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Lagrangian stochastic models are widely used to predict and analyze turbulent disper-
sion in complex environments, such as in various terrestrial and marine canopy flows.
However, due to a lack of empirical data, it is still not understood how particular features
of highly inhomogeneous canopy flows affect the Lagrangian statistics. In this work,
we study Lagrangian short-time statistics by analyzing empirical Lagrangian trajectories
in subvolumes of space that are small in comparison with the canopy height. For the
analysis we used 3D Lagrangian trajectories measured in a dense canopy flow model in
a wind-tunnel, using an extended version of real-time 3D particle tracking velocimetry.
One of our key results is that the random turbulent fluctuations due to the intense
dissipation were more dominant than the flow’s inhomogeneity in affecting the short-time
Lagrangian statistics. This amounts to a so-called quasihomogeneous regime of Lagrangian
statistics at small scales. Using the Lagrangian dataset, we calculate the Lagrangian
autocorrelation function and the second-order Lagrangian structure-function and extract
associated parameters, namely, a Lagrangian velocity decorrelation timescale, Ti, and the
Kolmogorov constant, C0. We demonstrate that in the quasihomogeneous regime, both
these functions are well represented using a second-order Lagrangian stochastic model that
was designed for homogeneous flows. Furthermore, we show that the spatial variations of
the Lagrangian separation of scales, Ti/τη, and the Kolmogorov constant, C0, cannot be
explained by the variation of the Reynolds number, Reλ, in space, and that Ti/τη was small
as compared with homogeneous turbulence predictions at similar Reλ. We thus hypothesize
that these characteristics occurred due to the injection of kinetic energy at small scales due
to the so-called “wake-production” process, and we show empirical results supporting our
hypothesis. These findings shed light on key features of Lagrangian statistics in flows with
intense dissipation, and have direct implications for modeling short term dispersion in such
complex environments.

DOI: 10.1103/PhysRevFluids.5.094601

I. INTRODUCTION

Scalar dispersion in the atmospheric surface layer is strongly influenced by the turbulent canopy
flows. These flows affect the dispersal of pathogens and the ventilation of urban areas [1], as well
as the dispersal of spores, bacteria, and seeds in forests and fields [2]. After years of research, it had
become commonly accepted that there is a particular difficulty to model dispersion in canopy flows
through Eulerian models, resulting from the failure of gradient-diffusion theory in these flows [3–5].
Consequently, Lagrangian stochastic models (LSM) gained popularity as a state-of-the-art modeling
approach within the community (e.g., Refs. [2,6–16], among others). LSMs can efficiently predict
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transport and dispersion in turbulent flows through Monte Carlo simulations [8], and are specifically
useful in applications to inhomogeneous turbulence (i.e., where the flow statistics vary in space) and
to cases with complex distributions of sources.

In the LSM framework, a stochastic Markov random walk provides increments of the states of
“marked” particles, defined by the particles’ position and its time derivatives up to n order dnx/dtn

(usually n = 1 or n = 2 is the order of the model, and boldfaced symbols denote vectors). There
are two fundamental steps in constructing an LSM: (a) determine an appropriate stochastic process
defining the random walk, and (b) to obtain functional expressions relating the Lagrangian operators
of the random walk to statistics of the flow field. In other words, one must find Lagrangian equations
of motion in terms of a priory known Eulerian velocity statistics.

There are significant challenges associated with the two steps above due to the complex nature of
the canopy flows, in which various processes occur simultaneously at different scales. In particular,
there is a number of topics that demand special attention when constructing LSMs for canopy flows:

(1) turbulence generated simultaneously by both the large scale shear and due to flow–obstacle
interactions (wakes) by canopy elements, leading to the so-called spectral short-circuiting through
wake production [17,18];

(2) nonuniqueness in the formulations of LSMs for inhomogeneous flows, namely, in the
solution of Thomson’s well-mixed principle [19,20];

(3) inhomogeneity due to the significant difference between the flow above and inside the
canopy layer [15], leading to a strong shear layer near the canopy top;

(4) Uncertainty in the parametrizations of Lagrangian statistics that are needed for LSM
construction, for example, the Kolmogorov constant or the Lagrangian integral timescale [21–23];

(5) the prevalence of large coherent structures due to the phenomenon so-called the mixing layer
analogy [24], leading to non-Gaussian distributions of the Eulerian velocity [25];

(6) the “mechanical diffusion” as a result of the fluid having to bypass the canopy obstacles [26]
(similar to dispersion in porous media flows).

Notably, the references above could not have been a conclusive list due to the vast body of
literature. In this work, we focus on small-scale motion in wakes of canopy obstacles associated with
item 1. Specifically, turbulent kinetic energy is produced in canopies in two ways: production due
to mean shear at scales comparable with obstacle height (H), and production due to obstacle drag at
smaller scales, so-called wake production. Wake production is said to short-circuit the turbulent
cascade since it extracts energy from large scales and injects it directly at smaller scales [17].
However, except for the theory by Poggi et al. [18] showing that wake production can affect the
Kolmogorov constant C0 (introduced below), how wake production affects Lagrangian statistics in
canopy flows is not known. Importantly, direct estimations of Lagrangian flow statistics in canopy
flows that could provide crucial data to resolve the items above are lacking.

Technological and scientific advances of the last two decades enabled the gathering of invaluable
empirical data in the Lagrangian framework, both through experiments and direct numerical
simulations (e.g., Refs. [27–46]). Such studies have analyzed Lagrangian dynamics in details,
bringing attention in the community to delicate mechanisms underlying the motion of Lagrangian
particles in turbulent flows [40]. The empirical data obtained in such studies can be used to
bridge the gap between the fluid mechanics and the stochastic models through more accurate
parametrizations and validation of theories. In most cases, due to practical limitations, the focus
was put on homogeneous isotropic turbulent flows (HIT); however, in the recent years, studies with
embedded inhomogeneity and anisotropy are gaining more attention (e.g., Refs. [43–45,47–49]).

In this study, we use measurements of flow tracers’ trajectories in a heterogeneous canopy
modeled in a wind tunnel, [49,50], to better understand the effect of flow–obstacle interactions
on short-time Lagrangian statistics (item 1). We focus our analysis on small scales by exploring
Lagrangian statistics inside small subvolumes of space, namely, smaller than 〈u〉

∂〈u〉/∂z , where 〈u〉
is the streamwise mean velocity. Our analysis reveals that the short-time Lagrangian statistics
were affected more strongly by random turbulent fluctuations than by the flow inhomogeneity
due to intense dissipation; this amounts to quasihomogeneous regime of Lagrangian dynamics
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at short time and small scale. Accordingly, the Lagrangian autocorrelation function and the
second-order structure-function could be well represented by a second-order LSM designed for
homogeneous flows. Furthermore, our empirical study in the quasihomogeneous regime suggests
that Lagrangian separation of scales and the Kolmogorov constant (definitions below) are affected
by wake production, in agreement with Poggi et al. [18]. The results of our study are relevant
for flows with intense dissipation and spectral short-circuiting effects. Importantly, we demonstrate
how measurements performed directly in the Lagrangian framework can provide crucial insight
into Lagrangian dynamics in canopies, and thus that they have potential for improving dispersion
models’ accuracy in canopy flows.

The rest of this paper is organized as follows. In Sec. II, we present three LSMs that will be
used in our analysis, and the details of our experiment and our analysis. In Sec. III, we reveal a
quasihomogeneous regime of Lagrangian statistics in the small scales. In Sec. IV, we present direct
estimations of the Lagrangian velocity autocorrelation, the structure-functions and the associated
parameters (Ti and C0), demonstrating their spatial distributions. In Sec. V, we compare our
empirical results with predictions for homogeneous flows and hypothesize on the role of wake
production. Last, we summarize and present our conclusions in Sec. VI.

II. METHODS

A. Definitions

Let us first define three different LSMs that will be used in the following analysis. The simplest
first-order LSM (n = 1) assumes that the turbulence has spatially homogeneous statistics and that
it is characterized by Gaussian velocity PDFs at each point (hereafter called Gaussian turbulence).
This model is essentially the Ornstein-Uhlenbeck (OU) process [8,51]:

dv′
i = αi(x, v, t ) dt + βi j (x, v, t ) dξ j, dxi = [v′

i + 〈ui〉] dτ, (1)

αi = − v′
i

TL,i
, βi j = δi j

(
2σ 2

i

TL,i

)1/2

. (2)

Here vi = 〈ui〉 + v′
i is the ith component of the velocity of a Lagrangian particle where 〈ui〉 is the

mean velocity field and v′
i a velocity fluctuation, dξi are increment components of a Wiener process,

δi j is the Kronecker δ function, and σi is the standard deviation of v′
i . The Lagrangian velocity

autocorrelation function, ρi j , and the Lagrangian integral timescale, TL,i, are defined as

ρi j (τ ) = 〈v′
i (0) v′

j (τ )〉〈
v′2

i (0)
〉1/2 〈

v′2
j (τ )

〉1/2 , TL,i =
∫ ∞

0
ρii(τ )dτ, (3)

where angular brackets 〈·〉 denote an average, the velocities vi(0) v j (τ ) are taken along an individual
Lagrangian trajectory, and since we are considering a homogeneous and stationary flow, ρi j (τ ) is a
function of τ only. Doob [52] proved that the OU process, Eq. (1), is essentially the only process
defined with the properties: stationary, Gaussian and Markovian, with an exponential autocorrelation
function:

ρi j (τ ) = δi j exp

(
− τ

TL,i

)
. (4)

Furthermore, based on the Obukhov conjecture [53], consistency with the Kolmogorov inertial range
scaling of Lagrangian velocity increments [54] requires that [8]

2 σ 2
i

TL,i
= Dii(τ )

τ
= C0 ε; Dii(τ ) = 〈[v′

i (τ ) − v′
i (0)]2〉, (5)

where Dii(τ ) is termed the Lagrangian second-order structure function, C0 is the so-called Kol-
mogorov constant, and ε is the mean rate of turbulent kinetic energy dissipation. Borgas and Sawford
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[55] showed that for HIT these choices of αi, βi j are unique solutions of Thomson’s well-mixed
condition [19] and thus it is an exact solution of the Fokker-Plank equation.

In realistic situations the flows’ statistics vary in space, namely, flows are inhomogeneous, and
this fact is not treated by the simplest model above, Eq. (2). To overcome this issue, Thomson
[19] solved the well-mixed condition and provided a LSM for such flows assuming that the
turbulence is Gaussian and consistent with Kolmogorov similarity for Di j . This Markovian LSM
for inhomogeneous flows still uses Eq. (1), but the coefficients change according to

αi = −1

2
C0ε R−1

i j v′
j + φi

g
, βi j = √

C0 εδi j,

φi

g
= 1

2

∂Ril

∂xl
+ 1

2
R−1

l j 〈uk〉 ∂Ril

∂xk
v′

j + 1

2
R−1

l j

∂Ril

∂xk
v′

jv
′
k . (6)

Following Wilson et al. [56], this equation can be written more compactly as

φi

g
= T 0

i + T 1
i j v′

j + T 2
i jk v′

j v
′
k, (7)

where the T m are coefficients multiplying the fluctuating velocity to power m. As written in the
Introduction (item 2), this model is not a unique solution of the well-mixed condition under the
above assumptions. Nevertheless, it is commonly used for modeling dispersion in canopy flows
(e.g., Refs. [10,23,56,57]) and we shall utilize it here as well.

So far we have only considered first-order LSMs (n = 1) that are regarded accurate in flows with
very high Reynolds numbers. In such cases the particle accelerations have very short correlation
times relative to the integral timescales [27,28,54]. However, if this separation of timescales reduces,
for example, due to finite Reynolds number effects, then the first-order models become less accurate
in modeling the dispersion. The influence of finite separation of scales was addressed by Sawford
[58] in the introduction of a second-order model (n = 2) for a homogeneous turbulence case:

TLdai + (1 + R1/2) ai(t ) dt + R1/2

TL

∫ t

0
ai(τ ) dτ dt =

√
2σ

TL
R1/2(1 + R−1/2) dξi,

dvi = ai dτ ; dxi = (vi + 〈ui〉) dτ, R = 16a2
0

C4
0

(
τe

τη

)2

, (8)

where a0 is a Kolmogorov constant for the variance of acceleration, ai is a component of
the particle’s acceleration vector, τe is an Eulerian integral timescale, and τη = (ν/ε)1/2 is the
Kolmogorov timescale. The model Eq. (8) has the following velocity autocorrelation function [58]:

ρi j (τ ) = δi j
T1,i exp(−τ/T2,i ) − T2,i exp(−τ/T1,i )

T1,i − T2,i
, TL,i = T1,i + T2,i. (9)

This second-order model was extended by Du et al. [59] to the decaying turbulence case and by
Reynolds [20] to include vertical inhomogeneity of the turbulent flow statistics.

Above we have considered three models: Eq. (1) with Eq. (2), which is a first-order model for
infinite Reynolds number homogeneous turbulence; Eq. (1) with Eq. (7), which is also a first-order
model but for inhomogeneous flows; and last, Eq. (8), which is a second-order model, incorporating
finite Reynolds number effects in homogeneous flows. These models will be used in the analysis of
our results.

B. Experimental method

In our investigation, we used the results from a wind-tunnel experiment. Detailed descriptions
of the experimental apparatus, measurements, and post processing were given in Refs. [49,50], yet
for completeness, we present a brief overview here as well. We used the environmental wind-tunnel
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FIG. 1. (a) A top view sketch of the canopy repeating unit cell. Gray shaded regions show the positions of
the four subvolumes. Black thin rectangles represent the canopy roughness elements. (b) An isometric sketch
of the short and tall roughness obstacles used. (c) Main panel shows the second-order Eulerian longitudinal
structure function in three subvolumes, and dashed lines show the isotropic model, Eq. (11), with the estimated
values εv . The inset shows the compensated structure functions for the same cases. (d) The ratio between the
transverse and the longitudinal Eulerian structure functions, compared with the K41 isotropic value 4/3.

laboratory at IIBR, featuring a 14 m long open wind-tunnel with a 2 × 2 m2 cross-sectional area,
that is compatible for conducting experiments mimicking turbulent flows in the atmospheric surface
layer. The canopy flow was modeled by placing flat rectangular plates on the bottom floor of the
wind tunnel. Our mixed height canopy layer was constructed of two types of plates with a height of
either H or 1

2 H , and a width of 1
2 H , where H = 100 mm. The two types of plates were positioned

in consecutive rows and at a staggered orientation, see Figs. 1(a) and 1(b). The entire upstream part
of the test section was fitted with roughness elements. The canopy frontal area index, defined as the
plate frontal area divided by the lot area, � f = A f /AT = 9/16, (A f being is the element frontal area,
and AT the lot area of the canopy). This density categorizes our canopy as a moderately dense and
deep canopy.

We gathered data at two levels of the free stream velocity, corresponding to Reynolds numbers
Re∞ ≡ U∞H/ν = 16 × 103 and 26 × 103, with U∞ = 2.5 and 4 m s−1 being the free stream mean
velocity measured with a sonic anemometer at the center of the wind-tunnel cross section, and ν

the kinematic viscosity of the air. In what follows we adopt the frame of reference commonly used
in the canopy flow literature—x is streamwise aligned longitudinally within the wind-tunnel, y is
in the horizontal cross-stream direction, and the positive z axis is directed vertically away from the
bottom wall at which z = 0.

In the experiment, we tracked fluid tracers using a real-time extension of the 3D-PTV method
[49]. The flow was seeded with hollow glass spheres of diameter 5 μm on average, with the Stokes
number St = τp/τη ≈ 0.05. The tracers were illuminated with a 10 W, 532 nm continuous wave
laser; we inferred the tracer’s 3D positions using 4 Megapixel images that had a resolution of 50 μm
per pixel and that were taken at rates of 500 μHz within the canopy layer z � H , and 1000 Hz
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above the elements z > H . We implemented camera calibration, stereo matching and tracking [60],
to reconstruct the tracer particle’s trajectories by using the OpenPTV [61] open source software,
integrated to operate with the real-time image analysis extension. The trajectory data analysis was
performed by employing our open source FLOWTRACKS package [62].

C. The subvolume approach

We analyzed trajectories in 20 subvolumes centered at different locations. The subvolumes are
rectangular cuboids found at four horizontal locations [see diagram in Fig. 1(a)], and at five different
heights above the wind-tunnel bottom wall. The four horizontal positions of the subvolumes are
labeled alphabetically a, b, c, and d; a is found immediately downstream of a tall element, b is
upstream to the next tall element, and c and d are parallel to the former elements and positioned
around a short element. At each horizontal position, a–d , we used five vertical slabs of thickness
δz = 0.2H which defines a total of 20 subvolumes; the vertical slab position is labeled numerically
1–5, which correspond to the heights 0.5–0.7, 0.7–0.9, 0.9–1.1, 1.1–1.3, and 1.3–1.5H , respectively.
Thus, for example, the subvolume b2 is located upstream of a tall element at height 0.7H < z �
0.9H . An animation of a subsample from our data set can be seen online through the link [63].

Lagrangian statistics are commonly represented based on a common point of origin (x0, t0) and as
a function of time [54]. Thus the Lagrangian mean of an arbitrary function 〈A(x0, t0, t )〉, is normally
defined over flow ensembles. In this work, we assume that the flow is stationary (see Ref. [49]) and
ergodic, and thus we replace the above with an average over t0, presented as a function of time lag
τ = t − t0, where t0 is the time a particle was first spotted in our measurement volume. In addition,
we present Lagrangian statistics for particles with x0 in each of the subvolumes, namely, statistics
are subvolume averaged. Therefore, the ensemble average over subvolume V , 〈A〉v of any quantity
A, is calculated as

〈A(x, τ )〉v ≡ 1

N

N∑
i=0

Ai(xv, τ ), (10)

such that xv are positions of Lagrangian tracers inside the subvolume xv ∈ V , and N is the number
of Lagrangian trajectories in the subvolume over the measurement period of time.

It is notable that the subvolumes we used are small. In particular, δz <
〈ux〉

∂〈ux〉/∂z , and we observed
that the flow’s statistics had only minor variations within each subvolumes. This frames the focus
of our work on small-scale Lagranigan statistics.

D. Estimating the mean rate of dissipation

The Eulerian second-order structure function is defined as the second moment of spatial
velocity differences δu′

r ≡ u′(x) − u′(x + r) [54]. Assuming local isotropy and homogeneity, the
Kolmogorov universal similarity theory [64] predicts that the longitudinal component of the second-
order structure function, SLL, and its transverse component, SNN (i.e., the components aligned with
r or normal to r, respectively), admit to the following scaling law in the inertial range of scales:

SLL(x, r) =
〈(

δu′
r · r

r

)2
〉

= C2(εr)2/3,

SNN (x, r) = 1

2
(〈δv2(r)〉 − SLL(r)) = 4

3
C2(εr)2/3, (11)

where in the homogeneous turbulence case the x dependence drops, r = |r|, and C2 ≈ 2.1 is a
supposedly universal constant [65].

Following Refs. [29,46], we implemented Eq. (11) to estimate SLL in each subvolume using the
Lagrangian dataset and averaging velocity differences over spherical shells. This gives a structure
function that is isotropic by construction, namely, it depends only on the distance r. For example, in
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the main panel of Fig. 1(c) we present our estimations of SLL(r) in the subvolumes b1, b3, and b5
for the Re∞ = 16 × 103 case. Note that our estimation of SLL does not use the Taylor’s hypothesis.

Using SLL we estimated an empirical mean rate of dissipation in each subvolume. Since SLL

is quadratic with r in the dissipation range and should change very slowly at large scales above
the integral scale L [54], the compensated structure functions SLL(r)/C2(ε r)2/3 should peak at
an intermediate range η < r < L, and this is shown in the inset of Fig. 1(c). Thus, we defined a
subvolume averaged dissipation rate as

εv ≡ max
r

[
SLL(r)

C2 r2/3

]
, (12)

where SLL is estimated with samples x ∈ V . Using Eq. (12) instead of a least-square fitting has
the advantage of not having to specify a range of r where an inertial range scaling supposedly
exists; however, it may overestimate the value that would have been obtained in a fitting process,
but this uncertainty is low (arguably much lower than the uncertainty in the value of C2). Also,
due to anisotropy and inhomogeneity, the applicability of Eq. (11) to canopy flow turbulence is not
straightforward, as observed for example in Refs. [23,66,67]. Nevertheless, in Fig. 1(c) we compare
our estimations of SLL(r) with Eq. (11) using εv , and for the three cases we observe a distinct range
of r, in which an agreement between the theory and the empirical data exists. In addition to that,
the transverse components, SNN were similarly estimated using Eq. (11) and the Lagrangian dataset.
The ratios SNN/SLL were calculated and an example is shown in Fig. 1(d) as a function of r for
the three subvolumes b1, b3, and b5. The K41 isotropic value of SNN = 4

3 SLL [64] is plotted for
comparison as well. The figure shows that for all three subvolumes, the ratio SNN/SLL decreases
with r while crossing the 4/3 value at a limited range of r/η. These observations of agreement with
K41 similarity in a certain limited range of r supports the use of εv as a parametrization in our
experiment. Therefore, subvolume averaged dissipation scales were calculated as η ≡ (ν3/εv )1/4

and τη ≡ (ν/εv )1/2 being the length and timescales, respectively, in analogy to the usual case [68].
With the estimations of εv , a Taylor microscale Reynolds number is defined as

Reλ,v ≡ v′2
(

15

εv ν

)1/2

, (13)

where v′2 = 〈∑i(vi − 〈ui〉)2〉 is the RMS of particle velocity relative to the subvolume averaged
velocity. Estimations of εv and Reλ,v were repeated for all subvolumes and the values are tabulated
in the Appendix. The Reynolds numbers Reλ,v varied with x in the range 350–850 due to the
flow’s inhomogeneity and had negligible dependence on Re∞. The obtained values were used
for parametrization of the results presented below and the subscript “v” is omitted to facilitate
readability.

III. QUASIHOMOGENEOUS LAGRANGIAN DYNAMICS IN THE SMALL SCALES

In this section, we determine the dominant dynamical factors in the context of our measurements
by quantifying and comparing contributions from the different terms in the LSM Eq. (7). Identifying
the most relevant processes in the context our Lagrangian measurements is crucial since it will
frame our results in the proper context. In addition to that, it will dictate the tools that we use in the
consecutive analysis.

For the purpose of this analysis, we use the Thomson formulation [19] LSM for inhomogeneous
turbulence, Eqs. (1) and (7). Although the LSM is an equation of motion in the Lagrangian
framework, its input is a set of Eulerian variables, so to use it we must cast our Lagrangian
measurements onto an Eulerian coordinate system. Specifically, we require field representations
of the mean velocity, 〈ui〉, the turbulent stress tensor, Ri j , and the Lagrangian structure function
parametrization, C0 ε, all of which are available from our empirical dataset. Thus, we estimate the
velocity statistics by using the subvolume averages: 〈ui〉 = 〈vi〉 and Ri j = 〈v′

i v
′
j〉. For C0 ε, we rely

094601-7



RON SHNAPP et al.

on the fact that through our Lagrangian measurements we can calculate Di j (τ ) directly from the
definition, Eq. (5). This is unlike Eulerian measurements that must rely on models or on previous
measurements in similar flows. Thus, we calculate the structure function parametrization by
C0 ε = maxτ [ Dii

τ
]; this issue is discussed in detail below. Following that, we obtain continuous and

differentiable field estimations by using inverse-distance weighted interpolations of the subvolume
averaged data (for details, see Appendix D). Through this interpolation scheme, we obtained
estimations of the Eulerian fields in our volume of measurement, that allow to calculate the models’
coefficients.

We compare the magnitudes of the various LSM terms in Eq. (7) along the trajectories from
our experiment using the above interpolation schemes. In particular, to facilitate the analysis, we
employ the Wilson et al. [56] formulation for the models coefficients:

T 0
i = 1

2

∂Ri j

∂x j
, T 2

i jk = 1

2
R−1

l j

∂Ril

∂xk
, T 1

i j = T 2
i jk 〈uk〉.

In the top panel of Fig. 2 we show probability distributions for the magnitude of the various
LSM terms along the trajectories in our empirical dataset in subvolume b3, namely, at height
0.9 < z

H � 1.1. The curves essentially show the magnitudes of the forces that acted on our measured
particles, decomposed according to the LSM. The T 0

i term accounts for inter subvolume variations
of the Reynolds stress tensor, and it has the narrowest distribution of all the terms. The T 1

i j and T 2
i jk

terms are characterized by much wider PDFs since they include both spatial variations of Ri j and
the randomness of temporal velocity fluctuations. The figure also shows that the term accounting
for relaxation of turbulent fluctuations due to dissipation, 1

2C0εR−1
i j , is the largest of all the terms.

This implies that velocity changes due to effects of random turbulent fluctuations were generally
more dominant than the effects of all the other force components. Notably, the T m terms arise
due to inhomogeneity of the flow, while the 1

2C0εR−1
i j term accounts for turbulent fluctuations

that exist in both homogeneous and inhomogeneous flows [Eq. (2)]. Thus, in the bottom panel
of Fig. 2 we compare PDFs of |φ/g| = |T 0

i + T 1
i j v′

j + T 2
i jk v′

jv
′
k| that represents the magnitude of

the combined effect of flow inhomogeneity, with that of the dissipation term. The data is shown for
three subvolumes representing the regions inside, right at top of, and above, the canopy layer (b1,
b3, and b5, respectively). The mean of each PDF is also marked with a vertical line. The figure
shows that for all the regions tested the relaxation due to random fluctuations were more dominant
than the effect of flow inhomogeneity. In particular, the ratio between the mean value of the terms

was 〈 |C0εR−1
i j v′

j |
2|φi/g| 〉 ≈ 3.4 in subvolume b1, it increased to 6.4 in subvolume b3, and it was the smallest,

roughly 1.8, above the canopy in subvolume b5, suggesting that above the canopy the dominance of
the dissipation over the effects of inhomogeneity reduced.

Throughout the entire volume of measurement, we observed that inside and close to the top of
the canopy layer |φi/g| was generally smaller than the homogeneous term, | 1

2C0εR−1
i j v′

j |. This means
that random forces due turbulent dissipation were stronger than forces due to flow inhomogeneity.
In regions farther above the canopy layer (i.e., subvolumes 4 and 5 with z > 1.1H), the difference
between the two terms reduced, although the turbulent fluctuations through | 1

2C0εR−1
i j v′

j | were still
significantly more dominant. In comparing the variation of the terms with z we observed that
| 1

2C0εR−1
i j v′

j | typically increased with z inside the canopy, peaked at the top of the canopy, and than
reduced with z above the canopy; however, both |T 1

i j v′
j | and |T 2

i j v′
j | became increasingly stronger

with the height. Thus, as the distance from the wall increases the effects of dissipation became
weaker and those of inhomogeneity became stronger. This suggests that the reason for this effect is
the direct interaction of the flow with canopy obstacles, that its effects are weaker above the canopy.
The flow-obstacle interaction is known to cause an increased energy production and dissipation due
canopy drag and wake production [17], and seems to dominate the effects of spatial variations of
flow statistics in the canopy obstacles’ wake region.

As described above, our analysis of Lagrangian statistics was performed in subvolumes of space
that were much smaller than the integral scale of the flow (i.e., of the order H), and indeed the flow
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FIG. 2. Probability distribution functions (PDFs), where the horizontal axis stands for magnitude of various
inhomogeneous LSM terms shown in the legend, sampled along the Lagrangian trajectories from our dataset.
Data corresponding to all the model’s terms in subvolume b3, representing 0.9H < z � 1.1H , is shown in the
top panel. PDFs for the sum of flow inhomogeneity contributions (φi/g) in three subvolumes, representing
regions inside (b1), at the top of (b3), and above (b5), the canopy layer, is shown in the bottom panel. Vertical
dotted and dashed lines mark the mean values of the PDFs. For all cases Re∞ = 1.6 × 104.

statistics did not change appreciably inside each subvolume. Furthermore, the results presented in
this section show unequivocally that the flow inhomogeneity did not have a dominant effect on
the Lagrangian dynamics. This leads to the conclusion that there is a quasihomogeneous regime of
Lagrangian statistics at small times, since the contributions from flow inhomogeneity are negligible
at small scales as compared to turbulent dissipation. It is important to stress that the canopy flow
is inherently inhomogeneous since, for example, statistics change from one subvolume to another.
Nevertheless, inhomogeneity effects on short-time Lagrangian statistics, i.e., in scales 
 〈ux〉

∂〈ux〉/∂z ,
were subdominant as compared to the strong effects of dissipation. Our observation thus reveal the
existence of a quasihomogeneous regime at short times and small scales.

IV. DIRECT ESTIMATION OF LAGRANGIAN STATISTICS

In this section, we use the wind-tunnel Lagrangian dataset in order to extract two critical LSM
parameters: the Lagrangian velocity decorrelation timescale and the Kolmogorov constant, C0. To
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FIG. 3. (a) Autocorrelation function of Lagrangian velocity in the subvolume b3 and Re∞ = 16 × 103,
presented against the time lag, shapes denote data points and lines represent fits to the model Eq. (9). (b–d) The
Lagrangian timescale for the x, y, and z velocity component as a function of subvolume height. Filled shapes
stand for Re∞ = 16 × 103 and empty shapes for Re∞ = 26 × 103.

do so we calculate the autocorrelation and the structure functions and directly extract the two
parameters from their definitions.

A. Lagrangian autocorrelation and decorrelation timescale

We estimated the Lagrangian autocorrelation functions using a formula equivalent to Eq. (2.6) in
the paper by Guala et al. [37] with the ensemble averaging Eq. (10), as presented and discussed in
Appendix B. Figure 3(a) presents ρii for the three components of Lagrangian velocity in subvolume
b3. For all three components, a concave shape is seen at the origin, reminiscent of a parabolic
decrease at small delay times, providing the way to estimate the Taylor microtimescale [69].
The autocorrelation functions decrease monotonically with the increasing time lag, τ . The rate
of decrease is roughly the same for ρxx and ρyy, whereas the decrease is faster for the vertical
component, ρzz. These observations were robust throughout all of the subvolumes and the two Re∞
cases.

The Lagrangian autocorrelation function ρii(τ ) does not decrease to zero within the range of our
measurements, so we cannot use the integral in Eq. (3) to estimate the TL,i directly. Therefore, and
similar to previous Lagrangian measurements (Refs. [34,70]), we define a Lagrangian decorrelation
timescale, Ti, that we obtain by fitting our results to the autocorrelation function of an LSM. In
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accordance with the results of Sec. III, we use here a LSM for homogeneous flows. Specifically,
we used a least-square minimization to fit our measurements to the autocorrelation function in
Sawford’s model, Eq. (9), to obtain T1,i and T2,i in each subvolume and then define Ti = T1,i + T2,i.
It is noted that a calculation of TL,i using the full integral of ρii according to the theory, may result
in a larger timescale on the order of the turnover timescale for large coherent structures above the
canopy. The concave shape of the autocorrelation function at τ → 0 implies that the exponential
approximation according to first-order models, e.g., Eq. (4), is not compatible with our data. Instead,
we used the second-order model by Sawford [58], Eq. (9), that does take this concavity into account,
similarly to Mordant et al. [70] and Ouellette et al. [34].

We estimated Ti for the three velocity components by fitting the data as shown in Fig. 3(a). The
fit range was limited to the time lags that correspond to a half of the subvolume crossing time, in
order to avoid the possible finite volume effects (as discussed in Appendix C and Ref. [71]). This is
a common approach in experimental data analysis because of increased uncertainty of correlations
at larger time lags [72]. Last, we note that every data point of ρii corresponds to the average of at
least 15 × 103 samples, where the relative mean squared error was of the order of a few percents.

It is worth noting that the Lagrangian velocity become decorrelated, namely, ρii(τ ) reduced
considerably, while the particles were still within the small subvolumes we used. This is in
agreement with an observation in our previous paper [49] where we detected the Taylor asymptotic
dispersion regime [73], and also with our observation in Sec. III of the quasihomogeneous regime.

The empirical Lagrangian decorrelation times, Ti, are presented in Figs. 3(b)–3(d) for each
velocity component as a function of height for the two Reynolds numbers tested. Inside the canopy
layer, the values of Tx are roughly constant and they increase above the canopy. In contrast, Ty values
are highest at the lowest subvolume yet retain a roughly constant value above the canopy. The values
of Tz are the lowest of the three components and show only minor variation with height above H .
Furthermore, the Lagrangian decorrelation times are consistently higher for the Re∞ = 16 × 103

case, as compared to the higher Re∞ = 26 × 103 case.
The distributions of Ti can be associated with physical processes that are known to occur in

canopy flows. The increase of Tx above the canopy may be related to large scale coherent structures
that are known to exist above canopies due to the shear instability, a.k.a., the mixing layer analogy
[17,24]. The increase of Ty inside the canopy layer is attributed to the change in the roughness
density with height—the lower roughness elements caused an increased frontal area density and
increased the “shielding” (e.g., Ref. [74]), which contributed to a tunneling effect of a cross-flow
inside the canopy layer. Lastly, lower values of Tz as compared to Tx and Ty are in agreement
with estimations of the Eulerian integral timescales from velocity measurement, for instance, by
Refs. [18,43,75], which may be associated with an inclined orientation of coherent structures that
was reported in the literature, e.g., by Shaw et al. [75] using two-point Eulerian correlations.

B. Second-order Lagrangian structure function

Using the subvolume averaging, we estimated the Lagrangian second-order structure function
through its definition, Eq. (5). The results for trajectories in subvolume b3 are shown in Fig. 4(a)
in a compensated form, Dii/ετ , which corresponds to the Kolmogorov scaling in the inertial range.
For high Reynolds number HIT flows, the existence of Kolmogorov scaling in a Lagrangian inertial
range would lead to a plateau in the compensated plot. The figure shows that such a plateau does
not appear in our data, and instead, only narrow peaks are seen. Such peaks are characteristic of low
to moderate Reynolds number flows, and similar observations were reported in numerous previous
studies involving other types of flows, Refs. [33,36,40,70,71,76–79]. Therefore, we use the typical
empirical estimate of C0,i, which is defined using the height of the peaks,

C0,i = max τ

[
Dii(τ )

ε τ

]
. (14)
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FIG. 4. (a) Second-order Lagrangian structure function of velocity differences in subvolume b3 and
Re = 16 × 103, presented as a function of time normalized with the inertial-range scaling. The continuous,
dashed, and dash-dotted lines represent Sawford’s second-order LSM [58] fitted to the x, y, and z components,
respectively. (b) The estimated Kolmogorov constant Eq. (14) from the x velocity component, for all
subvolumes and two Reynolds numbers as a function of height. Full shapes for Re∞ = 16 × 103 and hollow
for Re∞ = 26 × 103.

In the case of subvolume b3, shown in Fig. 4(a), the values obtained are in the range C0,i ∈ (6.2, 7.0)
for the three velocity components, meaning weak anisotropy ∼O(10%).

We applied Eq. (14) to the Dxx(τ ) obtained in the different subvolumes in the canopy flow
model. The obtained values of C0,x are presented in Fig. 4(b) as a function of height. Values of C0,i

calculated with Dyy and Dzz were very similar to Fig. 4(b) and are not shown for the sake of brevity.
A considerable scatter is seen in the values, roughly ∼30%, that may be either due to horizontal
inhomogeneity across subvolumes through Reλ variations, or due to a sensitivity of Eq. (14) to
small uncertainties in the structure-function. In Fig. 4(b), C0,x does not show a dependence on Re∞,
which is consistent with the behavior of Reλ. Going from inside the canopy and increasing in z, C0,x

initially increases and roughly levels off at C0,x ≈ 6.5 in the range 1.0 < z � 1.2. Further up above
the canopy, C0,x decreased even though Reλ was seen to be highest at this height level.

The observation that C0,x is not a monotonic funciton of z suggests an important conclusion. In
HIT, C0 is governed by Reλ alone (e.g., as suggested in Refs. [78,80]); however, the fact that here
C0 is not monotonic with z while Reλ increases with z monotonically suggests that in the canopy
flow C0 depends on other parameters in addition to Reλ. An explanation for this observation can be
offered through an analysis by Poggi et al. [18]: the effect of wake production on the Lagrangian
structure function, leading to scale dependence of the rate of dissipation in canopy flows (i.e., the
spectral bump [17]), is “lumped” into C0. Therefore, according to this explanation, the observed
increase of C0 at the top of the canopy in our measurements is due to a strong wake production,
injecting turbulent kinetic energy at small scales.

In Sec. IV A it was observed that the autocorrelation function was concave at the origin (Fig. 3),
and that we obtained a good fit for the data using the second-order LSM, Eq. (8). In a homogeneous
flow, the Lagrangian structure function and the Dii are simply related by

Dii(τ ) = 2σ 2
i [1 − ρii(τ )], (15)

and thus with regard to the observed quasihomogeneity of our flow it would be instructive to
examine this relation here as well. Thus, we used Eq. (15) to fit the empirical data for Dii(τ ),
where we used the expression for ρii(τ ) from the second-order LSM, Eq. (9). Specifically, we
used a least-square algorithm to fit the three model parameters for the three components of the
structure function. The resulting curves are shown with lines in Fig. 4(a). The good match that
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(b)(a)

FIG. 5. Histograms of Lagrangian decorrelation times in the x direction from all subvolumes and two Re∞
(a total of 40 points), normalized with (a) Eq. (16) and (b) the dissipation timescale. The inset in (b) shows the
result of using Eq. (17) with our measured values of Reλ.

was obtained for the empirical data shows that single-particle statistics in our measurements are
represented well by Sawford’s second-order LSM [58], Eq. (8). This further reinforces the picture
of quasihomogeneity of Lagrangian statistics at short times in our flow.

V. LAGRANGIAN RAPID DECORRELATION

A. Observation of rapid decorrelation in the canopy flow

In light of the small scales’ quasihomogeneity, we find it instructive to compare our empirical
estimates of Ti with previous results for purely homogeneous turbulent flows. We first take the LSM
Eq. (5), according to which

TL,i = 2v′2
i

C0,iε
. (16)

This relation was previously used to estimate the Lagrangian integral timescale based on Eulerian
measurements in canopy flows, for example in Refs. [12,15,23]. The comparison of our Ti with

Eq. (16) is shown in Fig. 5(a) through a histogram of the property Tx/( 2σ 2
u

C0ε
), taking values from all

the subvolumes and two Re∞. The histogram shows a large scatter of values in the range [0.3–1]
with an average of 0.65, and thus implies that the empirically estimated Ti is significantly shorter
than Eq. (16).

The second comparison, in Fig. 5(b), compares the separation of scales Ti/τη in our canopy flow
with that of HIT at similar Reλ. A histogram of the decorrelation times, Tx, normalized with the
dissipation timescale, τη, is shown in Fig. 5(b). The results fall into two groups with values in the
order of Tx ∼ 5–10τη, and Tx ∼ 13–16τη that were seen to occur at different height levels, consistent
with the increase of Reλ farther away from the wall. The values of Tx/τη seen in Fig. 5(b) are low
as compared to values of TL/τη usually encountered in HIT at comparable Reλ. For example,
Sawford et al. [81] suggested

TL

τη

=
[

4.77 +
(

Reλ

12.6

)4/3
]3/4

, (17)

following the empirical fit to DNS data. Using the Reλ values from our measurements, the estimates
based on Eq. (17) are plotted in the inset of Fig. 5(b). Here the values are seen to be roughly an order

094601-13



RON SHNAPP et al.

b3
b3

Ta

Tx ≈ 13.5Ta

Tx ≈ 4.7Ta

FIG. 6. Lagrangian autocorrelation functions of the acceleration component and the velocity component of
Lagrangian particles. Hollow symbols correspond to trajectories for the DNS [46,79,82] and filled symbols to
canopy trajectories from subvolume b3 at Re∞ = 16 × 103.

of magnitude higher than those obtained by directly fitting the autocorrelation functions. Therefore,
Fig. 5 shows that the separation of scales in our canopy flow is much smaller than what would have
been expected in comparable HIT case.

In Fig. 5, Ti was compared with properties estimated using spatial information of the flow,
namely, ε. We can reinforce the above observation of relatively small separation of scales by using
a purely Lagrangian property that characterizes the small scales, such as the particles’ acceleration,
a = dv

dt . Thus, we contrast the autocorrelation of vi and ai in our canopy flow with those in a
comparable HIT flow. For the HIT flow, we use the DNS data available from the Johns Hopkins
Turbulence Database (JHTDB) [79,82]. We downloaded this benchmark dataset in a previous study
[46], and we use it here again to compare the autocorrelation functions. Autocorrelation functions
from the DNS data and the data from subvolume b3 are plotted together in Fig. 6. Note that the
Reλ in both cases are very similar, Reλ ≈ 440 in subvolume b3 and Reλ ≈ 433 in the DNS [79],
and so they should present similar separation of scales if TL/τη = f (Reλ). Figure 6 shows that the
autocorrelation of the acceleration components decay at rates very similar to each other in both
cases. However, the velocity in the canopy flow decorrelates much faster than in the HIT case. To be
more quantitative, denoting by Ta the time of the first zero crossing of the acceleration, it was found
that Tx/Ta ≈ 4.7 for the canopy data, while Tx/Ta ≈ 13.5 for the HIT case. Therefore, Fig. 6 shows
that while the Ta was roughly the same in both cases, the velocity became decorrelated roughly
three times faster in the canopy flow as compared to the HIT case. This observation reinforces the
observation that the separation of timescales in our canopy flow is smaller than in the comparable
HIT case.

Together, Figs. 5 and 6 demonstrate that the Lagrangian velocity components in our canopy flow
became decorrelated much faster than what would have been expected in a homogeneous isotropic
turbulent flows at a similar Reynolds number. In particular, the above demonstrates that in canopy
flows, unlike the HIT case, Ti/τη is not a function of the Reynolds number alone. This observation
will be termed in what follows rapid decorrelation.

B. Turbulence-obstacle interaction as the source for rapid decorrelation

In Sec. III, we observed a dominance of turbulent fluctuations over inhomogeneity in the
Lagrangian dynamics, and in Sec. IV B we suggested that the structure function constant C0
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(a) (b)

FIG. 7. (a) Lagrangian dispersion length scale Lx = Tx σx , presented as a function of height, both axes
normalized by H . (b) Two-particle spatial correlation function, plotted against distance normalized by the
canopy top height. Data for particles in subvolume b3.

was affected by the wake production in accordance with the arguments of Poggi et al. [18].
These observations show a strong influence of small-scale dynamics on Lagrangian statistics in
our measurements. These considerations lead us to put forth the notion that the observed rapid-
decorrelation was also a consequence of wake effects due to the direct obstacle-flow interaction. In
this section, we examine this conjecture.

The encounter of the the flow with canopy obstacles leads to generation of drag that injects
turbulent kinetic energy at flow scales with sizes that are determined by the geometry of the
roughness obstacles, so-called wake production [17,83]. Therefore, if our conjecture was true,
then we would expect that the dispersion in the wakes will be dominated by flow disturbances
with a similar size. The appropriate length scale of dispersion is Li = σi TL,i, which was observed
to be correlated with the scale of forcing in previous experiments (Refs. [70,84]). The width of
our obstacles was d = 0.04H , so if the hypothesis is true, then we should see Li ∼ d . Thus, we
calculated Lx = Tx σx in the different subvolumes and the results are presented in Fig. 7(a) against
height. Inside the canopy layer, z � H , Lx is nearly constant, Lx ≈ 0.1H = 2.5d independently
of Re∞, which may well be due to such wake disturbances. Above the layer, Lx increases, reaching
≈0.35H at the highest subvolume. The lack of deviation of Lx inside the canopy along with increase
of Lx at z > H are consistent with the notion of weakening of the wake’s influence above the canopy.
Therefore, the estimated values of Lx are consistent with the conjecture that rapid decorrelation
occurred due to the flow disturbances in the obstacles’ wakes.

To further support our conjecture, we wish to demonstrate that a disturbances occurred in our flow
at the scale Lx. We demonstrate this through the two-particle spatial velocity correlation function.
Specifically, let us define

ρ
(1,2)
i (r) =

〈
v

′(1)
i (t ) v

′(2)
i (t ) | r(t )

〉
Var[v′

i (t )]r
, (18)

where v
′(1)
i and v

′(2)
i are the velocity fluctuation of two different particles at the same time,

and where the average in the numerator is performed for pairs of trajectories with a distance
of r(t ) = |x(1)(t ) − x(2)(t )| between them. In the denominator, Var[v′

i (t )]r is the variance of the
velocity components calculated over the same ensemble of particles used in the numerator. Note
that ρ

(1,2)
i is a correlation with no separation in time but only in space, and thus it can be used
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to examine the spatial structure of the flow. Also, note that ρ
(1,2)
i (r) is analogous to the Eulerian

two-point spatial velocity correlation function (for example, see Shaw et al. [75]); however, ρ (1,2)
i (r)

is isotropic by construction since the average is performed over spherical shells. The two-particle
correlation of v′

x, calculated using trajectories from subvolume b3, is shown in Fig. 7(b). The same
data is shown in linear-log scales in the main figure and in linear scales in the inset. The ρ

(1,2)
i (r)

decreases monotonically with r. In the range r � 0.12H , the correlation decreases faster than at
r � 0.12H . In the linear-log scales, the data at each interval roughly fits a straight line, where in
each interval it has a different slope. Therefore, the data points were fitted with exponential decays
with a different rate in each of these two ranges of r, which provided a good approximations of the
data. The two fits, shown in dashed and dot-dashed lines, highlight the transition of the ρ

(1,2)
i (r) from

one rate of decay to another that occurs right at r ≈ 0.12H ≈ Lx. This transition of ρ
(1,2)
i (r) from

one rate of decay to another at r ≈ Lx may suggest an existence of flow disturbances of characteristic
size Lx ∼ d , namely, corresponding to the width of the flow obstacles. Furthermore, such a transition
of ρ

(1,2)
i (r) at r ≈ Lx was robust for the subvolumes inside the canopy, however not above it. Thus,

since Tx = Lx/σx, we can speculate that such disturbances at the wake scale may have lead to the
observed rapid-decorrelation; nevertheless, we cannot prove this conjecture at this time.

The two pieces of evidence presented above are in agreement with our conjecture, and thus leave
the notion that wake production is the main cause of the rapid decorrelation of Lagrangian velocity
a valid possibility. A conclusive proof will require further exploration, for example, by using a flow
with various degrees of spectral short-circuiting versus inhomogeneity effects.

VI. DISCUSSION AND CONCLUSIONS

In this work, we used experimental measurements to estimate Lagrangian statistics in a wind-
tunnel canopy flow model directly in the Lagrangian framework. Our analysis indicates that
turbulence-obstacle interaction, through wake production had a significant effect on the short-time
Lagrangian statistics in our flow, and is relevant for Lagrangian stochastic models. In particular,
our key result is that in spite of the large scale inhomogeneity [e.g., Figs 3, 4(b), 5, and 7(a)],
we detected a quasihomogeneous regime of Lagrangian statistics at short times and on the small
scales. Furthermore, we show that the spatial variations of the separation of scales, Ti/τη, and
the Kolmogorov constant, C0, cannot be explained by the variation of the Reynolds number, Reλ;
this suggests that unlike in HIT, they depend on additional parameters other than Reλ. The main
difference is that the decorrelation timescale of the Lagrangian velocity is much shorter than would
have been expected in a homogeneous case. We thus infer that both the rapid decorrelation and the
alteration of C0 are direct consequences of strong wake production.

The strong influence of the wakes on Lagrangian dynamics had important implications on
our analysis. First, we found that the Lagrangian statistics in the quasihomogeneous regime
are recovered well by the second-order LSM for homogeneous flows. Second, due to the small
separation of scales, so-called rapid-decorrelation, we detected significant finite Reynolds number
effects on the Lagrangian autocorrelation functions, and this is despite the fact that Reλ in our
canopy flow was rather high, in the range of 350–850. Essentially, this is a demonstration that finite
Reynolds number effects can be important in cases where the Richardson-Kolmogorov cascade is
short-circuited.

We expect that our results will be relevant for modeling short range dispersion in flows with
intense dissipation and spectral short-circuiting (in particular, where | 1

2C0εR−1
i j v′

j |  |φi/g|). We
achieved this through high frontal area density (i.e., λ f = 9/16) leading to strong drag, thin obstacles
that produced turbulent kinetic energy at a rather small scale, and obstacles with variable heights in
consecutive rows.
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To conclude, the observations presented in this work make up a unique view on the Lagrangian
dynamics in the canopy flows in the small scales. It is our view that short term dispersion modeling
in canopy flows through LSMs may achieve increased accuracy by paying particular attention
to wake dynamics in the canopy flows. Our work also highlights the importance of gathering
Lagrangian statistics directly in the Lagrangian framework that is becoming possible with recently
introduced technologies (i.e., Ref. [49] and references therein). Other important topics that were
not dealt with here include the effects of mechanical diffusion, the mixing-layer analogy, and the
inhomogeneity, on Lagrangian statistics, that due to the small scale of our observation could not
have been assessed here, and thus leave considerable scope for future investigations.
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APPENDIX A: SUBVOLUME FLOW PARAMETERS

Tables I and II present the values of the subvolume parameters that were estimated according to
the description in Sec. II D. The change of Reλ with height is also presented in Fig. 8.

TABLE I. Turbulence parameters for each subvolume for the Re∞ = 16 × 103 case.

sv ũ [m/s] ε [W/kg] η [mm] τη [s] λ [mm] Reλ H/η

a1 0.42 0.201 0.36 0.009 14.14 398 277

a2 0.45 0.256 0.34 0.008 13.25 394 295

a3 0.49 0.304 0.32 0.007 13.23 428 308

a4 0.51 0.244 0.34 0.008 15.35 517 291

a5 0.62 0.239 0.34 0.008 19.01 784 290

b1 0.36 0.123 0.41 0.011 15.41 369 245

b2 0.42 0.193 0.36 0.009 14.18 392 275

b3 0.47 0.250 0.34 0.008 14.09 440 293

b4 0.50 0.233 0.35 0.008 15.63 523 288

b5 0.65 0.305 0.32 0.007 17.63 762 308

c1 0.42 0.248 0.34 0.008 12.59 350 292

c2 0.43 0.210 0.36 0.008 13.97 397 280

c3 0.46 0.286 0.33 0.007 12.82 390 303

c4 0.52 0.231 0.35 0.008 16.13 555 287

c5 0.62 0.245 0.34 0.008 18.66 766 291

d1 0.40 0.175 0.37 0.009 14.18 373 268

d2 0.40 0.175 0.37 0.009 14.32 380 268

d3 0.47 0.229 0.35 0.008 14.61 454 287

d4 0.50 0.218 0.35 0.008 15.99 530 283

d5 0.66 0.377 0.31 0.006 16.10 707 325
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TABLE II. Turbulence parameters for each subvolume for the Re∞ = 26 × 103 case.

sv ũ [m/s] ε [W/kg] η [mm] τη [s] λ [mm] Reλ H/η

a1 0.53 0.422 0.30 0.006 12.16 426 334
a2 0.54 0.551 0.28 0.005 11.01 399 357
a3 0.60 0.703 0.26 0.005 10.68 424 379
a4 0.64 0.611 0.27 0.005 12.19 516 366
a5 0.83 0.669 0.27 0.005 15.19 839 375
b1 0.47 0.257 0.34 0.008 13.80 429 295
b2 0.50 0.352 0.31 0.007 12.74 427 319
b3 0.60 0.497 0.29 0.005 12.83 516 348
b4 0.64 0.487 0.29 0.006 13.79 589 346
b5 0.75 0.544 0.28 0.005 15.17 754 356
c1 0.52 0.490 0.29 0.006 11.05 379 347
c2 0.53 0.412 0.30 0.006 12.46 442 332
c3 0.60 0.587 0.28 0.005 11.68 464 363
c4 0.64 0.565 0.28 0.005 12.79 546 359
c5 0.81 0.706 0.26 0.005 14.49 783 380
d1 0.53 0.371 0.31 0.006 13.03 459 323
d2 0.52 0.327 0.32 0.007 13.72 478 313
d3 0.59 0.524 0.28 0.005 12.28 485 353
d4 0.63 0.528 0.28 0.005 12.94 540 353
d5 0.88 0.876 0.25 0.004 14.13 830 401

APPENDIX B: EMPIRICAL ESTIMATION OF AUTOCORRELATION FUNCTIONS

The autocorrelation of the random signals in this work were calculated as follows. Consider the
set of i = 1 . . . N random series samples ai(τ ) of the random variable a(τ ). Generally speaking,
the average of a(τ ) and its standard deviation may change with τ , where τ = t − t0, and t0 is the
time at which the record of ai began. The average of a(τ ) is defined as

μ(τ ) = 1

N

N∑
i=1

ai(τ ), (B1)

the fluctuations relative to the average are denoted ai(τ )′ = ai(τ ) − μ(τ ), and the standard deviation
of a(τ ) is defined

σ (τ ) =
[

1

N

N∑
i=1

a′2
i (τ )

]1/2

. (B2)

Note that these two definitions correspond to the subvolume average introduced in Sec. II C. Then
the autocorrelation of a is calculated as follows:

ρ(τ ) =
1
N

∑N
i=1[a′

i(0) a′
i(τ )]

σ (0) σ (τ )
. (B3)

The estimator Eq. (B3) uses the average and the standard deviations that are allowed to change
with τ . As discussed by Guala et al. [37], the Lagrangian trajectories with long tracking time
possibly belong to a subset of “weak turbulence.” Consequently, an estimator of ρ that uses a single
value μ and σ averaged over all values of τ is a biased estimator that may under predicts ρ(τ )
at long times. Therefore, using the definition σ (τ ), that changes with τ in Eq. (B3), prevents this
underestimation at long time lags. This issue was discussed in details by Guala et al. [37], where
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FIG. 8. Change of the Taylor microscale Reynolds number with height for the various subvolumes. Full
symbols are for Re∞ = 1.6 × 103, and open symbols are for Re∞ = 2.6 × 103.

the biased estimator in their paper was denoted Eq. (2.1), and the unbiased estimator Eq. (B3) here
is equivalent to their Eq. (2.6).

The autocorrelation functions were calculated in this article using many samples that were
measured during the long experimental runs we have conducted, ∼12–15 min each. To demonstrate
that our estimations of the autocorrelation function and the decorrelation timescale are converged
we show in the main panel of Fig. 9 the Lagrangian autocorrelation function with error bars
that represent the results of a bootstrapping calculation. Specifically, the dataset of trajectories in
subvolume b3 were divided to three groups and the autocorrelation ρxx was calculated separately.
The error bars show the range of scatter of the results for the three groups and represents a
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FIG. 9. Convergence plots for the autocorrelation function (main panel) and for the decorrelation timescale
(inset) for trajectories in subvolume b3. The error bars in the main panel represent the range of scatter for
ρxx calculated using three subsamples of the data. The inset shows the relative error in estimating Ti using
subsamples of different sizes.
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FIG. 10. Lagrangian velocity autocorrelation over the full data set compared with trajectories that were
truncated to be within finite volume. Plotted against time normalized by the volume timescale, Eq. (C1).

small degree of uncertainty in the range relevant for our study. Furthermore, the inset shows the
convergence of Ti that was calculated using subsamples of our data with different sizes. The relative
error of Ti is seen to decrease rapidly with the subsample size. Therefore, Fig. 9 demonstrates that
the autocorrelation and the decorrelation times were converged in our experiment, and suggests an
uncertainty of up to a few percent.

APPENDIX C: FINITE VOLUME EFFECT ON CORRELATION

Since the volume of observation is finite and due to the fact that occupation times of particles
within the finite volumes are dependent on their velocity, a natural bias occurs in the estimation of
Lagrangian velocity autocorrelation functions in PTV experiments. To minimize this effect on the
results shown in this work, the estimation of Lagrangian timescales was performed in this work only
on short times, such that most of the particles do not have sufficient time to leave the observation
volume. A timescale for the occupation times within a volume of dimension L is

Tvol = L

u′ , (C1)

with u′ being the root-mean-squared value of particle velocities. In Fig. 10, the Lagrangian
autocorrelation function for the x velocity component is presented against time normalized by Tvol

for the HIT DNS data from the JHTDB [79,82] over two ensembles. The first is the full series of
velocities over all trajectories. The second ensemble was obtained by truncating the velocity series
of each trajectory such that only values measured within a certain volume of size L were taken to
mimic the finite volume effect. The figure shows that for times in the range τ < 1

2 Tvol, the difference
that exists between the two autocorrelation estimations is rather small—up to ∼5%, meaning that
the estimation of integral timescales within this range is reasonably close to that using the full range.
For this reason, to estimate the Lagrangian integral timescales from the canopy trajectories, we used
only time τ < 0.5Tvol, with L = 3 mm and u′ determined from all samples at a given subvolume.

APPENDIX D: ESTIMATION OF 3D EULERIAN STATISTICS

Using our Lagrangian dataset, we estimated Eulerian velocity statistics, such as the mean velocity
and the turbulent stresses by three-dimensional interpolations of the subvolume averaged data. The
scheme was performed as follows:
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FIG. 11. Two-dimensional projection of the mean velocity over a plane parallel to the (x, z) plane. The
plane in found between two high roughness obstacles, intersecting subvolumes a and b.

(1) We estimated a subvolume averaged value for each desired statistics (e.g., 〈ui〉 = 〈vi〉, and
Ri j = 〈v′

i v
′
j〉).

(2) We obtained vertical profiles of each statistics above each subvolume group [a, b, c, d; see
Fig. 1(a)] by using a linear interpolation with respect to z.

(3) We obtain 3D field estimates by using a two-dimensional inverse distance weighted interpo-
lation of the four vertical profiles.

As an example, we present a two-dimensional cut of the mean velocity field in Fig. 11.
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