is within 0.6% (error) mentioned in earlier work [44]. In
the octagonal enclosure, the boundary layer thickness decreases due to an increase in the dipole
circulation, so the chosen probe locations can track the transport exchanged into the core bulk
region. In the case of RB convection, the large-scale monopole generates a strong wind sweep
and the probe P2 detects a high value of horizontal velocity, whereas the vertical component of
velocity is nearly zero. The probes P1 and P3, are relatively far from the wall boundary layers in
the square enclosure, whereas they are somewhat near the slanted conduction walls in the octagonal
enclosure (but still in the core bulk zone). With an increase of α, the wind strengthens, and thus we
see an intense flow at probe P1 and P3. The increase in velocity fluctuations in the core bulk region
indicates an increase in the nonlinear (or the advective) motions.

B. Work done by buoyancy

In thermal convection, buoyancy plays an important role by driving local fluid. To understand
further, we have explored work done by the buoyancy by taking the dot product between the velocity
and the buoyancy terms. In the mechanical energy balance, the buoyancy term acts as a source,
the viscous term acts as a sink, and the other terms such as the advection and the pressure terms
redistribute the energy in the flow. Moreover, the energy balance terms act differently in the core
bulk region and the boundary layers. We have computed the zone area-averaged work done by the
buoyancy as WB = 1

AZ

∫∫
AZ

ρmβ(T − Tm)g · u dx dy. For WB > 0, the hot plumes rise and the cold
plumes sink, whereas for WB < 0, the hot plumes sink and the cold plumes rise. For WB > 0, the
temperature field acts as an active scalar and drives the flow; otherwise, the fluid drives the passive
temperature field. In Fig. 18 we have shown WB versus time. Zone I mainly consists of turbulent
fluctuations with intermittent bursts of plumes, and hence, WB fluctuates around zero. In Zone II we
observe many rising and falling thermal plumes [64] and the time average WB > 0. With an increase
in α (> 12◦), the buoyancy work increases considerably in both the zones; see Figs. 18(b) and 18(c).
It is noteworthy mentioning that the buoyancy work (when compared to the kinetic energy) increases
with α.

C. The origin of instability in the bulk core region and the local Richardson number

In convection, thermal energy enters the conduction walls and generates a wide range of large and
small scales of motion. From the phenomenological models [11], we can note that the mechanical
energy drains out at the walls by the laminar shear and by the turbulent fluctuations in the core
bulk region; thus, heat transport mechanism in these two zones are very different by nature. The
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thermal plume ejections from the boundary layers and their interaction with the core bulk region
further complicate the transport process [65]. Even, if we consider a single thermal parcel (like a
simplified fluid blob), which has exceeded a certain threshold in the temperature difference with
the calm surroundings, we can set complex convective motions [13]. What happens to the parcel if
it somehow enters a turbulent environment which shows a wide range of spatiotemporal motions?
The parcel may rise unsteadily, or it may be broken into smaller plumes and mix up with the local
fluid. In a closed enclosure, the mentioned scenarios of thermal plume motion highly depend on
the interplay between the buoyancy, the wall shear motions and the turbulent engulfments from
the core. Especially in the octagonal enclosures, the slanted conduction walls assist the plumes in
providing additional buoyancy. In convection, the Richardson number (Rilocal), which is defined
as a ratio of the buoyancy production to the shear production, i.e., Rilocal = [|g| ∂ρ

∂y ]/[ρ0| ∂u
∂y |2], is a

good measure for knowing the driving mechanism. Here ρ is the local density (which depends on
the temperature), and u is the velocity component in the wind direction. The Richardson number
is another way of comparing the required buoyancy to the resulting nonlinearity in the flow [13].
In the case of turbulent atmospheric convection, the local Richardson number (sometimes called
the flux Richardson number) is defined based on the ratio of the time-averaged production by the
buoyancy to the production by the Reynolds shear stress, Riflux = [|g|ρ ′u′

iδi j]/[−ρu′
iu

′
j
∂U i
∂x j

], where
′ are the fluctuation quantities, indices i and j vary in the coordinate directions, δi j is the Kronecker
delta, and uppercase letters are the mean flow information. For Riflux � 1, the flow is statistically
stable; otherwise, the flow ultimately shows hydrodynamic instabilities [66]. For Riflux = 1, the
mechanical production rate balances the buoyancy flux, thus the marginal stability. Laminar flow
cannot maintain its stability if Ri < 0.25, whereas a turbulent flow (may) relaminarizes if Ri � 1
(with hysteresis effects). Though the critical (or the cutoff) values are always subject to intense
research, we can note that small values of the Richardson number based on either local or the
fluxes) correspond to an increase in random fluctuations (or nonlinear effects) in the flow. Note, in a
fully developed turbulent flow Riflux is a better choice as a measure, whereas Rilocal is suitable when
such restrictions are unknown prior.

Vincent and Yuen [67] have conducted 2D numerical simulations with stress-free boundary
conditions in the large aspect ratio (� = 3) enclosure for Ra = 108 and Pr = 1. In their work, the
local Richardson number is defined as RiRBC = |g|β ∂θ

∂y /( ∂u
∂y )

2
, where θ = [T (x, y) − T (y)] is the

thermal anomaly with respect to the linear conduction state T (y). Based on ∂θ
∂y , we may have a stable,

or a marginally stable, or unstable environment in the enclosure. For RiRBC < 0.25, the thermal
anomalies promote local mixing and generate small-scale thermal plumes from the boundaries with
an inversion in a local temperature gradient [67]. In our simulations, the convective motions are
weak due to small Ra(� 108), compared to strong turbulent motions expected at a relatively high
Ra(� 1014). In that case, Rilocal (which is equivalent to RiRBC under the Boussinesq approximation)
is an excellent measure to quantify buoyancy to the shear-based motion. Any small values of RiRBC

may create horizontal inversion layers; thus, there is a possibility of internal waves with baroclinic
instabilities. The other way to understand the instabilities and their growth is by computing the local
vorticity levels in the flow. In thermal convection, by taking the curl of the momentum equation, we
get the vorticity transport equation,

∂�

∂t
+ u · ∇�︸ ︷︷ ︸

Advection

= −|g|β ∂T

∂x︸ ︷︷ ︸
Baroclinic torque normal to xy plane

+ ν∇2�︸ ︷︷ ︸
Viscous

, (5)

where � = ∇ × u is the vorticity. In our 2D simulations, the vorticity acts normal to the xy plane.
In Eq. (5) the baroclinic torque acts as a source to drive the flow from the conduction state. With
time, the vorticity either gets amplified or redistributed in the flow, whereas the viscosity diffuses it.
The excess generation of vorticity increases the nonlinear effects and, thus, the flow instabilities.
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RiRBC RiRBC

FIG. 19. In each panel: first column for instantaneous thermal field (T ), second column for thermal
anomaly (θ ), third column for vorticity (�), and fourth column for local Richardson number (RiRBC). Panels
are for α = (a) 0◦, (b) 12◦, (c) 24◦, and (d) 45◦. Simulations are for Ra = 108 and Pr = 1 at time t = 2400τ .
See animation 5(a–d) in the Supplemental Material [45] for more details.

With the above discussion in mind, in Fig. 19 we have shown instantaneous contours of the
temperature (T ), the thermal anomaly (θ ), the vorticity (�), and the local Richardson number
(RiRBC). In the case of a square RB convection (α = 0◦), we have observed a relatively uniform
temperature (with T ≈ Tm) in the core bulk region (or Zone I) with a stratified thermal anomaly
without any fluctuations. In Zone I we found RiRBC � 0.3 and the vorticity |�| � 10−4, which
indicate a stable monopole. The thermal anomaly and its fluctuations are visible near the con-
duction walls and in the corner rolls. In Zone II the buoyancy effects are strong, and the local
vorticity is high, i.e., |�| ≈ 0.05. There the local Richardson numbers are much smaller than
0.1, which indicate the growth of corner rolls. In contrast, with an increase of α, both Zone I
and II show intense fluctuations in the thermal anomaly. Notably, we observe local RiRBC < 0.25
in Zone I for α > 12◦. In the octagonal enclosures, the quadrupole mode can freely move from
the corners without being pinned at a fixed location. Due to the dipole mode, high values of
vorticity and velocity fluctuations develop in the enclosure. From animation 5(a–d) in the Sup-
plemental Material [45], we can note that turbulent-like engulfments take place from Zone II to
Zone I.

In Fig. 20 we have shown area-averaged vorticity transport as a function of time. For α < 12◦,
both the baroclinic torque and the viscous diffusion balance each other. With a further increase
in α(>12◦), hydrodynamic instabilities are triggered in the core bulk zone. At high Ra(>107),
the vorticity transport terms show vigorous fluctuations with time, and hence, we have quantified
their intensity in terms of the root-mean-square (RMS) values; see Fig. 21. With an increase in
α, both the baroclinic torque and the viscous term increase linearly with a slope of 0.18. The
advection, which is small in comparison to the other terms, increases significantly for α > 24◦
and becomes a dominant term. We have used the least-square linear fit procedure to compute the
slopes, and the statistical errors involved are less than ±0.05 in slope. Based on this evidence, we
can infer that an increase in the advection terms leads to the plume engulfments into the Zone I
region.

D. Mechanical energy budget

To understand the engulfment mechanism mentioned earlier, we have computed the turbulent
kinetic energy budget in the enclosure. First, we briefly revisit the earlier works on turbulence
studies. In the isothermal turbulence studies in three dimensions, the supplied mechanical energy
at the large scales transfers via the intermediate scales and finally dissipates by the molecular
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FIG. 20. Area-averaged vorticity transport terms such as the buoyancy (|g|β ∂T
∂x ), the viscous (ν∇2�), and

the advection (u · ∇�) terms as functions of time. Panels are for (a) α = 0◦, (b) 6◦, (c) 12◦, and (d) 24◦.
Note, the terms are area averaged and normalized by U 2/H 2 to make them dimensionless. Simulations are for
Ra = 108, Pr = 1.

viscosity [21]. In the case of RB convection, thermal potential energy enters at the conduction walls
instead of the kinetic energy and drives the flow. The thermal boundary layers interact with the
core bulk region, and that leads to occasional plume detachments and the convective motions [11].
Some of the phenomenological studies of RB convection [10,12,68], have attempted to estimate the
total heat transport by partitioning the fluid layers in the enclosure into a turbulent core bulk region,
the wall shear boundary layers, and perhaps additional intermediate mixing zones [65]. From a
phenomenological point of view [68], the kinetic energy dissipation of each zone is different, and
the statistics in these zones show complex spatiotemporal variation in the form of laminar mushroom
plumes, sheetlike plumes, and random fluctuations; see more details in Refs. [69–75]. Recent works
by Petschel et al. [76], indicate that the dynamical zone information based on the energy dissipation
is more appropriate when compared to the classical boundary layer based information. Also, the
transport mechanisms in the 2D and the 3D studies are different [21].

It is a common practice in turbulent flows to decompose any instantaneous field, such as the
velocity u, the pressure p, and the temperature T , into a sum of mean flow and fluctuations, i.e.,
u = U + u′, p = P + p′, and T = T + T ′, where the overline (·) is the time average and (·)′ is the
fluctuation. The turbulent kinetic energy (TKE) budget which governs the fluctuations [21] is

∂ (ke)

∂t
= CK + PK + TK + DK + εK + �K + BK , (6)
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FIG. 21. Root-mean-square (RMS) values of vorticity terms vs α. Symbols shown for buoyancy (circles),
viscous (squares), and advection (triangles) terms. The advection terms increase significantly for α > 12◦.
Dashed lines are best linear fits. Simulations for Ra = 108 and Pr = 1.

where ke = 1
2 u′

iu
′
i is the turbulent kinetic energy, PK = −u′

iu
′
j
∂U i
∂x j

is the shear production by the

Reynolds stresses, TK = − 1
2

∂
∂x j

(u′
iu

′
iu

′
j ) is the turbulent transport, CK = − 1

2U j
∂

∂x j
(u′

iu
′
i ) is the con-

vective transport, DK = 1
2ν ∂2

∂x j∂x j
(u′

iu
′
i ) is the transport by the viscosity, εK = −ν

∂u′
i

∂x j

∂u′
i

∂x j
is the viscous

dissipation, �K = u′
i
∂ p′
∂xi

is the velocity-pressure gradient term, and BK = |g|βT ′u′
iδi j is the buoyancy

production term. The indices i and j are varied in both the horizontal and vertical directions. In
Fig. 22 we have shown isocontours of the RMS fluctuations developed in thermal convection. The
spatial inhomogeneity in the velocity and the temperature fluctuations indicate that the momentum
transport is quite different in the wall boundary layers and the turbulent core bulk region. Due to
the large-scale motions, the vertical velocity near the horizontal walls and the horizontal velocity
near the vertical walls show high values in magnitude. With an increase of α (> 12◦), the RMS
fluctuations increase significantly, and the temperature fields become more homogeneous.

The turbulence production in thermal convection takes place by both the shear (PK ) and the
buoyancy (BK ) terms. The Reynolds shear stress terms contribute via PK , whereas the convective
terms contribute via BK . In Fig. 23 we have shown instantaneous contours of both PK and BK terms.
In the square enclosure, the turbulence production takes place via PK near the corner rolls, and via
BK , at the thermal plume clusters [77]. In the octagonal enclosures, with an increase in α, both PK

and BK increase and show complex spatial dependence. The shear-driven motions and the buoyancy-
driven plume clusters can be seen even in the core bulk region of the octagonal enclosures. The PK

terms show both the positive and the negative fluctuations, which indicate that the local turbulent
energy exchanges from the mean to the fluctuations and vice versa. However, the total area-averaged
PK is always be zero in the enclosure, supporting that the fluctuations do not cross the enclosure
walls. The area-averaged BK is always positive, and it increases with an increase of α. The total
area-averaged BK is at least an order of magnitude larger than PK . In the core bulk region of the
square enclosure, both the PK and BK are negligibly small; thus, we observe a stable monopole.
However, the production terms increase significantly in the octagonal enclosure contributing to the
observed hydrodynamic instabilities. To quantify the overall energy budget, mainly in the Zone I,
we have computed an area and time-averaged individual budget terms as a function of α; see Fig. 24.
As explained earlier, the area-averaged buoyancy production dominates the core region dynamics
compared to the total shear production. Thus the observed hydrodynamic instabilities in Zone I and
the turbulent engulfments across Zone I and Zone II.
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FIG. 22. Isocontour plots of time-averaged RMS fluctuations: (a–c) for horizontal velocity, (d–f) for
vertical velocity, and (g–i) for temperature. Left panels for α = 0◦, middle panels for α = 12◦, and right panels
for α = 24◦. Note, color bars range differently in each panel. In each row, α = 0◦, 12◦, and 24◦ are shown.
Simulations are for Ra = 108 and Pr = 1.

VIII. SUMMARY AND CONCLUSIONS

To investigate the importance of the corner rolls, which are assumed to be the primary reason
for the flow reversals in two-dimensional (2D) thermal convection, in our work, we have probed

FIG. 23. Instantaneous isocontours of turbulent production terms: left panels for shear production (PK ),
and right panels for buoyancy production (BK ). In each panel, results for α = 0◦ and α = 24◦ are shown. Note,
color bar ranges differently in each panel. Simulations are for Ra = 108 and Pr = 1.
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FIG. 24. Time- and area-averaged mechanical energy budget terms in the turbulent core bulk region
(Zone I) as functions of α. Symbols are crosses (BK ), circles (εK ), squares (PK ), diamonds (DK ), and downward
triangles (�K ). Simulations for Ra = 108 and Pr = 1.

a geometry in the form of an octagonal enclosure inscribed in a square (see Fig. 1). Similar to
the classical Rayleigh-Bénard convection, we have maintained the left-right symmetry in thermal
boundary conditions and the no-slip in velocity on the enclosure walls. We have studied flow features
and heat transport in the octagonal enclosure by varying the slanted wall angle (α) from 0◦ to 45◦,
in the parameter range 5 × 105 � Ra � 108 and 0.8 � Pr � 2.0. In the square enclosure (for which
α = 0◦), the corner rolls exchange thermal energy with the conduction walls, grow with time, and
are stably arrested in motion by the enclosure edges. Due to the vortex reconnection mechanism,
the corner rolls merge and induce flow reversals with an intermediate state in the form of a uniform
circulation. In the case of an octagonal enclosure, the slanted conduction walls supply additional
heat to the corner rolls, and a robust dipole mode develops due to frequent plume ejections from
the slanted walls. At low Ra (< 107), the mushroom-shaped plume ejections take place alternatively
from the slanted walls and the flow set into periodic and quasiperiodic reversals. At high Ra (� 108),
turbulent engulfments take place from the wall zones, and hydrodynamic instabilities arise in the
core bulk region.

We have quantified the overall flow features as a result of the competition between various
Fourier modes and traced the flow map on the Ra-Pr plane for different α (see Figs. 3 and 6). With
an increase in α, the contribution by the quadrupole mode decreases and the dipole mode increases,
which highlights that the corner rolls are not essential to explain the flow-reversal mechanism in 2D
thermal convection. We have found that the energy contribution by the dipole increases from 5% (for
α = 0◦) to 80% (for α = 45◦) at Ra = 108. The flow-reversal frequency increases linearly with α

and decreases as a power law with Ra. The normalized mean flow-reversal frequency is proportional
to Raφ , where φ varies from −0.358 at α = 0◦ to −0.281 at α = 45◦. At high Ra (= 108), with an
increase in α, the core bulk region shows a combination of both the monopole and the dipole states
with frequent flow reversals. The core bulk region shows intense fluctuations in both velocity and
temperature. To probe reasons for these hydrodynamic instabilities, we have carried out a turbulent
energy budget by considering two different zones: the wall zone and the core bulk zone. We have
observed turbulent-like engulfments between the wall and the core bulk zones due to high shear
production (PK ) term. The engulfed plumes easily penetrate the core bulk zone and release their
thermal energy by the buoyancy production (BK ) term. With an increase in α, the overall convective
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motions increases, which results in high heat transport (up to 14% increase) when compared to the
square enclosure. The observed increase in heat transport mainly comes from the slanted conduction
walls when compared to the contribution from the horizontal conduction walls. For α > 24◦, the
advective motions dominate, and the slanted walls release many thermal plumes to the bulk core,
and thus high heat transport.

In conclusion, we recommend an octagonal enclosure (with α = 45◦) as a better choice to achieve
excellent thermal mixing and high heat transport compared to a square enclosure. Any further
geometry variation, slanted wall angles, or more complicated boundary conditions can be work
for future scope.
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FIG. 25. Fourier mode decomposition is carried out for the vertical velocity in the three subdomains. Lines
are green (for the green square domain), blue (for the blue square domain), and cyan (for the cyan square
domain). In each panel, a particular Fourier flow mode amplitude as a function of dimensionless time is shown:
(1,1) mode (a), (2,2) mode (b), (1,2) mode (c), (2,1) mode (d), (1,3) mode (e), and (3,1) mode (f). The mode
amplitudes from the complete octagon domain (without separating it into square domains) are shown as a red
line. Simulations for Ra = 108, Pr = 1.8, and α = 45◦ enclosure.
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FIG. 26. Time evolution of the dominant Fourier modes for square enclosure at Ra = 5 × 105 and Pr = 2.
At 1, 2, 3, and 4 we have shown dashed lines for which four snapshots are shown in Fig. 3(a).

APPENDIX

In this Appendix, we have supplemented the paper with additional details on flow reversals.
In Fig. 25 we have shown six dominant Fourier modes: (1,1) in (a), (2,2) in (b), (1,2) in (c), (2,1)

in (d), (1,3) in (e), and (3,1) in (f) for the mentioned three square subdomains; see Fig. 1(b). The
mode amplitude shows a similar trend for all three subdomains. Also, we have computed Fourier
modes for the complete octagon domain, and the resulting amplitude variation follows the same
trend, suggesting that the considered square subdomains are sufficient to capture the large-scale
information. With these inferences, we have computed the Fourier mode decomposition in the blue
square subdomain (0.2D � x � 0.8D and 0.2H � y � 0.8H), and based on that, we have shown
our results in the paper.

We have shown the Fourier mode amplitudes for the mixed state with reversals (MSR) for the
square enclosure (α = 0◦) in Fig. 26 as an extension of Fig. 3. Here 1 represents two-roll structure,

FIG. 27. Normalized angular momentum vs time for mixed state with reversal (MSR) in a square enclosure
for the parameters Ra = 5 × 105 and Pr = 2. Zoom of rectangular box shown in Fig. 3.
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FIG. 28. The ratio of |v̂2,2|/|v̂1,1| for Ra = 108 and Pr = 1.8 for α = 0◦ (green) and α = 45◦ (red).

2 and 3 represent a mixed state, and 4 represents uniform circulation, which is reconfirmed by
analyzing the Fourier mode amplitudes: the (1,2) mode is dominant in 1; (2,1), (3,1), and (2,2) show
a spike in 2 and 3; and (1,1) mode is dominant in 4. In the MSR case, there is no special order of
different flow states such as UC, TRS, and some other complex flow states.

In Fig. 27 we have shown the relatively long signal of angular momentum versus time for MSR
in a square enclosure for Ra = 5 × 105 and Pr = 2. The black rectangular portion represents the
zoomed view shown in Fig. 3(b).

During the UCR, the mode (1,1) crosses zero and the mode (2,2) shows a spike. The disappearing
of the (1,1) mode and the spike in the (2,2) mode are responsible for four rolls appearing during the
reversal. In Fig. 28 we have shown the the ratio |v̂2,2|/|v̂1,1| with time for Ra = 108 and Pr = 1.8.
The UCR take place when |v̂2,2|/|v̂1,1|, shows a spike.

In Fig. 29 we have given a summary of the Fourier modes which are responsible (or interact
mainly) during the flow reversal. For example, during the UCR, basic mode (1,1) changes its
orientation due to growth of the (2,2) mode. In the case of TRSR, the basic mode (1,2) reorients
due to growth of (2,2), which interacts with (2,1). In case of QPR, the basic mode is (1,1), which
interacts in a major way with (2,2), (1,3), and (3,1) during reversal. In case of PR, the (1,1) mode
interacts with (2,2), and (1,3) during reversal.

In Fig. 30 we have summarized information on flow states observed in the square and the
octagon enclosures in the considered range of Ra and Pr. At high Ra = 108, the UC state, which

FIG. 29. Interaction between different Fourier modes during reversal. Upward arrow indicates significant
influence of the specific modes.
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FIG. 30. Schematics of different flow states observed in the given range of Ra-Pr. Note, hot (H) and cold
(C) rolls and large-scale circulation (LSC). In QPR and PR, mushroom-shaped giant plumes eject from the
incline walls.

is observed in both the square and octagon enclosures, consists of a large elliptical roll along with
two small-scale counterrotating corner rolls. The large-scale uniform circulation (or the monopole)
state becomes unstable due to growth of the corner rolls (or the quadrupole), which leads to the
UCR state. During the flow reversal, the quadrupole mode (2,2) dominates over the monopole or
the (1,1) mode. In the octagon enclosures, we have observed three additional flow states, namely,
TRSR, MSR, and QPR and PR states, in addition to the UC, TRS, and UCR states. The TRS state,
i.e., (1,2) mode, is observed for Ra � 107 and Pr � 1, where a cold roll lies above a hot roll in the
stable state. The competition between (2,2) and (2,1) with the (1,2) mode leads to the flow reversals
in the form of TRSR state. In the case of PR and QPR flow states, the monopole (1,1) mode is
subjected to destabilize by the (2,2), (1,3), and (3,1) modes, which leads to reversals. In the MSR
state, we have observed that the (1,1), (2,1), (1,2), (2,2), (3,1), and (1,3) modes occur randomly to
trigger flow reversals.

In Fig. 31 we have shown normalized mean reversal frequency versus slanted angle for Ra =
5 × 107 and Pr = 2. For a square enclosure (α = 0◦) reversals can take place only by UCR, whereas

FIG. 31. Normalized mean reversal frequency vs slanted angle for Ra = 5 × 107 and Pr = 2. For a square
enclosure (α = 0◦) flow reversals take place by UCR, and for α = 12◦ to 45◦ case flow reversals take place by
both UCR and TRSR. UCR is shown by a blue square, and TRSR is shown by black triangle symbols.
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FIG. 32. Steps involved in reversal of two-roll state (i.e., TRSR): Snapshots of the velocity and temperature
fields during TRSR at t/τ = 10, 897 (i), 10 918 (ii), 10 930 (iii), 10 936 (iv), 10 942 (v), and 10 945 (vi). The
dimensionless temperature, (T − Tc )/�T , which ranges from 0.3 (blue) to 0.7 (red). Black small arrows for
the velocity field. Simulation for Ra = 108 and Pr = 1.8.

for α = 12◦ to 45◦ reversals take place by both UCR and TRSR for Ra > 107. For α = 12◦ reversal
frequencies obtained from UCR and TRSR state are very close to each other. For α � 24◦ reversals
by TRSR are more frequently happens when compared to UCR. For α � 24◦ the dipole mode
becomes dominant and leads to an increase in reversal frequency by the TRSR state.

In Fig. 32 we have shown destabilization of two-roll state. An additional secondary roll is
generated in the region between the top and the right side conduction walls. The created secondary
roll grows with time and merges with one of the rolls having the same direction of rotation. The
other roll moves towards the bottom (or top) from the top (or bottom) plate, and that reverses the
direction of rotation. See animation 3(b) in the Supplemental Material [45] for more details.
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