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Periodically driven flows are known to generate nonzero, time-averaged fluxes
of heat or solute species, due to the interactions of out-of-phase velocity and
temperature/concentration fields, respectively. Herein, we investigate such transport (a
form of the well-known Taylor-Aris dispersion) in the gap between two parallel plates,
one of which oscillates vertically, generating a time-periodic squeeze flow of either a
Newtonian or a Maxwell fluid. Using the method of multiple time-scale homogenization,
the mass/heat balance equation describing transport in this flow is reduced to a one-
dimensional advection-diffusion-reaction equation. This result indicates three effective
mechanisms in the mass/heat transfer in the system: an effective diffusion that spreads
mass/heat along the concentration/temperature gradient, an effective advective flux, and
an effective reaction that releases or absorbs mass/heat—in the time-averaged frame. Our
results demonstrate that there exist resonant modes under which the velocity peaks when
the dimensionless plate oscillation frequency (embodied by the Womersley number, the
ratio of the transient inertia to viscous forces) approaches specific values. As a result,
transport in this flow is significantly influenced by the dimensionless frequency. On the
one hand, the effective, time-averaged dispersion coefficient is always larger than the
molecular diffusivity and is sharply enhanced near resonance. The interaction between
the fluid elasticity and the oscillatory forcing enhances the efficiency of transport in the
system. On the other hand, the identified effective advection and reaction mechanisms
may transport mass/heat from regions of high concentration/temperature to those of low
concentration/temperature, or vice versa, depending on the value of the dimensionless
frequency. Ultimately, it is shown that the oscillatory squeeze flow can either enhance
or diminish transport, depending on the interplay of these three effective (homogenized)
mechanisms.

DOI: 10.1103/PhysRevFluids.5.094501

I. INTRODUCTION

The spreading of a scalar in a flow due to the combined action of diffusion, advection, and
reaction is widely known as Taylor-Aris (shear) dispersion [1–5]. Shear dispersion has been studied
extensively, in particular, for flows that are oscillatory in time [6–11], due to their relevance to
transport in arteries [12], in pulmonary airways [13–15], in cerebrospinal fluid [16], through bones
[17], through liquid membranes [18] and wave boundary layers [19], through actuation via electro-
osmotic forces [20,21], and so on. The analogous heat-transfer problem—generating a considerable
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FIG. 1. Schematic of the oscillatory squeeze flow between two disks.

augmentation of the heat flux through flow oscillations—has also been observed (see, for example,
[22–24]).

In what follows, we consider an oscillatory squeeze flow (OSF), in which a viscoelastic fluid is
driven periodically by the motion of one of the confining, parallel planes (see Fig. 1 for a schematic
of the studied configuration). This type of setting exists in some devices using magnetorheological
fluids [25] or electrorheological fluids [26], where the fluid is squeezed periodically under a variable
magnetic or electric field, as a means of achieving continuously variable control of mechanical
vibrations, and is also envisioned as a mode of achieving control over transport in confined systems.

An early theoretical analysis of OSF was conducted by Phan-Thien and Tanner [27,28], who
provided analytical solutions for the velocity profile and the normal force required to drive the
plate. They proposed that the dynamic properties of polymeric liquids could be measured using
a plastometer operating in the OSF mode. Since then, OSF equipment has been proposed and
widely used in the rheology community for evaluating the processability of polymer melts, and
for possible macromolecular characterization [29,30]. Furthermore, its ability to augment transport
of mass and/or heat serves as a motivation for understanding the characteristics of this system.

Studies by Phan-Thien [27] and Bell et al. [31] demonstrated that a periodic flow in the
streamwise direction (perpendicular to the oscillation direction of the plates) of an OSF exhibits
a time dependence similar to that of an oscillatory pipe flow. Hence, there is reason to believe that
shear-induced dispersion should also exist in the OSF, and dispersion would augment the mixing
of the solute and the bulk flow along the streamwise direction. In this vein, Stone and Brenner [32]
investigated the shear dispersion of a solute in a steady radial flow between two parallel plates and
discovered a radially dependent effective diffusivity in the streamwise direction. Creech et al. [33]
proposed a model to analyze dispersion in a specific case of the OSF, which occurs in the tear layer
of the eye, sandwiched between the cornea and a soft contact lens. They found that the dispersion
coefficient is orders of magnitude higher than the molecular diffusivity, facilitating mixing between
the cornea and a soft contact lens. Specifically, the dispersion-augmented mixing is much faster
than that which can be achieved by diffusion alone. However, the model neglects the advective
contribution of streamwise velocity variations, while using a form of the velocity field valid for low
frequencies. These simplifications limit the applicability of the study in Ref. [33]. In the present
study, we relax these assumptions, while also extending it to the viscoelastic character of the fluid
and its effect on Taylor-Aris dispersion.

In this paper, in view of the mathematical and physical analogy between mass diffusion and heat
conduction, we investigate the dispersion in both contexts via a unified approach. We consider a
domain confined by two parallel plates that enclose a Newtonian or a viscoelastic Maxwell fluid.
One of the plates oscillates vertically in a sinusoidal fashion, squeezing the enclosed fluid. We
determine the fluid velocity field and reduce the mass/heat balance equation to a one-dimensional
advection-diffusion-reaction equation via the asymptotic method of multiple-scale homogenization.
Interestingly, our results show that the OSF can either enhance or diminish mass/heat transfer,
depending on the interplay of the effective diffusion, advection, and reaction mechanisms. To this

094501-2



TIME-AVERAGED TRANSPORT IN OSCILLATORY …

end, this paper is organized as follows: We begin by formulating the problem of the viscoelastic
OSF between two plates. First, we obtain an analytical solution for the velocity profile in Sec. II A.
Then, in Sec. II B, we combine the latter with the effective advection-diffusion-reaction equation
for transport in the OSF. We present the results and discussion related to the velocity field in
Sec. III A and the transport characteristics in Sec. III B. Concluding remarks are given in Sec. IV.
Appendixes are included with a detailed derivation of the homogenized transport equation, as well
as a calculation of the power required to drive the system.

II. MODEL FORMULATION

We consider the flow and scalar transport in a viscoelastic fluid confined between two concentric
disks with the same radii, R̂, separated by a distance ĥ0 (see schematic in Fig. 1). The upper disk
oscillates sinusoidally at amplitude â about a mean position ĥ0, such that its position in time is
ẑ = ĥ(t̂ ), and the distance between the two disks is

ĥ(t̂ ) = ĥ0 + â cos(ω̂t̂ ), (1)

where ω̂ is the angular frequency, and t̂ is the time. The vertical velocity of the top disk is therefore

ĥ′(t̂ ) = −âω̂ sin(ω̂t̂ ) = Re {âω̂ieiω̂t̂ }, (2)

where Re { · } denotes the real part of a complex quantity, and primes denote differentiation.

A. Velocity field

1. Governing equations

We begin with the equations of motion for an incompressible flow. The continuity equation is

1

r̂

∂

∂ r̂
(r̂û) + ∂ v̂

∂ ẑ
= 0, (3)

where the two-dimensional velocity field is û = ûer + v̂ez, with er and ez the unit vectors in the r̂
and ẑ directions, respectively (see Fig. 1), and the momentum equation, neglecting body forces, is

ρ̂
Dû
Dt̂

= −∇ p̂ + ∇ · τ̂, (4)

where τ̂ is the (deviatoric) viscous stress tensor, ρ̂ is the density of the fluid, and p̂ is the pressure.
The constitutive equation for the incompressible upper-convected Maxwell fluid (see, for example,
[28]) is

τ̂ + λ̂0

(
Dτ̂

Dt̂
− [τ̂ · (∇û) + (∇û)T · τ̂]

)
= μ̂(∇û + ∇ûT ), (5)

where λ̂0 is the viscoelastic relaxation time, and μ̂ is the usual, Newtonian, dynamic shear viscosity.
In what follows we assume that the amplitude of the disk oscillations is small, i.e., the dimension-

less displacement amplitude of the upper plate δ = â/ĥ0 � 1, while the frequency is unrestricted.
With this assumption, combining Eq. (5) and Eq. (4) results in (see Appendix B for derivation)

λ̂0
∂2û

∂ t̂2
+ λ̂0

ρ̂

∂2 p̂

∂ t̂∂ r̂
+ ∂ û

∂ t̂
= − 1

ρ̂

∂ p̂

∂ r̂
+ μ̂

ρ̂

(
∂2û

∂ r̂2
+ 1

r̂

∂ û

∂ r̂
+ ∂2û

∂ ẑ2
− û

r̂2

)
, (6a)

λ̂0
∂2v̂

∂ t̂2
+ λ̂0

ρ̂

∂2 p̂

∂ t̂∂ ẑ
+ ∂ v̂

∂ t̂
= − 1

ρ̂

∂ p̂

∂ ẑ
+ μ̂

ρ̂

(
∂2v̂

∂ r̂2
+ 1

r̂

∂ v̂

∂ r̂
+ ∂2v̂

∂ ẑ2

)
. (6b)

We impose no slip and no penetration at the solid walls, which correspond to

û(0) = 0, û(ĥ) = 0, v̂(ĥ) = Re {âω̂ieiω̂t̂ }, v̂(0) = 0. (7)
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In principle, we must also specify conditions at r̂ = R̂ to close the problem. We discuss this in more
detail in Sec. II A 3.

2. Nondimensionalization

We posit lubrication-type scalings with the pressure made dimensionless using the viscous stress
scale:

û = Ûu, v̂ = εÛv, t̂ = T̂ t, r̂ = R̂r, ẑ = εR̂z, p̂ = μ̂Û

ε2R̂
p, ĥ = ĥ0h. (8)

Here, ε = ĥ0/R̂. The vertical velocity scale εÛ is set by the oscillations of the wall, hence we have
Û = âω̂/ε. The natural time scale of the problem is the inverse of the oscillation frequency of the
wall, i.e., T̂ = 1/ω̂. The dimensionless versions of the momentum equations (6a) and (6b) are then

De α2 ∂2u

∂t2
+ De

∂2 p

∂t∂r
+ α2 ∂u

∂t
= −∂ p

∂r
+ ε2 ∂2u

∂r2
+ ε2 1

r

∂u

∂r
+ ∂2u

∂z2
− ε2 u

r2
, (9a)

ε2De α2 ∂2v

∂t2
+ De

∂2 p

∂t∂z
+ ε2α2 ∂v

∂t
= −∂ p

∂z
+ ε2

(
ε2 ∂2v

∂r2
+ ε2 1

r

∂v

∂r
+ ∂2v

∂z2

)
, (9b)

while the dimensionless form of the boundary conditions, (7), is

u(0) = 0, u(1) = 0, v(1) = Re {ieit }, v(0) = 0. (10)

Here, we define the Womersley number [34], α2 = ρ̂ω̂ĥ2
0/μ̂, the ratio of transient inertial forces to

viscous forces, and the Deborah number, De = λ̂0ω̂, the ratio of the elastic relaxation time scale to
the oscillation time scale.

Combining Eqs. (9a) and (9b) at leading order in ε, we obtain

De α2 ∂3u

∂t2∂z
+ α2 ∂2u

∂t∂z
= ∂3u

∂z3
. (11)

3. Solution

Assuming the form of the solutions

u(r, z, t ) = Re
{ r

2
f ′(z)eit

}
, (12a)

v(z, t ) = −Re { f (z)eit } (12b)

and substituting them into Eq. (11), we find that f satisfies the ordinary differential equation

(i − De)α2 f ′′(z) − f (4)(z) = 0 (13)

subject to the boundary conditions from Eq. (10):

f ′(0) = 0, f ′(1) = 0, f (1) = −i, f (0) = 0. (14)

We note that the solution structure, Eqs. (12a) and (12b), imposes a particular behavior of the
fluid at r = 1. In practice one should apply appropriate conditions, which specify, for example,
how the free surface moves or conditions on a reservoir into which the fluid enters beyond r = 1.
However, these edge effects will play a small role in the overall behavior as a result of the lubrication
approximation that we have made along with the assumption of small wall oscillations, and thus Eqs.
(12a) and (12b) provides a suitable representation of the fluid flow.

The solution to Eq. (13) subject to (14) is

f (z) = − ie	(1−z)(e	(z−1)(	z − e	z + e	 (	z − 1) + 1) + 1)

e	 (	 − 2) + 	 + 2
, (15)
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where 	 = α
√

i − De. Thus, the dimensionless velocity components are

u(r, z, t ) = −Re

{
r

2
eit i	(e	 − e	z − e	−	z + 1)

e	 (	 − 2) + 	 + 2

}
, (16a)

v(z, t ) = Re

{
ie	(1−z)(e	(z−1)(	z − e	z + e	 (	z − 1) + 1) + 1)

e	 (	 − 2) + 	 + 2
eit

}
. (16b)

B. Time-averaged scalar dispersion: Mass and heat transfer

1. Governing equations

For the flow sketched in Fig. 1 given by the solution in Eqs. (16a) and (16b), the advection-
diffusion equation governing the mass and heat transfer (in the absence of mass/heat sources or
sinks) can be expressed as

∂
̂

∂ t̂
+

(
1

r̂

∂ (r̂û
̂)

∂ r̂
+ ∂ (v̂
̂)

∂ ẑ

)
= D̂

1

r̂

∂

∂ r̂

(
r̂
∂
̂

∂ r̂

)
+ D̂

∂2
̂

∂ ẑ2
, (17)

where D̂ is the mass or thermal diffusivity, and 
̂ represents either the concentration or the temper-
ature for the cases of mass and heat transfer, respectively. Note that, for the equivalence between
mass and heat transfer to hold, we assume that the viscous dissipation in heat transfer is negligible.
This assumption is valid when the Brinkman number is small, i.e., σÛ 2/(
̂max − 
̂min)ĉp = o(ε2),
where 
̂max, 
̂min, and ĉp represent the maximum temperature, minimum temperature, and specific
heat capacity, respectively. The walls of the plates are impermeable and thermally insulated, thus
we have the following boundary conditions:

∂
̂

∂ ẑ

∣∣∣∣
ẑ=0

= ∂
̂

∂ ẑ

∣∣∣∣
ẑ=ĥ(t̂ )

= 0. (18)

To close the problem we also require boundary conditions at a fixed radial position, however, these
are not necessary to determine the radially averaged governing equation; we consider a particular
case in Sec. III B 2.

By introducing the dimensionless variables from Eq. (8) and the dimensionless
concentration/temperature 
 = (
̂ − 
̂min)/(
̂max − 
̂min), Eqs. (17) and (18) become

α2σ
∂


∂t
+ εPe

(
1

r

∂ (ru
)

∂r
+ ∂ (v
)

∂z

)
= ε2

r

∂

∂r

(
r
∂


∂r

)
+ ∂2


∂z2
, (19a)

∂


∂z

∣∣∣∣
z=0

= ∂


∂z

∣∣∣∣
z=h

= 0, (19b)

where Pe = ĥ0Û/D̂ is the Péclet number and σ = μ̂/ρ̂D̂ is the Schmidt number in mass transfer or
the Prandtl number in heat transfer.

2. Multiple-time-scale analysis

We now turn to the derivation of the time-averaged transport equation, for which we employ the
technique of multiple-time-scale homogenization [35]. There are three disparate time scales in this
problem; first, the characteristic time for mass/heat diffusion in the transverse direction is

t̂0 = O

(
ĥ2

0

D̂

)
. (20)

We assume that this time scale is comparable to the oscillation period, i.e., t̂0 = O(1/ω̂), which
means that the mass/heat diffusion in the transverse direction should equilibrate within several
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oscillation periods [36,37]. The second time scale is the characteristic time for advection in the
streamwise direction:

t̂1 = t̂0
ε

= O

(
R̂

Û

)
. (21)

The third, and longest, time scale is for streamwise diffusion:

t̂2 = t̂0
ε2

= O

(
R̂2

D̂

)
. (22)

In the multiple-time-scale analysis, we assume that all variables are dependent on these three
time scales independently [35,38]. Then, using the dimensionless versions of these time scales, the
time derivative transforms as

∂

∂t
= ∂

∂t0
+ dt1

dt

∂

∂t1
+ dt2

dt

∂

∂t2
= ∂

∂t0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
. (23)

We follow Fife and Nicholes [39] and expand 
 as follows:


 ∼ 
0(r, z, t1, t2) +
∞∑

n=1

εn
n(r, z, t0, t1, t2) +
∞∑

n=0

εnWn(r, z, t0), (24)

where the 
n terms are assumed to be fully developed terms that are harmonic functions of t0, while
the Wn terms are assumed to be transient in t0 and vanish as t0 → ∞.

Next, homogenization [36,40] is performed (see details in Appendix A), which transforms
Eq. (19a) into a homogenized advection-diffusion-reaction equation for transport in the viscoelastic
OSF,

α2σ
∂
0

∂t2
= 1

r

∂

∂r

(
(1 + Deff )r

∂
0

∂r
− rUeff
0

)
+ Seff
0, (25)

where

Deff (r) = − r2

4
Pe Re 〈 f ′∗Bw〉, (26a)

Ueff (r) = − r

2
Pe Re {iBw(1)}, (26b)

Seff = −Pe Re {iBw(1)}. (26c)

Here, the superscript asterisk represents the conjugate of a complex number, and we have further
defined

Bw(z) = 	Pe e−z(	+2A1 )[A2(−eA3 + e	+A1(2z+1)+	z + eA1(2z+1)+	z − ez(	+2A1 ) ) + A4]

2α2σA2[e	 (	 − 2) + 	 + 2](eA1 − 1)
,

A1 = (−1)1/4α
√

σ ,

A2 = α2σ + i	2,

A3 = 	 + 2A1z + 	z,

A4 = iA2
1(e	+2A1z+A1 + e2A1z+A1+2	z − e2z(	+A1 ) − e	+2A1z )

− iA1	(e(z+1)(	+A1 ) − eA1z+A1+	z + e	+3A1z+	z − e(	+3A1 )z ).

Using Eq. (23), t2 in Eq. (25) can be replaced by the general time t , resulting in

α2σ

ε2

∂
0

∂t
= 1

r

∂

∂r

(
(1 + Deff )r

∂
0

∂r
− rUeff
0

)
+ Seff
0. (27)
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Note that the above equation is valid on the long time scale, i.e., t � t2. By recalling t̂0 � t̂1 � t̂2
and substituting Eqs. (20) to (22) into this inequality, we obtain a restriction on the range of Pe, i.e.,
ε � Pe � 1/ε, to ensure validity of our theory. Further, by substituting Eq. (20) into the assumption
of t̂0 = O(1/ω̂), we obtain α2σ = O(1).

Equation (27) is the homogenized effective advection-diffusion-reaction equation for transport in
the viscoelastic OSF, which embodies three effective mechanisms of mass/heat transfer comprising
the dispersion process. The first one is the effective diffusion, with Deff representing the effective
streamwise diffusivity. As with molecular diffusion (Fick’s law), the effective diffusive flux is
also driven by the concentration gradient. The second is the effective advection, which indicates
that mass/heat is carried along by an effective streamwise advection velocity Ueff , representing a
time-averaged drift velocity. When Ueff > 0, it is directed radially outwards; when Ueff < 0, it is
directed radially inwards. The third mechanism of mass/heat transfer is an effective reaction term,
releasing/absorbing solute or heat when Seff > 0 or Seff < 0, respectively. This reaction term arises
as a result of the wall motion; we recall that no mass or heat is absorbed or emitted by the walls.
The ratio Ueff/Seff = r/2, indicating that the effect of effective advection is much less significant
than effective reaction when r � 1, which is expected given the structure of the velocity field.
When the effective advection and reaction work against the concentration/temperature gradient,
and their effects on transport exceed that of effective diffusion, the spreading of mass/heat will be
inhibited. This is similar to the finding of a negative time-averaged dispersion coefficient [41], with
which the solute cloud will be compressed in the oscillatory flow. Additionally, these three effective
mechanisms are not independent, as they all depend on the dimensions of the device, motion of the
plate, and properties of the fluid.

Comparing Eq. (27) with the long-time equations obtained in similar treatments of transport in
oscillatory pipe flow [20,36,37,41], we find that the dispersion process in an OSF is different, in two
aspects. First, the effective advection and reaction terms occur, beyond the usual dispersion term;
these appear due to the first-order term at the boundary, which is embodied in Bw(1). Second, Deff

varies in the streamwise (i.e., radial) direction, as well as Ueff . The main reason is that the radial
velocity component varies in the streamwise direction, which is also a feature of steady radial flow
with converging and diverging streamlines [32].

III. RESULTS AND DISCUSSION

A. Velocity field

In Fig. 2, we present the profiles of the horizontal velocity u at different times at the fixed cross
section r = 1. Note that the value of r is chosen arbitrarily for illustrative purposes; the shape of
the velocity profile is unchanged by varying r. Comparing Figs. 2(a) and 2(c), we observe that
the Newtonian fluid’s velocity profile u becomes flatter near the centerline when α is relatively
large. In this case, the forcing scale is smaller than the viscous time scale, so the effects of the
oscillation of the top plate are confined to near the wall during one oscillation period, and the fluid
in the centerline is not influenced. The negligible pressure gradient in the z direction for De = 0
[see Eq. (9b)] ensures the profile in near centerline remains flat. However, when α is small, the
oscillations are slow enough that viscosity affects the entire cross section, as shown in Fig. 2(a).
The velocity profiles shown in Figs. 2(a) to 2(c) exhibit similar variations with α as the oscillatory
flow in a pipe [20,42,43].

Next, comparing Figs. 2(d) and 2(f), we observe that the velocity has multiple local maxima,
across the gap, when De � 1. The Deborah number De is the ratio of the elastic relaxation time
to the oscillation time scale of the OSF, which is set by the plate motion. For a Newtonian fluid
(De = 0), the flow generated by the movement of the plate is felt instantaneously throughout the
entire gap. For a viscoelastic fluid (De > 0), on the other hand, the elasticity of the fluid acts as a
restoring force that inhibits the transfer of momentum from the oscillatory wall. Thus, for larger
values of De, the influence of the motion of the plate lags behind the forcing, i.e., it takes “longer”
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FIG. 2. Dimensionless streamwise velocity u variation across the gap height z at r = 1. Different values of
De and α highlight the effects of viscoelasticity and oscillatory forcing.

to be felt throughout the domain. As a result, the fluid near the center lags behind the fluid near the
wall, leading to the multiple peaks in the velocity distribution across the gap.

The nature of the fluid flow also changes dramatically at some specific values of De and α. For
instance, the phase of u when De = 5 and α = 4 [Fig. 2(e)] is very different from the other cases
shown. This is attributed to the triggering of a ‘resonant’ mode. To understand and quantify this
effect, we introduce the spatiotemporal average of the longitudinal velocity

ua(r) = 1

2π

∫ 1

0

∫ 2π

0
|u(r, z, t )|dtdz. (28)

The dependence of ua on α for different values of De at radial position r = 1 is shown in Fig. 3.
It can be seen that, for a viscoelastic fluid (De > 0), there are peaks of ua at specific values of α.

0 5 10 15 20 25
0.25

0.5

0.75

1

10 0

10 2

10 4

aa De 0
De 3
De 10
De 10

FIG. 3. The dependence of the spatiotemporal average of the r-direction velocity, ua from Eq. (28), and the
absolute value of the denominator of u, |
| from Eq. (30), on α at r = 1.
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This phenomenon is caused by the elasticity of the fluid, hence we term it a viscoelastic resonance.
The corresponding value of α can be considered the dimensionless resonant frequency. This effect
has also been observed in the oscillatory pipe flow of a Maxwell fluid both experimentally [44] and
numerically [24].

We find that the variation of ua is mainly determined by the denominator of u, while its numerator
is much less significant. We therefore introduce a parameter


(α, De) = e	 (	 − 2) + 	 + 2, (29)

representing the denominator of u. As shown in Fig. 3, the peaks of ua coincide with the local
minima of |
| when De = 10. We further compared the match between the peaks of ua and minima
of |
| for De � 100, observing that they match without exception for this range. Hence, it can be
deduced that the resonance is governed by |
|, which is a manifestation of the elasticity of the
fluid. For a Maxwell fluid, as α increases, the amplitude of the oscillations of |
| decreases, while
|
| continues to increase, leading to the decay of the oscillations. This effect can be interpreted
as viscous forces overcoming the elastic restoring force. Consequently, the peaks of ua gradually
decrease with increasing α and eventually disappear beyond some critical value.

The resonant values of α satisfy ∂|
|/∂α = 0, corresponding with local minima of |
|. Specif-
ically, beginning with Eq. (29) and aided by numerical experimentation, we find the following
approximation for the α value corresponding to the nth peak,

α∗
n ≈ π (2n + 1)

Im{√i − De} , (30)

where Im{ · } denotes the imaginary part of a complex number, and n ∈ N+, such that the α

corresponding to the first peak of ua can be approximated with n = 1, the second peak with n = 2,
and so on. Comparing the estimated values of α∗

n obtained from Eq. (30) and the corresponding
exact values in the range of De � 100 and n � 10, we find that the deviations are quite small and
gradually decrease as De increases. For instance, the error in α∗

1 is 0.32 (6.3%), 0.21 (5.4%), and
0.04 (4.7%) for De = 3, De = 5, and De = 100, respectively.

Equation (30) also indicates that, as De is increased, the value of α∗
n decreases for fixed n, as does

the interval between neighboring resonant peaks, as shown in Fig. 3. Note that there is no visible
peak for a Newtonian fluid when the value of α reaches α∗

1 , which is 13.33 according to Eq. (30), in
Fig. 3, because the amplitude of fluctuation of |
| is too low to be compared with its absolute value.
As De increases, the height of the peaks, especially the first peak, increases, presumably because
for larger De, the value of α∗

1 decreases (see Eq. (30)), thus |
| becomes very small, leading to a
very high peak of ua. This viscoelastic resonance is significant for the mass and heat transfer in the
OSF, which is discussed in the following section.

B. Time-averaged transport characteristics

1. Effective dispersion, advection, and reaction

In this section, we first discuss how Deff , Ueff , and Seff , at the cross section of r = 1, vary with
the Womersley α, Deborah De, and Schmidt (or Prandtl) σ numbers. As with the discussion of
velocity field in Sec. III A, the value of r is chosen for illustrative purposes, and this choice does
not affect the general characteristics identified. To facilitate the discussion, we introduce the tidal
displacement, which represents the cross-sectionally averaged longitudinal distance traversed by a
fluid particle under the OSF velocity field over half a period. This quantity is calculated through the
spatiotemporal average of the velocity magnitude,

�r(r) = δ

2ε

∫ 1

0

∫ 2π

0
|u(r, z, t )|dtdz = πδ

ε
ua(r), (31)

where ua is defined by Eq. (28) and must be evaluated numerically.

094501-9



YANG, CHRISTOV, GRIFFITHS, AND RAMON

0 1 2 3 4
0

2

4

6

8

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2 )c()b()a(

D
λ

U
S

 o
r

2
 

λ
λ

De 0
De 5
De 10
De 30

De 0
De 5
De 10
De 30

De 0
De 5
De 10
De 30

FIG. 4. The dependence of λD, λU (or λS/2), and �r on α for different values of De, at r = 1 with σ = 0.6.
�r is obtained with δ = ε. The value of Pe is determined by Pe = α2σδ/ε. Note that λU = λS/2 for r = 1.

In addition, following Kurzweg and Jaeger [45], who scaled the effective diffusivity (the disper-
sion coefficient) for an oscillatory pipe flow by the product of the frequency and the square of the
tidal displacement, we define the rescaled diffusivity, advection velocity, and reaction coefficients
for the OSF:

λD = Deff

�r2
, λU = Ueff

�r2
, λS = Seff

�r2
. (32)

After this rescaling, λD, λU, and λS are independent of the dimensionless displacement of the upper
plate, i.e., δ. Since �r depends on δ, λD, λU, and λS can also be independent of �r if ua and ε stay
fixed according to Eq. (31).

It is important to note that λD, λU, and λS strongly depend on the values of α and De, as shown
in Fig. 4. Specifically, optimal values of α have local maxima in terms of λD, which depend on the
value of De. For a given range of α, increasing De will generate more peaks but not necessarily a
higher value of λD. As an example, λD has a maximum at α = 4, when De = 30, but this maximum
value is not higher than the one for De = 0. For a Maxwell fluid (De > 0), the maximum values of
λD increase with α, in accordance with the oscillatory pipe flow in which the effective diffusivity is
proportional to the frequency [45].

The peaks in Fig. 4(a) are the resonant values of λD, because the corresponding values of α

appear to closely match the resonant frequencies, i.e., the values of α correspond to the peaks in
Fig. 4(c). In other words, the resonance sharply increases the values of both λD and �r. Hence,
the locations of peaks in Figs. 4(a) and 4(c) can be approximated by Eq. (30), although with slight
deviations. From Figs. 4(a) and 4(c), we observe opposite trends of the height of peaks in λD and
�r with increasing α. Accordingly, the value of Deff might be dominated by �r for a Maxwell fluid
with a relatively large De at small α or, conversely, by λD for a weakly viscoselastic fluid (small
De) but at a large α. For instance, when α = 1.64 with De = 30, the value of Deff is two orders of
magnitude larger than that with the absence of resonance, which is mainly attributed to �r, which
is increased by a factor of 8 by resonance.

The fact that the ratio λU/λS = r/2 indicates that transport due to the effective advection is much
less significant than that due to effective reaction when r � 1. In Fig. 4(b), for a Newtonian fluid
(De = 0), λU and λS are negative, indicating that the effective advection is always directed from the
edge of the plate towards the center, and the effective reaction absorbs mass/heat. For a Maxwell
fluid, λU and λS fluctuate around 0, with the amplitude increasing with α, indicating that the effect
of the effective advection and reaction, i.e., carrying mass/heat from a high-concentration region to
a low-concentration region or along the opposite direction, is very sensitive to the oscillatory forcing
of the system (quantified by α).
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FIG. 5. The dependence of Deff and Ueff (or Seff/2) on Pe, at r = 1 when De = 30 and σ = 3. Two values
of α are shown: α = 1 (no resonance) and α∗

1 = 1.64 (first resonant mode). The value of α∗
1 was obtained

numerically. Note that Ueff = Seff/2 for r = 1.

Figure 5 shows the dependence of Deff , Ueff , and Seff on Pe, at the first resonant mode, and
with the absence of resonance. Importantly, Deff is significantly increased by the existence of a
viscoelastic resonance, because both �r and λD reach the peak values according to Fig. 4. The
strongest enhancement exists at the first resonant mode (α∗

1 = 1.64), where the value of Deff is
around 200 times larger than the corresponding value (at the same Pe) but in the absence of a
resonance. Similarly, Ueff and Seff also increase, although less significantly. Moreover, we can
achieve larger Deff , Ueff , and Seff by increasing the displacement amplitude of the upper plate, which
is captured by Pe.

It is important to note, however, that large values of Deff , Ueff , and Seff do not necessarily lead
to the enhancement of mass/heat transfer: the transport in the OSF is controlled jointly by the
interaction of these three effective (homogenized) transport mechanisms. The effective diffusion
(dispersion) always enhances transport, but whether the effective advection or reaction enhances or
impedes transport depends on whether they are directed along or against the concentration gradient,
which is determined by the signs of λU (or Ueff ) and λS (or Seff ) and the boundary conditions. If the
effective advection and reaction work against the concentration gradient (so that the corresponding
mass flux exceeds that given by effective diffusion), then the transport is diminished. This indicates
that, to enhance the mass/heat transfer, the value of α and De should be carefully chosen, so that the
effective advection and reaction assist in carrying the mass/heat from regions of high temperature
or concentration to regions of low temperature or concentration.

In Fig. 6, we see that λD, λU, and λS increase with σ . However, this does not necessarily lead
to the enhancement of effective mass/heat transfer because the effective advection and reaction
might inhibit the transport if mass/heat is carried against the temperature or concentration gradient.
Moreover, the increase in σ = μ̂/ρ̂D̂ requires a decrease in the molecular diffusivity D̂ (for fixed
μ̂/ρ̂) or an increase in the kinematic viscosity ν̂ = μ̂/ρ̂ (for fixed D̂), with the former generally
reducing mixing, while the latter increasing the energy needed to drive the OSF. Note that �r is a
kinematic quantity independent of σ . Therefore, all the curves in Fig. 6(c) overlap.

2. Energy considerations for transport enhancement

We now consider the energy consumption associated with the OSF proposed herein for enhancing
heat and/or mass transfer. To this end, in this section, we discuss the mass/heat flux, the consumed
power to drive the upper plate, and the efficiency in a specific example.

Consider that a mass/heat source with a dimensionless radius of 0.1 is immersed in the center of
an OSF device, as shown in Fig. 7. We assume that it has no influence on the local velocity field.
This source ensures 
0 = 1 at r = 0.1. Suppose also that there is a mass/heat sink at r = 1, which
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FIG. 6. The dependence of λD, λU (or λS/2), and �r on α with different values of σ , at r = 1 when
De = 10. The displacement of the upper plate satisfies δ = ε. The value of Pe is determined by Pe = α2σδ/ε.
Note that λU = λS/2 for r = 1.

we assume not to affect the fluid flow but which forces 
0 = 0 at r = 1. The top and bottom plates
are impermeable and insulated walls, thus the amount of mass/heat injected from the source must
equal that absorbed by the sink at r = 1. With the boundary condition at r = 1, Eq. (27) is reduced
into a diffusion equation, thus the mass/heat flux transported from the source to the sink can be
calculated by

ṁ∗ = −(1 + Deff )
∂
0

∂r

∣∣∣∣
r=1

. (33)

The power required to drive the upper plate is found to be

W̃T = 1

2π

∫ 2π

0
v|z=1F̃T dt = −Re

{
iπ f ′′′(1)

16(1 + iDe)

}
, (34)

where F̃T is the excess normal force on the top plate (see Appendix C for details). We can then
define a metric for the energy consumption per unit mass/heat flux, or efficiency,

η = ṁ∗

W̃T
. (35)

The dependence of ṁ∗, W̃T , and η on α, for a Maxwell fluid with De = 30, is shown in Fig. 8. For
α < 1, ṁ∗ is approximately constant (around 0.44) because Deff � 1 (see Fig. 4), indicating that
the transport is mainly driven by molecular diffusion (or conduction), which is independent of α.
For α > 1, ṁ∗ oscillates about the value corresponding to molecular diffusion (or pure conduction).
According to Eq. (33), ṁ∗ is influenced by both Deff and ∂
0/∂r at r = 1. The value of Deff is

mass/heat source

mass/heat in mass/heat out

FIG. 7. An example of an OSF configuration for enhancing mass or heat transfer.
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FIG. 8. The dependence of ṁ∗, η, and W̃T on α at steady state for a Maxwell fluid with De = 30 and
σ = 0.6. The amplitude of the oscillation of the upper plate is δ = 10ε. The value of Pe is determined by
Pe = α2σδ/ε.

always positive and reaches a near-peak value at the resonant mode (see Fig. 4), indicating that
the effective diffusion always enhances the mass or heat transfer, especially at resonance. However,
the dependence of ∂
0/∂r on α is more complex, as this strongly depends on Ueff , Seff , and the
boundary conditions.

In this example, when the values of Ueff and Seff are positive, the value of ∂
0/∂r is increased and
thus the mass flux is enhanced; otherwise, the mass flux is diminished. For instance, the value of ṁ∗
is 30 times larger than that under pure molecular diffusion (which occurs when α → 0) when α ≈
4.1, where both Ueff and Seff are positive. On the other hand, the value of ṁ∗ is only 6% of that under
pure molecular diffusion when α ≈ 3.7, because both Ueff and Seff are negative and near the local
minimum values. The value of W̃T rises as α is increased and reaches the local maximum exactly at
the resonant mode, because the abrupt increase in velocity results in a significantly higher viscous
loss. The efficiency η is large when α < 1 because molecular diffusion (or pure conduction) does not
consume energy; η drops when α approaches the first resonant frequency because of the increased
W̃T . In this example, we see that the mass/heat transfer in such OSF configurations strongly depends
on the Womersley number α, which quantifies the oscillatory forcing of the flow. Thus, by choosing
α suitably, we can either significantly increase the mass/heat flux and improve transport or decrease
the flux of mass/heat transfer to a value even lower than that of the pure molecular diffusion or pure
conduction.

IV. CONCLUSION

In this work, we have investigated Taylor-Aris dispersion related to mass and/or heat transfer
in an oscillatory squeeze flow of a viscoelastic (Maxwell) fluid. First, we derived the expression
for the posttransient velocity for both Newtonian and Maxwell fluids. Then we used the method
of homogenization (a multiple-time-scale analysis) to determine the effective mass and/or heat
transport equation on the long time scale. Specifically, we showed that transport is governed
by an effective one-dimensional advection-diffusion-reaction equation. In doing so, we identified
the three effective transport mechanisms: the effective diffusive spreading mass/heat along the
concentration/temperature gradient, the effective advection carrying mass/heat along or against the
concentration/temperature gradient, and the effective reaction releasing or absorbing mass/heat.

Importantly, we found resonances in the viscoleastic oscillatory squeeze flow, which lead to an
abrupt rise in the velocity, when the Womersley number (a dimensionless measure of the forcing
frequency and unsteady inertia of the fluid) reaches specific values. We showed that these resonant
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values can be estimated by a simple expression involving the Deborah number. For a linearly
viscoelastic Maxwell fluid, we found that there are multiple values of the Womersley number that
may trigger the resonance, but the effect of resonance diminishes gradually with the Womersley
number. We also observed that the mass/heat transfer in this viscoelastic fluid flow can be either
enhanced or inhibited, depending on the value of the Womersley number. On the one hand, when the
dimensionless frequency, i.e., the Womersley number, reaches the resonant frequency, the effective
diffusion can be sharply enhanced, which accelerates the spread of mass/heat in the fluid. For
instance, for a viscoelastic Maxwell fluid, we found that the effective diffusivity at the first resonant
frequency can be 200 times larger than the corresponding one in the absence of a resonance.
On the other hand, we found that the values of the effective advection and reaction coefficients
oscillate about 0 with increasing amplitudes as the Womersley number increases. Notably, these two
effective mechanisms may enhance or inhibit mass/heat transfer in this oscillatory viscoelastic flow,
depending on their signs, which is determined by the Womersley number and the fluid properties
(including the Deborah number and the Schmidt or Prandtl numbers). Therefore, to enhance the
mass transfer, the value of the Womersley number should be carefully chosen, so that the effective
advection and reaction help to carry solute from regions of high temperature or solute concentration
to regions of low temperature or concentration.

The results presented in this work suggest a new approach to enhancing the mass/heat transfer
using oscillatory squeeze flow. Further investigation could focus on the transport problem for high
oscillation amplitudes, going beyond the assumptions inherent to the asymptotic nature of the
homogenization theory employed here.
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APPENDIX A: DERIVATION OF THE EFFECTIVE ADVECTION-DIFFUSION-REACTION
EQUATION USING THE HOMOGENIZATION METHOD

At O(1), Eqs. (19) can be simplified as

α2σ
∂
0

∂t0
= ∂2
0

∂z2
, (A1a)

∂
0

∂z

∣∣∣∣
z=0

= ∂
0

∂z

∣∣∣∣
z=h

= 0. (A1b)

If we seek the developed periodic solution, then 
0 is independent of the short time scale t0. From
system (A1) we find that 
0 is independent of z. Hence, 
0 = 
0(t1, t2, r).

At O(ε), Eq. (19) gives

α2σ

(
∂
0

∂t1
+ ∂
1

∂t0

)
+ Pe

[
1

r

∂

∂r
(ru
0) + ∂

∂z
(v
0)

]
= ∂2
1

∂z2
, (A2a)

∂
1

∂z

∣∣∣∣
z=0

= ∂
1

∂z

∣∣∣∣
z=h

= 0. (A2b)
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Next, we introduce the temporal and spatial averaging operators

(·) = 1

2π

∫ t+2π

t
(·) dt0, 〈·〉 = 1

h

∫ h

0
(·) dz �

∫ 1

0
(·) dz. (A3)

Note that h � 1 since â/ĥ0 � 1. Time averaging Eqs. (A2a) and (A2b) gives

α2σ
∂
0

∂t1
= ∂2
1

∂z2
, (A4a)

∂
1

∂z

∣∣∣∣∣
z=0

= ∂
1

∂z

∣∣∣∣∣
z=h

= 0, (A4b)

where we have used the fact that u = v = 0 because u and v are time-harmonic functions [see
Eq. (12)] and 
0 = 
0 and 〈
0〉 = 
0 because 
0 is independent of t0 and z, while ∂
1/∂t0 = 0.

Applying spatial averaging to Eq. (A4a) [and from the related boundary conditions shown in
Eq. (A4b)], we have

∂
0

∂t1
= 0. (A5)

With Eq. (A5), Eq. (A2a) can be simplified to

α2σ
∂
1

∂t0
+ Pe

[
1

r

∂

∂r
(ru
0) + ∂

∂z
(v
0)

]
= ∂2
1

∂z2
. (A6)

According to the simplification 
0 = 
0(t1, t2, r) and Eq. (12), we have

∂

∂z
(v
0) = −
0Re { f ′(z)eit }, (A7)

1

r

∂

∂r
(ru
0) = 
0Re { f ′(z)eit } + r

2
Re { f ′(z)eit }∂
0

∂r
. (A8)

Substituting Eqs. (A7) and (A8) into Eq. (A6), we have

α2σ
∂
1

∂t0
+ Pe Re { f ′(z)eit } r

2

∂
0

∂r
= ∂2
1

∂z2
, (A9)

which indicates that the solution of 
1 is of the form


1 = r
∂
0

∂r
Re {Bw(z)eit }. (A10)

Substituting Eq. (A10) into Eq. (A9), we have

d2Bw(z)

dz2
− 1

2
Pe f ′(z) − iα2σBw(z) = 0, (A11)

dBw

dz

∣∣∣∣
z=0

= dBw

dz

∣∣∣∣
z=h

= 0. (A12)

At O(ε2), Eqs. (19) give

α2σ

(
∂
2

∂t0
+ ∂
1

∂t1
+ ∂
0

∂t2

)
+ Pe

[
1

r

∂

∂r
(ru
1) + ∂

∂z
(v
1)

]
= 1

r

∂

∂r

(
r
∂
0

∂r

)
+ ∂2
2

∂z2
,

(A13a)

∂
2

∂z

∣∣∣∣
z=0

= ∂
2

∂z

∣∣∣∣
z=h

= 0. (A13b)
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Equations (A10) and (A5) give

∂
1

∂t1
= 0. (A14)

Taking the cross-sectional average of Eq. (A13a), we have

α2σ

(
∂〈
2〉
∂t0

+ ∂
0

∂t2

)
+ Pe

[〈
1

r

∂

∂r
(ru
1)

〉
+ (v
1)

∣∣∣z=1

z=0

]
= 1

r

∂

∂r

(
r
∂
0

∂r

)
+

〈
∂2
2

∂z2

〉
. (A15)

It can be shown that 〈
1

r

∂

∂r
(ru
1)

〉
= ∂

∂r
〈u
1〉 + 1

r
〈u
1〉, (A16)〈

∂2
2

∂z2

〉
= ∂
2

∂z

∣∣∣∣
z=1

z=0

= 0; (A17)

then Eq. (A15) can be written as

α2σ

(
∂〈
2〉
∂t0

+ ∂
0

∂t2

)
+ Pe

[
∂

∂r
〈u
1〉 + 1

r
〈u
1〉 + (v
1)

∣∣∣z=1

z=0

]
= 1

r

∂

∂r

(
r
∂
0

∂r

)
. (A18)

Taking the time average of Eq. (A18), we have

α2σ
∂
0

∂t2
+ Pe

[
∂

∂r
〈u
1〉 + 1

r
〈u
1〉 + v
1

∣∣∣z=1

z=0

]
= 1

r

∂

∂r

(
r
∂
0

∂r

)
. (A19)

Additionally, from Eqs. (12) and (A10), we reach

〈u
1〉 = r2

4

∂
0

∂r
Re 〈 f ′(z)∗Bw(z)〉, (A20)

v
1

∣∣z=1

z=0 = − r

2

∂
0

∂r
Re {iBw(1)}. (A21)

Substituting Eqs. (A20) and (A21) into Eq. (A19), we have

α2σ
∂
0

∂t2
= ∂2
0

∂r2

[
1 − r2

4
Re

〈
f ′(z)∗Bw(z)

〉
Pe

]
+ ∂
0

∂r

[
1

r

(
1 − r2

4
Re

〈
f ′(z)∗Bw(z)

〉
Pe

)

− r

2
Re

〈
f ′(z)∗Bw(z)

〉
Pe + r

2
Re {iBw(1)}Pe

]
. (A22)

Introducing the dimensionless effective diffusivity, velocity, and reaction terms shown in
Eq. (26), Eq. (A22) can be arranged into Eq. (25).

APPENDIX B: DERIVATION OF THE COMPONENTWISE MOMENTUM EQUATIONS

The material derivative, assuming axisymmetry, is

D

Dt̂
= ∂

∂ t̂
+ û

∂

∂ r̂
+ v̂

∂

∂ ẑ
. (B1)

Using the dimensionless variables from Eq. (8), we have

D

Dt
= ∂

∂t
+ δu

∂

∂r
+ δv

∂

∂z
. (B2)
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We recall that δ = â/ĥ0 � 1 is the dimensionless displacement amplitude of the upper plate.
Neglecting the small terms of O(δ), we obtain

D

Dt̂
� ∂

∂ t̂
. (B3)

Next, combining Eq. (5) and Eq. (4) and acknowledging Eq. (B3), we have

λ̂0ρ̂
∂2û
∂ t̂2

+ λ̂0
∂

∂ t̂
(∇ p̂) + ρ̂

∂û
∂ t̂

= −∇ p̂ + μ̂∇2û. (B4)

From Eq. (B4), we obtain the componentwise momentum equations given in Eqs. (6a) and (6b).

APPENDIX C: ENERGY AND POWER REQUIREMENT

In the fully periodic regime, the dimensionless pressure is of the form

p = Re {p0(r, z)eit }. (C1)

Substituting Eqs. (12) and (C1) into Eq. (9a) at leading order in ε, we have

(1 + iDe)
∂ p0

∂r
= (De − i)α2 r

2
f ′(z) + r

2
f ′′′(z). (C2)

Integrating Eq. (C2), we obtain

p0(r, z) = r2

4(1 + iDe)
[(De − i)α2 f ′(z) + f ′′′(z)] + G(z), (C3)

where G(z) is an arbitrary function of integration. We define an excess pressure as

p̃ = Re { p̃0(r, z)eit }, (C4)

where the amplitude p̃0 is relative to the background pressure amplitude p0|r=1, i.e.,

p̃0 = p0 − p0|r=1. (C5)

Substituting Eq. (C3) into Eq. (C5), we obtain

p̃0(r, z) = r2

4(1 + iDe)
[(De − i)α2 f ′(z) + f ′′′(z)] + G2(z), (C6)

where G2 = G − p0|r=1. Solving for G2 with the boundary condition of p̃0|r=1 = 0, we obtain

p̃0(r, z) = r2 − 1

4(1 + iDe)
[(De − i)α2 f ′(z) + f ′′′(z)]. (C7)

From Eq. (5), the componentwise equation for the stress tensor τ̂zz can be expressed as

λ̂0

(
∂τ̂zz

∂ t̂

)
= μ̂(∇v̂ + ∇v̂T ) − τ̂zz = 2μ̂

∂ v̂

∂ ẑ
− τ̂zz. (C8)

With the nondimensionalization in Eq. (8) and τ̂zz = τzzμ̂âω̂/ε3R̂, we have

De

ε2

∂τzz

∂t
= 2

∂v

∂z
− 1

ε2
τzz. (C9)

By writing τzz = Re {τ0,zz(z)eit }, we obtain

τzz = −Re

{
2ε2

1 + iDe
f ′(z)eit

}
. (C10)
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The scaled normal force on the top plate is found to be (see [28])

FT = 2π

∫ 1

0
σzz r dr = 2π

∫ 1

0
(τzz − p)|z=1r dr. (C11)

Recalling that f ′(1) = 0 from Eq. (14), Eq. (C11) can be simplified as

FT = −2π

∫ 1

0
p|z=1r dr. (C12)

We define an excess normal force

F̃T = −2π

∫ 1

0
p̃|z=1r dr. (C13)

Taking F̃T = Re {F̃0,Teit } and substituting Eq. (C4) into Eq. (C13), we obtain

F̃0,T = π f ′′′(1)

8(1 + iDe)
. (C14)

Hence, the power needed to drive the upper plate is

W̃ = 1

2π

∫ 2π

0
v|z=1F̃T dt = −Re

{
iπ f ′′′(1)

16(1 + iDe)

}
. (C15)
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