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Large-scale vertical vorticity generated by two crossing surface waves

Vladimir M. Parfenyev * and Sergey S. Vergeles
Landau Institute for Theoretical Physics, Russian Academy of Sciences, 1-A Akademika Semenova av.,

142432 Chernogolovka, Russia
and National Research University Higher School of Economics, Faculty of Physics, Myasnitskaya 20,

101000 Moscow, Russia

(Received 14 May 2020; accepted 14 September 2020;
published 30 September 2020)

We demonstrate that two surface waves propagating at a small angle 2θ to each other
generate large-scale (compared to the wavelength) vertical vorticity owing to hydrody-
namic nonlinearity in a viscous fluid. The horizontal geometric structure of the induced
flow coincides with the structure of the Stokes drift in an ideal fluid, but its steady-state
amplitude is larger and it penetrates deeper into the fluid volume as compared to the Stokes
drift. In an unbounded fluid, the steady-state amplitude and penetration depth are increased
by the factor of 1/ sin θ and the evolution time of the induced flow can be estimated as
1/(4νk2 sin2 θ ), where ν is the fluid kinematic viscosity and k is the wave number. Also, we
study how the finite depth of the fluid and a thin insoluble liquid film that possibly covers
the fluid surface due to contamination effect the generation of large-scale vorticity and
discuss the physical consequences of this phenomenon in the context of recent experiments.
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I. INTRODUCTION

Recent experiments have shown that surface waves generate intense solenoidal currents on the
fluid surface [1–8]. The explanation of how the wave oscillations excite the slow horizontal flows has
a long history dating back to Longuet-Higgins’ seminal paper [9]. At the initial stage, the generation
is related to the fluid viscosity (which is relevant in a narrow layer near the fluid surface and the
boundaries) and nonlinearity of surface waves. The fluid viscosity causes attenuation of the wave
motion and its momentum is transferred to slow currents by the action of the virtual wave stress
[10]. Subsequent studies proposed the description in Lagrangian coordinates, investigated the role
of Coriolis force, and analyzed nonstationary regimes; see [11–17] and references therein. The
next step was made in the work in [18], which generalizes the pioneering results obtained for a
plane wave to the case of surface waves propagating in arbitrary directions. Later, a particular case
of slow currents generated by orthogonal surface waves has been analyzed in detail [7,19]. The
resulting flow has the form of a regular lattice of vortices rotating in opposite directions, with the
size of each vortex equal to half the wavelength.

At large Reynolds numbers, the regular vortex lattice is distorted after some time, which is
accompanied by the appearance of vortex flows with larger scales. This phenomenon was observed
in experiments of two different types. In the first case, surface waves were excited due to Faraday
instability and the solenoidal currents became chaotic, showing an unexpected resemblance to
two-dimensional turbulence [1], even when the fluid depth exceeded the wavelength [2,3]. The
surface elevation had a narrow peaked wave-number spectrum, while the horizontal surface flow
demonstrated a wide Kolmogorov k−5/3 spectrum. As an explanation, it was proposed that surface

*parfenius@gmail.com

2469-990X/2020/5(9)/094702(12) 094702-1 ©2020 American Physical Society

https://orcid.org/0000-0002-8380-5378
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.5.094702&domain=pdf&date_stamp=2020-09-30
https://doi.org/10.1103/PhysRevFluids.5.094702


PARFENYEV AND VERGELES

waves generate horizontal solenoidal currents with a size of the order of the wavelength, and then
the energy is redistributed to larger scales due to the inverse energy cascade [2,3], which was
confirmed by the measurement of the third-order structure function. Despite this, the mechanism of
the upscale energy transfer has remained unclear, because the theory of the inverse energy cascade
was developed only for two-dimensional (2D) and quasi-2D systems [20], and the considered case
is essentially three dimensional. In addition, the numerical analysis shows that, with such a ratio
between the fluid thickness and the pumping scale, the inverse energy cascade is not realized
[21–23].

In experiments of the second type [5,7], the wave motion was excited by orthogonal plungers,
partially submerged into the fluid and performing monochromatic vertical oscillations. The resulting
horizontal flow had the form of a regular vortex lattice and, over time, large-scale vortices with a size
of the order of the system size appeared on its background. According to the measured spectrum of
the horizontal flow [5], vortices of intermediate scales were not formed. Therefore, the generation
of large-scale vortices in this case cannot be explained by the inverse energy cascade and, to our
knowledge, no other explanation was offered. Note that a further increase in the Reynolds number
leads to the generation of surface waves with other frequencies due to four-wave interactions, which
significantly complicates the fluid motion [24].

Here we demonstrate that monochromatic surface waves can directly excite a large-scale hori-
zontal flow due to hydrodynamic nonlinearity if they propagate at a small angle to each other. In the
case of Faraday instability, when the threshold is significantly exceeded, several modes are excited
simultaneously, which correspond to waves propagating in different directions. As for experiments,
where the waves were excited by oscillating plungers, we believe that they can also excite wave
modes having a nonzero component of the wave vector in the direction along the plunger. The
interaction between these modes and waves propagating strictly perpendicular to the plungers
leads to the generation of large-scale solenoidal surface currents. A detailed description of these
currents (including their evolution over time) provided below will allow testing this hypothesis
experimentally. Qualitative prediction is that, to observe such flows, it is sufficient to excite surface
waves with one plunger.

Briefly summarizing results, we found that, in an unbounded fluid, the horizontal size and
penetration depth of the large-scale current are equal to L = 1/(2k sin θ ), and its steady-state
vertical vorticity on the fluid surface can be estimated as �E ∼ ωk2H1H2. Here ω is the wave
frequency, k is the wave number, H1 and H2 are the wave elevation amplitudes, and 2θ is the angle
between waves. The kinematic viscosity ν of a fluid does not enter in these expressions; however,
it determines the evolution time TE = L2/ν of the large-scale flow. The depth of fluid d begins
to play a noticeable role if it becomes comparable to or less than L. Additional bottom friction
causes a decrease in the steady-state amplitude of horizontal solenoidal flow on the surface by a
factor of tanh(d/L) and also accelerates its temporal evolution. If a thin insoluble liquid film is
present on the fluid surface (e.g., due to contamination [7,25]), then it can significantly increase the
vertical vorticity �E compared to the free surface case, provided that the wave amplitudes remain
unchanged.

At last, we would like to note that the considered phenomenon is a special case of steady
streaming [26], which corresponds to nonzero mean current arising from the time average of a
fluctuating flow. Other well-known examples of steady streaming are acoustic streaming [27] and
viscous streaming [28]. In all these cases, the steady current results from the action of Reynolds
stress in a thin viscous sublayer near the boundaries or near the surface. A characteristic feature
of such currents is that they penetrate far beyond the viscous sublayer, and their amplitudes do not
depend on the fluid viscosity (but there are exceptions, for example, in our case, if the fluid surface
is covered with a film). Read more about the similarity of these flows in the review article in [26].
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II. RESULTS

Let us consider two propagating waves excited on the surface of an incompressible viscous fluid.
We assume that Z axis is directed vertically, opposite to the gravitational acceleration, and that the
undisturbed fluid surface (without the wave motion) coincides with plane z = 0. The horizontal
extent is unlimited and the surface elevation is equal to

h(t, x, y) = H1 cos(ωt − kx sin θ − ky cos θ ) + H2 cos(ωt + kx sin θ − ky cos θ ), (1)

where ω is the wave frequency, k is the wave number, H1 and H2 are the wave elevation amplitudes,
and 2θ is the angle between waves. The deep-water assumption is implied, i.e., the fluid depth
d � 1/k, we assume that the wave steepness is small, |∇h| � 1, and the kinematic viscosity ν of
fluid is weak, γ =

√
νk2/ω � 1. As it will be shown, the nonlinear interaction between these waves

leads to the generation of slow large-scale horizontal solenoidal current. We neglect the spatial decay
of wave amplitudes due to the fluid viscosity in Eq. (1), and therefore our consideration also entails
the smallness of the characteristic horizontal size L of the generated current compared with the
propagation length of surface waves, kL � 1/γ 2.

Experimentally, the horizontal currents are studied by examining the trajectories of passive par-
ticles advected by the flow [1–8]. There are Stokes and Eulerian contributions to the corresponding
Lagrangian velocity averaged over fast wave oscillations, which are very different [7,9]. The first
contribution is a generalization of the Stokes drift for a plane wave in an ideal fluid [29]. It is the
result of nonlinear Lagrangian dynamics and it does not produce any contribution to the mean veloc-
ity of fluid in the bulk in the Eulerian description [10, Sec. 2]. In contrast, the Eulerian contribution
corresponds to the mean velocity of the fluid and it arises due to fluid viscosity and hydrodynamic
nonlinearity [9,10] (see also Ref. [30] for a discussion of alternative methods of description). In what
follows, we will describe the horizontal currents in terms of the vertical vorticity, � = ∂xVy − ∂yVx,
where Vx and Vy are horizontal components of the time-averaged Lagrangian velocity of tracers.
Thus � = �S + �E , where �S takes into account the Stokes drift contribution and �E corresponds
to the fluid velocity in the Eulerian description; see also Refs. [7,19]. The vertical vorticity is
generated due to the interaction of noncollinear waves, and its amplitude is proportional to the
product of wave amplitudes. The Stokes and Eulerian contributions to the Lagrangian velocity of
tracers caused by the self-nonlinearity of a plane wave were studied previously [9,29], and they give
a zero contribution to the vertical vorticity.

To find the Stokes drift contribution �S to the vertical vorticity, it turns out that one should
implement the same calculations as for an ideal fluid [19, Sec. V]. For surface waves defined by
expression (1), we obtain

�S = �(x) sin θ exp(2kz), (2)

where �(x) = −4H1H2ωk2 cos3 θ sin[2kx sin θ ] describes the spatial structure of �S in the hori-
zontal plane; see Fig. 1. The details of the calculations can be found in Appendix A; see also Ref.
[31, Eq. (31)]. In the vertical direction, the contribution penetrates to a depth of 1/(2k); the maxi-
mum value is reached on the fluid surface. Thus, despite the large horizontal size L = 1/(2k sin θ ),
the current remains localized near the surface. In the limiting case sin θ → 0, one finds �S → 0,
i.e., the Stokes drift contribution to the vertical vorticity disappears. If the wave amplitudes change
over time (for example, they decrease due to viscous damping), then the Stokes drift instantly tracks
these changes. Therefore, the characteristic evolution time of �S can be estimated as TS = 1/(4νk2).
If the size of the system is limited in the horizontal direction, as is often the case in laboratory
experiments, then this time can be even shorter due to additional dissipation of the wave motion
near the boundaries [7,32].

The Eulerian contribution �E to the vertical vorticity is excited in the viscous sublayer near the
fluid surface due to the fluid viscosity and hydrodynamic nonlinearity, and then it spreads downward
in the fluid bulk due to viscous diffusion. If the Reynolds number characterizing the large-scale
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FIG. 1. Schematic of surface elevation and horizontal spatial structure �(x) of the generated large-scale
vorticity, which is produced by two propagating surface waves (1). The colors represent the intensity of the
vertical vorticity in arbitrary units. The arrows show the corresponding velocity field. The angle between waves
is equal to 2θ = π/15 and H1 = H2.

current is small, then its evolution in the fluid bulk satisfies the equation

∂t�E − ν∇2�E = 0. (3)

See Ref. [33, Eq. (3.20)] and Ref. [7, Eq. (7)]. The excitation process can be described in terms
of the boundary condition for this equation, since the viscous sublayer has a very small thickness
δ ∼ γ /k. The corresponding relation was derived for arbitrary wave motion, e.g., in Ref. [18] and
Ref. [34, Eq. (15)], and for two propagating waves (1) one finds

ν∂z�E |z=0 = 2νk sin θ �(x). (4)

See also Ref. [33, Eq. (3.6)] and Ref. [35, Eq. (3)]. Another boundary condition for Eq. (3) is the
disappearance of vertical vorticity at infinite depth, �E |z→−∞ = 0. This expression implies that the
fluid depth is much greater than the penetration depth of the horizontal current �E .

The stationary solution of the discussed boundary-value problem has the form

�E = �(x) exp(2kz sin θ ). (5)

Compared to expression (2), the Eulerian contribution �E to the vertical vorticity has the same
horizontal structure �(x), but its amplitude on the surface is 1/ sin θ times greater and it penetrates
the fluid volume much deeper, at a distance of the order of the horizontal size L. Geometrically,
the flow is directed along straight strips of thickness πL and it is oppositely directed inside the
neighboring strips. The corresponding velocity is equal to V y

E = −L�E cot(2kx sin θ ); see Fig. 1.
The velocity distribution can be treated in terms of the well known horizontal mean drift induced
by a plane wave [9] in the limit of small angle θ � 1 as follows: the drift velocity along Y axis is
increased in those regions of x where two wave amplitudes are summed producing a locally plane
wave of amplitude H1 + H2 and has the minimum where the amplitudes are subtracted. The drift
velocity averaged over the horizontal plane is subtracted in Fig. 1 as it is not associated with any
vertical vorticity.

The characteristic time of evolution of �E is determined by the fluid viscosity and we find the
estimate TE = L2/ν from Eq. (3). At a small angle between the propagating waves, TE � TS , so
the wave motion and the Stokes drift are established much faster than the horizontal current �E .
Consider the case when the fluid was initially at rest, and then the wave maker began to excite the
wave motion. After a short period, the right-hand side of Eq. (4), determined by the wave motion,
ceases to depend on time, and by solving Eq. (3) with the discussed boundary conditions, we obtain
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the dependence of �E on time and depth

�E (t, x, z) = �(x)√
π

∫ t/TE

0

dξ√
ξ

exp

(
−ξ − z2

4ξL2

)
. (6)

The value of the Eulerian contribution to the vertical vorticity on the fluid surface is of particular
interest because it is relatively easy to measure experimentally. By substituting z = 0 in expression
(6), we find

�E (t, x, 0) = �(x)erf[
√

t/TE ]. (7)

Note that at the initial stage of excitation, t � TE , the growth is described as �E (t, x, 0) ∝ √
t/TE .

Similarly, we can consider the decay of horizontal slow current �E after turning off the wave
maker and the disappearance of the wave motion. In this case, the right-hand side in the boundary
condition (4) should be equal to zero, since there are no more surface waves. As an initial condition,
we assume that the vorticity distribution is described by expression (5). Then, we find

�E (t, x, z) = �(x)

π

∫ ∞

−∞
dξ

cos(ξz/L)

ξ 2 + 1
e−(ξ 2+1)t/TE . (8)

By substituting z = 0 in expression (8), we obtain the evolution of the Eulerian contribution on the
fluid surface

�E (t, x, 0) = �(x)erfc [
√

t/TE ]. (9)

At the initial stage of decay, t � TE , the dependence on time is described by a square root
law �E (t, x, 0) ∝ 1 − √

4t/(πTE ), and, at large times, t � TE , it turns into the exponential law
�E (t, x, 0) ∝ √

TE/t exp(−t/TE ). Note that the performed calculations generalize the similar ones
for the case of orthogonal surface waves. The details of the calculations can be found in Ref. [7,
Sec. II].

Next, we consider what happens if the fluid depth d becomes comparable to or less than the
horizontal size L of the generated current. Stokes drift does not change in response to the depth
change, as long as the deep water approximation kd � 1 remains valid. To find the change in the
Eulerian contribution to the vertical vorticity, we assume that the usual no-slip boundary condition is
fulfilled on the bottom surface. Therefore, boundary-value problem (3),(4) needs to be supplemented
with the condition �E |z=−d = 0. In this case, the stationary solution has the form

�E = �(x)
sinh [(z + d )/L]

cosh (d/L)
. (10)

The amplitude of horizontal current decreases in comparison with expression (5) due to friction
against the bottom. In particular, the surface flow becomes weaker by a factor tanh(d/L).

Figure 2(a) shows the development of horizontal current �E on the surface over time at various
fluid depths obtained by numerical solution of the corresponding boundary-value problems. At small
times t � d2/ν, the presence of the bottom does not have any effect and the solution is described by
expression (7). At large times t � min(TE , d2/ν), the solution reaches a stationary value determined
by expression (10). Note that for a small depth d � L the stationary solution is reached faster
compared to the unbounded fluid. Analytical analysis of the problem supporting these results can
be found in Appendix B.

In the same way, we can consider the attenuation of the stationary solution (10), after switching
off the wave maker at t = 0, accompanied by fast decay of the wave motion due to the fluid viscosity.
At large times t � d2/ν, we obtain the exponential asymptotic (see Appendix C)

�E (t, x, z) → �(x) sin
[π

2

(
1 + z

d

)]exp (−αt/TE )

α · d/(2L)
. (11)

The factor α = 1 + π2L2/(4d2) describes the increase in the decay rate of �E compared with the
case of unbounded fluid due to additional dissipation near the bottom. At the same time for t �
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FIG. 2. Formation (a) and decay (b), (c) of the horizontal current �E on the surface z = 0 at various fluid
depths (numerical solution). The curves for unlimited depth correspond to expressions (7) and (9). Asymptotic
values at large times for formation process and initial values for decay process are determined by relation
(10). Dashed lines show asymptotic behavior (11). (b) illustrates that the decay rate of the vertical vorticity on
the fluid surface does not depend on the fluid depth at small times t � d2/ν, see Eq. (12), and (c) shows the
exponential law of decay at large times t � d2/ν: see Eq. (11).

d2/ν, the decay rate of the vertical vorticity on the fluid surface does not depend on the fluid depth,

d�E (t, x, 0)

d (t/TE )
= −�(x)

exp(−t/TE )√
πt/TE

. (12)

Figures 2(b) and 2(c) show the results of numerical solution of the boundary-value problem
describing the decay of horizontal current �E on the surface at various fluid depths. As one can
see, the theoretical predictions are in agreement with the numerical results.

Finally, we would like to note that a thin insoluble liquid film covering the fluid surface (e.g., due
to contamination [7,25]) can substantially increase the amplitude of the slow current �film

E compared
to the free surface case, provided that the wave amplitudes remain unchanged, if the compression
modulus of the surface film is strong enough. This was demonstrated in Ref. [19] for orthogonal
standing waves that generate solenoidal currents with a scale of the order of the wavelength. A
similar increase occurs for a large-scale vortex flow as well.

In general, the rheological properties of a thin surface film formed by an insoluble agent can
be characterized by four coefficients: dilational elasticity, dilational viscosity, shear elasticity, and
shear viscosity [36]. We neglect the internal viscosities of the film and assume that the film is liquid
(i.e., the shear elasticity is absent). Then, the film properties can be described solely by the dilational
elasticity or the compression modulus −n(∂σ/∂n), where n is the film surface density and σ (n) is
the surface tension coefficient. Recently, it has been demonstrated that this simple model describes
experimental data fairly well; see Ref. [7].

The wave motion results in periodic contraction and expansion of the fluid surface, which causes
periodic deviation of the film density n from its equilibrium value n0 at the resting surface. Since the
surface tension σ (n) depends on the surface coverage, it also varies from point to point, giving rise to
an additional tangential surface stress, which should be taken into account in the boundary condition
for the fluid motion. The effect of a surface film on wave motion and slow induced flow was studied
in Ref. [19], and here, based on these results, we calculate (see Appendix D) the enhancement factor
for the vertical vorticity �E in the particular case of the wave motion determined by expression (1).
The result is

�film
E

�E
= 1 + ε2/ cos2 θ

4
√

2γ (ε2 − ε
√

2 + 1)
, (13)
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where ε = −n0σ
′(n0)

ρ
√

νω3/k2
� 0 is the dimensionless compression modulus of the surface film character-

izing its properties at frequency ω and scale 1/k, and ρ is the fluid mass density. The limiting case
of a free surface corresponds to ε → 0 and in the opposite case ε → ∞ we deal with an almost
incompressible surface film. Note that the presence of a surface film reduces the characteristic
time TS of evolution of the Stokes contribution �S to the vertical vorticity, but does not affect the
processes of formation and decay of the Eulerian contribution �E ; see Ref. [7]. Therefore, relation
(13) is valid for an arbitrary moment of time and for an arbitrary fluid depth d � 1/k.

To conclude this section, let us discuss the applicability conditions of our approach. The
presented theory takes into account only nonlinear terms of the second order in wave amplitudes.
All higher-order terms can be neglected, if the effective Reynolds number for the slow current
Re = �E min(TE , d2/ν) is small. Note that the fluid viscosity ν enters only in the denominator
of the characteristic time of evolution, and this means that the Reynolds number can be reduced by
adding glycerol to the water in laboratory experiments [7]. If the value Re is large in the steady-state
regime, then the theory can be applied only at the initial stage of evolution, when the value of �Et
remains small.

Although the study focuses on large-scale (compared to the wavelength) vertical vorticity with a
characteristic horizontal size L = 1/(2k sin θ ), all steady-state results remain valid for an arbitrary
angle 2θ between excited surface waves. The nonstationary analysis implies that the dynamics of
the wave amplitudes is much faster than the evolution of the induced Eulerian current. In the case of
unbounded fluid with uncontaminated surface, this means that TS � L2/ν and it is equivalent to the
condition θ � 1. However, in laboratory experiments, the friction of waves against the boundaries
and the presence of contaminants on the fluid surface can reduce TS , and then the obtained results
remain valid for any angle between the waves as long as the indicated time scales are well
separated.

III. CONCLUSION

We demonstrated that surface waves propagating at a small angle to each other generate large-
scale solenoidal currents, and we described in detail how they are established and decayed. The
obtained results allow for direct experimental verification. If the flow is limited by sidewalls with
the size of the order of L, then one should start from the virtual wave stress [18,34] to determine
numerically the exact geometry of the induced current, but the qualitative picture remains the same.
An important case of the excitation of two crossed standing waves was analyzed in Appendix E. We
speculate that large-scale surface currents observed in Refs. [5,7] at large times can be excited due
to the mechanism indicated in the paper. The established laws of evolution of large-scale flows will
make it possible to test this hypothesis experimentally.

It should also be said that large-scale vortex flows effectively two dimensionalize the sys-
tem and open the way to the inverse energy cascade, even if the thickness of the system is
not small compared to the pumping scale [37]. Probably, such a situation could take place in
Refs. [2,3]. Initially, Faraday waves in various directions were excited on the surface and they
excited horizontal flows of different scales. Large-scale currents have relatively slow kinetics, and
therefore they were not observed shortly after switching on the pumping. In the course of further
evolution, their amplitude increased, and they provided an opportunity for the upscale energy
transfer.

On the other hand, with a large Reynolds number and a large fluid depth, it is reasonable to
expect a picture characteristic of three-dimensional turbulence: a direct energy cascade from large
to small scales. Which of these two scenarios is implemented and for which parameters remains
unclear. This problem requires further research.
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APPENDIX A: STOKES DRIFT CONTRIBUTION TO THE VERTICAL VORTICITY

The calculation of the Stokes drift from the very first principles for an arbitrary wave motion
were described, for example, in Ref. [19, Sec. V]. In the case of an uncontaminated fluid surface,
the expression for the Stokes drift contribution to the vertical vorticity �S can be written in the form

�S = εαβ

〈
(ek̂z∂β∂t h)(ek̂z∂αh)

〉 + εαβ

〈(
ek̂z

k̂
∂β∂γ ∂t h

)(
ek̂z

k̂
∂α∂γ h

)〉
. (A1)

See [19, Eq. (C3)]. Here h(t, x, y) is the surface elevation due to excited wave motion, εαβ is the
unit antisymmetric tensor, Greek indices run over x and y, we sum over the repeated indices, k̂ =
(−∂2

x − ∂2
y )1/2 is the wave-number operator (the square root should be taken with positive real part),

and the angle brackets 〈· · · 〉 mean the averaging over fast wave oscillations. Substitution of the
expression

h(t, x, y) = H1 cos(ωt − kx sin θ − ky cos θ ) + H2 cos(ωt + kx sin θ − ky cos θ ) (A2)

to Eq. (A1) leads to the result

�S = −4H1H2ωk2 cos3 θ sin θ sin[2kx sin θ ] exp(2kz). (A3)

Note also that the Stokes drift produced by the wave motion (A2) was analyzed earlier in the work
in [31, Eq. (31)]. The previous result confirms the correctness of the obtained expression.

APPENDIX B: FORMATION OF THE VERTICAL VORTICITY

As it was explained in the main text, the formation of the vertical vorticity �E by surface waves
(A2) is described by the following boundary-value problem:

∂t�E − ν∇2�E = 0, ∂z�E |z=0 = 2k sin θ �(x), �E |z=−d = 0, (B1)

where �(x) = −4H1H2ωk2 cos3 θ sin[2kx sin θ ] describes the spatial structure of �E in the hor-
izontal plane. To find the distribution of the vertical vorticity in the vertical direction and its
dependence on time during the formation stage, we have to solve the aforementioned boundary-
value problem supplemented by a zero initial condition. Performing the Laplace transform for
vertical vorticity �̃E (p) = ∫ ∞

0 d (t/TE )e−pt/TE �E (t ), where TE = L2/ν and L = (2k sin θ )−1 is the
horizontal scale of the current, we find

�̃E (p, x, z) = �(x)

p
√

p + 1

sinh [
√

p + 1(z + d )/L]

cosh [
√

p + 1 d/L]
. (B2)

In the inverse Laplace transform, the pole p = 0 corresponds to the stationary solution and the points
at which cosh [

√
p + 1 d/L] = 0 form an infinite series describing the evolution to this stationary

solution:

�E (t, x, z) = �(x)
sinh [(z + d )/L]

cosh [d/L]

+�(x)
∞∑

n=0

(−1)n+1
exp

[− t
TE

(
1 + π2L2(2n+1)2

4d2

)]
d

2L

(
1 + π2L2(2n+1)2

4d2

) sin
[π

2
(2n + 1)

(
1 + z

d

)]
. (B3)

The value of the Eulerian contribution to the vertical vorticity on the fluid surface is of particular
interest because it is relatively easy to measure experimentally. By substituting z = 0 in expression
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(B3), one can find

d�E (t, x, 0)

d (t/TE )
= �(x)

L

d
exp(−t/TE )ϑ2[0, exp(−νπ2t/d2)], (B4)

where ϑ2[u, q] is the Jacobi Theta function. At small times t � d2/ν, the growth of the vertical
vorticity on the fluid surface does not depend on the fluid depth d and it is determined by

d�E (t, x, 0)

d (t/TE )
= �(x)

exp(−t/TE )√
πt/TE

⇒ �E (t, x, 0) = �(x)erf [
√

t/TE ]. (B5)

At large times t � min(TE , d2/ν), the vertical vorticity on the fluid surface reaches a stationary
value determined by the first term in expression (B3). Note that, for a fluid of small thickness
d � L, the stationary solution is reached faster compared with the case of unbounded fluid.

APPENDIX C: DECAY OF THE VERTICAL VORTICITY

In the same way, we can consider the attenuation of the vertical vorticity �E , after the fast decay
of the wave motion due to the switching off of the wave maker. In this case one has to solve the
boundary-value problem

∂t�E − ν∇2�E = 0, ∂z�E |z=0 = 0, �E |z=−d = 0, (C1)

supplemented by the initial condition

�E (0, x, z) = �(x)
sinh [(z + d )/L]

cosh [d/L]
, (C2)

which corresponds to the time-asymptotic value of expression (B3). The Laplace transform for
vertical vorticity is equal to

�̃E (p, x, z) = �(x) sinh[(d + z)/L]

p cosh[d/L]
− �(x) sinh[

√
p + 1(z + d )/L]

p
√

p + 1 cosh[
√

p + 1 d/L]
. (C3)

The residue at p = 0 is zero and after the inverse Laplace transform we obtain

�E (t, x, z) = �(x)
∞∑

n=0

(−1)n
exp

[ − t
TE

(
1 + π2L2(2n+1)2

4d2

)]
d

2L

(
1 + π2L2(2n+1)2

4d2

) sin

[
π

2
(2n + 1)

(
1 + z

d

)]
. (C4)

The term with n = 0 determines the asymptotic behavior for large times t � d2/ν. One can
also analyze the initial stage of decay of the vertical vorticity on the fluid surface. For small times
t � d2/ν, we find

d�E (t, x, 0)

d (t/TE )
= −�(x)

exp(−t/TE )√
πt/TE

⇒ �E (t, x, 0) = �(x)
(
tanh (d/L) − erf[

√
t/TE ]

)
. (C5)

APPENDIX D: INFLUENCE OF A THIN INSOLUBLE LIQUID FILM

The influence of the surface film on the slow current �E is substantial if the dimensionless
compression modulus ε � 0 introduced in Ref. [19] is strong enough, ε � √

γ . In the case of
monochromatic pumping, the leading terms in the expression for the vertical vorticity are

�E = κ̂−1eκ̂zεαβ〈2∂α∂γ h k−1∂β∂γ ∂t h + ∂αh D̂κ̂∂t∂βh〉. (D1)

See Ref. [19, Eq.(B8)]. In expression (D1) it is assumed that the wave amplitude changes weakly
over times of the order of the oscillation period. The angle brackets mean the averaging over the
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wave period. The involved operators inside the angle brackets satisfy the following relations:

∂t = −iω = e−iπ/2ω, κ̂ ≈
√

∂t/ν = k

γ
e−iπ/4, D̂ = 2iγ − ε

iγ κ/k − ε
≈ 2γ eiπ/4 + ε2 − e−iπ/4ε

ε2 − √
2ε + 1

,

where operator i shifts the phase of oscillating function by π/2. Thus the operator presented in the
second term in Eq. (D1) is equal to

D̂κ̂∂t = ω3/2

√
ν

ε − ε2/
√

2

ε2 − √
2ε + 1

− 2ikω − iω3/2

√
ν

ε2

√
2(ε2 − √

2ε + 1)

→
(

2k +
√

ω√
ν

ε2

√
2(ε2 − √

2ε + 1)

)
∂t . (D2)

We kept only the imaginary part of the operator (D2) because the real part is canceled when
implementing the summation over {α, β} in relation (D1). The resulting general expression is

�E = 2kκ̂−1eκ̂zεαβ

〈
1

k2
∂α∂γ h ∂β∂γ ∂t h +

(
1 + ε2

2
√

2γ (ε2 − √
2ε + 1)

)
∂αh ∂t∂βh

〉
. (D3)

The accuracy of this expression is that only the leading terms should be kept. They are different
depending on the value ε of the film compression modulus. Equation (D3) is formally applicable
for the case when the wave amplitude is time dependent varying slowly during one wave period. In
the case of two progressive waves (A2), the stationary limit is

�E = e2kz sin θ

(
1 + ε2/ cos2 θ

4
√

2γ (ε2 − ε
√

2 + 1)

)
�(x). (D4)

APPENDIX E: CURRENTS GENERATED BY STANDING WAVES

The vertical vorticity does not describe the contribution into the slow current which has only
horizontal vorticity. This current is excited by a progressive plane wave due to self-nonlinearity [9].
The corresponding velocity on the fluid surface can be estimated as Vprog ∼ ωd (kH )2, where H is
the wave amplitude and d is the fluid depth. If the fluid depth d is greater than the horizontal scale
L of the vertical vorticity, then the velocity Vprog exceeds the velocity associated with the vertical
vorticity, Vprog/VE ∼ d/L. In the case of standing plane waves, the slow current contribution arising
due to self-nonlinearity is absent and the vertical vorticity describes the total slow current.

Let us consider two standing waves excited with some phase shift ψ on the surface of a fluid of
infinite depth, i.e.,

h(t, x, y) = H1 cos(ωt ) cos(kx sin θ + ky cos θ ) + H2 cos(ωt + ψ ) cos(kx sin θ − ky cos θ ).
(E1)

Then the Stokes drift contribution into the vertical vorticity is equal to

�S = ωk2H1H2 sin 2θ e2kz[sin2 θ cos(2ky cos θ ) − cos2 θ cos(2kx sin θ )] sin ψ, (E2)

while the Eulerian contribution in the stationary regime is given by

�E = 2ωk2H1H2 [e2kz cos θ sin3 θ cos(2ky cos θ ) − e2kz sin θ cos3 θ cos(2kx sin θ )] sin ψ. (E3)

In the last expression in the limit θ � 1, the first term is relatively small as θ3 and localized near the
surface, while the second term corresponds to the large-scale current; compare with Eq. (5). Note
that the first term produces the correction to the velocity of current which is also relatively small.

Next, if the fluid surface is contaminated by a thin insoluble liquid film with the compression
modulus ε � √

γ , then

�E = ωk2H1H2ε
2 sin ψ

2
√

2γ (ε2 − ε
√

2 + 1)
[e2kz cos θ sin θ cos(2ky cos θ ) − e2kz sin θ cos θ cos(2kx sin θ )]. (E4)

094702-10
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Compare with Eq. (13). The correction produced by the first term is again relatively small. Thus
the general result is that two standing waves (E1) spreading at small angle 2θ � 1 to each other
produce almost straight strips of the current; see text after Eq. (5).
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