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Molecular interpretation of the non-Newtonian viscoelastic behavior of liquid
water at high frequencies

Julius C. F. Schulz,1 Alexander Schlaich ,1,2 Matthias Heyden ,3 Roland R. Netz,1

and Julian Kappler 1,4,*

1Freie Universität Berlin, Fachbereich Physik, 14195 Berlin, Germany
2Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France

3School of Molecular Sciences and Center for Biological Physics, Arizona State University,
Tempe, Arizona 85287-1604, USA

4Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 0WA, United Kingdom

(Received 5 May 2020; accepted 10 September 2020; published 14 October 2020)

Using classical as well as ab initio molecular dynamics simulations, we calculate
the frequency-dependent shear viscosity of pure water and water–glycerol mixtures. In
agreement with recent experiments, we find deviations from Newtonian-fluid behavior in
the THz regime. Based on an extension of the Maxwell model, we introduce a viscoelastic
model to describe the observed viscosity spectrum of pure water. We find four relaxation
modes in the spectrum which we attribute to (i) hydrogen–bond network topology changes,
(ii) hydrogen–bond stretch vibrations of water pairs, (iii) collective vibrations of water
molecule triplets, and (iv) librational excitations of individual water molecules. Our model
quantitatively describes the viscoelastic response of liquid water on short timescales, where
the hydrodynamic description via a Newtonian-fluid model breaks down.
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I. INTRODUCTION

Liquid water is an ubiquitous medium on earth and of fundamental importance for all organisms
[1,2]. A standard model for the large-scale hydrodynamics of liquid water is the Newtonian fluid
[3–5], where one assumes a linear relationship between local instantaneous stresses and rates of
strain, with the proportionality constant given by the viscosity. The combination of the momentum
conservation equation with this relation is then known as the Navier–Stokes equation, and it is the
basis for hydrodynamics.

Despite its success for describing the dynamics of water and other liquids, this model has a
limited range of applicability. At high frequencies, when timescales are comparable to those of
molecular kinetics within the liquid, real water deviates from the Newtonian fluid model. Slie et al.
[6] showed by ultrasound absorption measurements that in aqueous glycerol solutions, the shear
viscosity decreases and the mixture starts to have an elastic response under shear deformation at
high frequencies. More recently, Pelton et al. [7] showed that the same occurs for pure water. Both
studies replaced the Newtonian fluid model by a viscoelastic Maxwell fluid [8], which in the low
frequency limit reduces to a Newtonian fluid but can account for the experimentally observed elastic
behavior at high frequencies. Molecular dynamics simulations of water–glycerol mixtures [9] and
pure water [10,11] also find a non-Newtonian regime at high frequencies, the onset of which is
well-described by a Maxwell model [9,11].
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Understanding this non-Newtonian behavior is becoming increasingly important. First, with the
advancement of nanotechnology, small structures, when in an aqueous environment, start to probe
the regime where the Newtonian-fluid model of water breaks down [7,12,13]. Second, the THz
regime probed by modern spectroscopic methods constitutes the boundary between collective and
single-water dynamics [13–19]. If one seeks detailed insight into dynamics of molecular or collec-
tive processes of solutes on such fast timescales, an important aspect is therefore understanding how
water itself behaves on the relevant time- and length scales.

In the present work, we use both force-field molecular dynamics (MD) and ab initio molecular
dynamics (aiMD) simulations to probe the high-frequency behavior of both pure water and water–
glycerol mixtures. From our simulations, we extract the frequency-dependent shear viscoelasticity.
We verify our method by comparing to the experimental results of Slie et al. [6] for the viscoelas-
ticity of water–glycerol mixtures. Then we investigate the MD spectrum of pure water in more
detail. We propose a viscoelastic model to account for deviations of the observed water viscosity
spectrum from the Maxwell model. We identify four independent relaxation modes in the THz
regime and link them to molecular processes, namely, (i) hydrogen–bond network topology changes,
(ii) hydrogen–bond stretch vibrations, (iii) collective vibrations of water molecule triplets, (iv)
librational excitations of individual water molecules. We validate the use of classical force–field
MD simulations by comparing to a viscosity spectrum based on aiMD simulations, which shows
the same high-frequency features as the spectrum obtained from force–field MD simulations. The
aiMD spectrum additionally contains features originating from intramolecular degrees of freedom
(OH stretching, OH bending) at high frequencies, which are not included in the rigid water model
used for the force–field MD simulations.

II. FREQUENCY-DEPENDENT VISCOSITIES

In this section we recall some generalizations of the standard Green-Kubo relation for the shear
viscosity [20–25]. These generalizations can be used to calculate the frequency- and wave number
dependent shear viscosity in terms of velocity and stress tensor correlation functions. Detailed
derivations can be found in the Supplemental Material (SM) [26] as well as in the literature [21–23].

We start from the linearized continuum-mechanical momentum conservation equation [8], which
at position x and time t is given by

ρv̇α (x, t ) =
3∑

β=1

∂βσαβ (x, t ), α ∈ {x, y, z}, (1)

where ρ is the constant equilibrium mass density of the fluid, v = (vx, vy, vz ) its velocity field, σ

its stress tensor, and the dot denotes a time derivative. Note that while for a compressible fluid the
density is not constant, deviations from the constant equilibrium mass density ρ on the left-hand
side of Eq. (1) would constitute nonlinear effects and are therefore not considered in our linear
treatment. For a linear, homogeneous, isotropic compressible fluid the stress tensor is given as

σαβ (x, t ) = − δαβP(x, t ) + 2
∫∫

η(|x′|, t ′)ε̇αβ (x − x′, t − t ′) d3x′ dt ′

+ δαβ

3∑
γ=1

∫∫ (
η′(|x′|, t ′) − 2

3
η(|x′|, t ′)

)
ε̇γ γ (x − x′, t − t ′) d3x′ dt ′, (2)

where P is the pressure, η, η′ are the shear and volume viscosity kernels, which for an isotropic
medium only depend on the modulus of the vector x′, δαβ is the Kronecker delta, and the components
of the rate of strain tensor ε̇ are

ε̇αβ = 1

2

(
∂vα

∂xβ

+ ∂vβ

∂xα

)
, α, β ∈ {x, y, z}. (3)
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If the viscosity kernels decay on length- and timescales that are small compared to those on
which the rate of strain tensor varies, then the stress tensor defined by Eq. (2) can be approximated
as [26]

σαβ (x, t ) ≈ −δαβP(x, t ) + 2η̄ε̇αβ (x, t ) + δαβ

(
η̄′ − 2

3
η̄
) 3∑

γ=1

ε̇γ γ (x, t ), (4)

where

η̄ =
∫∫

η(|x′|, t ′) d3x′ dt ′, (5)

η̄′ =
∫∫

η′(|x′|, t ′) d3x′ dt ′, (6)

are the standard shear and volume viscosities, which do not depend on space and time. A fluid
with stresses given by Eq. (4) is called a Newtonian fluid. If the stress tensor Eq. (4) is used in
the momentum conservation Eq. (1), then the linearized compressible Navier–Stokes equation is
recovered. While in this work we mostly consider the spatial average of the shear viscosity kernel,
we are precisely interested in the dynamics on timescales where the approximation Eq. (4) breaks
down, and non-Markovian effects become relevant.

From momentum conservation Eqs. (1) and (2), and the equipartition theorem, it follows that the
shear viscosity kernel η is given in terms of the trace free part of the stress tensor,

�αβ = σαβ − δαβ

1

3

∑
γ

σγγ α, β ∈ {x, y, z}, (7)

as [22,24–26]

η̃(k = 0, ω) = βV

10

∫ ∞

0
e−i ω t

∑
αβ

〈�αβ (t ) �αβ (0)〉 dt, (8)

where V is the volume of the fluid, β−1 = kBT is the thermal energy with kB the Boltzmann constant
and T the absolute temperature, the tilde denotes a combined spatial Fourier transform (with wave
vector k) and temporal half-sided Fourier transform transform (with angular frequency ω), and the
average on the right-hand side denotes an ensemble average over space. The real part of η̃ yields
the viscous response under shear, whereas the imaginary part models the elastic response under
shear [8].

Note that, in view of Eqs. (4) and (5), η̃ evaluated at k = 0 can be thought of as the viscosity for a
viscosity kernel that decays on a length scale much smaller than the length scale on which ε̇ varies,
but including memory effects in time. If additionally the limit ω → 0 is taken, memory effects in
time are also neglected and the Green-Kubo relation for η̄ is obtained from Eq. (8) as [20–25,27]

η̄ = βV

10

∫ ∞

0

∑
αβ

〈�αβ (t ) �αβ (0)〉 dt . (9)

In this paper we use Eqs. (8) and (9) to calculate the viscosity based on force–field MD simula-
tions, where the space-averaged pressure tensor is available [28]. To calculate shear viscosities from
the aiMD simulations, we use that for small wave number k = |k|, the shear viscosity is given by
[21–23,26]

η̃(k, ω) = − ρ

k2

∫ ∞

0
e−iωt ¨̂C⊥(k, t ) dt, (10)
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where a hat denotes a spatial Fourier transform and Ĉ⊥ is the normalized autocorrelation function
of the α-component of the transversal velocity,

Ĉ⊥(k, t ) = 〈v̂⊥
α (k, t ) v̂⊥

α (−k, 0)〉
〈v̂⊥

α (k, 0) v̂⊥
α (−k, 0)〉 , α ∈ {x, y, z}, (11)

with v̂⊥
α := ∑

β (δαβ − kαkβ/k2)v̂β the components of the transversal velocity. For an isotropic
medium, the right-hand side of Eq. (11) does not depend on the component α used and only depends
on k via the modulus k, which is why Ĉ⊥ has no index α and is written as a function of k.

In the context of Eq. (10), small wave number means [26]∣∣∣∣k2η̃

ρω

∣∣∣∣ 
 1, (12)

which for realistic values for water, |η̃| ≈ 1 mPa s, ρ = 103 kg/m3, gives |k|2nm2/ps 
 |ω|. Thus,
for |k| = 4 nm−1, corresponding to the smallest wave number resolvable in a typical box in an aiMD
simulation, Eq. (10) is valid for f = ω/(2π ) � 2.5 THz, which severely limits the applicability of
Eq. (10). While in the limit k → 0, condition Eq. (12) is always fulfilled and the approximate
Eq. (10) is valid, obtaining v̂⊥

α (k = 0, t ) from simulations is typically difficult because large
simulation boxes are needed to resolve small wave numbers, and thereby to extrapolate to k = 0. In
this context it is also important to note that for a nonperiodic box so small that Eq. (12) is violated
for the smallest wave numbers accessible, confinement-dependent deviations from bulk behavior
start to become relevant [12], underscoring the importance of the inequality Eq. (12) at finite k.

III. GLYCEROL SPECTRA

We simulate glycerol solutions [29] with glycerol mass fractions 0, 0.2, 0.4, 0.6, 0.8 in
TIP4P/2005 water, for details see SM [26]. From the simulations we calculate the respective
viscosity spectra at k = 0 using Eq. (8). The resulting spectra are shown as blue and green solid
curves in Fig. 1.

For low frequencies, the real parts (blue solid lines) of the spectra are constant and the imaginary
parts (green solid lines) vanish. As the frequency is increased, the real parts of the spectra decrease
to zero, while the imaginary parts show peaks. For low glycerol mass fractions, the real part of the
shear viscosity shows a non-monotonic behavior with a second peak at around 10 THz, accompanied
by a peak in the imaginary part at slightly higher frequencies. For large glycerol mass fractions, this
high-frequency peak disappears, and the decay in the real part with its corresponding peak in the
imaginary part shift to lower frequencies.

These spectra illustrate the limits of the Newtonian fluid model, as defined by Eq. (4), because for
such a fluid one would expect a spectrum with constant real part and vanishing imaginary part over
the whole frequency range. Our spectra exhibit deviations from this behavior for high frequencies,
indicating that the assumption of temporal locality breaks down once the rate of strain tensor varies
on the picosecond timescale, as observed in experiments [6,30] and previous numerical results [9].

To go beyond Newtonian hydrodynamics, we fit Maxwell models, defined by

η̃(ω) = η0

1 − iωτ
, (13)

with η0 = η̃(0) the steady-state shear viscosity and a timescale τ , to the frequency range ω < 1 THz
of the glycerol-water spectra, see Fig. 1. In Fig. 2, we compare the fitted viscosities and relaxation
times η0, τ to experimental results [6,30]. As can be seen, the viscosity spectrum of the simulated
glycerol/water mixtures reproduces very well both the low-frequency shear viscosity η0 and the
timescale τ for the Maxwell model. In subplot (a) we additionally include the zero-frequency
viscosity, calculated using the Green-Kubo formula Eq. (9), which for pure water is in good
agreement with previous numerical results [31]. The good agreement between experimental data
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FIG. 1. Viscosity spectra η̃ as calculated from MD simulations of TIP4P/2005 water at different glycerol
concentrations. The real and imaginary parts of the spectra (blue and green solid lines) are calculated from the
MD data at k = 0 using Eq. (8). The result of a Maxwell model fit, cf., Eq. (13), to frequencies 10−4 THz <

f < 1 THz, is shown as orange and violet dashed lines.

and our Maxwell model fits serves as a validation that our approach of using Eq. (8) in conjunction
with force–field MD simulations yields physically meaningful results.

We now demonstrate that the locations of the Maxwell-model peaks in Fig. 1 correspond to the
respective timescale on which the fluid molecules rearrange. For each mass fraction of glycerol we
consider the mean-squared displacement (MSD) of an individual water molecule, which we show
in Fig. 3(a), together with the fitted Maxwell-model timescales τ . From Fig. 3(a) we observe that
τ is the timescale on which the MSD enters its long-time diffusive scaling MSD ∝ t . This can be
seen even more clearly in Fig. 3(b), where we rescale time by the respective τ and normalize each
MSD by its long-time diffusive behavior, MSD = 6D∞t , which defines the long-time diffusion
coefficient D∞. In the representation Fig. 3(b), all the MSDs collapse onto each other for t � τ and
reach their asymptotic long-time behavior on a timescale slightly larger than τ . This shows that on
timescales t � τ the dynamics of a fluid particle can be considered as freely diffusive, meaning that
τ is the typical timescale on which fluid molecules rearrange. Correspondingly, for each glycerol
mass fraction, after a time t = τ a water molecule, has traveled on average a distance comparable
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FIG. 2. Comparison of experimental and simulation data for the viscoelasticity of glycerol solutions. MD
data points are obtained using the Green-Kubo formula Eq. (9) (red crosses), or fitting a Maxwell model
Eq. (13) to the full viscosity spectra (blue dots), cf., Fig. 1. Experimental data for η0 are taken from Cheng
[30], timescales are calculated using τ = η0/K , with η0 taken from Cheng [30] and K taken from Slie et al. [6]

to its own size, which is of the order of 3 Å = 0.3 nm. Indeed, in Fig. 3(a) at t = τ the value of
each MSD is between (0.2 nm)2 and (0.5 nm)2, as indicated by a gray shaded region. The Maxwell
peaks in Fig. 1 thus indicate the crossover from the solid-like short-time dynamics of the fluid,
observed for frequencies higher than the Maxwell peak, to the freely-diffusive long-time dynamics,
observed for frequencies lower than the Maxwell peak. This interpretation is in full agreement with
the established fact that at sufficiently high frequencies, any molecular liquid is expected to behave
like an (amorphous) solid [21,32,33]. Additionally, for a Yukawa liquid, a Maxwell-model peak
was recently linked to nearest-neighbor escape barrier hopping within the fluid [34,35], with the
peak frequency corresponding to the inverse lifetime of the nearest-neighbor topology of a given
molecule. A more detailed analysis of the crossover from solid-like- to liquid-like behavior for
glycerol mixtures is possible by analyzing the first-passage dynamics for dissociation of bonded
water pairs [36] in glycerol solutions, or by considering collective variables that capture the locality
of vibrational modes [37].

Taking a closer look at the pure TIP4P/2005 water spectrum [38], shown in Fig. 1(a), which
is very similar to the previously obtained viscosity spectrum using the TIP4P force field [10],
it transpires that a single Maxwell model, which features a monotonically decreasing real part
and one peak in the imaginary part, is not able to model the full viscosity spectrum observed in
the MD simulation, which contains two peaks in the imaginary part and a non-monotonic real
part. A Maxwell model only describes this spectrum for frequencies f � 1 THz, as was noted
before [11].
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FIG. 3. Mean-squared displacement (MSD) of individual water molecules in glycerol solutions. (a) For
each glycerol mass fraction, the MSD of each water molecule center of mass is calculated and an average
over all such MSDs is performed (colored solid lines). The vertical dashed lines denote the corresponding
fitted Maxwell-model timescales τ from Fig. 2(b), the horizontal gray shaded region denotes the range
[0.22 nm2, 0.52 nm2]. The long-time diffusion coefficient D∞, defined by MSD = 6D∞t for t large enough, is
obtained from each curve by fitting a linear function to each dataset for the time interval t/ps ∈ [5 × 104, 105].
(b) The colored lines show the MSDs from subplot (a) divided by the respective long-time diffusive MSD, and
with time rescaled by the respective Maxwell timescale τ . The time t = τ is indicated by a vertical solid line,
the curve MSD = 6D∞t is depicted as a horizontal solid line.

IV. THE SHEAR INERTIA MODEL

To model the observed shear viscosity spectrum of pure water, we consider a general stress-strain
relation, which links off-diagonal components of stress and strain rate tensors at k = 0 via [8]

σ̃αβ (ω) = 2(−iω)η̃(ω)ε̃αβ (ω) α = β, (14)

cf., Eq. (2). This relation is analogous to electrical circuit theory, where one is interested in the total
complex impedance Z̃ (ω) of a circuit, which links time-dependent voltage U and time-dependent
current I via [39] Ũ (ω) = Z̃ (ω)Ĩ (ω). In analogy to electrical networks, we use Eq. (14) to model
the total complex shear viscosity η̃(ω) of a viscoelastic network [8].

The building blocks for electrical circuits are resistor, capacitor and inductor, and each of them
has a characteristic complex impedance Z̃ (ω), shown in the left column of Table I. In viscoelasticity,
usually only viscoelastic analogues of the resistor and the capacitor, but not of the inductor, are
considered. The viscoelastic analog of the resistor is the dashpot (both resistor and dashpot dissipate
energy), while the viscoelastic analog of the capacitor is the spring (both capacitor and spring can
store energy). The rules for calculating the total viscosity of a viscoelastic network, built up by serial
and parallel combination of viscoelastic building blocks, are given in Table II [8].

In Figs. 4(a), 4(b), we illustrate the viscoelastic response of two standard viscoelastic materials
[8]. The Kelvin–Voigt material, shown in Fig. 4(a), is a parallel combination of a dashpot (vis-
cosity η0) and a spring (elastic modulus K); it has a complex viscosity η̃(ω) = η0 + K/(−iω),
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TABLE I. Electrical and viscoelastic circuit elements.

Electrical circuit Viscoelastic network

Building block Z̃(ω) η̃(ω) Building block

Resistor R η0 Dashpot

Capacitor (−iωC)−1 K(−iω)−1 Spring

Inductor −iωL −iωL Shear inertia

and models a viscoelastic solid. The Maxwell material, defined in Eq. (13) and shown in
Fig. 4(b), is a serial combination of a dashpot and a spring, and models a viscoelastic fluid;
the dashpot viscosity η0 and spring elastic modulus K are related to the relaxation timescale τ

via τ = η0/K .
As can be seen from Figs. 4(a), 4(b), both Kelvin–Voigt and Maxwell model do not exhibit a real

part of the complex viscosity that is increasing as a function of frequency. To model the pure water
spectrum, and in particular the non-monotonic real part of the viscosity in Fig. 1(a), we introduce
the viscoelastic analog of the inductor, which we denote by a circle containing a curved arrow, see
right column of Table I. This new circuit element models stress generated by shear acceleration.
Indeed, substituting η̃(ω) = −iωL into Eq. (14) and using Eq. (3), it follows that

σαβ = 2Lε̈αβ = L

(
∂ v̇α

∂xβ

+ ∂ v̇β

∂xα

)
, (15)

meaning that the stress is proportional to the shear acceleration. Substituting Eq. (15) into the
momentum conservation Eq. (1), the resulting force can be interpreted as contributing an effective
induced mass due to velocity gradients in the fluid. A possible microscopic origin of such an
effect is the coupling between shear and rotational degrees of freedom of individual fluid particles
(vorticity-spin coupling [40]).

Using the shear inertia circuit element, we consider the viscoelastic network shown in Fig. 4(c),
which we call the shear inertia model. As we show now, this is a generalization of the Maxwell
model that includes shear inertial effects. Using the viscosities of the individual network elements,
cf., Table I, and the combination rules, cf., Table II, the total viscosity of the shear inertia model in
Fig. 4(c) is found to be

η̃(ω) = η0
1 + (−iω)τm

1 + (−iω)τ 2
0 /τm + (−iω)2τ 2

0

, (16)

where τm = L/η0, τ 2
0 = L/K . From Eq. (16) it can be seen that this is an extension of the Maxwell

model, Eq. (13), which is recovered in the limit ωτm → 0, ωτ0 → 0, at finite ωτ 2
0 /τm ≡ ωτ .

An important difference between the Maxwell and the shear inertia model is that the lat-
ter features a non-montonic real part in the complex viscosity; from equating its derivative

TABLE II. Combination rules for viscoelastic networks [8].

Combination Stresses & Strains Formula for η̃tot(ω)

Parallel
2

1 σtot = σ1 + σ2

εtot = ε1 = ε2
η̃tot(ω) = η̃1(ω) + η̃2(ω)

Serial 21
σtot = σ1 = σ2

εtot = ε1 + ε2
η̃tot(ω) = η̃−1

1 (ω) + η̃−1
2 (ω)

−1
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FIG. 4. Complex viscosities of viscoelastic materials. (a) Complex viscosity of a Kelvin–Voigt model,
η̃(ω) = η0 + K/(−iω), with η0 = 1 mPa s, K = 5 × 1010 mPa. (b) Complex viscosity of a Maxwell model,
Eq. (13), with η0 = 1 mPa s, K = 2 × 1012 mPa. (c) Complex viscosity of a shear inertia model, Eq. (16), with
η0 = 1 mPa s, K = 2 × 1012 mPa s, L = 10−12 mPa s2.

with zero, it follows that the real part of η̃(ω) defined by Eq. (16) is non-monotonic if and
only if

( τ0

τm

)2
= η2

0

KL
< 1. (17)

In Fig. 4(c), we show the complex viscosity of the shear inertia model for parameters η0 = 1 mPa s,
K = 2 × 1012 mPa s, L = 10−12 mPa s2. In the low-frequency limit the viscosity spectrum ap-
proaches that of a Maxwell model, with constant real part and negligible imaginary part. Also, as in
the Maxwell model, both real and imaginary parts vanish in the high frequency limit. However,
different from the Maxwell model, the real part of the viscosity is non-monotonic and has a
maximum, while the imaginary part is negative for small frequencies. A negative elastic response
accompanied by a peak in viscous damping has been observed in acoustic metamaterials before,
where it emerges as an effective viscoelastic response due to localized excitable structures within the
medium [41,42]; this supports our suggestion that a possible microscopic origin of the shear inertia
building block is the coupling between shear and intramolecular rotational degrees of freedom of
individual fluid molecules.
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FIG. 5. Viscosity spectrum of pure water. (a): Complex viscosity η̃ from MD simulations of TIP4P/2005
water, calculated using Eq. (8), together with a fit of the viscoelastic network shown in subplot (d) with complex
viscosity Eq. (18). The fitting parameters are given in Table III. (b), (e): Real and imaginary parts of the
individual constituents of the fitted viscosity from subplot (a); (c): Complex viscosity η̃ from MD simulations
of TIP4P/2005 water (replot of subplot (a)), together with the viscosity calculated from ab initio molecular
dynamics (aiMD) simulations using Eq. (10) at finite k = 4.016 nm−1. (d): Viscoelastic network used for
modeling the shear response of pure water. The viscoelastic network is a parallel combination of two shear
inertia models and two Maxwell models, the resulting complex viscosity is given by Eq. (18); (f): Black line:
Potential of mean force U (r) for the oxygen-oxygen distance in TIP4P/2005 water. Blue and yellow lines:
Harmonic potentials, fitted around the first and second minima of the pmf. The colored arrows indicate the
microscopic interpretation of the constituents of the viscoelastic model shown in subplot (d), namely escape
from the nearest neighbor pmf minimum (I), oscillations around the minima (II, III) and librations of individual
water molecules (IV).

V. A VISCOELASTIC MODEL FOR PURE WATER AND ITS MICROSCOPIC INTERPRETATION

To model the pure water spectrum, we employ a parallel combination of two Maxwell models
and two shear inertia models, illustrated in Fig. 5(d). The total complex viscosity of this network is
given by

η̃(ω) =
∑

j=II,III

η0, j
1 − iωτm, j

1 − iωτ 2
0, j/τm, j − ω2τ 2

0, j

+

+
∑

j=I,IV

η0, j

1 − iωτ j
. (18)

The result of a fit of this model to the MD data is shown in Fig. 5(a), the resulting parameters are
given in Table III. As Fig. 5(a) demonstrates, this viscoelastic network is able to reproduce the MD
spectrum very well. In Figs. 5(b), 5(e), we additionally show the individual terms of Eq. (18).

For some applications it might be more useful to consider the real-space memory kernel η(t )
corresponding to Eq. (18), which is why we give and plot η(t ) in the SM [26]. Furthermore, we
show in the SM [26] that fitting three Maxwell models and one shear inertia model yields results of
similar quality to our fit Eq. (18). Our choice of two Maxwell models and two shear inertia models
is mainly motivated by the microscopic interpretation of the four relaxation modes by which a given
strain rate creates stresses, as discussed in the remainder of this section.
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TABLE III. Parameters for the viscoelastic model Eq. (18), resulting from a fit to results for TIP4P/2005
water, cf., Figs. 5(a)–5(c), 5(e). Timescales are converted to frequencies via f = (2πτ )−1 for ease of compari-
son with Fig. 5.

Parameter Value Interpretation

η0,I 0.568 mPa s HB network
(2π τI )−1 0.19 THz topology changes
η0,II 0.19 mPa s O-O-O vibrations
(2π τm,II )−1 2.68 THz (HB bending)
(2π τ0,II )−1 1.27 THz
η0,III 0.053 mPa s O-O vibrations
(2π τm,III )−1 4.03 THz (HB stretching)
(2π τ0,III )−1 7.83 THz
η0,IV 0.052 mPa s Librations
(2π τIV)−1 28.92 THz

We first calculate the radial distribution function g(r) for oxygen atoms and use it to obtain
the potential of mean force (pmf) U (r) for the effective oxygen-oxygen interaction via Boltzmann
inversion,

U (r) = −kBT ln [g(r)], (19)

see Fig. 5(f). The pmf shows a primary minimum at an oxygen-oxygen distance of approximately
r ≈ 2.8 Å, corresponding to two hydrogen–bonded nearest neighbor water molecules.

In Sec. III we already showed that Maxwell model I, which in Fig. 5(e) shows a peak in the
elastic response at f ≈ 0.2 THz, corresponds to rearrangements of individual fluid molecules. For
water, this elastic response has been observed experimentally [7]. Mean first-passage times for the
dissociation of a water-water pair from the nearest neighbor pmf minimum for simulated SPC/E
water are about [36,43] τescape ≈ 4–5 ps, which translates to frequencies 1/τescape ≈ 0.20–0.25 THz,
in very good agreement with the position of the leftmost peak of the imaginary part in Fig. 5(a), 5(c).
A comparison of these SPC/E results with our TIP4P/2005 data is legitimate, because, as we show
in the SM [26], the viscosity spectrum of SPC/E water is very similar to the TIP4P/2005 spectrum
shown in Fig. 5. In particular the lowest-frequency peak is located at a comparable frequency.

The second feature we interpret microscopically is the shear inertia model III. In Table IV we
give frequencies for various modes in liquid water obtained from experiments and simulations.
Both Raman- and infrared (IR) spectroscopy find hydrogen bond stretch vibrations at frequencies
f ≈ 4.5–5.5 THz, while simulation works find them slightly higher, at 6 THz (aiMD [44]) and
6.9 THz (TIP4P/2005f [45]), respectively. These frequencies are comparable to the position of the
spectral features described by shear inertia model III in Figs. 5(b) and 5(e), which suggests that
the microscopic origin of the corresponding resonance in our spectrum are vibrations of hydrogen–

TABLE IV. Frequencies for various resonances of liquid water. All frequencies are given in THz.

Raman Infrared spectroscopy IR from IR from MD Viscosity from MD
spectroscopy [15] (IR) [16,17] aiMD [44] (TIP4P/2005f) [45] (TIP4P/2005, this work)

O-O vibrations 4.7 ≈ 5.1−5.5 6.0 6.9 6.7
(HB stretching)
O-O-O vibrations 2.0 1.5 2.4 1.5 1.7
(HB bending)
Librations ≈ 12–24 ≈ 12–21 ≈ 18–24 ≈ 17 28.9
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bonded water pairs around the minimum at r ≈ 2.8 Å in Fig. 5(f). More explicitly, multiplying
Eq. (16) by the denominator of the right-hand side, and performing an inverse Fourier transform, it
can be seen that η(t ) is the solution of the damped harmonic oscillator equation

η̈(t ) + 1

τm
η̇(t ) + 1

τ 2
0

η(t ) = 0 (20)

with initial conditions η(0) = η0τm/τ 2
0 , η̇(t ) = 0. With the fitted parameters for shear inertia model

III, given in Table III, it follows that the damped harmonic oscillator solution to Eq. (20) is indeed
an underdamped oscillation, which is why an extension of the standard (overdamped) Maxwell
model is required to describe this feature. The resonance frequency of the underdamped harmonic
oscillator defined by Eq. (20) evaluates to

fr = 1

2π

√
1

τ 2
0

− 1

4τ 2
m

≈ 6.7 THz, (21)

which is close to the values for hydrogen–bond stretching vibrations found in the literature, see
Table IV. Furthermore, the timescales τ0, τm, obtained from the fitted shear inertia model III are in
agreement with the intuitive picture of a hydrogen–bonded water pair oscillating around the first
minimum of the pmf shown in Fig. 5(f), as we will explain next. To proceed, we note that according
to Eq. (20), the frequency for undamped oscillations obtained from the shear inertia model III fit is
given by

fosc,III = 1

2πτ0,III
≈ 7.83 THz, (22)

which is not very different from the result including damping in Eq. (21). The frequency Eq. (22) is
comparable to the frequency for an undamped harmonic oscillation of a bonded water pair around
the first minimum of the pmf,

fho = 1

2π

√
k

m
≈ 8.82 THz, (23)

where the force constant k = 110.85 kBT/Å2 is obtained by fitting a quadratic potential

U (r) = U (r0) + k

2
(r − r0)2 (24)

to the minimum at r0 ≈ 2.8 Å, cf., the blue dashed curve in Fig. 5(f), and for m we use the
reduced water mass m = mwater/2 = 9 amu, appropriate for relative oscillations of two rigid water
molecules. Considering a damped harmonic oscillator equation for this relative oscillation of two
hydrogen-bonded water molecules furthermore allows to estimate the effective friction coefficient
γ for a vibrating water molecule pair within the hydrogen bond network. More explicitly, for a
damped harmonic oscillator equation m�̈r + γ �̇r + k�r = 0, with �r = r − r0 the deviation of
the oxygen-oxygen distance of a hydrogen-bonded water pair from the local minimum r0 ≈ 2.8 Å,
the inertial decay timescale is given by τm = m/γ . Equating this timescale with the corresponding
inertial decay timescale in Eq. (20), we estimate

γ = m/τm ≈ 2π × 9 amu × 4.03 THz ≈ 0.38
pN ns

nm
, (25)

where again we use m = mwater/2 = 9 amu. The value obtained in Eq. (25) is almost one order of
magnitude smaller than the friction coefficient of a diffusing water molecule, γ ≈ 1.62 pN ns/nm
[36], which physically makes sense because a diffusing water molecule is expected to experience
more resistance to motion as compared to a particle oscillating within a local potential minimum.
Relative oscillations of hydrogen–bonded water molecules contribute to the shear viscosity because
of the polarity of an individual water molecule, which couples translation and rotation of individual
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molecules within the hydrogen–bond network; indeed, as we show in the SM [26], upon turning off
the electrostatic interactions between the water molecules, so that a LJ fluid model is recovered, the
shear inertia III feature in the viscosity spectrum disappears. Our microscopic interpretation of shear
inertia model III is furthermore consistent with the fact that the peak at about 9 THz disappears as
the glycerol mass fraction is increased, cf., Fig. 1, because diffusing glycerol molecules hinder the
hydrogen bond network of water [46]. To demonstrate this, we in the SM [26] show the average
number of water-water hydrogen bonds per water molecule, which drops by a factor of about 2 as
the glycerol mass fraction is increased from 0 to 0.8. We thus conclude that the microscopic origin
of shear inertia model III are hydrogen bond vibrations of neighboring water molecules.

Similarly, we interpret shear inertia model II as oscillations around the second minimum of the
pmf shown in Fig. 5(f), at around r0 ≈ 4.5 Å, corresponding to oxygen-oxygen-oxygen (O-O-O)
vibrations within the hydrogen bond network of water. In contrast to shear inertia model III, now the
fitted damped harmonic oscillator Eq. (20) is overdamped, so that O-O-O hydrogen bond vibrations
are actually overdamped. As we show in the SM [26], using a standard Maxwell model for feature
II is also possible. Indeed, approximating the overdamped mode Eq. (16) by a Maxwell model with
relaxation timescale τ = τ 2

0 /τm, we find a resonance frequency fr ≈ (2πτ )−1 ≈ 1.7 THz, which
is close to the literature values for hydrogen–bond bending vibrations [15–17,45], see Table IV.
While the fitted shear inertia model II describes an overdamped oscillator, employing a shear inertia
model instead of a Maxwell model allows us to estimate the effective friction coefficient for O-O-O
vibrations, as

γ ∼ m/τm ≈ 2π × 9 amu × 2.68 THz ≈ 0.25
pN ns

nm
, (26)

where we again use the reduced mass m = mwater/2 = 9 amu as an estimate for the inertia, based on
the picture that during O-O-O bending vibrations, the middle molecule does not move significantly.
This value for the molecular friction γ is of the same order of magnitude as the one obtained for
shear inertia model III, cf., Eq. (25), and is also considerably smaller than the friction coefficient of
a diffusing water molecule, γ ≈ 1.62 pN ns/nm [36]. Note finally that also for shear inertia model
II, the frequencies obtained from the fit are in agreement with expectations from the pmf in Fig. 5(f).
Indeed, a quadratic fit to the second minimum of the pmf, shown as the yellow dashed line in the
figure, leads to an undamped oscillation frequency

fho = 1

2π

√
k

m
≈ 0.81 THz, (27)

where as above we use the reduced mass m = mwater/2 as an estimate for the inertia. The fitted shear
inertia model II yields the comparable frequency

fosc,II = 1

2πτ0,II
≈ 1.27 THz. (28)

While we here base our assignment of shear inertial model II to O-O-O vibrations on comparing
literature values for the frequency of this oscillation to timescales obtained from the O-O pmf
shown in Fig. 5(f), a more direct assignment would be possible by analyzing the normal modes
of hydrogen-bonded water triples, and isolating the O-O-O vibrations [19]. Such an analysis is
beyond the scope of the present paper and might be undertaken in a future work.

The highest frequency features, described by Maxwell model IV, we interpret as librational
excitations, i.e. rotational vibrations of individual water molecules within the force field of their
surrounding molecules. To show this, we in the SM consider orientational spectra calculated for
individual water molecules, which show a peak at frequencies comparable to the elastic response
frequency of Maxwell model IV [26]. Note that spectroscopy locates such vibrations at frequencies
considerably higher than O-O vibrations, cf., Table IV. That inertial effects can be neglected here
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is consistent with the fact that for the rotational motion of SPC/E water, inertia starts to dominate
only at much higher frequencies, namely at around 90 THz [47].

In addition to our results obtained from TIP4P/2005, a classical rigid water model, we calculate
the viscosity spectrum for pure water also from from aiMD simulations, see SM for details [26].
For the aiMD data, we use Eq. (10) at finite k = 4.016 nm−1 = 2π/L, where L = 1.56 nm is the
edge length of the cubic simulation box. A comparison of aiMD and TIP4P/2005 spectra (the
latter as before at k = 0) is shown in Fig. 5(c). Qualitative deviations between the spectra appear
at frequencies above 50 THz, where intramolecular degrees of freedom [15,44] (OH stretching,
OH bending), which are not accounted for in a rigid water model, become relevant. Up to these
frequencies, however, the spectra show the same features, in particular the peak at around 9 THz
with its high-frequency shoulder is present in both the aiMD and the force–field MD spectra; this
confirms that the spectrum obtained from force–field MD is indeed accurate up to about 50 THz.
This finding is in agreement with the recent comparison of aiMD and force–field MD results for the
linear absorption of pure water from 1 MHz to 100 THz [18].

VI. CONCLUSIONS

In this work we calculate the viscoelastic properties of both pure water and water–glycerol mix-
tures from force–field MD simulations. For water–glycerol mixtures, we find very good agreement
of the viscosity and the relaxation time with experimental data [6,30], for pure water our spectrum
agrees both with previous theoretical results [10,38], and with a spectrum calculated from aiMD
simulations at finite wave numbers. Using an extension of the Maxwell model for viscoelastic
fluids, which includes shear inertial effects, we propose a functional form for the shear viscosity
of pure water that is able to describe the force–field MD spectrum over the entire frequency range
considered. By comparing to Raman and IR spectra, as well as to other observables calculated from
our MD data, we subsequently identify the molecular processes underlying this spectrum as water
network topology changes, collective vibrations of three water molecules, hydrogen–bond stretch
vibrations of water pairs, and librational excitations of individual water molecules.

The viscoelastic circuit we propose describes the short-time non-Markovian behavior of water
in the picosecond regime, where the standard Newtonian fluid stress-strain relation becomes a poor
approximation to the actual dynamics of the fluid. Only the viscoelastic response at the longest
timescales discussed here has been measured until now [6,7], so that our results present a challenge
for future experimental investigation.

Note that recently it was argued that phonons can travel along the hydrogen bond network, and
that elastic peaks in the range of tens of THz should be interpreted as such phonons [48], which
is consistent with our interpretation of these peaks as bond vibrations. At timescales smaller than
those of water network topology changes, one could think of water as a static network, possibly with
defects. Starting from a tetrahedral lattice and calculating the corresponding viscoelastic response
[49] might yield further insights into the high-frequency viscoelastic properties of water.

To obtain an even more detailed picture of the breakdown of the Newtonian fluid picture at small
scales, a possible next step would be to also systematically study short-distance non-local effects by
considering viscosity kernels at finite wave vector k [10,50], or to combine analytical methods with
simulations [51,52]. One particularly interesting avenue will be relating the viscoelastic response of
the medium to a generalized Langevin model for a single fluid molecule [27,53].
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