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Chemically reacting transverse plume
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The flame length of a plume in incompressible cross-flow is analyzed and the results
are compared with those obtained in a chemically reacting water tunnel experiment. It is
argued that the axial vortex pair in the flow arises from the plume momentum normal to the
free stream, the momentum flux being equivalent to the impulse from the buoyant force.
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I. INTRODUCTION

The structure, trajectory, and mixing rate of transverse jets have been investigated in numerous
experiments, such as in Refs. [1–5]. The jets are driven by the initial momentum flux from the
nozzle, without buoyancy differences between the jet fluid and the ambient fluid. A prominent
feature of the flow is a pair of counter-rotating vortices. In the far field, those vortices are nearly
parallel and move with the free stream. Broadwell and Breidenthal [6] argue that a temporal,
two-dimensional vortex pair can model the dynamics and mixing, resulting from a line impulse.
Above the mixing transition, the mixing is entrainment limited, so that the simple dilution model
discussed in Ref. [6] describes the mixing rate, to within an adjustable constant.

It appears that the buoyancy-driven plume has been less studied [7–10]. In contrast to the jet,
the conserved quantity for such a plume is the buoyancy force rather than the jet thrust. Morton
et al. [9] presented an analysis of a source of buoyancy and Morton [10] extended this to allow
for mass, momentum, and buoyancy. As described in detail in the sections to follow, Morton [10]
determined the location of the mixing transition for a plume without cross-flow and considered the
case of momentum being in the vertical direction and of the same sign as the buoyancy forces.
Other studies such as those by Hofer and Hutter [11] and Schatzmazz [12], presented numerical
schemes for evaluating forced and angled plumes with a given set of initial conditions. Lane-Serff
and Baines [13] proposed a mathematical model that clearly presented a division of vertical plumes
into three basic categories: buoyant jets, mass sources, and pure plumes. The main focus of their
work was, however, concentrated on studies of angled plumes. The mathematical model presented
by Lane-Serff and Baines is found to be valid only for cases with buoyancy and momentum flux
with the same sign.

II. ANALYSIS

The present work is a direct extension of an analysis developed for the transverse jet by Broadwell
and Breidenthal [6] to transverse plumes. It is a dimensional argument based on fundamental
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physics. For example, consider as the simplest case the canonical turbulent jet into a quiescent fluid.
At any far-field station x, the characteristic width of the jet is independent of both nozzle diameter
and the kinematic viscosity. The conserved quantity in the flow is the integrated momentum flux
from the nozzle thrust, so that the nozzle diameter has no effect on the far-field jet, except through
the nozzle thrust. If the Reynolds number is much larger than 1, viscous forces associated with the
largest eddies are small compared to their inertial forces. Since entrainment is dominated by the
largest eddies, the growth is independent of Reynolds number. It follows that the width of the jet
can only depend on x since it is the only length scale available.

The appropriate temporal problem for the spatially developing transverse jet is the line, or
two-dimensional (2D), vortex pair [6]. In a Lagrangian sense, the nozzle thrust on the primary
flow in the spatial problem is a momentary, external impulse in the 2D temporal problem. For the
transverse plume, the temporal problem is the two-dimensional thermal. The external buoyant force
per unit length is continuous and constant, rather than from a momentary impulse that subsequently
vanishes. The only difference in the analysis of the transverse jet and the transverse plume is
the duration of the external force. The temporal problem should be a valid approximation of the
corresponding spatial problem if the curvature of the spatial flow can be ignored. This approximation
is expected to be asymptotically valid in the far field of the flow, where the curvature asymptotically
vanishes. The conserved quantity is the buoyant force per unit length and per unit mass,

B = const × g′
0VnA0

V∞
= length3

time2 , (1)

where g′ is the buoyancy acceleration. The subscript 0 indicates the initial value at the nozzle. The
nozzle velocity is Vn, the nozzle area is A0, and the free-stream velocity is V∞. From dimensional
considerations,

δ̃(t ) = const × B1/3t2/3, (2)

where δ̃(t ) is the vortex size as a function of time t . The nozzle thrust and buoyant force
act as external forces on the free stream. According to the vorticity equation, torque from the
nonconservative forces generates vorticity [14].

For a self-similar transverse plume, any reasonable definition of the plume width is equally
arbitrary and equally justified. This arbitrary scale is proportional to both the separation between
the vortices and any reasonable definition of their diameter. Since the aspect ratio of the plume is
of the order one, the vortex separation is of the same order of magnitude as any other reasonable
definition of the vortex diameter or the plume width. In the current study, the vortex size δ̃(t ) is
defined as the visible width of the plume from the side view as observed during the experiment.

Assuming a Galilean transformation, the downstream station x is related to t by

x = V ∞t, (3)

and the spatial problem becomes

δ(x)

l
= const ×

(x

l

)2/3
, (4)

where

l = B

V 2∞
(5)

is an intrinsic length scale of the spatial problem related to the radius of curvature near the origin.
Equation (4) for the transverse plume compares with

δ

l j
= const ×

(
x

l j

)1/3

(6)
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for the transverse jet, where the corresponding length scale is

l j =
(

T

ρV 2∞

)
, (7)

according to Ref. [6]. Here, T is the jet thrust and ρ is the free-stream density.

III. MIXING AND FLAME LENGTH

In the current study, when a fluid consisting of an acid or alkaline solution rapidly reacts with
the free stream, the rate of disappearance of the reacting fluid corresponds to the rate at which the
two fluids react with one another. Considering a generic fuel combustion process, the length of
the flame can be qualitatively described as the distance over which the reactant disappears or the
reaction product is formed. Quantitatively, the flame length may correspond to the distance over
which molecular mixing and entrainment with a stoichiometric amount of fluid takes place. In the
current study, the flame length is described based on the early seminal work of Hottel [15] and is
derived using Broadwell’s dilution agreement in Ref. [6]. A key experiment by Weddell, reported
in Ref. [15], describes the effect of discharging a water jet consisting of an alkaline solution with
phenolphthalein as a pH indicator, into a stationary acidic reservoir. The jet fluid, upon reacting
with a sulfuric acid solution, turns colorless as it entrains and mixes downstream from the nozzle.
The volume equivalence ratio φ is defined as the ratio of the volume of ambient fluid required
to react completely with a unit volume of the jet fluid. As defined by Wendell, the flame length
is the distance over which the red color of the pH indicator completely disappears. Based on the
mixing and reaction models by Ref. [6], the reaction process is initially characterized by large-scale
entrainment of the acidic solution and is followed by an inviscid cascade to the Kolmogorov scale
λ0. The amount of time td required for a jet to entrain a given volume of ambient fluid and then
the subsequent inertial cascade scales with the rotation period of the large-scale eddies. Since the
Kolmogorov scale is

λ0 ∼
(

ν3d

Vn

)1/4

, (8)

the time required for the jet to diffuse over this distance is

tλ ∼
(

Sc

Re1/2
d

)
d

Vn
, (9)

where Sc is the Schmidt number and Red is the Reynolds number at the nozzle exit. For the
transverse plume, the smallest Reynolds number in the flow field is at the nozzle. The ratio of
the diffusion time to the large-scale breakdown time is expressed as

T ∼ Sc

Re1/2
d

. (10)

Hence, for sufficiently large Reynolds number, the diffusion time td is faster than the large-scale
rotation period. Since the flame length is controlled by the entrainment and the cascade times, it is
essentially independent of the Reynolds number above the mixing transition.

The flame length depends on the volume equivalence ratio φ. From Broadwell’s dilution
argument [6], per unit time, the volume of mixed fluid at the flame tip divided by the volume of
the nozzle fluid must be proportional to (φ + 1). Hence,

V∞δ2
f

VnA0
= const × (φ + 1), (11)

where δ f is the width of the plume at the flame tip. Equation (11) suggests that with increases in
free-stream velocity, the volume of the injected reactant per unit time is spread out over a longer
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length of the plume. Consequently, the width of the plume at the flame tip is reduced in order to
maintain the same volume necessary to react all the injected fluid.

Equations (1)–(11) yield

x f

d
= const ×

(
V 2

n

g′
0d

)1/2(
V∞
Vn

)3/4

(φ + 1)3/4, (12)

where x f is the streamwise station at the flame tip and d is the nozzle diameter. The flame length
depends weakly on the nozzle Richardson number,

Ri0 = g′
0d

V 2
n

. (13)

We have implicitly assumed that the nozzle thrust is sufficiently small compared to the buoyant
flux. This assumption is not true at the nozzle if Ri0 is less than one. Farther from the nozzle,
however, the accumulated impulse of a continuous buoyant force eventually surpasses that of the
initial jet thrust, so that Eq. (12) should be asymptotically valid at a sufficiently large equivalence
ratio. Morton [10] determined the location of this transition for a plume without cross-flow.

With a cross-flow, the transition between a momentum-dominated flow and a buoyancy-
dominated flow can be estimated by equating the impulse per unit length of the jet with the plume
in their corresponding temporal problems.

They are equal at time

t∗ = T/ρ

BV∞
, (14)

corresponding to station

x∗ = T/ρ

B
. (15)

This can be expressed as

x∗ = ρ0

ρ

V ∞Vn

g′
0

, (16)

where ρ0 is the density of the injected fluid. Equation (13) is expected to be valid if x∗ � x f .

IV. EXPERIMENT

An aqueous plume was introduced through the test-section ceiling of a water tunnel, which
provided the cross-flow. The water tunnel apparatus is described in Eroglu et al. [16]. Briefly, the test
section is 0.7 m high, spans 0.7 m, and is 3 m long, through which a dilute and transparent solution
of sulfuric acid flowed. A red solution of sodium hydroxide, sodium chloride, and phenolphthalein
(a pH indicator) drained into the water tunnel through a jet nozzle of 0.019 m diameter from a
reservoir above the water tunnel. The solution drained exclusively under gravitational flow, with no
other momentum source. When two fluids mixed, a rapid chemical reaction caused the red injected
solution to disappear. The volume equivalence ratio (the volume ratio to ambient to inject fluid
required to effect dilution and disappearance) was varied by changing the relative concentrations
of the acid and base. The velocity of the jet was estimated from the measured volume flow rate as
determined by the rate at which the liquid emptied from the reservoir. No correction was made to the
velocity profile for the thickness of the nozzle boundary layers. Figure 1 illustrates the schematics
for the evolving flow geometry and Fig. 2 represents the experiment layout used in the current study.

The nozzle Reynolds number Re0 varied between 400 and 6000. While this range is not always
above the Reynolds number of the mixing transition, approximately a few thousand, the important
requirement for the flame length is that the mixing be entrainment limited by the flame tip. So the
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FIG. 1. Flow geometry.

Reynolds number at the flame tip must be sufficiently large. From Eqs. (2)–(13), it is

Re f =
(

g′
0VnA0

V∞

)2/3( x f

V∞

)1/3 1

ν
, (17)

where ν is the kinematic viscosity of the fluid. The Reynolds number at the flame tip varied from
1000 to 21 000.

The coordinates at the tip of the red plume were measured using a video recording from a
6.1-megapixel camera with 3× optimal zoom (35 mm equivalent: 36–108 mm) which permitted
taking pictures with an equivalent shutter speed of 1/1400 s, providing an appropriate resolution
of the flame tip. The nozzle fluid was nearly saturated with salt in order to minimize the fraction
of the total flame length that was influenced by initial nozzle momentum rather than buoyancy.
While holding the nozzle speed constant, the tunnel speed was progressively varied from run to run.
The velocity ratio of the free stream to nozzle flows ranged from 0.6 to 22. The chord flame length
is defined in terms of the flame tip coordinates,

c f ≡ (
x2

f + y2
f

)1/2
. (18)

The chord flame length normalized by the nozzle diameter is plotted as a function of the velocity
ratio for different values of volume equivalence ratio in Fig. 3. The streamwise flame length
normalized by the nozzle diameter is shown in Fig. 4.

FIG. 2. Flow geometry.
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FIG. 3. Flame chord length for varying equivalence ratio.

From Eq. (12), the model suggests a different normalization, defined by

Xf = x f

d
( Vn

g′
0d

)1/2(V∞
Vn

)3/4
(φ + 1)3/4

. (19)

This normalized flame length is shown in Fig. 5. As observed, the data appear to collapse
along the analytical solution for large values of V∞

Vn
, suggesting the model reasonably describes the

transverse plume even when the plume is near the wall. Evidently, the nearby wall does not affect

FIG. 4. Downstream flame length for different φ.
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FIG. 5. Normalized downstream flame length.

the entrainment much, at least over this range of velocity ratios. The authors argue that the physics
depends on the dimensionless measure of buoyant effects, the Richardson number as well as the
Reynolds number, since the molecular mixing is strongly affected by mixing transition. Necessary
values of both Ri and Re are achieved even for low values of the velocity ratios in Figs. 3–5.
According to the Galilean transformation within this model, the only effect of V∞ is to transport
the buoyant plume more rapidly downstream. The plume Reynolds number is based on the size and
vertical velocity component of the plume, independent of V∞.

V. DISCUSSION

As with the transverse jet, the flame length of the transverse plume is independent of the Reynolds
number Re0 (for fixed) above a certain critical value. All data shown are from this regime. For lower
Reynolds numbers, the flame length is much longer in an aqueous flow. This behavior, typical of
mixing in turbulent flows, is due to the sensitivity of the mixing rate to the presence of small-
scale turbulent motions. The critical value for this mixing transition is of the order of a thousand.
According to Eq. (12), the model predicts that the streamwise flame length x f /d should vanish
in the limit of V∞/Vn → 0. Furthermore, the flame length goes as (φ + 1) raised to the power
3/4. However, it is clear that the chord flame length c f /d cannot vanish in that limit. Furthermore,
similarity requires that the flame length be proportional to (φ + 1) there. Experiments by Rouse
et al. [17], Papanicolaou and List [18], Shabbir and George [19], and others all show that the buoyant
fluid must travel a specific distance from its source in order to entrain and to mix sufficient ambient
fluid to dilute the source fluid to a specified concentration. As a consequence, the chord flame length
at any equivalence ratio is finite for V∞/Vn = 0. It is clear that two different regimes exist, with a
transition between them at some V∞/Vn > 0 where the chord flame length is a minimum.

From Fig. 5, the velocity ratio for minimum chord flame length is evidently less than about
0.6. This is consistent with the value of about 0.6 observed in the transverse jet of Ref [6]. Such
a minimum is expected to correspond in both flows to the formation of a pair of counter-rotating
vortices.
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FIG. 6. Flow visualization of the Fric and Roshko vortices.

VI. APPLICATION TO WILDFIRES

This study was originally motivated by questions related to the wild land fire behavior. Among
other things, wild land fire behavior includes the intensity (energy release rate) of the fire, rate of
spread, and the variability of these properties over time. An intense, fast moving fire with a highly
variable rate or direction of spread is dangerous for firefighters and more difficult to bring under
control. Any insight into the properties likely to produce particularly dangerous fire behavior has
the potential to save lives, as well as thousands of dollars.

When applied to a wild land fire, it is first important to distinguish what is meant by flame length.
The term flame as used previously in this paper refers to the visible mixing portion of the buoyant
outflow. To scale up a wild land fire, this flame is much larger than the combustion zone, and more
comparable to a large portion of the smoke plume. For clarity, flame will still be used.

In the wild land fire context, the minimum flame length mentioned previously corresponds to
the maximum mixing rate, which would presumably lead to the most intense fire behavior. The
integrated buoyancy flux over the fire area

F ≡ gĖ

ρcp�
, (20)

where Ė is the rate of energy release and is the absolute temperature of the incident wind. Consider
an idealized wildfire propagating downwind along an advancing front. A simple dimensional
argument suggests that the most intense fire would occur for a critical wind speed,

V∞crit
∼= F 1/3D−1/3 =

(
gĖ

ρcp�D

)1/3

, (21)

where D is some measure of the transverse width of the fire. For the heat content of the fuel h
(J kg−1), the fuel density w (kg m−2), and the fire’s downwind advancement speed r (m s−1), this
can be written as

V∞crit =
(

ghwr

ρcp�

)1/3

, (22)

Because the water tunnel design approximates a point source fire, it is most relevant to a fire where
the transverse and longitudinal extents are comparable, or small. As an example application of this,
consider the 2003 Canberra fire in Australia. The estimated fuel load and rate of spread for this
fire are 2.5 kg m−2 and 1.3 m s−1, respectively. The heat content of forest fuels is approximately
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17 MJ kg−1. Using these fire properties with approximate values for g, ρ, cp, and � (9.8 m s−2,
1.1 kg m−3, 1004 J kg−1 k−1, and 300 K, respectively) then yields a critical wind speed of 12 m s−1.
This suggests that Eq. (22) provides reasonable wind speed values, given real values for the input
parameters.

The normalized flame length of a real fire would be slightly different from that in the water
tunnel. In the water tunnel, all of the buoyancy is introduced at the nozzle. In a real fire, on the other
hand, buoyancy is continuously added from the origin to the flame tip. Another flow feature that may
threaten firefighters is Fric and Roshko lee vortices [20], shown in Fig. 6. While these tornadolike
vortices seem to have little effect on the far-field flame length of the plume, they may play a critical
role on some wild land fires by first lofting and then propagating burning embers downwind, as
noted by Cunningham et al. [21]. Firebrands sometimes overrun and defeat fire breaks constructed
by firefighters, igniting new fires downwind of old ones.

VII. CONCLUDING REMARKS

The analysis and the comparison of the results with observation have concentrated on the far-
field behavior of transverse plumes. From the conservation of buoyant force, the growth law of the
corresponding temporal flow has been derived. A simple dilution argument then predicts the flame
length of the spatial flow. The measured flame length of the transverse plume is in accord with this
description of the far-field behavior. Notably, there is a minimum in the predicted flame length at an
intermediate velocity ratio. This suggests the approximate conditions for the most intense wildfires.
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