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Rotating fluids frequently show nonlinear wave interactions and turbulence. This is
true in particular for nonuniformly rotating systems. One example of such a nonuniform
rotating object is the Earth. Due to its fast rotation it is not exactly spherical. As a result
of the interaction with the Sun and Moon, the nonspherical Earth cannot rotate uniformly
but shows precession and libration. This has consequences for the fluid enclosed in the
outer Earth core. Due to the forcing it might become turbulent, one of the key factors
in the present theories explaining the generation of the geomagnetic field. In the present
paper we show experimental results from a system that is simpler than classical precession
experiments but still shows very similar wave interactions and a collapse to turbulence.
This system consists of a partly filled rotating annulus that rotates about its symmetry axis
slightly tilted with respect to the gravity vector and allows us to explore Ekman numbers
ranging from 7.9 × 10−6 to 3.2 × 10−5. In analogy to the more classical precession exper-
iments, we also find a resonant collapse when the forcing frequency corresponds with a
resonant frequency of the rotating tank. The forced mode and two free Kelvin modes give
rise to triadic resonance. Besides the parametric triadic resonance we further observed a
shear-type instability of the nonlinearly excited geostrophic flow. This instability gives rise
to a barotropic mode that interacts with the forced mode and generates secondary modes.
We also observed a dependency of the mode frequencies on the Ekman number, which
can, at least partly, be explained by a Doppler shift due to the mean flow. Finally, we try to
connect our data to a low-order dynamical system that describes the main features of single
triad interaction in precession experiments. Although this model is originally not designed
for the multiple triads we observe, it is still useful for a qualitative understanding of mode
interactions, e.g., for the mechanism of geostrophic mode excitation.

DOI: 10.1103/PhysRevFluids.5.094801

I. INTRODUCTION

The instabilities of the flow in a rotating container have been studied for a long time. Lord Kelvin
(William Thomson) [1] linearized and solved the Euler equations, including rotation, by assuming
time harmonic perturbations. This solution is composed by a sum of so-called normal Kelvin modes
(i.e., inertial modes), where the Coriolis force plays the role of the restoring force. The frequency of
each mode is less than two times the solid-body rotation frequency. These modes are damped when
viscosity is added, unless external forcing provides the energy for their excitation.

Different experimental configurations have been used to excite Kelvin modes in a rotating
container. McEwan [2] performed experiments with a slightly inclined top end in a fully filled
axially rotating cylinder. Thompson [3] excited this periodic motion in a partly filled and slightly
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tilted rotating cylinder. Malkus [4], Malkus and Waleffe [5], and Le Bars et al. [6] used a rotating
deformable elastic cylinder, which produces inertial modes with azimuthal wave number 2 or 3,
depending on the deformation. Precession and libration are also common methods for exciting
Kelvin modes. Experiments in a precessing cylinder were performed, e.g., by Manasseh [7],
Meunier et al. [8], and Lagrange et al. [9,10], and in a longitudinal librating cylinder by Busse
[11], Borcia et al. [12], and Klein et al. [13]. The container can also have different shapes, e.g.,
spherical, rather than cylindrical (Aldridge and Toomre [14], Hoff et al. [15,16]).

When the frequency of the excited Kelvin mode differs from the resonant frequency, the fluid
response can be predicted by linear inviscid theory [17]. In contrast, when the forced Kelvin mode
has the same frequency as one of the resonance frequencies of the rotating fluid, the Kelvin mode
becomes unstable above a threshold amplitude. The instability leads to strong nonlinear effects
and results in a sudden breakdown of the flow into small-scale disorder, which was referred to as
“resonant collapse” by McEwan [2]. Later, in 1971 McEwan [18] suggested that the phenomenon
can be explained with a triad resonance model, where two free modes form a triad in second-order
resonant interaction with the forced mode. Exchanging energy with the forced mode, these free
modes can lead to momentum mixing in localized regions, thus resulting in a breakdown of the
inertial wave and eventually in the resonant collapse. The breakdown regimes at various Ekman
numbers, precession angles, and frequencies have been studied and characterized by Manasseh [7].
At certain conditions, McEwan [18] and Manasseh [7] observed a relaminarization of the chaotic
flow field after the breakdown and the rotating flow went into a breakdown-relaminarization cycle.

In a series of studies by Lopez and Marques [19–21], Meunier et al. [8–10] investigated triadic
resonance in a precessing cylinder. Marques and Lopez [19] numerically studied the bifurcation
of different states of triadic resonance under detailed parametric control and revealed the complex
dynamics associated with weak precessional forcing. They [20] numerically investigated the influ-
ence of the nutation angle α to the flow in a precessionally forced rotating cylinder, and their work
reveals strong nonlinear and detuning effects depending on α. With increasing α, the system goes
through different regimes, from a constant state to a tuned triadic resonance state, and subsequently
follows a sequence of well-characterized bifurcations associated with triadic resonance. In their
simulation, they observed that a mean flow (mode m = 0) arises with increasing α. Since the energy
of the mean flow is provided by nonlinearity, a more inclined rotating cylinder with a stronger
nonlinearity generates a stronger mean flow. We will see that the same is true for our setup. Meunier
et al. [8] and Lagrange et al. [10] used linear stability theory to predict the spatial structure and
the threshold for instability due to triadic resonance. They further developed a viscous and weakly
nonlinear model to predict the resonant state and derive low-order amplitude equations by coupling
the forced Kelvin mode with the two free modes and the geostrophic mode.

For the rotating cylinder with a nonzero background flow, a barotropic shear instability, similar
to a parallel shear flow instability in a nonrotating system, might be induced, giving rise to an
oscillating barotropic shear mode [22]. Thompson [3] has given the analytical prediction of the
shear instability for a partly filled and slightly tilted rotating cylinder. Thompson further verified his
theory experimentally and achieved good agreement. However, the velocity field was not analyzed
qualitatively.

In the present research we experimentally study mode interactions in an inclined rotating annulus
with a free surface. This is a setup of particular interest, since it is simpler than the precessing
cylinder but in fact mimics aspects of rotating fluids forced by precession. This type of forcing is
relevant for the dynamics of planetary bodies but also in the context of vortex dynamics: a rotating
midlatitude low-pressure system is forced by precession too, since it rotates with the Earth [10].
The excitation and interaction of inertial waves in our study is similar to the partly filled rotating
cylinder experiment by Thompson [3].

In our experiment we investigate the dominant features of the free surface configuration and
compare them with the bounded precession counterpart. More generally, our study is also of interest
in the context of the energy cascade in rotating fluids. The breakdown of the forced large scale
mode transfers energy upscale to the balanced geostrophic mode but also downscale to other free
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Kelvin modes. Such interactions are hence relevant for the still poorly understood energy transfer
in geophysical flows.

Our research is also related to an engineering background. Instabilities could be induced due
to the resonant effect in a spin-stabilized projectile with liquid payloads, which therefore could
further disturb the flight stability. To avoid the resonance, a solution is to include a central rod in
the cylindrical container and therefore to change the eigenfrequency. In this situation the model,
as discussed in Selmi and Herbert [23], can be considered as a spinning and nutating cylindrical
annulus, sharing similar features with our experimental configuration.

Finally, the study is also of interest in the context of unwanted Kelvin mode excitation [24],
e.g., Rodda et al. [25] performed experiments with a differentially heated rotating annulus to study
baroclinic waves. A global Kelvin mode was observed with a frequency equal to the annulus
rotation, which was very likely driven by a slight inclination of the rotation axis.

The paper is structured in the following way: Section II describes the theoretical background
and our experimental configuration. Section III introduces the wave breakdown in the tilted rotating
cylindrical annulus with free surface. In Sec. IV we measure the geostrophic mode of the flow and
compare the mean velocity profile in terms of the tilt angle. The influence of the tilt angle is then
discussed. Section V discusses the secondary Kelvin modes and their interactions in the rotating
flow. Different instabilities are responsible for the generation of the secondary modes. In Sec. VI we
compare the experimental data with the results from a dynamical system of a classical precession
experiment. Finally, conclusions are given in Sec. VII.

II. EXPERIMENTAL BACKGROUND

In more classical precession experiments with circular cylinders with radius R, the cylinder is
completely filled with fluid and rotates around its symmetry axis ẑ with angular velocity �. In
addition, the cylinder rotates with �p around an axis that is inclined about an angle α with respect
to the cylinder’s rotation axis. In this setup the direction of gravity does not play a role, and no
other modes besides Kelvin modes can be excited. As is discussed in Zhang and Liao [26], for
small Poincaré number 0 < Po = �p/� � 1 and Ekman number Ek = ν/(�R2) � 1, and further,
a small amplitude of the fluid velocity in the cylinder, | u |= ε � 1, the nondimensional governing
equations in the rotating frame of the cylinder (the mantle frame) read

∂u
∂t

+ 2ẑ × u + ∇p = Ek∇2u − 2ẑrPo sin αei(t+θ ), (1)

∇ · u = 0. (2)

The system is normalized by the cylinder radius R and the rotating rate � in a cylindrical coordinate
(r̂, θ̂ , ẑ). The equations need to be completed by nonslip boundary conditions. The last term in
the first equation is the so-called Poincaré forcing that drives a Kelvin mode with azimuthal wave
number m = 1.

In contrast to the precession system, the annulus in our experiment is not completely filled with
fluid but has an upper free surface. It rotates around the symmetry axis ẑ which is inclined by a small
angle α with respect to the direction of gravity. Obviously, in such a setup the Poincaré forcing term
is missing; however, a Kelvin mode with m = 1 is now driven by the upper boundary, see Fig. 1.
The governing equation is

∂u
∂t

+ 2ẑ × u + ∇p = Ek∇2u, (3)

∇ · u = 0, (4)

with the upper boundary condition for small angle α

w = dz/dt = α r cos (t + θ ). (5)
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FIG. 1. Sketch of a partly filled cylinder that rotates with � about its axis of symmetry at angle α from
the vertical. This tilt leads to a periodic motion at the surface that can be assumed to be flat for small Froude
number Fr = �2R/g.

Since in our case the Froude number Fr = �2R/g, comparing the centrifugal force to gravity is
small and the deformation of the surface has been neglected. As can be seen, the forcing (5) is
similar to the forcing term in Eq. (1). Therefore a strong analogy between the classical precessing
cylinder (or wide gap annulus) experiment and the rotating free surface experiment can be expected
when the rotation axis is tilted with respect to gravity.

In detail, the experiment was conducted with the following configuration. The cavity used for
the experiment has an annulus geometry with outer cylinder radius Ro = 20 cm and inner cylinder
radius Ri = 7.5 cm; thus the ratio of the cylinder radii Ri/Ro is 0.375. The container is partially
filled with deionized water, and the water depth H is variable upon demand. A schematic sketch of
the experiment is shown in Fig. 2(a). Several aluminum frames are fixed to the outer cylinder and
provide the ability of installing corotating devices. A GoPro camera and a continuous diode-pumped
solid-state (DPSS) laser are installed either on the top or on the side frame for measurement and
illumination.

The flow is characterized by the Ekman number Ek = ν/(�R2
o ) and the Froude number Fr =

�2Ro/g, where ν is the kinematic viscosity and � the rotation rate of the tank. The length scale
and the timescale are nondimensionalized, respectively, with Ro and �−1. The inclination angle α

cannot be changed during rotation, and thus the experiment starts the spin-up with the inclination.
Particle image velocimetry (PIV) was applied for quantitatively measuring the flow field. The

fluid was seeded with hollow glass spheres (HGSs) from Dantec Dynamics, and the measurement
was recorded with a sampling frequency of 30 Hz by the corotating GoPro camera, which is mounted
at the position marked in Fig. 2(a) and faced perpendicular to the laser sheet. Due to the corotating
measuring system, the solid-body rotation of the annulus is not part of the measured flow field,
which gives more accurate PIV data. The GoPro camera was modified with an external optical lens
for better optical quality and wide angle distortion. A free, open source MATLAB toolbox MATPIV is
utilized for the PIV data postprocessing.

III. WAVE BREAKDOWN

In a precessing cylinder, when the rotating rate is close to a resonant value of the respective mode,
even weak precessional forcing can excite a strongly amplified Kelvin mode [27]. Overcoming
the viscous damping, this mode grows over saturation and breaks down into small-scale disorder.
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FIG. 2. (a) The schematic sketch and (b) photography of the laboratory apparatus.

Under certain circumstances the turbulent flow field can be relaminarized and enter a cycle of wave
breaking and laminarization. The photographs in Fig. 3 show the phenomenon that we observed in
the tilted rotating annulus; despite the fact that in our case we have a rotating annulus instead of a
cylinder, the picture shows good agreement with the photography of the elliptically excited inertial
wave taken by Malkus [28] and the photos of the classical precession experiment given in Manasseh
[7].

As has been mentioned in the previous section, due to the existence of the free surface and
the inclination of the annulus, the surface boundary condition is influenced by gravity; therefore a
Kelvin mode is forced with azimuthal wave number m = 1 and frequency ω = 1 when scaled by
�. At resonant frequency, a collapse of this forced mode happens following the sequence as shown
in Fig. 3. In the photographs the left edge is the wall of the inner cylinder and the right is the outer
cylinder. In Fig. 3(a) the fluid is in a stable state and the forced mode with the radial and axial
wave number n = k = 1 can easily be observed under illumination. The breakdown starts close to
the inner cylinder, where a local disorder appears, see Fig. 3(b). This localized disorder moves with
the crest of the forced mode and gradually expands to the whole annular gap within 20 revolutions.
A further relaminarization can be observed, where the small-scale instabilities merge and the flow
field becomes generally smoother compared with its most chaotic phase, as shown in Fig. 3(d).

The resonant frequency, i.e., the inertial mode eigenfrequency of the container, depends only on
the container’s geometry. An advantage of our free surface system is that we can easily control the
aspect ratio through changing the water depth. Therefore the system can be well tuned to observe
differences in the response of the fluid in the resonant or nonresonant regime.

The eigenfrequencies of inertial modes in a rotating annulus are derived in previous papers by
Borcia and Harlander [29] and Lin et al. [30], where they solved (3) and (4) for small Ek with a solid
wall boundary condition instead of the periodic upper boundary condition (5). The general solution
is a sum of Kelvin modes of the spatial form

p(r, θ, z) = pmnk (r) cos(kπz/h)eimθ ,
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FIG. 3. Photographs of a vertical cross section of the annulus showing the process of the resonant collapse
for Ek = 1.19 × 10−5, Fr = 0.09, and water depth h = 1.2. The first photo (a) is taken at about 100 revolutions
after starting rotation and the following photos are captured within 20 revolutions after (a). The left edge of the
photograph represents the inner cylinder and the right edge the outer one.

u(r, θ, z) =

⎛
⎜⎝

ur
mnk (r) cos(kπz/h)

uθ
mnk (r) cos(kπz/h)

uz
mnk (r) sin(kπz/h)

⎞
⎟⎠eimθ , (6)

for the integral wave numbers m = 1, 2, 3... and k = 1, 2, 3.... The eigenfrequencies read

ω2 = 4π2

(ξh/k)2 + π2
, (7)

and from the boundary conditions we find ξ from

riξ
2(Pm+1 + Pm−1) − 2ri

ξ 2

ω
(Pm+1 + Pm−1) + 2

(
ξh

kπ

)2

m2Pm = 0, (8)

where

Pm = Jm(ξ )Ym(riξ ) − Jm(riξ )Ym(ξ ). (9)

Here ri = Ri/Ro is the nondimensional radius of the inner cylinder and ro = Ro/Ro = 1 for the
outer cylinder. Jm and Ym are the first and second kind of Bessel functions for integer order
m, and h is the water depth normalized as H/Ro. The mode frequency ω2

mnk = ω2(ξmnk ), where
ξmnk is the nth positive solution of (8) for certain m and k. The integer n gives the number of
nodes in the radial direction. Note that the structure of the solution in the radial direction, i.e.,
pmnk (r), ur

mnk (r), uθ
mnk (r), uz

mnk (r), is also a sum of Bessel functions not given here.
Solving (7)–(9) for the forced Kelvin mode with wave number m = n = 1 and forcing frequency

ω f = 1 gives h/k = 1.2. The frequencies of several Kelvin modes with m = 1 and h = 1.2 are
listed in Table I. This result shows that the forcing frequency ω f = 1 is very close to the frequency
of the Kelvin mode ω111 = 0.995 when the water depth is h = 1.2, i.e., the forced Kelvin mode
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TABLE I. The eigenfrequency of the inertial modes with azimuthal wave number m = 1 for h = 1.2.

n k ωmnk ξmnk n k ωmnk ξmnk

1 1 0.995 4.579 2 2 0.942 9.824
2 1 0.529 9.564 1 3 1.696 4.912
1 2 1.474 4.820 2 3 1.241 9.941

is very close to resonance for this water depth. The space-time diagram Fig. 4 measured by using
Kalliroscope particles illuminated by a laser plane illustrates the temporal development of the forced
Kelvin mode for different h ranging from 1.05 to 1.25. The wavy edge between the central bright
zone and the dark zone on the left side indicates the amplitude of the forced Kelvin mode, which
is most easily seen for h = 1.05. The period of the wavy shape is equal to one revolution of the
cylinder. The amplitude of this wavy edge grows with increasing water depth. At h = 1.2, where
the forced mode becomes resonant and matches with the eigenmode, the forced mode breaks down
and leads to small-scale instabilities—a clear wavy edge can no longer be observed. With deeper
water (h = 1.25), the forced mode is away from resonance and the amplitude decreases. The wavy
edge can then be identified again.

FIG. 4. Space-time diagrams for experiments with different h and for Ek = 1.19 × 10−5, Fr = 0.09 indi-
cating the resonant collapse for h = 1.2. x axis: Radius, left represents inner cylinder and right outer cylinder;
y axis: frame number (time in 0.1 s). The bright pixels are the laser reflected by the Kalliroscope seeded in the
water.

094801-7



WENCHAO XU AND UWE HARLANDER

40 60 80 100 120 140 160 180
t

0.4

0.6

0.8

1

1.2

1.4
Li

gh
t i

nt
en

si
ty

FIG. 5. Light intensity measured in the middle of the gap at z = 0.75h for Ek = 1.19 × 10−5, Fr = 0.09,
and h = 1.2. The distance between two sharp peaks equals one period of the rotation.

The resonant collapse can also be observed by measuring the light intensity of the fluid. Figure 5
shows the light intensity sampled at the center of the annulus gap as a function of time t . The time t
is scaled by �−1, and t = 0 denotes the start of the rotation. The absolute value of the light intensity
has actually no clear physical meaning; however, violently fluctuating magnitude in a single video
indicates strongly unstable flow. For t < 110 the light intensity fluctuates at a regular frequency with
a relative small amplitude; the flow is dominated by the forced Kelvin mode. The breakdown of the
forced mode occurs at t ≈ 110, after which the magnitude of the fluctuation grows significantly and
the flow is obviously no longer dominated by a single mode. Nevertheless, the increased fluctuation
of the light intensity indicates only a more unstable flow but not necessarily that the fluid velocity
is increased. Fluid velocity measurement is presented in the following sections.

During the constant rotation of the fluid in an unstable state, a typical cycle of inertial wave break-
down and relaminarization has been observed. An unstable flow can become stable within a certain
period after the breakdown, leading to a repetition of breakdown and relaminarization, as reported
by McEwan [2], Thompson [3], and Manasseh [7]. Due to the limitation of the rotation rate of the
current experimental facility, we are not able to prove whether for smaller Ek a sustained chaotic
state exists, but in view of the similarity of our experiment with precessing cylinders it is likely.

IV. THE MEAN FLOW

To investigate whether the mean flow depends on the z axis, the mean azimuthal velocity uθ

departure from the solid-body rotation is measured at different depth for α = 1◦ with a cover
on the top of the annulus to avoid the wind during rotation, see Fig. 6. Each velocity profile is
time-averaged over 200 revolutions and measured after a spin-up time much larger than the Ekman
timescale. The gray color band is the standard deviation based on repeating the measurement at 0.8h
by completely restarting the experiment three times.

Apparently, the flow shows a negative velocity with a U-shape profile, which indicates that the
fluid rotates slower than the tank. The maximum velocity magnitude is close to the inner cylinder.
Note that due to the limitation of the PIV settings, the velocity in the boundary layer at the inner
cylinder having a thickness of a few millimeters is unavailable. However, the turning point close
to the inner cylinder (see black curve in Fig. 6) might be caused by the Ekman pumping in the
boundary layer. In general, the velocity profiles at different depths show good agreement, with only
small deviation with respect to z.
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FIG. 6. Illustration of time-averaged nondimensional azimuthal velocity measured over 200 revolutions at
different heights. The legend denotes the height of the laser plane from the bottom. Note that for 0.8h we
performed three measurements. The gray shading gives the standard deviation. The tank is tilted with angle
α ≈ 1◦. Ek = 1.19 × 10−5, Fr = 0.09, and h = 1.2.

A common issue for the fluid in a rotating tank with a free surface is the wind effect. For an
unclosed container, the air above the free surface does not corotate equally with the container. This
velocity difference between air and water might slow down the surface water rotation and hence
might influence the flow.

To verify the wind effect, experiments have been performed either with a lid at the top of the
container or without any cover. The top lid forces the air in the gap to rotate uniformly with
the container, thus eliminating the air drag on the water surface. Measurements are performed at
the height 0.88h that are close to the surface and the time-averaged azimuthal velocity profiles,
shown in Fig. 7. The red dashed curve represents the profile with the cover on the top, while the
black solid curve is without cover. Both experiments are measured with the same Ek at the same

0.4 0.5 0.6 0.7 0.8 0.9 1r

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

u

=0.1°
=0.1° with cover
=1°
=1° with cover

FIG. 7. Illustration of time-averaged nondimensional azimuthal velocity in radial direction measured at
0.88h; each data is averaged over 600 revolutions for Ek = 1.19 × 10−5, Fr = 0.09, and h = 1.2. Black solid
line: Tank without cover, α ≈ 0.1◦; red dashed line: tank with top cover, α ≈ 0.1◦; blue dot line: tank without
cover, α ≈ 1◦; green cross line: tank with top cover, α ≈ 1◦. (All other figures in the article are with top cover.)
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position, and each case was repeated three times. Obviously, the fluid with the top cover has weaker
retrograde flow, which proves that for the case with a small inclination angle α the air torque is an
important reason for the retrograde flow.

Nevertheless, the velocity close to the inner cylinder boundary still has an obvious deviation from
zero, which implies another factor that influences the mean velocity profile. In fact, this profile is
due to the nonlinear self-interaction of the forced mode mainly in the boundary layers.

With respect to a classical precession experiment, Kobine [31] states that the azimuthal flow
results from the precessionally forced mode and an additional contribution related to nonlinear and
viscous effects in the boundary layer. We think that for nonzero α the mean flow is generated by a
similar effect, except that the normal mode is forced by a gravitational torque on the nonaxisym-
metric, viscously rotating mass instead of precessional forcing. It can be anticipated from (5) that
the forced mode is stronger by increasing α. Hence the nonlinear effect is more pronounced for an
increased α, which contributes to a stronger geostrophic mode.

To show this we performed further experiments by increasing α from 0.1◦ to 1◦, as shown in
Fig. 7. The blue and green curves indicate the mean flow profile with increased α. The significant
difference between the experimental results for different tilt angles confirms our anticipation.

Nevertheless, referring to the mean flow profiles with α ≈ 1◦, the top cover also plays an
important role, where the experiment without cover and hence with wind stress (blue curve in Fig. 7)
surprisingly has a significantly weaker retrograde flow than that with cover (green curve in Fig. 7).
A possible explanation is that the wind-induced Ekman layer damps the motions. In the previous
section, the eigenfrequency of the cylindrical annulus was calculated from inviscid equations given
in Lin et al. [30], where the Ekman pumping is not considered. This pumping, however, leads to an
exponentially decreasing velocity profile in the boundary layer, thus influencing the effective aspect
ratio for resonance [10,20]. The study of Borcia et al. [12] about the inertial mode in a rotating
annulus with librating sidewall boundaries shows that the Stokes layer can influence the effective
volume inside the container and therefore change the resonance frequency. Hence in our experiment
the Ekman layer can also influence the effective volume and leads to a detuning of the resonant
frequency and consequently, to a weaker forcing. Note that for a stronger mean flow, a barotropic
shear instability can be induced [3]. This type of instability is discussed in the next section and in
Sec. VII.

V. KELVIN AND SHEAR MODES

The rotating flow of the tilted annulus can be regarded as a composition of a finite number
of normal modes. The frequencies of the modes can easily be identified from the kinetic energy
spectrum, as can be seen in Fig. 8. The figure shows the spectrum for α ≈ 0.1◦ and 1◦ at the same
rotation rate, where the kinetic energy is defined as E = 1

2 (u2
θ + u2

r ). Being mainly interested in the
inertial modes, the range of the x axis is limited to 0 � ω � 2.

For α ≈ 0.1◦ (the blue curve in Fig. 8), the flow is dominated by the forced mode with frequency
ω = 1 together with a few secondary modes. Among the secondary modes, two modes with
frequency 0.346 and 0.651 possess obviously more kinetic energy than the others. Note that the
linear summation of the frequencies of these two modes equals the frequency of the forced mode,
which suggests a possible triadic resonance. The peak at ω = 0 indicates the existence of a nonzero
mean flow.

Increasing α to 1◦, the flow obviously becomes more energetic due to the forcing. The pattern
of the modes is significantly changed with the appearance of more secondary modes. A prominent
mode with frequency ω = 0.195 emerges which seems to be as strong as the forced mode. The
frequencies of the modes still fulfill the triadic frequency condition.

The spatial structure of the Kelvin modes can be reconstructed by using harmonic analysis. To
obtain a general view of the excited modes, the vorticity fields of the prominent modes are plotted in
Fig. 9 for Ek = 1.19 × 10−5 (20 rpm). Note that the figure is mainly for a qualitative understanding
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FIG. 8. Nondimensional kinetic energy spectrum E with different tilt angle α. Ek = 1.19 × 10−5, Fr =
0.09, and h = 1.2. Blue curve: α = 0.1◦, z = 0.75h; red curve: α = 1◦, z = 0.8h.

of the mode structure; therefore a color bar is not provided and hence the same color for different
modes does not imply the same vorticity magnitude.

The forced mode, which is excited due to the inclination of the cylinder [see (5)], rotates with
the same angular velocity as the cylinder; therefore its normalized frequency ω1 always equals 1,
where the subscript of ω denotes the azimuthal wave number of the respective mode. In fact, this
resonant forced mode in the inclined rotating annulus has wave number 1 in azimuthal, axial, and
radial direction. Its axial wave number can be acquired by seeding the fluid with Kalliroscope and
inspecting the wave structure before the wave breakdown [see, e.g., Fig. 3(a)], and its azimuthal and
radial wave number are acquired by using the harmonic analysis method [see Figs. 9(c) and 9(h)].

Figures 9(a) and 9(b) show the structure of the free Kelvin modes for α ≈ 0.1◦, which have
azimuthal wave numbers m = 10 and −9. The negative sign in front of the wave number indicates
the wave propagates prograde and are hence faster than the annulus rotation, which is the opposite
direction as the mean flow. Triadic resonance requires three modes in a triad to satisfy the parametric
condition: ωi ± ω∓ j = ω1, mi ± m∓ j = m1, and ki ± k∓ j = k1, where the index 1 stands for the
forced mode. The azimuthal wave number and the frequency of the two modes mentioned above
satisfy these rules, m10 + m−9 = m1 and ω10 + ω−9 = ω1. Due to the strong mean flow in azimuthal
direction, we cannot obtain accurate PIV data in a vertical section; therefore the axial wave number
is generally not known from the horizontal PIV measurement.

A. Mode interaction

To further verify the existence of triadic interactions, a bispectral analysis is applied by using the
HOSA (high-order spectral analysis) MATLAB toolbox [15,32]. The bispectrum is defined as

B(ωx, ωy) = X (ωx )X (ωy)X ∗(ωx + ωy)√|X (ωx )|2|X (ωy)|2|X ∗(ωx + ωy)|2 , (10)

where X (ω) is the Fourier transform and ∗ denotes the complex conjugate. The sum of the
bispectrum over a number of independent realizations, in our case, time series from different grid
points, defines the bicoherence, which gives a statistical measure of quadratic phase coupling.

094801-11



WENCHAO XU AND UWE HARLANDER

(a) ω = 0.346, m = 10 (b)ω = 0.654, m = −9 (c) ω = 1.003, m = 1

(d) ω = 0.162, m = 3 (e) ω = 0.327, m = 6 (f) ω = 0.676, m = −5

(g) ω = 0.838, m = −2 (h) ω = 1.003, m = 1 (i) ω = 1.165, m = 4

FIG. 9. Reconstruction of wave modes based on the velocity field for h = 1.2, Ek = 1.19 × 10−5, Fr =
0.09. The color represents the vorticity, where yellow (blue) indicates positive (negative) value of the vorticity.
(a)–(c) α ≈ 0.1◦, z = 0.75h; (d)–(i) α ≈ 1◦, z = 0.8h.

Figure 10(a) shows the bicoherence for Ek = 1.19 × 10−5 and α ≈ 0.1◦ of the azimuthal velocity
component. Note that a bicoherence of 1 represents perfect triadic coupling of two modes and 0
means no coupling. The red spots in the diagram highlight the frequencies with strong bicoherence.
The strong peaks on the line with ωx = ωy correspond to the self-correlation of the forced mode or
the free modes. The diagram is symmetric with respect to the line ωx = ωy. The possible triads that
resonate with the forced mode can be identified by connecting a line with slope −1 between point
(0, 1) and (1, 0); the points with high correlation on this line reveal the components of the triads
as ωx, ωy and ωx + ωy [33]. Thus the mode pair of frequency (0.346, 0.654) forms a triplet with
the forced mode. The solutions of the dispersion relation (7) given in Table II suggest that the two
modes are indeed free Kelvin modes with the wave numbers (10, 1, 1) and (−9, 2, 2). The modes
are generated due to a resonant breakdown of the forced Kelvin mode. However, the frequencies
show no perfect match, indicating that the triad is not precisely tuned. Nevertheless, for α ≈ 0.1◦
we found a scenario typical for triadic resonance.
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FIG. 10. Bicoherence spectrum for (a) α ≈ 0.1◦ and (b) α ≈ 1◦ with Ek = 1.19 × 10−5, Fr = 0.09, and
h = 1.2.

For α ≈ 1◦, the reconstructed most prominent modes are shown in Figs. 9(d)–9(i). Similar to α ≈
0.1◦, the azimuthal wave numbers and the frequencies of the modes also satisfy the triadic resonance
condition that m3 + m−2 = m6 + m−5 = m4 − m3 = m1 and ω3 + ω−2 = ω6 + ω−5 = ω4 − ω3 =
ω1. Referring to the bicoherence spectrum [Fig. 10(b)], the mode pairs of frequency (0.838, 0.162)
and (0.676, 0.327) form triplets with the forced mode. Furthermore, similar triplets can be found for
the modes with frequency (0.838, 0.327) and (1, 0.162) with a mode of frequency ω = 1.165, as well
as the triplet (0.162, 0.676, 0.838). These multiple triplets indicate stronger nonlinear interactions
between the modes for the case of stronger forcing.

However, the presence of a low-frequency m3 mode with ω3 = 0.162 is surprising, since it seems
that this mode is not a free Kelvin mode. A m3 Kelvin mode with small radial wave number has
a much larger frequency, e.g., Kelvin eigenmodes with wave numbers (3,1,1) and (3,2,1) have
frequencies of 0.799 and 0.485, respectively. This suggests that parametric triadic resonance is not
the only instability in the flow for the case with strong forcing (α ≈ 1◦).

A plausible explanation is that the low-frequency mode m3 is a low-frequency shear mode
associated with barotropic shear instability. This instability is related to the presence of a nonzero
geostrophic background flow in the rotating cylinder [3]. A similar instability has been reported by
Herault et al. [34], where a low-frequency mode resulted from a destabilized azimuthal mean flow
in a precessing cylinder. Herault et al. further related this instability to the theoretical prediction by
Kerswell [28] that the dominant geostrophic shear mode interacts with the forced mode and gives
rise to two subdominant Kelvin modes. The frequencies of the two subdominant Kelvin modes
equal the linear combination of the forced mode and the geostrophic shear mode, which explains
the triplets (m1, m3, m−2) and (m1, m3, m4) in our experiments.

TABLE II. The eigenfrequency of the inertial modes with azimuthal wave number m = 10 and −9 for
h = 1.2.

m n k ωmnk ξmnk m n k ωmnk ξmnk

10 1 1 0.363 14.212 -9 1 2 0.707 13.867
10 2 1 0.285 18.200 -9 2 2 0.566 17.783
10 3 1 0.237 21.928 -9 3 2 0.473 21.553
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FIG. 11. Nondimensional kinetic energy spectrum at different angular velocities measured at 0.8h with
α ≈ 1◦. The curves in the diagram from bottom to top represent, respectively, Ek = 2.39 × 10−5 − 1.59 ×
10−5 − 1.19 × 10−5 − 9.55 × 10−6 − 7.96 × 10−6. To separate the curves in y direction, a factor of 105 is
multiplied for visualization. The black dashed line indicates the frequency variation of the respective mode
with Ek.

The m3 mode might have a strong self-interaction, as can be seen from the red spot at (0.162,
0.162) in Fig. 10(b), which gives rise to the m6 mode. This m6 mode also interacts with the forced
mode and results in the generation of the mode m−5 with its frequency ω−5 = ω1 − ω6.

B. Doppler shift

We noticed the dependency of the mode frequencies on the Ekman numbers for α ≈ 1◦. Figure 11
shows the variation of the mode frequency with Ek ranging from 2.39 × 10−5 to 7.96 × 10−6.
For the reader’s convenience, we multiplied each two neighboring energy spectra by a factor of
105. Obviously, we find similar peaks according to the energy spectra for the given Ek, and the
harmonic analysis indicates that the wave numbers corresponding with the peaks are invariant of
Ek for 2.39 × 10−5 � Ek � 7.96 × 10−6. On the other hand, the frequencies of the peaks vary
with Ek. The frequency of the m3 mode constantly increases with the decrease of Ek, meanwhile
the frequencies of the other modes change respectively so that the linear relation of the mode
frequencies is robustly sustained during the considered range of Ek.

The frequencies of the free modes are plotted in Fig. 12(a) for a broader range of Ek. The
frequency of mode m3 increases from a very low frequency (0.066) to 0.189 when Ek decreases
from 3.2 × 10−5 to 7.9 × 10−6, whereas mode m2, which fulfils the relation ω3 + ω−2 = ω1, shows
a contrary tendency.

Since the camera system is fixed with the rotating frame, the influence of the Doppler effect
on the measured frequency should be considered due to the presence of the mean flow in the
azimuthal direction. An Ek-dependent frequency change was observed by Hoff et al. [15] when
investigating inertial modes of spherical Couette flow. A frequency shift of the triad was discovered
after transition from a weakly turbulent regime to a regular-inertial-mode regime. The authors
attributed the frequency shift to the abrupt change of the mean flow through regime transition.

094801-14



INERTIAL MODE INTERACTIONS IN A ROTATING …

0.5 1 1.5 2 2.5 3 3.5 4
Ek 10-5

0

0.2

0.4

0.6

0.8

1

1.2

1

-2

3

4

-5

6

0.5 1 1.5 2 2.5 3 3.5 4
Ek 10-5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-2

3

4

-5

6

(a) (b)

FIG. 12. Frequency distribution of the respective mode as a function of Ek at 0.75h for h = 1.2: (a) mea-
sured frequency and (b) frequency corrected by the Doppler effect.

The shift of the frequency caused by the Doppler effect is estimated by

�ω = ��θm = Uθ

Ro
m, (11)

where �ω is the frequency change for different Ekman numbers, m is the nondimensional azimuthal
wave number, and Uθ is the mean azimuthal velocity in the rotating frame [15].

By considering the Doppler effect, the corrected intrinsic frequency as a function of Ek is
plotted in Fig. 12(b). Generally speaking, the Doppler effect provides a reasonable correction to
the frequency variation that reduces the change of the mode frequencies with regard to the Ekman
numbers.

C. Amplitudes

The amplitudes of the modes, defined as Am = (u2
θ,m + u2

r,m)1/2, are plotted as a function of Ek in
Fig. 13 for 7.79 × 10−6 < Ek < 3.18 × 10−5. It must be noticed that the measured amplitude is not
necessarily equal to the real amplitude of the mode due to the complex wave structure in the axial
direction. However, assuming the axial structure of the respective mode keeps constant for different
values of Ek, the relative size of the mode amplitude can be measured using data at a single depth.

For small Ek, the viscosity can be ignored in the interior of the rotating flow; however, this term
has to be considered close to the boundary due to the presence of the Ekman layer. The nonlinear and
viscous theory developed by Meunier et al. [8] shows that the mode amplitude is saturated by the
viscous or the nonlinear effects or both. For high Ekman numbers, the mode amplitude is saturated
by the viscous boundary layers and scales as Ek−1/2. With the decrease of the Ekman number, the
saturation due to the nonlinear effects becomes stronger and eventually dominant. Specifically, the
nonlinear effects lead to the generation of the geostrophic mode, which in fact plays an important
role in saturating the amplitude of the Kelvin modes. Actually, this mean-flow-related saturating
effect is more significant than the saturation due to the nonlinear self-interaction of Kelvin modes.

In our experiment, the amplitude of the mean flow A0 (black crosses in Fig. 13) gets larger with
decreasing Ek, whereas the forced mode A1 (red circles in Fig. 13) shows the opposite trend. The
red and black dashed curves denote the scaling Ek1/2 and Ek−1/2, respectively. The presence of the
free Kelvin modes indicates that the rotating fluid is in a nonlinear regime. This implies a possibly
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FIG. 13. The mode amplitude as a function of Ek at 0.75h, h = 1.2.

weaker viscous saturation compared with the saturation due to the nonlinear effects. The change of
A0 as a function of Ek suggests a strong dependency of the nonlinear effects on the Ekman number.
For lower Ek, the nonlinear effects become stronger, promoting the generation of the mean flow and
therefore increasing the saturation effect on the forced mode.

VI. LOW-ORDER AMPLITUDE EQUATION

A weakly nonlinear model has been developed by Lagrange et al. [10] to describe the flow which
couples the forced Kelvin mode to two free Kelvin modes and a geostrophic mode in a classical
precessing cylinder. For the Ekman numbers of our experiment, this model shows irregular and
possibly chaotic dynamics. However, we know that this is not the common route to turbulence for
rotating fluids. On this route not a single triad becomes chaotic, but a cascading process leads to
more and more triads and eventually to wave chaos [33]. From Fig. 10 we have learned that this
process has started in our experiment. However, the single triad model by Lagrange et al. is still
useful to understand certain aspects of the flow in our experiment.

In this weakly nonlinear model, the evolution of the geostrophic mode amplitude is given by

∂A0

∂t
= Ek1/2

(
− 2

h
A0 + χ2|A2|2 + χ3|A3|2

)
, (12)

where A0, A2, and A3 are, respectively, the amplitude of the geostrophic mode and two free Kelvin
modes, and χ2 and χ3 are tuning constants. The first term on the right-hand side represents the
viscous damping of the geostrophic mode, and the second and third terms represent the nonlinear
self-interaction of the two free Kelvin modes driving the geostrophic mode. This equation suggests
that the mean flow is generated due to the nonlinear self-interaction of the excited Kelvin modes
and meanwhile damped by the viscous effects. Assuming χ2 equals χ3, in a dynamical system
with slow varying A0 ( ∂A0

∂t /Ek1/2 � 1), A0/(|A2|2 + |A3|2) should remain nearly constant so that
(− 2

h A0 + χ2|A2|2 + χ3|A3|2) is close to 0.
Figure 14(a) shows the slow variation of the amplitudes of the geostrophic, the forced, and the

free Kelvin modes for the experiment with Ek = 1.19 × 10−5. The amplitude time evolution is
derived by applying a short-time Fourier transform over the velocity as follows:

A(t, ω) =
∣∣∣∣
∫ +∞

−∞
u(τ )hw(τ − t )e−iωτ dτ

∣∣∣∣
/ ∫ +∞

−∞
hw(τ − t )dτ, (13)
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FIG. 14. (a) Amplitude of the modes and (b) ratios between A0 and nonlinear effects of different modes as
a function of the dimensionless time t . Measured at 0.8h with Ek = 1.19 × 10−5, Fr = 0.09, and h = 1.2.

where hw stands for the function of a smoothing Hamming window [33,35]. The geostrophic mode
is plotted in blue in Fig. 14(a) and shows only a rather weak variation in time (i.e., a small standard
deviation). In fact, the ratio between the data-based ∂A0

∂t and Ek1/2 is in the order of 10−2, i.e.,
∂A0
∂t � Ek1/2.

For (12) this means that the ratio between A0 and |A2|2 + |A3|2 should be close to a constant.
It is obvious that for our experiment not only two free modes are excited. The Ek value in our
case is more than one order of magnitude smaller, and the flow is closer to a turbulent state than
that observed by Lagrange et al. [10]. However, their model, heuristically fitted to our case, is still
useful in understanding some characteristics of the wave interactions. Hence we try to extend (12)
by introducing the nonlinear self-interaction of all the free Kelvin modes. In this case, it is expected
that A0/�|Afree|2 remains nearly constant in time. Figure 14(b) shows the ratio between A0 and
a number of squared amplitudes as a function of dimensionless time. It can be seen that, indeed,
A0/�|Afree|2 is nearly constant. In contrast, using just one triad leads to stronger variations (red
curve).

Other information from (12) suggests that since h and χ are independent of Ek, the ratio
A0/�|Afree|2 should also not depend on Ek. This ratio, taken from the experimental data as well as
the numerical runs, is compared in Table III. The second row in the table is from the experimental
measurements at 0.8h, and the third row shows the numerical result from the model by Lagrange
et al. [10] when all the parameters are kept fixed, but those given in the caption are adapted to
our model. This means that we use h and Ek from our experiment. Note that the forcing in our
experiment is larger, since in contrast to the precession experiment there is no small Poincaré

TABLE III. The ratio of A0/�|Afree|2 for different Ek from experimental data measured at 0.8h and
A0/�

2
i=1|Afree|2 from the model by Lagrange et al. [10] (at the fourth row) but for Ro = 30RoL =

30�p sin α/(� + �p cos α), where �p is the precession frequency, h = 1.2, χ = 0.003χL , where the index
L denotes the values used by Lagrange et al. [10].

Ek 2.39 × 10−5 1.59 × 10−5 1.19 × 10−5 9.55 × 10−6 7.96 × 10−6

A0/�|Afree|2 33.82 24.28 28.02 24.98 21.25
A0/�

2
i=1|Afree|2 18.18 18.03 18.25 17.85 17.50
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FIG. 15. Theoretical prediction of the shear instability in the annulus for Ek = 1.19 × 10−5 and Fr = 0.09.
The symbols show whether mode triads exist for 0 < ω � 1 from experimental results. The figure should be
compared with Fig. 4 by Thompson [3].

number in the forcing term [see (3) and (5)]. We used a value for Ro that is 30 times larger than that
used by Lagrange et al. The tuning parameter χ was adapted in the following way: from Fig. 14(b)
we read off the constant for A0/�|Afree|2. Then we determined χ by χ = 2

h A0/�|Afree|2, which
gives a χ value that is a factor 3 × 10−3 smaller than the value used by Lagrange et al. [10].

Note again that the experimental measurements give the amplitude of the modes at a certain
depth which might not necessarily be equal to the mode amplitude when we would have access
to the full axial structure of the mode. However, we compare the dependency of A0/�|Afree|2 with
respect only to Ek, and the magnitude of this ratio is not relevant here.

Although, as discussed in the previous section, we find a disagreement between our free surface
and the classical precessing experiment, namely, that the strength of the nonlinear effects is
influenced by Ek in our case, the experimental results reveal that A0/�|Afree|2 depends only very
weakly on the Ekman numbers, which is consistent with the weakly nonlinear model designed for
the precessing cylinder [10]. Therefore this analysis confirms that for the tilted rotating annulus with
free surface, the nonlinear self-interaction of the free Kelvin modes becomes stronger for decreasing
Ek and implies an increase of mean flow amplitude such that the ratio A0/�|Afree|2 remains constant.

VII. DISCUSSION AND CONCLUSION

A series of experiments have been performed to investigate the mode interaction in a tilted
rotating annulus with free surface. In the experiments, two modes play a major role for the dynamics:
a forced Kelvin mode, which is driven by the gravitational torque on the nonaxisymmetric viscously
rotating mass, and a geostrophic mode, i.e., a mean flow, generated by nonlinear wave-wave
interactions. Free Kelvin modes and shear modes are given rise by instabilities of the forced mode
and the geostrophic mode, respectively.

Due to the inclination of the annulus, a forced Kelvin mode with wave number m = n = k = 1
and frequency ω = 1 is excited. The amplitude of the forced Kelvin mode grows rapidly when the
mode is close to an eigenmode of the annulus. Once the amplitude of the forced mode exceeds a
threshold value, the mode becomes oversaturated, breaks down, and leads to a resonant collapse as
described for the precessing cylinder experiment by McEwan [2] and Manasseh [7]. Two well-tuned
subdominant free Kelvin modes are excited during this process and form a triad with the forced
Kelvin mode. This corresponds to a typical scenario of the triadic resonance.
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Besides the parametric triadic instability, we also observed a shear-type instability that is related
to the nonzero mean flow, i.e., the geostrophic mode. The experimental result confirms that similar
to the precessing cylinder experiment carried out by Kobine [31], the mean flow increases with the
tilt angle α [see (5)]. For a sufficiently strong mean flow, a shear-type instability is excited and gives
rise to a low-frequency barotropic shear mode. This shear mode interacts with the forced Kelvin
mode and generates two free Kelvin modes that satisfy the triadic relation with the shear mode and
the forced mode.

Shear instabilities in a partially filled and tilted rotating full cylinder have been studied by
Thompson [3], who presented a theoretical prediction of the instability bounds. Following Thomp-
son, we predicted the bounds of the shear instability for our experiment with annular geometry
and experimentally verified the existence of the shear instability for different aspect ratios (fluid
depths). The result is shown in Fig. 15, where the shaded areas represent shear instabilities. The
symbols show the number of triads we find experimentally in the frequency range 0 < ω � 1. In
this range the most prominent triads can be found.

The open circle indicates that more than one triad emerges, where the shear instability not only
induced a low-frequency mode m3 but also its harmonic mode m6, as discussed in Sec. V. Both
modes interact with the forced Kelvin mode and give rise to additional free Kelvin modes. The
shear instability necessitates a sufficiently strong mean flow, which requires a large forcing, e.g.,
large inclination angle of the annulus. A resonant fluid depth helps to strengthen the mean flow by
a coupling to free modes. On the other hand, when the forcing is weak (α = 0.1◦) and hence the
nonlinearly driven shear flow is too weak for becoming unstable, the forced Kelvin mode can still
become unstable due to resonance, e.g., when H/R is close to 1.2 (see cross above H/R = 1.2 in
Fig. 15). As shown by crosses in Fig. 15, if H/R is close enough to the resonance depth (e.g., for
H/R = 1 or H/R = 1.4), a triadic resonant instability occurs and induces two free Kelvin modes
satisfying the triadic relation with the forced Kelvin mode. Finally, if we are outside the depths for
shear instability and too far away from the resonant depth, only the forced mode can be observed.

We observed that the Ekman number has a prominent impact on the frequencies of the excited
modes, except the frequency of the forced Kelvin mode. The frequencies of the retrograde modes
increase with decreasing Ek, whereas the frequencies of the prograde modes have an opposite trend.
The Doppler shift due to the strong background flow is found to be mainly responsible for this
behavior. A recent paper by Herault et al. [34] also points out that the nonzero background flow
modifies the dispersion relation and thus detunes the frequency of Kelvin modes.

In fact, our experiment exhibits some similar characteristics when compared to the precessing
cylinder experiment by Herault et al. [34], where they reported the presence of the parametric triadic
resonance as well as a low-frequency barotropic mode interacting with the forced Kelvin mode. A
similar quasigeostrophic m3 mode has also been observed in late stages of the so-called conical
shear instability. As reported by Lin et al. [36], this instability occurred after a parametric triadic
instability inside a precessing sphere. Although the geometry differs from the cylindrical case, the
excited modes show many similarities.

Moreover, in our experiment with a free surface, a higher harmonics of the barotropic shear mode
has been noticed that is also part of the triads with the forced mode. The bicoherence spectrum
further confirms triadic interactions between the modes and reveals also triads between three free
Kelvin modes for the multiple triad case. We also attempt to connect the low-order dynamical system
by Lagrange et al. [10] to our data. Although in our case more modes are active than contained in
the low-order model, we could confirm that the geostrophic mode is balanced by a forcing due
to self-interacting free modes and viscous damping. In future work we will try to better adapt the
dynamical system to our experiment so that we could have a simple tool for understanding the
nonlinear interactions between the excited modes and to find thresholds for regime transitions.

Aside from the common phenomena that have been observed in classical precessing experiments,
we also observed some remarkable characteristics that deviate from what has been found in the
precession setups. For example, in our experiment the amplitudes of the forced Kelvin mode and
the geostrophic mode are saturated mainly due to the nonlinear effects. For the classical precession
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setup, theoretical and experimental results show that nonlinear effects are independent of the
Ekman numbers. However, our experiment shows that the nonlinear effects significantly depend
on Ek, which seems to scale roughly with Ek−1/2 (see red dashed curve in Fig. 13). The nonlinear
dependency further influences the amplitude of the mean flow and the saturation of the forced Kelvin
mode.

Presently, our experiments are conducted within a relative narrow range of Ekman numbers and a
fixed inclination angle, which leaves plenty of space for further explorations. The existence of a free
surface introduces extra complexity into the rotating system. Nevertheless, it is useful for further
study, since it provides a convenient approach to investigate wave interactions and the influence
of the aspect ratio on resonance. As suggested by Meunier [37], the open surface rotating cylinder
might also be important for technical applications. This system might improve bioreactors, since
mixing due to the resonant collapse is much less destructive than mixing with rotating blades.
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