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Local energy flux of turbulent flows
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We investigate the local energy flux rate ��(x) towards small scales in isotropic turbulent
flows using direct numerical simulations and applying different low-pass filters. Two
different filters are examined: A sharp Fourier filter and a Gaussian filter. The probability
density function (PDF) of the local energy flux is calculated for the different filters and
for different filtering scales. It is shown that the local energy flux is a largely fluctuating
quantity taking both negative and positive values and this is more pronounced for the sharp
filter. The variance, skewness, and kurtosis of these fluctuations are shown to increase as
the filtering scale is decreased. Furthermore, we calculate the joint PDF of ��(x) with
the local filtered strain rate S� and the enstrophy ��. The flux shows a good correlation
with the strain, but not with the enstrophy. It is shown that its conditional mean value
scales like 〈��〉S ∝ �2S3

� in support of the Smagorinsky eddy viscosity model. Nonetheless,
strong fluctuations exist around this value that also need to be modeled. We discuss the
implications of our results for subgrid scale models and propose new modeling directions.
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I. INTRODUCTION

Turbulent flows are the fundamental basis of many engineering applications [1,2], geo-
physics [3,4], and astrophysics [5], among others. To correctly capture the behavior of these complex
problems with direct numerical simulation is, in principle, possible, but out of the question for the
foreseeable time to come. This is because performing such simulations requires that all scales,
from the largest (for instance, of the order of thousands of km for the atmosphere) to the smallest
dissipative scales (of the order of cm for the atmosphere), need to be resolved. This leads to an
enormous number of degrees of freedom whose evolution needs to be followed. In practice, a
modeling approach is needed, where only the scales of interest are kept while the remaining scales
are omitted and their effect on the former scales needs to be estimated. Because of the complexity
of these flows, including complex geometry and several physical mechanisms at play, the most
common way to arrive at such estimates is through semiempirical approaches [1,2,6]. In recent
decades, an approach which has gained popularity is the large-eddy simulation (LES) [2,7–10]. In
this framework, a low-pass filter is formally applied to equations, and only a part of the degrees
of freedom (the large-scale motion) is directly solved, while the remaining scales are filtered out
and their effect on the resolved scales is modeled by additional terms in the dynamical equations.
Unfortunately, there is no separation of scales between large and small scales in turbulent flows
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to perform an asymptotic expansion, and therefore it is not possible to obtain a closed system of
equations in a rigorous way [11–13]. It is therefore necessary to build up phenomenological closures
based on our understanding of the physics of small-scale turbulence. Such phenomenological
closures, however, need to be thoroughly tested with real data. For this goal, direct numerical
simulations (DNS) appear as the most valuable tool to get insights that permit the assessment of
present models and their improvement [2,14–16]

For any such modeling attempt, it is key to find a good compromise between including an
accurate physics and keeping the structure of the model simple and computationally efficient.
With this in mind, in this work we have focused on the analysis of the most important element
in turbulence dynamics, that is, the energy flux underlying the cascade [17]. The principal aim of
the present work is thus to get physical insights into the cascade process with regard to the multiscale
character of turbulent flows.

We investigate, therefore, how the transfer of energy to the subgrid scales can be modeled and
what observable of the resolved scales it should be based on. In order to address this question,
we perform a high-resolution numerical simulation and apply a scale-by-scale analysis based on
the original approach by Germano [7]. This allows us to simultaneously measure the effect of the
small filtered scales on the unfiltered scales, as in [18–22], but at the same time to associate it with
different observables of the large scales. To identify such observables, we look at the gradients of
the flow that have been useful in giving insights into the cascade mechanisms [13,23,24]. A similar
approach was used in the important work by Borue and Orszag [18] at low Reynolds number, where
many insights are already given.

More specifically, in this work we report on a comprehensive analysis of the flux in relation to
the total strain and vorticity. This is achieved by calculating the probability density function (PDF)
of the local energy flux for different filters and for different filtering scales as well as the joint PDF
of the flux with two observables, i.e., the strain and enstrophy of the filtered flow. This allows us to
extract correlations between the flux and the two observables. Our results strongly support the use
of the Smagorinsky model [25], but also emphasizes its drawbacks. We conclude by discussing the
implications of our results to modeling and also propose a possible new subgrid scale model.

II. THEORETIC BACKGROUND

A. Definitions

We begin by considering the incompressible Navier-Stokes equations describing the evolution of
the velocity field u of an incompressible unit density fluid given by

∂u
∂t

+ u · ∇u = −∇p + ν∇2 u + f, (1)

∇ · u = 0, (2)

where p is the pressure, ν is the viscosity, and f is an external body force. The flow is contained in
a cube of side 2π and periodic boundary conditions are assumed.

To introduce the notion of different scales in the flow, we use a filtering or coarse-graining
approach [7], where the dynamic velocity field u is spatially (low-pass) filtered over a scale � to
obtained a filtered value u�(x). The filtering procedure is given by

u�(x) =
∫

d3r G�(r)u(x + r), (3)

where G� is a smooth filtering function, spatially localized and such that G�(�r) = �−3G(�r/�), where
the function G satisfies

∫
d�r G(�r) = 1, and

∫
d�r |�r|2G(�r) = O(1). By applying the filtering to

Navier-Stokes equations, we obtain the coarse-grained dynamics,

∂t u� + (u� · ∇ )u� = −∇p� − ∇ · τ� + ν∇2u�. (4)
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Here, τ� is the subscale stress tensor (or momentum flux) which describes the force exerted on
scales larger than � by fluctuations at scales smaller than �. It is given by

(τ�)i, j = (uiu j )� − (u�)i(u�) j . (5)

The corresponding pointwise kinetic energy budget reads

∂t
(

1
2 |u|2) + ∂ j

[(
1
2 |u|2 + p

)
u j + τi jui − ν∂ j

(
1
2 |u|2)] = −�� − ν|∇u|2, (6)

where we have dropped the � subscript whenever unambiguous for the sake of clarity, and

��(x) ≡ −(∂ jui )τi j (7)

is the subgrid scale (SGS) energy flux. This term is key since it represents the space-local transfer
of energy among large and small scales across the scale �. In the case of a direct energy cascade, the
flux is known to be positive on average.

Although we formulate our filtering procedure in the physical space, in homogeneous flows an
efficient way to implement the filter is to use its Fourier transform,

Ĝq(k) =
∫

G�(x)eik·xdx, (8)

where q = 1/� is the filtering wave number. In this work, we consider two types of filters. First we
consider a Gaussian kernel,

Ĝq(k) = exp

[
− k2

2q2

]
. (9)

For an infinite domain, this filter corresponds to the Gaussian filter in real space, G�(r) =
exp(− 1

2 r2/�2)/(2π�2)3/2. We note that this filtering is not a projection and, in general, (u�)� �= u�.
The second filter we are going to use is a sharp-spectral filter such that

u�(x, t ) =
∑
|k|<q

û(k, t )eik·x. (10)

This filtering is a projector ((u�)� = u�) and is based on a Galerkin truncation for all wave numbers
larger than the given cutoff q = 1/�. This filtering is related to the classical definition of the energy
flux �(q) given by

�(q) = 〈u�(u · ∇)u〉, (11)

where the angular brackets stand for spatial average and Eq. (10) has been used for u�. Furthermore,
when the sharp filtering is used, the relation

〈��(x)〉 = �(q) (12)

holds.

B. Modeling

Given that in a LES only scales larger than � are resolved, it is desirable to model the subscale
stress tensor τ i, j based on the resolved scales and their geometric structure so that a closed system
of equations is obtained. The simplest choice is to relate τ i, j to the velocity gradient tensor of
the filtered field ∇u�. It can be decomposed into its symmetric and antisymmetric parts as ∇u� =
S� + ��, with

S� = (∇u� + ∇uT
�

)/
2 and �� = (∇u� − ∇uT

�

)/
2. (13)

The symmetric part is related to the strain, whereas the antisymmetric part is related to the vorticity.
It is worth recalling that these quantities are related on average, 〈|S�|2〉 = 〈|��|2〉 [12], but the local
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properties are not. Using these tensors, the subscale energy flux is defined as �� = S� : τ�, so that it
is clear that only the symmetric part of the resolved gradients enters directly in the definition of the
flux. Yet, the dependence of the subscale stress τ on the strain and vorticity is not known a priori.

Several attempts to model the subscale stress tensor by S� and �� have been made [2,9]. The
simplest models use the norms of the tensors, S2

� = |S�|2 and �2
� = |��|2. From these, the most

popular model is given by the Smagorinsky model [25] where τ is modeled as

τ i, j ≈ −C2
s �2S�Si, j, (14)

where Cs is an order one nondimensional number and we use the symbol ≈ to indicate that the
relation above is a model and is not an exact result. This expression gives the following estimate for
the local energy flux:

�� ≈ C2
s �2S3

� . (15)

Other models take into account �� as well. Indeed, approximating the subscale stress with its
extreme local expression, which is as a function of the resolved scale, the nonlinear Clark model is
obtained [9],

τ�(u, u) ≈ 1
3C2�

2
(
S

2
� + �

2
� + ��S� − S���

)
, (16)

where both strain and vorticity participate in the dynamics [18,26]. For this model, the formula for
the flux is

�� ≈ 1
3C2�

2
[−Tr

(
S

3
�

) + 3Tr
(
S��

2
�

)]
, (17)

which shows that the local behavior of the flux depends on a term related to pure strain and on
the term linked to vortex stretching [13]. Generally speaking, the local dynamics of strain and
vortex stretching can be quite independent [27], and therefore a complete picture of the cascade
requires both. Nonetheless, it is well known that for a homogeneous average, there is the following

kinematic relation [28]: 〈−Tr(S
3
� )〉 = 〈9Tr(S��

2
� )〉, such that the mean flux can be related to the

sole vortex-stretching term (or the strain skewness). Furthermore, the similarity of the statistics of
these two terms was observed previously in a different context [29]. This suggests that within the
purpose of modeling the cascade flux, the use of the sole strain may be justified. Nonetheless, all
mentioned models are based on assumptions that cannot be proven from basic principles. Therefore,
confirmation from numerical simulations and experiments is required. One thus has to compare the
results of direct numerical simulations (DNS) with different LES models [9,30] or, alternatively, one
can use DNS to directly test the assumptions used by the models, i.e., the a priori approach [10].
This latter choice is what we are trying to do in the following sections.

III. RESULTS

A. The flow

We apply the formalism described in the previous section to the results of a direct numerical
simulation of the Navier-Stokes equations given by Eq. (2). The forcing was chosen so that there
is a constant injection of energy at the Fourier modes with |k| � kf = 2 and is explicitly given in
terms of its Fourier components as

f̂k = ε
∑
|k|�2

ûk∑
|k|�2 |ûk|2 + i

∑
|k|�2

ωkûk, (18)

where ε is the constant in time energy injection rate that we fix to ε = 1. The frequencies ωk are
chosen randomly in order to decorrelate the forced modes. The flow was simulated using the pseu-
dospectral open-source code GHOST [31] with a second-order Runge-Kutta for time advancement
and using the 2/3 rule for removing de-aliasing errors. The code has been extensively validated
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FIG. 1. Left: Energy spectrum for the simulation that is analyzed. The forcing is at k f = 1. A dashed
line with slope −5/3 is added for reference. The red dots indicate the wave numbers at which the filtering was
applied in the following sections. Right: Average energy flux 〈��〉 normalized with the mean rate of dissipation
obtained without filtering (DNS) and with the sharp filter (red dots) and the Gaussian filter (green squares).

during the last two decades and is a reference for homogeneous turbulence [31]. The simulations
were carried out with ν = 0.0005 on a 10243 grid leading in each direction to a maximum wave
number kmax = N/3 
 341. The Reynolds number Re = ε1/3k−4/3

1 /ν achieved with this resolution
was Re = 2000, where k1 = 1 is the smallest nonzero wave number in the domain. After a short
transient, the flow reaches a steady state where the energy dissipation rate matches the energy
injection rate and the flow shows all characteristics of a classical isotropic turbulent flow. In Fig. 1,
we show the energy spectrum defined as

E (k) = 1

2

∑
k−1<|q|�k

|ûq|2,

where ûq is the velocity Fourier mode. The spectrum shows a standard behavior, with a reasonable
inertial range following a Kolmogorov power-law scaling E (k) ∝ k−5/3 until around k = 50. The
red dots indicate the wave numbers where filtering was applied, which is examined in the next
sections. In the right panel, we show the energy flux that is almost constant in the inertial range.
The flux marked by a solid line was calculated directly in Fourier space as is typically done in
pseudospectral codes using Eq. (11). The red circles indicate the space averaged local flux for the
sharp filter of Eq. (10) at the different filtering wave numbers q, which are going to be examined
in the remaining sections of this work. With green squares, the space averaged local flux for
the Gaussian filter of Eq. (9) is also shown for the same wave numbers. As expected, the sharp
projector perfectly overlaps on the solid line, while the mean energy flux obtained from the Gaussian
filter does not exactly match, notably at small scales [32]. The two results are considerably close,
however, in the inertial range. We now consider the qualitative phenomenology of the flow as
represented through filtering at different scales. In Fig. 2, we show the vorticity field at different
coarse-graining levels using the Gaussian filter. The filtering at different scales reveals a hierarchy
of vortices of different scales coexisting in the flow. The unfiltered field shows small vortex filaments
typical of isotropic turbulence. When filtered at small scales q = 64 and also at an inertial scale, the
field shows some qualitative self-similarity even though the smallest filaments are smoothed out. As
the filtering wave number is reduced, larger and large vortices are revealed. Even when most of the
scales are filtered out, q = 16, some residual elongated vortex tubes persist, pointing out the most
important spatial, yet temporally intermittent, coherent structures of the flow.

B. PDF of local fluxes

Using the flow described in the previous section, we calculate the local energy flux ��(x) of
Eq. (3) at different levels of filtering q = 1/� using both the Gaussian and the sharp filter and
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(a) (b)

(c) (d)

FIG. 2. The enstrophy of the filtered field for (a) q = 16, (b) q = 32, and (c) q = 64, using the Gaussian
filter, and (d) unfiltered. The threshold used for the visualization is 3σ .

analyze its statistical properties. The local flux was calculated for q equal to powers of 2, q = 2n,
where n ranges from 1 to 8, as indicated in Fig. 1. This calculation was repeated for several instances
of time so that we obtained a good statistical sample. In Fig. 3, we show the PDFs of �� at different
scales, from the large (q = 8) to the small (q = 256) scales. For both filters, the PDFs are centered

FIG. 3. The PDFs of the subscale energy flux for the sharp filter (left) and for the Gaussian filter (right).
The PDFs are displayed for different length-scale cutoff �.
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FIG. 4. Top left panel: A comparison of the PDF of the flux using the sharp filter (blue line) and a Gaussian
filter (red line) for q = 64. Top right panel: The variance of the flux as a function of q for the two filters. Bottom
panels: The skewness (left) and the flatness (right) of the flux for the two filters.

around a value close to zero with long exponential or stretched exponential tails. The tails of the
PDF increase as q is increased up until the dissipation scales are reached, q 
 128, after which they
start to decrease. It is worth noting that for q > kmax, the local flux is pointwise zero so the PDF
converges to a δ function at ��(x) = 0.

The flux obtained by sharp filtering is more symmetric and displays larger tails. The flux obtained
through Gaussian filtering has a more skewed behavior, with less probable negative events. The
profiles obtained are similar to those obtained in analogous previous simulations [20,32,33]. In the
top right panel of Fig. 4, we compare the two fluxes based on the two filters at the scale � = 1/q =
1/64, which is at the end of the inertial range and emphasizes the differences of the PDFs of the
two filters. In the rest of the panels of Fig. 4, we show the first normalized statistical moments of
the flux:

the variance 〈[�� − 〈��〉]2〉, (19)

the skewness
〈[�� − 〈��〉]3〉

〈[�� − 〈��〉]2〉3/2
, and the kurtosis

〈[�� − 〈��〉]4〉
〈[�� − 〈��〉]2〉2

, (20)

computed at different scales and for the two filters. Here we have a vivid description of the difference
between the two results. The flux computed through the Gaussian filter at this scale is characterized
by strong fluctuations, with possible but rare negative events. It is interesting to point out that the
shape exhibited by the one-point PDF of the flux shown in Fig. 4 is qualitatively the same as those
found in the study of general dissipative nonequilibrium systems, in the framework of the Gallavotti-
Cohen or fluctuation-relation analysis [34–42]. Instead, the negative events (or backscatter events, as
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FIG. 5. A visualization of the strain density (left) and the amplitude of the local flux (right), for q = 32 and
gauss filtering (for the same snapshot of the flow as in Fig. 2).

called in LES) are much more frequent with the sharp filter. It is interesting to look at the statistical
moments, which show that the two approaches give the same trend up to the fourth moment at all
scales, within the numerical errors, but there is about one order of magnitude of difference between
the two results almost everywhere. While the average flux is the same computed by the two different
methods, the sharp filter gives a wildly fluctuating subscale energy flux, with many negative events,
so that it appears difficult to use directly in the framework of LES, at least from a numerical point of
view. The reason for such discrepancy is traced back to the fact that the sharp filter used here does not
have the desirable features of a proper filter; notably, it is not localized in space and is not positive
definite. Even though it has been shown that the sharp-spectral filter has a firm theoretical basis for
its use in LES, the results suggest that the use of the smooth filtering approach is preferable if one
is interested in energy flux properties. For this reason, we focus in the following on the Gaussian
filter.

C. Joint PDF

We now look at the possible dependence of the local energy flux with the gradients of the flow
as discussed in Sec. II B. To give some more visual insight, in Fig. 5 we show a three-dimensional
visualization of the coarse-grained strain S� and the energy flux �� at the same scale, side by side.
We have chosen a moderately large scale, q = 32, since at these scales the dependence on vorticity
seems more important. The figure convincingly shows that most of the properties of the flux and,
notably, the geometrical features are well reproduced by the strain. In particular, �� appears to be
more correlated with the filtered strain than the filtered enstrophy shown in the top right panel of
Fig. 2 for the same q.

To be more quantitative, we calculate the joint PDF between �� and �2
� and between �� and S2

� .
The strain and the enstrophy are multiplied with the viscosity to be able to compare with the mean
value at � = 0 given by

lim
�→0

ν
〈
S2

�

〉 = lim
�→0

ν
〈
�2

�

〉 = ε = 1.

The results are displayed in Fig. 6. From the left column, we can see that the energy flux is
essentially uncorrelated with the enstrophy, and therefore with vorticity. In particular, for large q,
we observe that at a given ��, the probability changes very slowly with respect to �, indicating
almost independence. The joint PDF of the flux with the strain presents a very different story. The
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FIG. 6. Left column: Joint PDF of flux �� and enstrophy �2 at different scales. Right column: Joint PDF
of flux �� and strain S2 at different scales. Bright colors indicate high probability, while dark colors indicate
low probability; white indicates zero probability. The strain and the enstrophy are multiplied with the viscosity
to be able to compare with the mean value at � = 0 given by ν〈S2〉 = ν〈�2〉 = ε = 1.
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FIG. 7. The PDF of the flux conditioned on different values of the strain S� for q = 32 (left) and q = 64
(right).

two variables appear very strongly correlated at each scale. Furthermore, even though the change
of scale has an impact on the shape of the PDF, it appears to change in a self-similar way, that is,
the dependence on the scale is given by a power law. To quantitatively capture this trend, we show
in all figures the curve given by the Smagorinsky model (15). The agreement of this curve with the
maximum of the probability is excellent. Qualitatively, regions with high strain favor large energy
flux. Furthermore, as expected, the larger the scales, the less important the strain can be, so that very
large strain values are obtained at very small scales, where they contribute to the viscous dissipation.
It is worth noting that the variations around the maximum value [given approximately by Eq. (15)]
are significant and �� also takes negative values. This is most significant for small values of S, while
for large values of S, the flux is almost always positive. To get more insights on the behavior of
the fluctuations, we plot the shape of the PDF of the subscale flux �� at a given scale conditioned
with several values of the strain, shown in Fig. 7 for the scale � = 1/q = 1/32 and � = 1/64. While
the mean value and the maximum follow the S3

� curve, the shape of the curves changes even at the
qualitative level. Indeed, positive extreme events are found only for large strains, which means more
pronounced right tails for the corresponding PDFs. Although the analysis focuses on rare events and
therefore statistical errors may lead to wrong conclusions, it is interesting to make the following
remarks: (i) The negative side of the flux is less affected by changes in S2

� , at small values of the
strain. (ii) However, as larger values of S2

� are examined, less negative events are observed, notably
at the larger scale shown, q = 32. Thus, large strain regions are related dominantly to positive flux.
(iii) At different scales, the fluctuations of the flux display a different behavior, in particular when
conditioned on a high value of the strain.

Furthermore, to examine the dependence on scales, as highlighted in Fig. 6, we have analysed
the self-similarity of the behavior and the results are displayed in Fig. 8. The left panel shows as a
function of νS2

� , the mean value of the flux conditioned on the strain 〈��〉S , where the average is
performed over all points that have a given strain S�. The curves nicely collapse, pointing out the
behavior indicated by Eq. (15). The results of the mean value thus suggest that the mean flux can be
estimated and thus modeled by the value of the strain rate following the relation (15). However, in
addition to the mean value, a successful model should also capture the fluctuations around it. This
is particularly important in this case since, as shown in Fig. 7, although 〈��〉S is always positive,
the fluctuations are strong enough that �� also takes negative values.

To see if a similar relation is followed by the fluctuations and to look for a possible self-similar
behavior of the fluctuations, we plot the variance of the conditioned �� in the left panel of Fig. 8.
The behavior of the variance is not fully self-similar, as already pointed out in Fig. 7. As q is
varied, different slopes are observed. For scales in the inertial range and larger q � 64, the slope
observed in the left panel of Fig. 8 (indicating a possible power-law dependence) is decreasing with
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FIG. 8. Left: The mean conditioned flux 〈��〉S as a function S�. Right: The variance of the conditioned flux
as a function of S�.

q. Only in the dissipative range, q > 64, do the curves almost collapse. This lack of self-similarity
is a clear sign of intermittency that currently lacks a theoretical understanding and requires further
investigation.

IV. DISCUSSION

The main focus of the present multiscale analysis of the cascade energy process is to give some
fundamental insights into the relation to LES of turbulent flows, where only scales larger than � are
simulated and their effect of the subfilter scales has to be modeled. First, our results show that while
the sharp-spectral filter has been shown to fulfill the needed mathematical properties [32,43–46] and
is the most obvious filter for pseudospectral simulations, it triggers wild fluctuations that blur the
cascade-flux process and make it difficult to understand its main properties. That seems related to
the fact that most of the quantities under investigation are found to be local in space, and hence our
findings suggest a preference for the use of filters which are local and positive in physical space.

Then, our scale-by-scale analysis shows that there is a strong correlation between the local energy
flux rate and strain rate of the filtered field. The conditional mean value of the flux rate follows a
clear power-law dependence on the strain rate given by Eq. (15), making it predictable based on
only filtered quantities. Thus the strain is a very good observable to characterize the properties of
the energy flux. On the other hand, the vorticity appears to be much more indirectly linked. The
scaling relation observed in this work hence gives strong support to the Smagorinsky model and
its variants [2,25] that use the strain to predict the subscale stress tensor. However, even though
the Smagorinsky model predicts to good accuracy the mean values, it gives no prediction for the
fluctuations around the mean that are of great importance as they control the inverse transfer events
that are observed.

There are several steps that can be taken to extend this research. First of all, simulations at higher
Reynolds number would be desirable in order to have a cleaner inertial range where the statistics
are not affected either by the forcing properties or from viscous effects. Second, the present results
were limited in considering correlations of the local flux with only the amplitude of the strain and
the vorticity. This is a simplification that is required as a first step before examining more complex
relations as the one given by the Clark model (16). It was also noted that although the vorticity
was not strongly correlating with the flux, it was not completely disassociated from it. So a relation
that involves both strain and vorticity is still a possible improvement of the Smagorinsky model. A
fruitful direction that could be followed in future work is to examine the joint PDF of the energy
flux and the invariants (under rotations and reflections) of the gradient tensor [47,48] that completely
characterize the structure of the gradient tensor. Third, it would be important, of course, to extend
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such an analysis to bounded flows, for instance a channel, which is key for applications and where
the local inverse cascade is important.

Furthermore, even if an optimal parametrization is chosen, the energy flux will still depend on
the subscale fluctuations that are essentially random in nature. One cannot then hope to get an exact
relation that connects the gradient tensor with the flux, and this randomness will need to be taken
into account in terms of stochastic modeling. In terms of the Smagorinsky model, the simplest
expression that generalizes Eq. (14) can be given by

τ i, j ≈ −C2
s �2S�(1 + ξ�)Si, j, (21)

where ξ� is a zero mean spatiotemporal noise that depends, in principle, on � and S� and whose
properties need to be determined from data. Analyzing the data displayed in Fig. 7, it turns out that
it is not possible to fit all the curves with a simple random variable ξ since nontrivial dependence of �

and S� is indeed found. Yet, the main features are decently recovered simply with a random variable
whose PDF is given by f (x) ∝ exp (−γS|x|), where γS is a coefficient that has a dependence on S.
Finally, besides the energy, the cascade of the second invariant, i.e., that of helicity, also needs to be
studied, quantified, and properly modeled. We plan to follow these directions in our future work.
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