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The merging of a single row of plumes in a quiescent environment has been studied
using irrotational flow theory [G. Rooney, J. Fluid Mech. 771, R1 (2015)]. The present
study extends this theory by considering (i) two parallel rows of plumes in a quiescent
environment, and (ii) a single row of plumes in a crosswind, with and without a pressure
drag term. For plumes in two rows with and without offset, the effect of varying the
spacing ratio on the plume dynamics is investigated. Two definitions of the contact height
are suggested according to the shape of the velocity potential contours. For a single row
of plumes in a crosswind, the governing equations are closed using an entrainment flux
evaluated by the irrotational flow theory. This theory predicts the correct near- and far-field
similarity solutions in both modest and strong crosswinds. A comparison of the theory in
question to previous towing tank experiments yields satisfactory agreement in terms of
plume trajectory. The present theory of single and dual rows of plumes is applied to long
rows of cooling tower plumes.

DOI: 10.1103/PhysRevFluids.5.094502

I. INTRODUCTION

Plume merger has been studied under different configurations, including pairs [1,2], rows [3,4],
and rosette groups [5] of plumes. In the case of a pair of plumes, a deflection of the plume axes is
expected to occur as plumes draw closer together; this a result of restricted entrainment. By contrast,
for a long row of plumes, the plumes located far from the ends are not significantly deflected due
to the approximately equal but opposite pull exerted by the neighboring plumes. Yannopoulos and
Noutsopoulos [3,6] formulated the theories of the so-called entrainment restriction approach (ERA)
and of the superposition method (SM), respectively. For two or more buoyant jets, the ERA assumes
Gaussian profiles of velocity and concentration as a result of which the differential equations
describing momentum and concentration conservation are integrated over a reduced cross-sectional
area—see their Fig. 2. Based on the same set of governing equations as in the ERA, the SM
developed the superposition solution for any sets of pure jets or pure plumes. Later, Yannopoulos
[7] combined the ERA and the SM to propose an advanced and more general integral model of
plume merger. Unlike Yannopoulos’s models, Rooney [4] proposed a theoretical model whereby
the boundaries of a long row of plumes are approximated by the velocity potential contours due to
an infinite row of line sinks. Rooney’s model predicts the correct near-field (far-field) axisymmetric
(two-dimensional) plume similarity solutions. Compared to earlier theoretical models, e.g., those
of Yannopoulos [7] and Lai and Lee [5], Rooney’s model is simpler and less computationally
expensive. Rooney’s theory presumes a smooth and gradual transition from an axisymmetric plume
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FIG. 1. (a) Schematic of a single row of equally spaced line sinks. The dashed rectangle indicates the field
of view for the contours illustrated in panel (b). (b) Velocity potential contours for a range of p, i.e., p = 0.1,
0.4, 0.7, 1, 1.2, 1.5, 2, and 5, where p is the constant given in (3). The thick curve, which corresponds to p = 1,
represents the height of first contact, ẑfc.

to a line plume, which is reflected by the evolution of the velocity potential contours; see, e.g.,
Fig. 1.

In the case of multiple plumes in a crosswind, the dynamics of any individual plume is influenced
by both wind forcing and the entrainment flow field due to the other plumes. Yannopoulos [8]
proposed a superposition method to study the merging of a finite row of n plumes in a perpendicular
wind. In the n → ∞ limit, Yannopoulos [8] revealed that the ratio of centerline concentrations
between n plumes and an isolated plume is n2/3, which is consistent with the simple enhancement
model of Briggs [9] (cf. Fig. 4 of Ref. [8]). For a rosette group of plumes in a crossflow, Lai and Lee
[5] applied a semianalytical model whereby the entrainment field is represented by a distribution
of point sinks along the plume centerline trajectory; they found that the interaction between plumes
weakens in the presence of a crossflow. Despite the neglect of vortex entrainment in the far field,
the model prediction of Lai and Lee [5] is found to be consistent with the experimental results of
Lai et al. [10]. For multiple tandem plumes in a crossflow, Lai and Lee [11] modeled the blockage
and sheltering effect of the leading plume on the rear plume using a distribution of doublets.

Most of the previous studies on plume merger have focused on a single row of plumes; the
interactions between two neighboring rows of plumes have not been thoroughly investigated. In the
context of cooling towers, a so-called back-to-back configuration, which gives rise to the merging of
two rows of plumes, is a popular design alternative because of its ability to dissipate comparatively
large amounts of low-grade heat without requiring a large footprint [12]. On the other hand, back-to-
back towers may further reduce the rate of entrainment as compared to a single row of towers. This
reduced entrainment tends to increase the visible plume length under adverse ambient conditions
(i.e. low ambient temperatures and high relative humidities). To this end, insights into the merging
of two rows of plumes may benefit cooling tower designs in terms of plume abatement. Of similar
importance is to explore a fast and efficient model for describing the merging of a single row of
plumes in a crosswind. These twin needs provide the motivation for the present investigation. As
such, and following the study of Rooney [4] (R15 hereafter), we shall (i) apply R15 to the case of
two parallel rows of plumes arranged with and without offset, and (ii) extend R15 to model a single
row of plumes in a windy environment. This latter analysis considers specifically a wind direction
that is perpendicular to the row axis so that symmetry is not broken. More generally, goals (i) and
(ii) aim to explore the ability of simple irrotational flow theory to describe more complicated plume
source conditions and/or ambient conditions.
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The paper is organized as follows. Section II reviews the original R15 model. Section III
formulates the irrotational flow theory for two rows of plumes with and without offset. Section IV
develops the theory for a single row of plumes in a crosswind. Section V applies the present theory
to long rows of cooling tower plumes. Conclusions are drawn in Sec. VI.

II. SINGLE ROW OF INFINITE LINE SINKS [4]

A. Irrotational flow theory for entrainment flow

R15 considers a single infinite row of equally spaced line sinks spaced at positions na (n ∈ Z)
on the real axis; see Fig. 1(a). Here a is the distance between neighboring plumes. The complex
potential due to the whole row of line sinks is

Ω = − m

2π
ln

(
sin

πZ

a

)
+ �, (1)

where Z = x + iy, m is the strength of a line sink, and � is an arbitrary constant. The velocity
potential associated with Ω is

φ = − m

2π
ln

∣∣∣∣ sin
πZ

a

∣∣∣∣ + � = − m

2π
ln |sin x′ cosh y′ + i cos x′ sinh y′| + �, (2)

where x′ + iy′ = πZ/a. Thus the contours of constant velocity potential are described by∣∣∣∣ sin
πZ

a

∣∣∣∣ = |sin (x′ + iy′)| = p, (3)

where p > 0 is a constant. Equation (3) can be simplified as

cosh 2y′ = cos 2x′ + 2p2. (4)

Expressing y′ in terms of x′ and p yields

y′ = 1
2 ln(2p2 + cos 2x′ + [(2p2 + cos 2x′)2 − 1]1/2). (5)

Velocity potential contours are plotted in Fig. 1(b) for a range of p. For 0 � p � 1, the roots of y′ are
x′ = ± 1

2 cos−1 (1 − 2p2) whereas for p > 1, the roots are x′ = ±π/2. The area under any velocity
potential contour, A′ = π2A/a2, is given by

A′ =
∫ x′

+

x′−
y′dx′, (6)

where x′
± = ± 1

2 cos−1 (1 − 2p2) for 0 < p � 1 and x′
± = ±π/2 for p > 1.

The complex velocity is obtained by dΩ
dZ = u − iv, thus

dΩ

dZ
= − m

2a

sin 2x′ − i sinh 2y′

cosh 2y′ − cos 2x′ . (7)

Hence, the entrainment flow speed, q = (u2 + v2)1/2, is given by

q = m

2a

(
cosh 2y′ + cos 2x′

cosh 2y′ − cos 2x′

)1/2

= m(p2 + cos 2x′)1/2

2ap
= m(cosh 2y′ − p2)1/2

2ap
. (8)

The speed, qe, of the fluid entrained at x′ = 0 is given by

qe = m(p2 + 1)1/2

2ap
. (9)
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Note that qe is the maximum entrainment speed on a velocity potential contour. The entrainment
flux, E , across any velocity potential contour is defined as

E =
∫ x+

x−
q dl, (10)

and the contour length is given by

l ′ = π

a
l =

∫ x′
+

x′−
dl ′. (11)

It is shown in Appendix A that the entrainment flux across any velocity potential contour equals half
the strength of the line sink (this result is not stated explicitly in Ref. [4] due to a possible rounding
error; changes resulting from E = m/2 have been made in the following sections), i.e., E = m/2.

B. Plume equations and entrainment closure

The generalized plume equations (for a half-plume) are given by

A
d

dz

(
1

2
w2

)
= Ag′ − wE , (12)

d

dz
(Aw) = E , (13)

d

dz
(Awg′) = −AwN2, (14)

where w is the mean vertical velocity, g′ is the reduced gravity, and N is the ambient buoyancy
frequency. Equations (13) and (14) can be obtained by reorganizing the original plume equations
from the seminal work of Morton et al. [13].

Recognizing the need for an entrainment closure, R15 suggested relating qe with w, i.e., qe =
αw, where α is an entrainment coefficient. Applying this last result in (9), the strength of the line
sink can be expressed as

m = 2a αw
p

(p2 + 1)1/2 . (15)

Because we have shown that E = m/2, the entrainment flux is given by

E = m/2 = a αw
p

(p2 + 1)1/2 , (16)

which serves as the closure condition for (12)–(14).

C. Merging plumes in an unstratified ambient

For an unstratified ambient with N = 0, the buoyancy flux, F = Awg′, is constant; see (14). On
this basis, (12) and (13) can be rewritten as

dw

dz
= F

Qw
− aαw2

Q
f , (17)

dQ

dz
= aαw f , (18)

where Q = Aw is plume volume flux and

f = p

(p2 + 1)1/2 →
{

p, p � 1,

1, p � 1.
(19)
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In the limit p � 1, y′
0 ≡ y′(x′ = 0) = ln [p + (p2 + 1)1/2] ≈ ln (p + 1) ≈ p. The product a f tends

to π times the plume radius, ap/π , in the limit p � 1 and tends to the constant value a in the limit
p � 1.

The dimensionless vertical velocity, ŵ, volume flux, Q̂, and vertical distance, ẑ, are as follows:

w = α−1/3F 1/3a−1/3ŵ, Q = α−1/3F 1/3a5/3Q̂, z = α−1aẑ, (20)

where the hatted variables are dimensionless. Therefore, (17) and (18) can be nondimensionalized
as

dŵ

dẑ
= 1

Q̂ŵ
− ŵ2

Q̂
f , (21)

dQ̂

dẑ
= ŵ f . (22)

The dimensionless cross-sectional area is Â = Q̂/ŵ = A′/π2 = A/a2.
In the near-source region of small p, the plume is approximately axisymmetric and thus can be

characterized by a flux-balance parameter, Γ , which is defined as [14]

Γ = 5

8π1/2α

(2Q)2(2F )

(2M )5/2 = 5

25/2π1/2
Â−1/2ŵ−3, (23)

where M = Qw is the momentum flux. To solve (21) and (22), we first choose a small p, e.g.,
0.05, and then the corresponding cross-sectional area, Â, can be determined from (6). Subsequently,
we set the source value of Γ [i.e., Γ0 = Γ (z = 0)], thus the source value of ŵ is determined by
inverting (23). Equations (21) and (22) are integrated in the range 0.001 � ẑ � 5. For p = 0.05, the
plume source radius, b0, at the initial level ẑ = 0.001 is 0.05a/π . For a pure plume balance at the
source, i.e., Γ0 = 1, we adopt the pure plume similarity solution to derive the near source virtual
origin, ẑvn. In mathematical terms, the correction in question is given by

ẑvn ≈ 5

6

(
0.05

π

)
− 0.001. (24)

D. Representative solution

Representative results showing the dimensionless vertical velocity and volume flux with Γ0 = 1
are illustrated in Fig. 2. With the near source virtual origin correction (24) applied, the theoretical
results closely align with the near-field similarity scaling. The height of first contact, ẑfc = 0.353,
is defined as the point where p is closest to unity. This height is close to the height of first contact
of 0.350 for two axisymmetric plumes [2]. Linearly extrapolating the Q̂ data on a Cartesian grid
over 4 < ẑ � 5 yields the far-field line plume virtual origin, ẑvf = −0.149, where the volume flux
is “zero.” To help with visualization, the surface plot illustrating plume merger is shown in Fig. 3.

III. TWO ROWS OF INFINITE LINE SINKS

A. Nonoffset parallel line sinks

1. Complex potential

As shown in Fig. 4(a), we consider two rows of line sinks spaced 2b apart in the y-direction. Each
row consists of an infinite line of sinks at positions x = n a (n ∈ Z). The total complex potential is

Ω = − m

2π

[
ln

(
sin

π (Z − i b)

a

)
+ ln

(
sin

π (Z + i b)

a

)]
+ �, (25)
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FIG. 2. Evolution of ŵ [given by the solution of (21)] and Q̂ [given by the solution of (22)] as a function
of ẑ. The horizontal dashed lines denote the height of first contact, ẑfc = 0.340. The solid straight lines denote
the near-field (p < 1) and far-field (p > 1) similarity scalings.

where � is an arbitrary constant. The velocity potential is

φ = − m

2π

[
ln

∣∣∣∣ sin
π (Z − i b)

a

∣∣∣∣ + ln

∣∣∣∣ sin
π (Z + i b)

a

∣∣∣∣
]

+ � (26)

= − m

2π
ln

∣∣∣∣1

2
(cosh 2b′ − cos 2x′ cosh 2y′ + i sin 2x′ sinh 2y′)

∣∣∣∣ + �, (27)

where x′ + iy′ = π Z/a and b′ = π b/a. The contours of constant velocity potential are described
by ∣∣∣∣ sin

π (Z − i b)

a
sin

π (Z + i b)

a

∣∣∣∣ = p/2, (28)

where p > 0 is an arbitrary constant. Expanding (28) in terms of x′ and y′ yields

cosh2 2y′ − 2 cosh 2b′ cos 2x′ cosh 2y′ + cos2 2x′ + sinh2 2b′ = p2. (29)

FIG. 3. Surface plot illustrating plume merger in a long row of plumes. The plume boundary is shaded
according to the height 0 � ẑ � 1.
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FIG. 4. (a) Schematic of two nonoffset parallel rows of an infinite number of line sinks. The dashed
rectangle indicates the field of view for the contours illustrated in panel (b). (b) Velocity potential contours
for b′ ≡ πb/a = π/2. The contours start from (0, π/2) and expand outward with p selected from the set {1, 2,
4, 8, 10, cosh 2b′ − 1, 11, sinh 2b′, 12, cosh 2b′ + 1, 15, 20, 30, 40, 50}. The thick half-solid and half-dashed
contour corresponds to p = cosh 2b′ − 1, the thick dash-dotted contour corresponds to p = sinh 2b′, and the
thick solid contour that extends into the corners corresponds to p = cosh 2b′ + 1. Within the dash-dotted
contour (p < sinh 2b′), the solid and dashed parts of the contours correspond, respectively, to the positive
and negative roots in (30).

Solving for y′ yields

cosh 2y′ = cosh 2b′ cos 2x′ ± (p2 − sinh2 2b′ sin2 2x′)1/2, (30)

y′ = 1
2 ln[cosh 2y′ + (cosh2 2y′ − 1)1/2]. (31)

We can alternatively solve for x′, i.e.,

cos 2x′ = cosh 2b′ cosh 2y′ − (p2 + sinh2 2b′ sinh2 2y′)1/2. (32)

The negative square root in (30) is applicable for p < sinh 2b′. Equations (30) and (31) indicate that
y′ is periodic in x′ with period π . The roots of y′ are x′ = ±(1/2) cos−1 (cosh 2b′ − p) for cosh 2b′ −
1 � p � cosh 2b′ + 1. For p < cosh 2b′ − 1, the horizontal range for x′ is − 1

2 sin−1 (p/ sinh 2b′) �
x′ � 1

2 sin−1 (p/ sinh 2b′). Sample velocity potential contours for b′ = π/2 (i.e., a = 2b) are illus-
trated in Fig. 4(b).

The maximum horizontal extent in the y-direction, y′
max, of each contour occurs at x′ = 0 where

y′
max = 1

2 ln(cosh 2b′ + p + [2b′ + p)2 − 1]1/2)x. (33)

The corresponding minimum extent in the y-direction is a piecewise function of p, and is given by

y′
min =

⎧⎪⎨
⎪⎩

1
2 ln(cosh 2b′ − p + [(cosh 2b′ − p)2 − 1]1/2), p � cosh 2b′ − 1,

0, cosh 2b′ − 1 < p � cosh 2b′ + 1,
1
2 ln(− cosh 2b′ + p + [(− cosh 2b′ + p)2 − 1]1/2) , p > cosh 2b′ + 1.

(34)
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The complex velocity can be obtained from the complex derivative, i.e.,

dΩ

dZ
= u − iv = − m

2a

(
cot

π (Z − i b)

a
+ cot

π (Z + i b)

a

)

= −m

a

cosh 2b′ sin 2x′ cosh 2y′ − 1
2 sin 4x′ + i

(
cosh 2b′ cos 2x′ sinh 2y′ − 1

2 sinh 4y′)
cosh2 2b′ − 2 cosh 2b′ cos 2x′ cosh 2y′ + 1

2 (cos 4x′ + cosh 4y′)
. (35)

The flow speed can be obtained from q = | dΩ
dZ | and is given by

q2 = m2

a2

(
cosh 2b′ sin 2x′ cosh 2y′ − 1

2 sin 4x′)2 + (
cosh 2b′ cos 2x′ sinh 2y′ − 1

2 sinh 4y′)2

[cosh2 2b′ − 2 cosh 2b′ cos 2x′ cosh 2y′ + 1
2 (cos 4x′ + cosh 4y′)]2

. (36)

Using (29) and (36) is simplified as

q2 = m2

a2

sin2 2x′ + sinh2 2y′

p2
= m2

a2

sin2 2x′ + cosh2 2y′ − 1

p2
. (37)

At x′ = 0 and y′ = y′
max, the characteristic entrainment flow speed is

qe = m

a

sinh 2y′

p
= m

a

[2b′ + p)2 − 1]1/2

p
. (38)

2. Flux and area

Differentiating (29) with respect to x′ yields(
dy′

dx′

)2

= (1 − cos2 2x′) (cos 2x′ − cosh 2b′ cosh 2y′)2

(cosh2 2y′ − 1) (cosh 2y′ − cosh 2b′ cos 2x′)2
. (39)

Using (30) and (32), respectively, the right-hand side of (39) can be expressed as a function of x′
and p or y′ and p. In turn, the contour length, l ′, is calculated from

dl ′ = (dx′2 + dy′2)1/2 =
[

1 +
(

dy′

dx′

)2]1/2

dx′ =
[

1 +
(

dy′

dx′

)−2]1/2

dy′. (40)

For p � cosh 2b′ + 1, l ′ and the area A′ are given by

l ′ =
∫ x′

+

x′−

[
1 +

(
dy′

+
dx′

)2]1/2

dx′, (41)

A′ =
∫ x′

+

x′−
y′
+dx′, (42)

where x′
± = ±π/2, and y′

+ corresponds to the positive root in (30). For sinh 2b′ � p < cosh 2b′ + 1,
l ′ and A′ are resolved by replacing x′

± = ±π/2 with x′
± = ±(1/2) cos−1 (cosh 2b′ − p) in both (41)

and (42). Conversely when cosh 2b′ − 1 � p < sinh 2b′, the length and area are evaluated from

l ′ = 2
∫ y′

max

0

[
1 +

(
dy′

dx′

)−2]1/2

dy′, (43)

A′ = 2
∫ y′

max

0
x′dy′. (44)

Finally for p < cosh 2b′ − 1, the length and area are calculated by

l ′ =
∫ xmax

xmin

{[
1 +

(
dy′

+
dx′

)2]1/2

+
[

1 +
(

dy′
−

dx′

)2]1/2}
dx′, (45)
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FIG. 5. Contour length, l ′, and cross-sectional area, A′, as a function of p for b/a = 0.5. The horizontal
line denotes a constant value of π .

A′ =
∫ xmax

xmin

(y′
+ − y′

−)dx′, (46)

where x′
min = − 1

2 sin−1 (p/ sinh 2b′), x′
max = 1

2 sin−1 (p/ sinh 2b′), and y′
− corresponds to the nega-

tive root in (30). Figure 5 shows l ′ and A′ as a function of p.
Analogous to (10), the entrainment flux across an arbitrary velocity potential contour, C, is

E =
∫
C

q dl =
∫

C

a q

π
dl ′ = m, (47)

where the latter equality applies for all values of p; see Appendix A. In turn, the strength of the line
sink can be determined by inverting (38), i.e.,

m = E = aαw
p

[(cosh 2b′ + p)2 − 1]1/2
. (48)

Thus the f parameter in (21) and (22) is given by

f = p

[(cosh 2b′ + p)2 − 1]1/2
. (49)

3. Representative solutions

For b/a = 0.25, 0.5, and 1 and Γ0 = 1, the plume vertical velocity and volume flux are illustrated
in Figs. 6(a) and 6(b). Note that here we neglect a near-field virtual origin correction, which does not
significantly change the overall profiles. Figure 6(a) shows that the evolution of vertical velocity in
the case of a small spacing ratio, i.e., b/a = 0.25, is similar to the counterpart evolution for a single
row of plumes as shown in Fig. 2(a). By contrast, and for larger values of b/a, e.g., b/a = 1, there
appears a transition zone of almost constant vertical velocity before the far-field limit is approached.
Figure 6(b) shows profiles of volume flux for all values of b/a.

Two different contact heights are defined: the first contact height, ẑc,1, is defined as the elevation
where the two opposite plumes first contact one another. This elevation is determined as the point
where p is closest to cosh 2b′ − 1. The second contact height, ẑc,2, is defined as the elevation where
the combined plume (postmerger of the two opposite plumes) extends to the corners [see, e.g., the
thick solid curve in Fig. 4(b)]. This second contact height is determined as the point where p is
closest to cosh 2b′ + 1. Interestingly, from ẑc,1 to ẑc,2 the velocity potential contours move from the
stagnation point located at the origin to a stagnation point located in either one of the two corners;
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FIG. 6. Evolution of ŵ [given by the solution of (21)] and Q̂ [given by the solution of (22)] as a function
of ẑ for spacing ratios of b/a = 0.25, 0.5, and 1. Panels (a) and (b) denote the nonoffset case (Fig. 4), whereas
panels (c) and (d) denote the offset case (Fig. 9). In all panels, Γ0 = 1.

see Fig. 4(b). Note that ẑc,1 is similar to the height of first contact for two neighboring axisymmetric
plumes (see Fig. 7). Figure 8 indicates that ẑc,1 and ẑc,2 increase in an approximately linear fashion
with b/a. In the case of a small b/a, e.g., b/a = 0.05, ẑc,2 = 0.338, which is close to the counterpart
merger height ẑc = 0.340 for a single row of plumes. In the case of two axisymmetric plumes spaced
2b apart, the height of first contact is z = 0.35(2b/α), thus ẑc = 0.7b/a [2]; this height is somewhat
lower than the first contact height for two infinite rows of plumes, i.e., ẑc,1 ≈ 0.9b/a as inferred from
Fig. 8. This difference is likely because, in the latter case, plume distortion is driven by restricted
entrainment from two orthogonal directions, i.e., between plumes opposite one another and between
neighboring plumes within the same row.

B. Offset parallel line sinks

1. Complex potential

Another typical configuration is two parallel rows of line sinks with an offset (a/2) as shown in
Fig. 9(a). With this configuration, the complex potential reads

Ω = − m

2π

[
ln

(
sin

π (Z − i b)

a

)
+ ln

(
cos

π (Z + i b)

a

)]
+ �. (50)
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FIG. 7. Surface plot illustrating plume merger in the case of two parallel rows of nonoffset plumes with a
spacing ratio of b/a = 0.5.

The velocity potential is given by

φ = − m

2π

[
ln

∣∣∣∣ sin
π (Z − i b)

a

∣∣∣∣ + ln

∣∣∣∣ cos
π (Z + i b)

a

∣∣∣∣
]

+ � (51)

= − m

2π
ln

∣∣∣∣1

2
[sin 2x′ cosh 2y′ + i(cos 2x′ sinh 2y′ − sinh 2b′)]

∣∣∣∣ + �. (52)

Constant velocity potential contours are given by∣∣∣∣ sin
π (Z − i b)

a
cos

π (Z + i b)

a

∣∣∣∣ = p/2, (53)

which is simplified as

cosh2 2y′ − 2 sinh 2b′ cos 2x′ sinh 2y′ − cos2 2x′ + sinh2 2b′ = p2. (54)

0 0.5 1 1.5
0

0.5

1

1.5

2

FIG. 8. The contact heights ẑc,1 and ẑc,2 plotted as a function of the spacing ratio b/a. ẑc,1 is defined as the
elevation where p is closest to cosh 2b′ − 1, and ẑc,2 is defined as the elevation where p is closest to cosh 2b′ + 1.
In all cases, Γ0 = 1.
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b

a

x

y

(a) (b)

FIG. 9. (a) Schematic of two parallel rows of an infinite number of line sinks with an offset. The dashed
rectangle indicates the field of view for the contours illustrated in (b). (b) Velocity potential contours for
b′ ≡ πb/a = π/4. The contours start from (0, π/4) and expand outward with p selected from the set {0.5, 1.5,
sinh 2b′, cosh 2b′, 3, 4, 5, 8, 10}. The thick half-solid and half-dashed contour corresponds to p = sinh 2b′, and
the dash-dotted contour corresponds to p = cosh 2b′. The solid and dashed curves correspond, respectively, to
the positive and negative roots in (55).

Solving for y′ yields

sinh 2y′ = sinh 2b′ cos 2x′ ± (p2 − cosh2 2b′ sin2 2x′)1/2, (55)

y′ = 1
2 ln(sinh 2y′ + (sinh2 2y′ + 1)1/2), (56)

or solving for x′ yields

cos 2x′ = − sinh 2b′ sinh 2y′ + (cosh2 2b′ cosh2 2y′ − p2)1/2. (57)

The positive/negative square roots in (55) are applicable for all values of p. Due to the symme-
try of the configuration shown in Fig. 9(a), the analysis is restricted to −π/4 � x′ � π/4. For
sinh 2b′ � p � cosh 2b′, the roots of y′ are x′ = ±1/2 cos−1 (cosh2 2b′ − p2)

1/2
. For p � cosh 2b′,

the horizontal range for x′ is − 1
2 sin−1 (p/ cosh 2b′) � x′ � 1

2 sin−1 (p/ cosh 2b′). Sample velocity
potential contours with b′ = π/4 are illustrated in Fig. 9(b).

The maximum and minimum extents in the y-direction are given by

y′
max = 1

2 ln[sinh 2b′ + p + ((sinh 2b′ + p)2 + 1)1/2], (58)

y′
min = 1

2 ln[sinh 2b′ − p + ((sinh 2b′ − p)2 + 1)1/2], (59)

respectively. The complex velocity is obtained from

u − iv

= − m

2a

⎛
⎜⎝ cot

π (Z − ib)

a
− tan

π (Z + ib)

a

⎞
⎟⎠

= − m

2a

× sin 4x′ cosh 4y′−2 sinh 2b′ sin 2x′ sinh 2y′ + i(cos 4x′ sinh 4y′−2 sinh 2b′ cos 2x′ cosh 2y′)
cosh2 2y′ − 2 sinh 2b′ cos 2x′ sinh 2y′ − cos2 2x′ + sinh2 2b′ ,

(60)
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FIG. 10. Contour length, l ′, and cross-sectional area, A′, as a function of p for b/a = 0.5. The horizontal
line denotes a constant value of π .

thus the flow speed is

q2 = m2

a2

cosh2 2y′ − sin2 2x′

p2
= m2

a2

sinh2 2y′ + cos2 2x′

p2
. (61)

At x′ = 0, y′ reaches its maximum and the characteristic entrainment speed is given by

qe = m

a

[(sinh 2b′ + p)2 + 1]1/2

p
. (62)

Differentiation of (54) with respect to x′ yields(
dy′

dx′

)2

= sin2 2x′(sinh 2b′ sinh 2y′ + cos 2x′)2

cosh2 2y′(sinh 2b′ cos 2x′ − sinh 2y′)2 . (63)

The contour length and cross-sectional area can be calculated using a similar approach to that in
Sec. III A. Specifically, l ′ and A′ are given by

l ′ =
∫ x′

+

x′−

{[
1 +

(
dy′

+
dx′

)2]1/2

+
[

1 +
(

dy′
−

dx′

)2]1/2}
dx′, (64)

A′ =
∫ x′

+

x′−
(y′

+ − y′
−)dx′, (65)

where x′
± = ±π/4 for p > cosh 2b′, x′

± = ± 1
2 sin−1 (p/ cosh 2b′) for p � cosh 2b′, and y′

± corre-
spond to the positive and negative roots in (55). Figure 10 shows l ′ and A′ as a function of p.

Adopting the simple entrainment relation qe = αw, the strength of the line sink, m, is thus given
by

m = aαw
p

[(sinh 2b′ + p)2 + 1]1/2
, (66)

where, consistent with (47) and (48), m = E ; see Appendix A. Correspondingly, the parameter f in
(21) and (22) is expressed by

f = p

[(sinh 2b′ + p)2 + 1]1/2
, (67)

which reduces to (19) in the limit b′ → 0.
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FIG. 11. Surface plot illustrating plume merger in the case of two offset parallel rows of plumes with a
spacing ratio of b/a = 0.5.

2. Representative solutions

For b/a = 0.25, 0.5, and 1 and Γ0 = 1, Figs. 6(c) and 6(d) show that the vertical velocity and
volume flux for the offset case are similar to the counterpart results for the nonoffset case from
Figs. 6(a) and 6(b). The vertical velocity profiles are consistent with the shape of velocity potential
contours, i.e., the plume boundaries, for different b/a values. Thus for small b/a, e.g., b/a = 0.25,
the contour at the contact height (p = cosh 2b′) is “short and fat”; subsequently this contour evolves
like a line plume with a horizontal axis that persists into the very far-field [Fig. 9(b)]. By contrast,
the counterpart contour for larger b/a, e.g., b/a = 1, is expected to be relatively “long and thin,”
i.e., before approaching its far-field limiting shape, the contour is analogous to a line plume before
approaching the far-field limit. The surface plot illustrated in Fig. 11 shows the velocity potential
contours at different heights for the case b/a = 0.5. We define two different contact heights, ẑc,1 and
ẑc,2, as follows: ẑc,1 (ẑc,2) is given as the vertical distance where p is closest to sinh 2b′ (cosh 2b′).
Physically, ẑc,1 is the elevation where an individual plume first touches the center plane [i.e., the x
axis in Fig. 9(a)] and ẑc,2 is the elevation where plumes on the opposite sides of the x axis contact
one another. The contact heights ẑc,1 and ẑc,2 are illustrated in Fig. 12; differences between ẑc,1 and
ẑc,2 are most apparent for b/a < 0.5. Thereafter, and to a very good approximation, ẑc,1 
 ẑc,2. For
small b/a, the plumes rapidly touch the plane of symmetry (i.e., the x-axis) and thereby behave like
a single row of plumes. By contrast, and for larger b/a, the plume boundary significantly expands in
the x-direction as the elevation ẑc,1 is approached. In turn, such a process of expansion accelerates
plume merger so that ẑc,2 is only very slightly larger than ẑc,1; see, e.g., Fig. 9(b).

C. Effective entrainment perimeter

Consistent with He and Lou [15], who studied the merger of two adjacent plumes, we have
shown in Figs. 5 and 10 that the contour length l ′ is a nonmonotonic function of p, with a “kinky”
peak value at the contact height, ẑc,2. Due to the discontinuity in ∂l ′/∂ p, it is expected that the spatial
derivative (with respect to p) of the entrainment per unit plume perimeter exhibits a singular point at
ẑc,2. It should be emphasized that the contour length is not directly included in the plume modeling
except in the definition of the entrainment flux, i.e., (10). Instead of the plume perimeter, we may
consider an “effective entrainment perimeter” to account for the reduced entrainment due to plume
merger. The entrainment closure (16) implicitly defines the effective entrainment perimeter, denoted
by Pe, which is given by

Pe = a f , (68)
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FIG. 12. As in Fig. 8 but for the case of offset plumes with an offset distance of a/2. ẑc,1 is defined as the
elevation where p is closest to sinh 2b′, and ẑc,2 is defined as the elevation where p is closest to cosh 2b′. In all
cases, Γ0 = 1.

where f can be specified by either (19), (49), or (67). For single and dual rows of plumes, the
evolution of f = Pe/a as a function of p is shown in Fig. 13. The lower value of f for the case of
two rows is indicative of the reduced entrainment compared to the single-row case. For a modest
spacing ratio of b/a = 0.2, Fig. 13 shows that the effective entrainment perimeters for two rows
with and without offset are extremely close, which is consistent with the similar profiles shown in
Figs. 6(a) and 6(b) and Figs. 6(c) and 6(d). Note that the parameter f is related to the maximum
entrainment flow speed on a velocity potential contour. The offset between two rows of plumes does
not significantly alter the maximum entrainment flow speed, which occurs at the maximum extent
in the y direction.

IV. PLUME MERGER IN A NEUTRAL CROSSWIND

A. Formulation

In the case of a crosswind, we assume based on the experimental study of Jordinson [16] that
the main mechanism for bending a plume is the rate of entrainment of horizontal momentum from

0 5 10
0

0.5

1

FIG. 13. Nondimensional effective entrainment perimeter as a function of p. For two rows of plumes, the
spacing ratio is fixed as b/a = 0.2.
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the ambient to the plume core. Thus each individual plume in a crosswind can still be regarded as
a line sink, whose strength is now related to the wind speed. Considering a wind direction that is
perpendicular to the axis of a single row of line sinks, the symmetry between individual plumes is
not broken. The governing equations are then as follows:

d

ds
(AUp) = E , (69)

d

ds
(AUpu) = EUa, (70)

d

ds
(AUpw) = g′A, (71)

d

ds
(AUpg′) = 0, (72)

dx

ds
= cos θ, (73)

dz

ds
= sin θ, (74)

where Up is the mean streamwise velocity, u = Up cos θ and w = Up sin θ are the horizontal and
vertical components of Up, respectively, and Ua is the ambient wind velocity that is assumed to be
everywhere uniform. Defining the volume flux, Q = AUp, and buoyancy flux, F = AUpg′, (69)–(71)
can be rewritten as

dQ

ds
= E , (75)

du

ds
= E (Ua − u)

Q
, (76)

dw

ds
= F

Q(u2 + w2)1/2 − wE

Q
. (77)

The above set of equations is closed with an entrainment assumption. Consistent with the irrotational
flow theory described in Sec. II, we relate a characteristic entrainment velocity (qe) to the shear
between plume and crosswind. One of the simplest forms of entrainment closure has been proposed
by Hoult and Weil [17], and it reads

qe = γ1|Up − Ua cos θ | + γ2Ua sin θ, (78)

where γ1 and γ2 are entrainment coefficients associated with the longitudinal and transverse shear,
respectively. Although γ1 tends to vary as the axisymmetric plumes near the source merge into
a line plume in the far-field, the theory using a constant entrainment coefficient (see Sec. II) has
yielded satisfactory agreement with the experimental data of Bush and Woods [18]. Motivated by
this observation, we likewise assume γ1 to be constant here.

From (78), the rate of entrainment, E , is given by

E = 2a f (γ1|Up − Ua cos θ | + γ2Ua sin θ ), (79)

where f is to be specified later. Note that the plume in question is a whole plume with E = m
rather than the half plume considered in Sec. II. This E = m outcome is consistent with the plume
equations (69)–(72) and (75)–(77), which implicitly assume a whole plume. Hereafter, the variables
are nondimensionalized using a buoyancy length scale, LB = FU −3

a , and the wind speed, Ua, as
follows:

s = LBs, z = LBz, x = LBx, a = LBa,

u = Uau, w = Uaw, Up = UaU p = (u2 + w2)1/2,
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Q = F 2U −5
a Q = L2

BUaQ. (80)

On this basis, (75)–(77) are nondimensionalized as

dQ

ds
= 2a f (γ1|U p − cos θ | + γ2 sin θ ), (81)

du

ds
= 2a f

1 − u

Q
(γ1|U p − cos θ | + γ2 sin θ ), (82)

dw

ds
= 1

QU p
− 2a f

w

Q
(γ1|U p − cos θ | + γ2 sin θ ), (83)

where cos θ = u

(u2+w2 )
1/2 , sin θ = w

(u2+w2 )
1/2 , and f is given by (19). Note that the f of (19) is

originally derived for an infinite row of plumes in a quiescent environment. In a weak or moderate
crosswind, plume interactions are not expected to be significantly influenced by the crosswind so
that (19) remains a reasonable approximation. In a strong crosswind, by contrast, the plumes are
rapidly bent over and significant vortex entrainment is anticipated [5]. Such vortex entrainment is
not modeled explicitly in the present study. The above simplifying assumption notwithstanding, a
comparison between the present theory and the plume merger model of Wu and Koh [19] yields
satisfactory agreement; see Appendix B.

The flux-balance parameter is expressed as

Γ = 5

8π1/2α

Q2F

M5/2
= 5

8π1/2α
a−1A∗−1/2w−3, (84)

where A∗ = A/a2 is only a function of p. To solve (81)–(83), we first assign a small value of p, e.g.,
p = 0.05, thus A∗ can be determined from (6) (twice the area because we now consider a whole
plume). Then we assign a constant value for a and a source value for Γ (i.e., Γ0), thus the source
value of w, i.e., w0 ≡ w(z = 0), can be determined from (84). The source value for Q can then be
specified from Q = a2A∗w. The entrainment coefficients are specified as α = 0.117, γ1 = 0.1, and
γ2 = 0.6 [20,21].

B. Near- and far-field similarity scalings

For simplicity, it is assumed that there is no relative motion between the plume and crosswind
in the horizontal direction, i.e., u = Ua [22]. Thus, (82) reduces to du

ds = 0. Moreover, (73) and (74)
imply that

w ≡ w

Ua
= w

u
= dz

dx
= dz

dx
. (85)

1. Modest crosswind

In a modest crosswind, the plume trajectory is expected to be quasivertical, which implies that
ds ≈ dz, Up ≈ w, and w � Ua. Moreover, the entrainment in this case is similar to the entrainment
in a quiescent environment, thus the entrainment velocity is approximated by

qe = γ1|Up − Ua cos θ | ≈ γ1Up ≈ γ1w. (86)

With the above simplification, (81) and (83) reduce, respectively, to the following equations:

dQ

dz
= 2γ1a f

M

Q
, (87)

dM

dz
= Q

M
, (88)
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where M = Q w = L−2
B U −2

a M. In the limit p � 1, 2a f tends to 2π times the plume radius, ap/π .
Thus the cross-sectional area A = π (ap/π )2 = π (a f /π )2 = Q2/M. Then (87) reduces to

dQ

dz
= 2γ1(πM )1/2. (89)

Solving (88) and (89) yields

Q = 6γ1

5

(
9γ1

10

)1/3

π2/3z5/3, M =
(

9γ1

10

)2/3

π1/3z4/3, (90)

and thus

w = 5

6γ1

(
9γ1

10

)1/3

π−1/3z−1/3. (91)

Equations (89)–(91) are consistent with the classic plume theory of Morton et al. [13]. Using (85),
z is given by

z =
(

10

9γ1

)1/2

π−1/4x3/4. (92)

In the limit p � 1, f → 1, thus the solution to (87) and (88) can be obtained as

Q = (2γ1a)2/3z, M = (2γ1a)1/3z, w = (2γ1a)−1/3, z = (2γ1a)−1/3x. (93)

2. Strong crosswind

In the case of a strong crosswind, the plume is a bent-over plume, which implies that ds ≈ dx,
Up ≈ Ua, and w � Ua. The entrainment of a bent-over plume is similar to the entrainment due to a
line thermal, which is given by

qe = γ2Ua sin θ ≈ γ2w, (94)

thus (81) and (83) can be simplified, respectively, as

dQ

dx
= 2γ2a f

M

Q
, (95)

dM

dx
= 1. (96)

In the limit p � 1, the cross-sectional area A = π (ap/π )2 = π (a f /π )2 = Q/Ua. Thus, (95) re-
duces to

dQ

dx
= 2γ2π

1/2Q
−1/2

M. (97)

The solution to (96) and (97) is

Q =
(

3γ2

2

)2/3

π1/3x4/3, M = x, w =
(

2

3γ2

)2/3

π−1/3x−1/3. (98)

Using (85), the plume trajectory is given by

z = 3

2

(
2

3γ2

)2/3

π−1/3x2/3, (99)
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FIG. 14. Evolution of plume trajectory (a), volume flux (b), and horizontal (c) and vertical (d) velocities.
The horizontal dashed (solid) line denotes the height of first contact for a ≡ a/LB = 0.2 (a = 1). In both cases,
Γ0 = 1.

which is consistent with Briggs’s classic two-thirds law [23]. Using (99), (98) can be rewritten in
terms of z as

Q = γ 2
2 πz2, M =

(
2

3

)1/2

γ2π
1/2z3/2, w =

(
2

3

)1/2

γ −1
2 π−1/2z−1/2. (100)

In the limit p � 1, the counterpart solution is given by

Q = (2γ2a)1/2x, M = x, w = (2γ2a)−1/2, z = (2γ2a)−1/2x. (101)

Note from (98) and (101) that M has an identical scaling in the near and far fields.

C. Representative results

For a = 0.2 and 1 and Γ0 = 1, representative results of plume trajectory, volume flux, and
horizontal and vertical velocities are illustrated in Fig. 14. The contact heights with a = 0.2 and
1 are zc = 0.210 and 0.621, respectively. Figure 14(a) shows that the plume trajectories for a = 0.2
and 1 approach the respective near-field scalings z ∼ x3/4 and z ∼ x2/3, respectively. Nonetheless,
the far-field trajectories for both cases follow z ∼ x. Analogous near- and far-field similarity scalings
for the volume flux and vertical velocity are shown in Figs. 14(b) and 14(d), respectively. Notably,
Fig. 14(b) shows that the plume volume flux increases from a = 0.2 to a = 1, which is expected
because a larger distance between neighboring plumes allows more entrainment. As shown in
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FIG. 15. Contact height, zc, as a function of a ≡ a/LB. zc is defined as the elevation where p is closest to
1. In all cases, Γ0 = 1.

Fig. 14(c), u becomes close to unity at small z, thus the approximation used in (85) is self-consistent.
Figure 15 shows that zc increases monotonically with a.

D. Additional pressure drag term

Unfortunately, scalings of the type developed in Sec. IV B become more challenging to derive
when, as suggested for multiport crossflow discharge by Kannberg and Davis [24], a pressure drag
term is supposed to act on each plume. For completeness, in this sub-section we shall elaborate on
the significance of such a pressure drag term, recognizing that it is not necessarily required when
considering a single plume in a crosswind; see Appendix C. [The comparison between theory and
experiment in Appendix C also indicates that assuming a constant, i.e., elevation-independent value
for the entrainment coefficients, as we do in Eq. (78), for instance, does not diminish the ability of
a theoretical model to yield predictions that are in good agreement with experimental data.] For a
row of plumes in a crosswind, the plume-wake interaction or plume downwash is expected to be
more pronounced due, e.g., to the blockage of ambient flow postmerger [25]. To account for this
effect, integral models, e.g., Ref. [26], have added an extra pressure drag term to allow more plume
bending. In a similar fashion, (70) and (71) can be modified, respectively, as

d

ds
(AUpu) = EUa + 1

2
CD(Ua sin θ )22x+ sin θ, (102)

d

ds
(AUpw) = g′A − 1

2
CD(Ua sin θ )22x+ cos θ, (103)

where CD is an empirical drag coefficient and x+ = ax′
+; see (6). Correspondingly, the nondimen-

sional counterpart equations, (82) and (83), are modified, respectively, as follows:

du

ds
= 2a f

1 − u

Q
(γ1|U p − cos θ | + γ2 sin θ ) + CD

x+
Q

sin3 θ, (104)

dw

ds
= 1

QU p
− 2a f

w

Q
(γ1|U p − cos θ | + γ2 sin θ ) − CD

x+
Q

sin2 θ cos θ, (105)

where x+ = LBx+ and x+ = x′
+a/π . For simplicity, we choose a constant value of CD = 1, which

is similar both to the value employed by Wu and Koh [19] and also to the value suggested by the
resistance diagram for circular cylinders; see, e.g., Fig. 10.23 of Ref. [27].
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E. Comparison with the towing tank experiments of Ref. [24]

Kannberg and Davis [24] studied the dilution and trajectory of multiport diffusers in a flowing
environment. Although a finite row of diffusers was used in their experiments, image walls were
added to emulate the effect of an infinite row of plumes in a crosswind. The main control parameters
were as follows: source densimetric Froude number, Fr0 = w0/(g′

0D)1/2, where D is the port
diameter; ratio of the ambient velocity to the plume source velocity, R = Ua/w0; and ratio of
the port spacing to the port diameter, a/D. Kannberg and Davis [24] considered different angles
(denoted by θ0) between the plume source velocity and the ambient current velocity; however, we
shall only consider the perpendicular configuration, i.e., θ0 = π/2, for a comparison between theory
and experiment. The measured parameter of particular interest is the plume centerline trajectory,
which consists of a set of points (X/D, Y/D), where X and Y are the respective horizontal and
vertical distances from the port source. A goal of their experiments was to study the effects of
Froude number (Fr0), velocity ratio (R), and port spacing (a/D) on the plume trajectory. The main
parameters in Ref. [24] can be related to the variables in Sec. IV A as follows:

Γ0 = 5

16α
Fr0, a = 4

π

a

D
Fr2

0R3, A∗
0 ≡ A∗(z = 0) = π

4

(
a

D

)−2

,

X/D = a

D

x

a
, Y/D = a

D

z

a
. (106)

A comparison of the present theory with (thick curves) and without (thin curves) a pressure drag
term to Kannberg and Davis’s experiments is presented in Fig. 16, which focuses, in particular,
on the plume trajectory. It can be seen that adding a pressure drag term generally improves the
agreement between theory and experiment, especially in the relatively far-field. Some moderate
mismatch in the near field is due likely to the neglect of the near-source flow development zone
in the theory. Notwithstanding this point, there is a nontrivial difference between theory and
experiment for the a/D = 2.5 case illustrated in Fig. 16(d). This mismatch is consistent with Fig. 5
of Ref. [28], although in this latter case a greater drag coefficient, i.e., CD = 3, is used when
R = 0.10. In reconciling this difference, it should be emphasized that of all the a/D = 2.5 cases
in Figs. 16(c)–16(f), the ambient speed Ua for Fig. 16(d) is the smallest, so likewise for the ambient
Reynolds number. This Reynolds number is defined as Rea = UaD/ν, where ν is the kinematic
viscosity of the ambient fluid. As argued by Schatzmann and Policastro [26], Rea determines the
size of the wake zone. We expect, in other words, that the a/D = 2.5 data from Fig. 16(d) are
significantly impacted by enhanced wake effects. Although we do not pursue this line of inquiry
here, it may be necessary to modify the value for CD in such instances.

V. APPLICATIONS TO COOLING TOWERS

A major motivation for this study stems from evaluating the visible plume length in cases of
back-to-back cooling towers versus a single row of tower cells. Typical ambient conditions and
cooling tower operating conditions are listed in Table I. Specifically, each row contains a finite
number of n = 15 cooling tower cells; see the top-view schematic shown in Fig. 17. Among these
cooling tower cells, those of particular concern are the cells at the center and the end points. For a
single row, the axis of the plume at the center is not deflected due to symmetry, which is analogous
to a plume in an infinite row of plumes. Thus the plume at the center, if not in the very far-field, can
be modeled using the analysis in Sec. II. The half plumes at the two ends are, on the other hand,
exempt from plume merger and they entrain ambient fluid like an isolated plume. Therefore, the
center plume and the plumes at the two sides lead to the least and largest amount of entrainment,
respectively; they also represent the “worst” and “best” scenarios in the case of visible plumes. For
the counterpart dual rows of plumes, the two center plumes are similar to plumes in the two infinite-
row configurations. By contrast, the two half round plumes on each side may be approximated
by the merging of two adjacent axisymmetric plumes. Using the same terminology as above, the
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FIG. 16. Effects of varying the source Froude number, Fr0 (a), ambient to plume source velocity ratio, R
(b) and port spacing ratio, a/D (c)–(f) on the plume trajectory. The thin curves represent the theory without
a drag term (Secs. IV A and IV B) whereas the counterpart thick curves represent the theory of Sec. IV D
with CD = 1. The experimental data are taken from Appendix A of Kannberg and Davis [24]. Note that the
uppermost diamond in (c) was measured using a different method compared to the other experimental data
[24].

worst-case scenarios are to be estimated using the irrotational flow theory described in Secs. II and
III. The best-case scenario, corresponding to the merger of two adjacent plumes, is modeled using
the geometrical merging criterion proposed by Wu and Koh [19] (cf. Fig. 2 of Ref. [29]).
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TABLE I. Representative operating and environmental conditions for the back-to-back and single-row
cooling towers illustrated in Fig. 17 [30].

Variables Name Value (unit)

Pa Ambient pressure at the top of the cooling tower 101 325 (Pa)
ta Ambient temperature 10 (◦C)
RHa Ambient relative humidity 80 (%)
tw Wet cooling temperature 30 (◦C)
td Dry cooling temperature 25 (◦C)
w0 Stack exit velocity 6 (m/s)
D0 Stack exit diameter 8 (m)
a Horizontal distance in the x-axis between cell centers 15 (m)
b Half of the horizontal distance between cell centers in the y-axis 7 (m)
ṁd
ṁw

Ratio of the dry to wet air mass flow rate 0.2 and 0.4
n Number of cooling tower cells in a single row 15

We follow the governing equations for moist plumes presented in Ref. [29] (see Appendix D)
and focus particular attention on the relative humidity (RH) of the plumes discharged from a line of
cooling tower cells at the center and at the end points. Figures 18(a) and 18(c) show that, as expected
and as concerns fog formation, the visible plume length at the center is greater than that at the end
points. This difference is more pronounced for two rows of plumes whereby entrainment is more
heavily curtailed. In the case of no fog formation, Figs. 18(c) and 18(d) show that a maximum RH is
achieved at a higher elevation for the plume at the center than for the plumes at the end points. This
latter case indicates that less entrainment does not necessarily lead to fog formation, but rather slows
down the rate of decrease of RH. Note that the model calculation leading to Fig. 18 presumes that
the dry and wet air are completely mixed, thus resulting in a radially uniform plume at the source. If
complete mixing is not achieved, but neither is a coaxial wet/dry plume structure [31,32], the visible
plume length can be greatly enhanced; see Fig. 18(c). Therefore, relatively stringent mixing criteria
must be assured within the plenum chamber of back-to-back cooling towers.

VI. CONCLUSIONS

The present paper has extended a previous formulation of Rooney [4] to model two parallel rows
of plumes in a quiescent environment and a single row of plumes in a crosswind. We first note
that for all symmetric plume configurations considered so far, the entrainment flux is found to be
equal to the strength of the line sink, i.e., E = m. For two parallel rows of plumes, we consider
both configurations with and without offset. Similar profiles of vertical velocity and volume flux are
predicted for those two configurations. In contrast to a single row of plumes, the vertical velocity of
plumes in two rows levels off before approaching the far-field limit under a relatively large spacing

FIG. 17. Top view of single and dual rows of cooling tower cells. The black circles denote cells at the
center, and the gray half-circles denote the half-cells at the two ends.
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FIG. 18. Relative humidity profiles for single (a),(b) and dual (c),(d) rows of plumes. The model input
parameters are specified in Table I. Note, in particular, that ṁd

ṁw
represents the ratio of dry to wet air mass flow

rate.

ratio; see Figs. 6(a) and 6(c). Two different contact heights are defined, and these heights are found
to increase approximately linearly with the spacing ratio; see Figs. 8 and 12. For both single and dual
rows of plumes, it is found that an effective entrainment perimeter, proportional to the f parameter
specified, e.g., in (19), accounts for the reduced entrainment due to plume merger.

Another major contribution of this study is the integral modeling of an infinite row of plumes
in a crosswind. In particular, the velocity potential contours remain identical to those in Ref. [4],
whereas the modified entrainment closure includes both longitudinal and transverse entrainment.
For both modest and strong crosswinds, the theoretical solutions approach the corresponding near-
and far-field similarity limits; see Figs. 14(a), 14(b) and 14(d). A comparison of the present theory to
the experimental data collected by Kannberg and Davis [24] vis-à-vis the plume centerline trajectory
yields satisfactory agreement, particularly when the theory is modified as in Sec. IV D to include a
drag term; see Fig. 16. It is also noted that a constant drag coefficient model is not able to describe
the extreme case of small ambient Reynolds number and port spacing ratio.

The theory of single and dual rows of plumes in a quiescent environment has been applied
to cooling tower plumes arising from long rows containing multiple cooling tower cells. The
aforementioned theory only applies to plumes discharged from cells at the center, where a minimum
of ambient entrainment is expected. A comparison of the relative humidity profiles for plumes at
the center versus plumes at the end points is made in Fig. 18. Results drawing from this comparison
indicate that a back-to-back configuration may greatly enhance the visible plume length.

Given the rather complicated nature of plume-plume interactions, the coupling presented here
between the irrotational flow theory and the integral plume equations may be improved. Key to this
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coupling is an entrainment closure that incorporates the nonuniform distribution of the entrainment
flow speed along the velocity potential contours. Accounting for such an effect also requires a
presumed nonuniform vertical velocity profile that deviates from the “top-hat” profiles considered
in the present model.
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APPENDIX A: ENTRAINMENT FLUX CALCULATION USING THE STREAM FUNCTION

For two-dimensional and incompressible flows, the flux of fluid between two streamlines equals
the difference in the stream function. For a single row of line sinks, the stream function is given as

ψ = Im(Ω ) = − m

2π
tan−1

(
cos x′ sinh y′

sin x′ cosh y′

)
. (A1)

Using the physical interpretation of the stream function, the rate of entrainment across any contour
in Fig. 1 is

E = ψ(x′+, y′ ) − ψ(x′−, y′ ). (A2)

For p � 1, y′(x′
+) = y′(x′

−) = 0, thus E = − m
2π

(0 − π ) = m/2. For p > 1, cos x′
± = 0 so that E =

− m
2π

(0 − π ) = m/2.
For the case of dual rows of nonoffset line sinks, the stream function is given as

ψ = − m

2π
tan−1

(
sin 2x′ sinh 2y′

cosh 2b′ − cos 2x′ cosh 2y′

)
. (A3)

For p � cosh 2b′ − 1, the rate of entrainment across any closed contour is

E = 2
(
ψ(0, y′

max ) − ψ(0, y′
min )

) = −m

π
(0 − π ) = m, (A4)

where y′
max and y′

min are given by (33) and (34), respectively. For cosh 2b′ − 1 < p � cosh 2b′ + 1,

E = 2
(
ψ(0, y′

max ) − ψ(x′−, 0)
) = −m

π
(0 − π ) = m. (A5)

For p > cosh 2b′ + 1,

E = 2(ψ(0, y′
max ) − ψ(−π/2, y′ ) ) = −m

π
(0 − π ) = m. (A6)

For the case of dual rows of line sinks with an offset a/2, the stream function is given as

ψ = − m

2π
tan−1

(
cos 2x′ sinh 2y′ − sinh 2b′

sin 2x′ cosh 2y′

)
. (A7)

For p � cosh 2b′,

E = 2
(
ψ(0, y′

max ) − ψ(0, y′
min )

) = −m

π
(−π/2 − π/2) = m, (A8)

where y′
max and y′

min are given by (58) and (59), respectively. For p > cosh 2b′,

E = (ψ(π/4, y′+ ) − ψ(−π/4, y′+ ) ) + (ψ(−π/4, y′− ) − ψ(π/4, y′− ) ) = − m

2π
(−π ) − m

2π
(−π ) = m. (A9)

094502-25



SHUO LI AND M. R. FLYNN

On the basis of the above results, we conclude that E = m/2 and E = m for the single and dual
rows of plumes, respectively.

APPENDIX B: COMPARISON BETWEEN THE PRESENT THEORY AND REF. [19]

In a strong crosswind, the plume-plume interactions become less intense than those in a weak
crosswind. For a rosette buoyant jet group with a jet-to-riser diameter ratio of the order of 0.1,
Lai et al. [10] revealed that the dynamic interactions between buoyant jets were negligible even
in a moderate crossflow. Therefore, and in cases of moderate to strong crosswinds, we may treat
multiple plumes the same as an isolated plume premerger, which is consistent with the model of
Wu and Koh [19] (hereafter WK78). WK78 assumes that the plume cross section is perfectly round
premerger, and the rate of entrainment is given as

E = 2πr(γ1|Up − Ua cos θ | + γ2Ua sin θ ), (B1)

where r is the mean plume radius. Once merger is initiated, the round plume transitions to a
slot plume with a rectangular cross section. Thus, the counterpart entrainment rate postmerger is
evaluated from

E = 2a(γ1|Up − Ua cos θ | + γ2Ua sin θ ). (B2)

On this basis, and following the nondimensionalization given by (80), Eqs. (75)–(77) can be
nondimensionalized to the identical form as (81)–(83) but with f given instead by

f =
⎧⎨
⎩

π1/2 Q
1/2

aU
1/2
p

, (pre-merger),

1, (post-merger).
(B3)

WK78 assumes that merging occurs on the basis of a geometrical criterion, which requires that
r = a/2. The equivalent nondimensional relation is given as

r ≡
(

Q

πU p

)1/2

= a/2, (B4)

where r denotes the nondimensional plume radius. At the merger height, the round plume evolves
to a two-dimensional plume while the plume cross-sectional area remain unchanged.

Figure 19 shows the comparison between the present irrotational flow theory and the WK78
theory in terms of plume trajectory (z versus x) and vertical velocity (z versus w) for a = 0.2, 1,
and 10. The gap between the heights of first contact for the present theory and WK78 increases as a
increases. This is consistent with the fact that the effect of plume merger weakens with increasing a.
Overall good agreement is observed vis-à-vis the plume trajectory; see Figs. 19(a), 19(c) and 19(e).
It is intuitive that the present theory should predict greater plume rise than does WK78 because
the former theory admits less entrainment than the latter. The above argument applies for the cases
a = 0.1 and 1. However, and in the case of large a, e.g., a = 10, Fig. 19(e) shows greater plume rise
for WK78 than for the present theory, at least in the near-field region. Correspondingly, the vertical
velocity, w, predicted by WK78 is larger in the range 0 < z � 5. This nonintuitive result is due to the
large near-source entrainment experienced at large wind speeds, which rapidly expands the plume
cross section using the irrotational flow theory. By contrast, and for a single plume (premerger using
WK78), the entrainment rate actually decreases near the source as the plume is bent over rapidly by
a strong wind [cf. Fig. 5(b) of Ref. [21]]. Reassuringly, the present irrotational flow theory avoids
the kinks that characterize the vertical velocity profiles as computed using WK78; see Figs. 19(b),
19(d) and 19(f).
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FIG. 19. Comparison between the present irrotational flow theory and the theory of Wu and Koh [19]. The
horizontal solid and dashed lines denote the respective heights of first contact for the above theories. In all
cases, Γ0 = 1.

APPENDIX C: THEORY VERSUS EXPERIMENT OF A SINGLE PLUME
IN A NEUTRAL CROSSWIND

This Appendix attempts to clarify two things: One is whether a constant entrainment coefficient
model can successfully predict the trajectory of a single plume in a crosswind; second is a compar-
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TABLE II. Experimental conditions for turbulent plumes in neutral crossflows [34]. D0 is the nozzle
diameter; ρ0−ρa

ρa
is the relative difference between the plume source density (ρ0) and the ambient fluid density

(ρa); Q0 is the plume source volume flux; Ua is the ambient flow speed; w0 is the plume source vertical velocity;
and Fr = w0/(g′

0 D0 )1/2 is the densimetric Froude number, where g′
0 = gρ0−ρa

ρa
is the source reduced gravity.

Experiment D0 (mm) ρ0−ρa
ρa

Q0 (L min−1) Ua (cm s−1) Ua/w0 Fr

1 7 0.097 0.56 4.68 0.19 2.97
2 8.86 0.37 2.97
3 13.05 0.54 2.97
4 21.4 0.88 2.97

5 7 0.097 1.00 4.68 0.11 5.31
6 8.86 0.20 5.31
7 13.05 0.30 5.31
8 21.4 0.49 5.31

9 7 0.097 1.83 4.68 0.06 9.71
10 8.86 0.11 9.71
11 13.05 0.16 9.71
12 21.4 0.27 9.71

ison of a circular versus elliptical cross section in terms of predicting plume trajectories. We follow
the governing equations, (69)–(74), with the closure condition (78) where γ1 = 0.1 and γ2 = 0.6.
The plume cross-sectional area and the rate of entrainment, assuming a circular or elliptical cross
section, are given by

A = πb2, E = 2πbqe (circular), (C1)

A = πλb2, E = 2πb

(
λ2 + 1

2

)1/2

qe (elliptical), (C2)

where in (C1) b is the plume radius and in (C2) b is the minor radius, and λ is the ratio of the major
to the minor radius. According to the experimental observations of Contini et al. [33], λ = 1.2 is
chosen. For the experimental conditions listed in Table II, comparisons of theory versus experiment
vis-à-vis the mean plume centerline trajectories are illustrated in Figs. 20 and 21. The solid and
dashed curves, representing the theoretical solutions assuming circular and elliptical cross sections,
respectively, almost coincide with each other. This implies that circular and elliptical cross-section
models are equally capable of predicting plume trajectories. In all panels of Figs. 20 and 21,
overall satisfactory agreement between theory and experiment is observed, which demonstrates the
ability of a constant entrainment coefficient model in describing the bulk dynamics for a plume in
crosswind; see also the comparison made in Ref. [20].

APPENDIX D: MOIST PLUME EQUATIONS

We follow the moist plume equations described in Ref. [29], which read as follows:
dQ

dz
= E , (D1)

dM

dz
= Ag′, (D2)

d

dz

(
� − Lv

cpa
W

)
= 0, (D3)

d

dz
(H + W ) = 0, (D4)
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FIG. 20. Comparison between theory and experiment for cases 1–6 of Ref. [34]. The solid and dashed
curves nearly overlap except for large x/D.

where the volume and momentum fluxes are defined, respectively, as Q = Aw and M = Aw2; the
excess temperature flux is � = Aw(tp − ta), where t denotes the air dry-bulb temperature; the excess
specific humidity flux is H = Aw(qp − qa), where q denotes the specific humidity; and the excess
specific liquid moisture flux is W = Aw(σp − σa), where σ denotes the specific liquid moisture.
The latent heat of condensation, measured in J/g, is Lv = Lv (t ) = 4.1868 [597.31 − 0.57 t] with t
measured in degrees Celsius, and cpa = 1.006 J/(g K) is the specific heat of air at constant pressure
[19]. Subscripts p and a denote the plume and the ambient, respectively. The reduced gravity, g′, is
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FIG. 21. As in Fig. 20 but for cases 7–12.

defined as

g′ = g
ρa − ρ

ρ0
= g

ρa − ρ

ρa
= g

(
1 − tv,a

tv,p

)
, (D5)

where the plume virtual temperature and ambient virtual temperature, tv,p and tv,a, are defined,
respectively, as follows [35]:

tv,p =
(

ta + 273.15 + �

Q

)[
1 + 0.608

(
qa + H

Q

)
− W

Q

]
, (D6)

tv,a = (ta + 273.15)(1 + 0.608 qa − σa). (D7)
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Here, σa = 0 signifies an ambient devoid of liquid moisture. The density of moist air is evaluated
using the ideal-gas law, which reads

P = ρRatv, (D8)

where P is the total pressure inside/outside the plume, and Ra = 287.058 J/kg K is the gas constant
of air.
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