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Induced-charge electrophoresis of ideally polarizable particle pairs
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We study the planar two-dimensional relative induced-charge electrophoretic (ICEP)
motion of a pair of identical, ideally polarizable circular cylindrical microparticles car-
rying no net charge and freely suspended in an unbounded electrolyte solution under a
uniform steady (DC) external electric field acting in an arbitrary direction relative to the
instantaneous orientation of their line-of-centers (LOC). Within the framework of the thin
electric-double-layer (EDL) limit and sufficiently weak fields description of particle paths
is obtained via integration of the quasisteady kinematic equations of motion based on the
instantaneous geometric configuration. Owing to the inherent nonlinearity of the ICEP
mechanism, interaction of the effects of external-field components parallel and perpendic-
ular, respectively, to the LOC results in its rotation which, in turn, determines that particles
undergo transient pairing eventually moving apart in the general direction perpendicular to
the external field. Dielectrophoresis is demonstrated to only have a secondary effect on the
resulting motion.

DOI: 10.1103/PhysRevFluids.5.094201

I. INTRODUCTION

When an ideally polarizable (conducting) initially uncharged circular cylinder freely suspended
in an unbounded electrolyte solution is subject to a uniform external field, it instantaneously
polarizes acquiring surface-charge distribution so as to maintain zero electric field within the
conducting solid. At the same time a diffuse cloud of counterions forms within the adjacent fluid via
Ohmic electromigration from the bulk solution, thereby creating an induced electric double layer
(EDL). When steady state is established, the field lines become tangent to the solid (as the EDL is
no longer being charged). The action of the external field on its own-induced EDL gives rise to a
symmetric induced-charge electro-osmotic flow (ICEO) [1].

Owing to the perfect symmetry, the resultant force and torque generated by the above mechanism
on the circular-cylindrical particle both vanish under a uniform external field and the particle
thus remains stationary. Induced-charge electrophoretic (ICEP) motion can, however, result from
asymmetry of material properties (e.g., as in Janus particles), or of particle shape [2,3]. Asymmetry
may also be introduced by the presence of boundaries, e.g., a planar wall [4,5] or adjacent particles
[6–10].

Beyond fundamental theoretical interest, the relative motion of particle pairs is of considerable
relevance to suspension dynamics. Thus, Saintillan’s analysis [7] of pairwise hydrodynamic inter-
actions serves to obtain macroscale statistical description of multiparticle semidilute suspensions
of rodlike [6] and spherical [8,9] particles; pairing events may represent the precursor of chaining,
which is important in suspension stability and micro- and nanoparticle manipulation in a variety of
material-processing scenarios [11].

We here consider the planar two-dimensional (2D) relative motion of a pair of identical ideally
polarizable, circular-cylindrical particles freely suspended in an unbounded electrolyte solution
under a uniform steady (DC) external electric field, within the framework of the thin-EDL limit
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and assuming sufficiently weak fields. A similar configuration was addressed by Kang [12] who
studied by means of finite-volume numerical simulations the motion of a pair of cylinders confined
in a finite ‘electrically neutral’ square cavity under a uniform DC external field. More recently,
Feng, Wong, and Marcos [13] analyzed the pair motion in an unbounded domain under a uniform
DC external field, yet only for the symmetric cases of fields acting either parallel or perpendicular
to the particles line of centers (LOC). In both cases, owing to symmetry, particles motion is limited
to a symmetric translation along this line. However, owing to the inherent nonlinearity, the pair
motion under an arbitrarily oriented field cannot be obtained via superposition of these particular
cases. The present study thus aims at analyzing the pair motion under a uniform DC electric field
acting perpendicularly to their axes in a general direction relative to the instantaneous LOC. The
rest of this contribution is organized as follows: The relevant electrochemical and hydrodynamic
problems are stated in the next section and their analysis is then outlined in Sec. III. Subsequently,
the relative ICEP particles velocities and the resulting paths are presented in Sec. IV and the role
of the dielectrophoresis in the present problem is considered in Sec. V. Section VI provides some
concluding comments.

II. STATEMENT OF THE PROBLEM

We consider a pair of identical ideally-polarizable (conducting), circular-cylindrical particles
(radii a′; primes hereinafter denoting dimensional quantities), whose centers are instantaneously a
distance 2b′ apart (as schematically depicted in Fig. 1). The particles are freely suspended in an
unbounded electrolyte solution (viscosity μ′ and electric permittivity ε′), subject to a uniform and
constant (DC) external electric field E

′
0 making an angle θ relative to the instantaneous orientation of

the particles LOC. The following dimensionless formulation is (initially) based on the length scale

c′[= (b
′2 − a

′2)
1
2 ], the electric potential c′E ′

0(E ′
0 = |E ′

0|), the velocity (ε′E
′2
0 c′)/μ′ and the stress

ε′E
′2
0 .
Within the framework of the thin-EDL-limit and sufficiently weak fields the electrochemical

and hydrodynamic problems decouple in the quasi-electro-neutral bulk. Thus, the harmonic electric
potential, satisfies the homogeneous Neumann condition

n̂ · ∇� = 0 at r ∈ Si (i = 1, 2), (2.1)

where Si (i = 1, 2) denote the surfaces of the cylinders and n̂ are unit vectors normal to Si directed
into the fluid. At the far field we require convergence to the uniform external field

∇� = − Ê0 as r → ∞ (2.2)

with Ê0 denoting a unit vector in the direction of the external field. In the present narrow-EDL model
the electro-osmosic phenomenon is represented by the Helmholtz-Smoluchowski slip velocity,
effectively imposed at the surfaces of both cylinders which, in view of Eq. (2.1), is written here

us = ζ∇� at r ∈ Si (i = 1, 2), (2.3)

where ζ is the zeta potential, i.e., the potential difference across the EDL.
The hydrodynamic problem comprises the equation of continuity

divu = 0 (2.4)

and, given the small Reynolds numbers associated with microparticles, the Stokes equation

∇p = μ∇2u, (2.5)

wherein u and p denote the fluid velocity and pressure, respectively. The above are supplemented
by

u = Ui + �i × (r − r̄i ) + usi at r ∈ Si (i = 1, 2), (2.6)
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FIG. 1. Schematic definition of geometric configuration and cylindrical bipolar coordinates (α, β). Marked
by the black circles are the pair of particles of radii a′ centered at (±b′, 0) and subject to the uniform external
field E

′
0. The two families of nonintersecting circles correspond to curves of constant α (with ±α0 pertaining

to the pair of particles). The red arcs leaning on the common chord extending between (±c′, 0) describe the
family of constant-β curves.

at the particles surface together with the far-field attenuation condition

u = 0 as r → ∞. (2.7)

In Eq. (2.6) Ui are the translational velocities at the centers r̄i of both cylinders, �i are their
angular velocities and usi are the electro-osmotic Helmholtz-Smoluchowki slip velocities. For
freely suspended particles, neglecting fluid- and microparticles inertial effects, Ui and �i are to
be eventually determined from the required vanishing of the resultant force

F =
∫

Si

(�N + �M ) · dS = 0 i = (1, 2) (2.8)

and torque relative to the cylinder center,

T =
∫

Si

(r − ri ) × (�N + �M ) · dS = 0 i = (1, 2). (2.9)

In Eqs. (2.8) and (2.9) �N and �M are the Newtonian- and Maxwell-stress tensors

�N = −pI + μ[∇u + (∇u)T ], (2.10)
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where ( )T denotes the transposition operator, and

�M = EE − 1
2 (E · E )I, (2.11)

respectively.
The contribution of the Maxwell stress to F and T is, in principle, calculated directly from

the solution of the above electrochemical problem. Earlier analyses [4,12,13] indicate, however,
that dielectrophoresis (DEP) only has a relatively minor effect on the relative motion of ideally
polarizable particles under a DC field. We later on return to address this issue in Sec. V. Focusing in
the meantime exclusively on ICEP, both the resultant hydrodynamic force and torque need to vanish
on the freely suspended particles.

III. ANALYSIS

The present problem is most conveniently described in bipolar cylindrical coordinates (α, β ),
defined by the transformation [4,13–15]

x = sinh α

cosh α − cos β
, y = sin β

cosh α − cos β
(3.1)

(−∞ < α < ∞, 0 � β < 2π ) from the Cartesian system whose x axis is attached to the LOC
with the origin at its mid-point (see Fig. 1). The coordinate lines α = const are two families
of nonintersecting circles centered at b = (cothα, 0) whose radii are a = |cosechα|; β = const
describe circular arcs (radii |cosec β|) leaning on the common chord extending between the pointes
(±1, 0). Our pair of cylinders thus correspond to α = ±α0 [ =cosh−1(b′/a′)] with the dimensional
length scale c′ and particles radius a′ being related through c′ = a′sinhα0.

A. The electrochemical problem

In the bipolar coordinates, Eq. (3.1), the problem governing � comprises the equation

∂2�

∂2α
+ ∂2�

∂2β
= 0, (3.2)

together with the boundary conditions

∂�

∂α
= 0 at α = ±α0 (3.3)

and

� = −x(α, β ) cos θ − y(α, β ) sin θ as α2 + β2 → 0. (3.4)

The form of the latter and the linearity of the problem suggest the expression of �(α, β ) as the
sum

� = �1(α, β ) cos θ + �2(α, β ) sin θ (3.5)

of the contributions of the components of external field parallel and perpendicular, respectively,
to the LOC. These, in turn, are readily obtainable via appropriate domain continuation from the
solution [15] presented for the electrophoresis of a dielectric cylinder in the directions perpendicular
to a conducting plane or parallel to a dielectric plane as

�1 = −2
∞∑

n=1

e−nα0

cosh nα0
sinh nα cos nβ − sinh α

cosh α − cos β
(3.6)
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and

�2 = −2
∞∑

n=1

e−nα0

sinh nα0
cosh nα sin nβ − sin β

cosh α − cos β
, (3.7)

respectively. For future reference we note that the electric fields corresponding to �1 and �2 have
mirror-image symmetries relative to the x and y axes, respectively. Hence �1 is an odd function of
α and even with respect to β = π and conversely for �2. The electric field in bipolar coordinates is
obtained via substitution of Eqs. (3.5)–(3.7) in

E = −∇� = −(cosh α − cos β )

(
∂�

∂α
êα + ∂�

∂β
êβ

)
(3.8)

[14] which, in turn, serves to calculate from Eq. (2.11) the Maxwell stress and hence the DEP
contribution to particles motion. From Eqs. (3.5)−(3.7) we also obtain the induced zeta potential

ζ = �w − �(α, β ) at α = ±α0, (3.9)

wherein �w is the uniform potential of the conducting solid and �(±α0, β ) denotes the local
potential at the outer edge of the EDL. The former (�w ) is determined from particle-charge
conservation. For initially uncharged particles∫

Si

qdS = 0 (3.10)

[16], wherein q denotes the surface-charge density distribution which (since the diffuse EDL charge
completely screens the surface charge) is determined by ζ . Under the assumption [1] of small ζ

(relative to the thermal potential) q is proportional to ζ . Combining Eqs. (3.9) and (3.10) we then
obtain

�w i = 1

S

∫
Si

�dS on Si (i = 1, 2). (3.11)

From the above symmetry properties, �2(±α0, β ) does not contribute to �w. For �1(±α0, β ) we
recognize that the contribution to Eq. (3.11) of the second term in Eq. (3.6) is simply the x coordinate
of the cylinder center, i.e., coth α0. To evaluate the contribution of the first term in Eq. (3.6) we make
use of the integral relation ∫ 2π

0

cos nβ dβ

cosh α0 − cos β
= 2πe−nα0

sinh α0
(3.12)

[17], thereby obtaining

�w i = ∓
( ∞∑

n=1

e−2nα0 tanh nα0 + coth α0

)
cos θ at Si. (i = 1, 2) (3.13)

B. The electro-osmotic flow

Fluid motion is governed by the Stokes-flow problem Eqs. (2.4)–(2.7). The linearity of this
problem allows for the superposition of the contributions appearing in Eq. (2.6), i.e., those of the
particles rigid-body translational and rotary motions and the electro-osmotic slip us, respectively.
We here focus on the latter which, in turn, drives the fluid as well as particles motion in ICEP.

Making use of �(α, β ), Eqs. (3.5)−(3.7), at α = ±α0 together with �w, Eq. (3.13), we obtain
the induced zeta potential, Eq. (3.9) which, in conjuction with the electric field, (3.8), then yield for
the Helmholtz-Smoluchoski slip velocity, Eq. (2.3),

us = (cosh α0 − cos β )[A(α0, β )cos2θ ± B(α0, β ) sin θ cos θ + C(α0, β )sin2θ ], at α = ±α0

(3.14)
with A(α0, β ), B(α0, β ) and C(α0, β ) as tabulated in the Appendix.
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The coefficients A and C are associated with the separate contributions of the external-field
components parallel and perpendicular, respectively, to the LOC. Their contributions possess
mirror-image symmetry relative to both axes and are of opposite signs representing effects that act
towards mutual cancellation at intermediate orientations θ ( �= 0, π/2) of E0 relative to the LOC. The
contribution of the coefficient B associated with the interaction of both external-field components,
originating from the inherent nonlinearity of us in E, is antisymmetric with respect to both axes.
With diminishing separation distance the absolute value of B is rapidly increasing relative to those
of A and C. We thus anticipate the nonlinear interaction effect to become increasingly dominant in
particle motion at small separations and intermediate field orientations.

In the present two-dimensional problem at hand fluid-velocity components are derivable from a
stream function satisfying the biharmonic equation

∇4
 = 0, (3.15)

uα = −(cosh α − cos β )
∂


∂β
and uβ = (cosh α − cos β )

∂


∂α
. (3.16)

We thus need to determine the biharmonic function 
(α, β ) satisfying the boundary conditions

uα = 0 and uβ = us at α = ±α0, (3.17)

which, by Eqs. (3.16), are equivalent to


 = const. at α = ±α0 (3.18)

and

∂


∂α
= A(α0, β )cos2θ ± B(α0, β ) sin θ cos θ + C(α0, β )sin2θ (3.19)

at α = ±α0, respectively, as well as the far-field condition, Eq. (2.7). Representing 
 as the sum


 = 
1 + 
2

of 
1 associated with the contributions to us of A and C and 
2 similarly associated with the
coefficient B then, by the above symmetry properties


1(α, 2π − β ) = 
1(−α, β ) = −
1(α, β ) (3.20)

and


2(α, 2π − β ) = 
2(−α, β ) = 
2(α, β ). (3.21)

Both 
1 and 
2 may be assigned arbitrary constant values on one of the cylinders. In view of
the above symmetry relations, we may, without loss of generality, impose


1 = 
2 = 0 at α = ±α0. (3.22)

Splitting the general separation-of-variables solution of Eq. (3.15) in bipolar coordinates [18,19]
into its symmetric and antisymmetric parts and applying Eq. (3.22), we obtain

(cosh α − cos β )
1 = C1

(
sinh 2α − sinh 2α0

α0
α

)
sin β

+
∞∑

k=2

{
Ck

[
sinh (k + 1)α − sinh (k + 1)α0

sinh (k − 1)α0
sinh (k − 1)α

]
sin kβ

}
(3.23)
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and

(cosh α − cos β )
2 = A0

(
cosh α − coth α0

α0
α sinh α

)
+ A1(cosh 2α − cosh 2α0) cos β

+
∞∑

k=2

{[
Ak cosh (k + 1)α − cosh (k + 1)α0

cosh (k − 1)α0
cosh (k − 1)α

]
cos kβ

}
.

(3.24)

The coefficients Ck (k = 1, 2, . . .) and Ak (k = 0, 1, 2, . . .) are finally obtained from Eqs. (3.14)
and (3.19)

C1

(
2 cosh 2α − sinh 2α0

α0

)
sin β +

∞∑
k=2

{Ck[(k + 1) cosh (k + 1)α0

− (k − 1) sinh (k + 1)α0 coth (k − 1)α0] sin kβ}
= (cosh α0 − cos β )[A(α0, β )cos2θ + C(α0, β )sin2θ ] (3.25)

and

A0

(
sinh α0 − cosh α0

α0
− coth α0 cosh α0

)
+ A1(2 sinh 2α0) cos β

+
∞∑

k=2

{Ak[(k + 1) sinh (k + 1)α0 − (k − 1) cosh (k + 1)α0 tanh (k − 1)α0] cos kβ}

= (cosh α0 − cos β )B(α0, β ) sin θ cos θ, (3.26)

for the antisymmetric and symmetric parts, respectively. With A(α0, β ), B(α0, β ) and C(α0, β ) as
tabulated in the Appendix, the various coefficients are determined by making use of the orthogonal-
ity of the circular functions of β in a straightforward but rather tedious calculation omitted here.

The ICEO flow fields corresponding to the stream function thus obtained are depicted in Fig. 2.
The solid lines represent the streamline pattern where the sense of fluid motion is indicated by
the arrows and fluid speed by the color code. The effect of the orientation of the external field
relative to the LOC is illustrated for a pair of cylinders whose centers are four radii apart (i.e.,
α0 = cosh−1 2) at the indicated values of θ . Evidently, unlike linear electrokinetic problems, the
asymmetric streamline patterns for θ = π/6 and π/3 cannot be constructed via superposition of the
cases θ = 0 and π/2.

Toward subsequent calculation of the freely suspended particles motion we consider the far-field
variation of fluid velocity in the above ICEO flow. As is often the case with 2D (planar) Stokes flows,
the electro-osmotic velocity field is uniquely determined in the above calculation without invoking
the far-field condition Eq. (2.7). Substituting Eqs. (3.23) and (3.24) in Eq. (3.16) we find that the
velocity field associated with 
1 trivially satisfies far-field attenuation, whereas the contribution of

2 becomes

(u2α, u2β ) = H (α0) cos θ sin θ

cosh α − cos β
(sin β, − sinh α) + O(r−1), (3.27)

where

H0(α0) = A0 + A1(1 − cosh 2α0) +
∞∑

k=2

Ak

[
1 − cosh (k + 1)α0

cosh (k − 1)α0

]
, (3.28)

which diverges as α2 + β2 → 0. By use of the relations

êx = 1

cosh α − cos β
[−(cosh α cos β − 1)êα − sinh α sin β êβ] (3.29a)
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FIG. 2. Electroosmotic streamline patterns around a pair of identical conducting cylinders whose centers
are four radii apart. The red arrows mark the directions of the external field θ = 0, π/2, π/6, and π/3 relative
the line of centers.

and

êy = 1

cosh α − cos β
[− sinh α sin β êα + (cosh α cos β − 1)êβ] (3.29b)

between the unit vectors (êx, êy) of the Cartesian system and (êα, êβ ) of the bipolar system [14] one
obtains for the leading-order Cartesian components of u2

(u2x, u2y) = H (α0) cos θ sin θ (y, −x), as x2 + y2 → ∞ (3.30)

representing a rigid-body rotation. To compensate for this contribution of the induced electro-
osmotic flow and satisfy the attenuation condition of the far-field fluid velocity, the motion of the
freely suspended cylinder pair will include an antisymmetric mode consisting of a combination
of equal angular velocities and opposing equal-magnitude transverse translational velocities per-
pendicular to the line of centers [20] as schematically depicted in Fig. 3(b). By the symmetry of
the corresponding induced electro-osmotic flow, the contribution associated with 
1 will give rise
to a perfectly symmetric translational motion of the pair of cylinders along their line of centers
[Fig. 3(a)].
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FIG. 3. Schematic representation of the translational and angular velocities of the cylinders associated
with 
1 (a) and 
2 (b). Similarly to Ref. [20], in part (b) the transverse velocities of the cylinders α = ±α0

are depicted as ±êy V , (V > 0), respectively, with their common angular velocity � = êz �, (� < 0), and êz

a unit vector in the positive z direction [cf. Eq. (4.9)].

IV. RELATIVE ICEP PARTICLE MOTION

Actual calculation of the velocities of the freely suspended particles, avoiding the need for an
explicit calculation of the velocity and stress fields in the present problem, is conveniently carried
out via application of the Lorentz reciprocal theorem∫

S
dS · �2 · u′

1 =
∫

S
dS · �1 · u2, (4.1)

where �i and ui (i = 1, 2) are pairs of stress-tensor and velocity-vector fields, respectively, satisfy-
ing the creeping-flow equations within the same domain. The relation holds for an arbitrary closed
surface S bounding any fluid volume [21]. The above relationship is particularly useful provided
that a comparison solution of the continuity and Stokes equations within the same fluid domain is
available, which is indeed the case here (cf. Ref. [20]).

In the present problem S comprises the union of S1 and S2, effectively coinciding with the
particles surfaces together with S∞, an arbitrary closed surface lying in the far field as schemat-
ically depicted in Fig. 4. Furthermore, the pairs (ui,�i ) are selected so that S∞ has a vanishing
contribution.

FIG. 4. The surface S bounding the fluid domain.
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As indicated in the above electro-osmotic-flow analysis, the relative ICEP motion is analyzed via
superposition of the contributions of 
1, giving rise to a perfectly symmetric translational motion
of the pair of cylinders along their line of centers [Fig. 3(a)], and 
2 inducing an antisymmetric
motion of the cylinders consisting of a combination of equal angular velocities and opposing equal-
magnitude translational velocities perpendicular to the line of centers [as in Fig. 3(b)].

A. Symmetric motion

The reciprocal theorem is here implemented via comparison of the symmetric part of the present
problem (denoted by subscript 1), i.e., the motion generated by the slip velocity

us1 = êβ(cosh α0 − cos β )[A(α0, β )cos2θ + C(α0, β )sin2θ ], (4.2)

giving rise to a perfectly symmetric translational motion of the pair of cylinders along their LOC
with a velocity êxU1 (yet to be determined) with the reference problem (denoted by subscript 2) of a
pair of cylinders symmetrically translating along their line of centers with an arbitrary speed U2. The
far-field decay condition is here trivially satisfied for both problems [20] and thus the contributions
of the integrals on S∞ indeed vanish. Substitution in Eq. (4.1) and use of the symmetry properties
of the problem provides ∫

α0

dS · �2 · (
îU1 + us1

) =
∫

α0

dS · �1 · îU2, (4.3)

which, after integration, yields

Fx2U1 −
∫ 2π

0

�αβ2us1 dβ

cosh α0 − cos β
= Fx1U2, (4.4)

wherein Fx1 and Fx2 denote the resultant hydrodynamic axial forces in the present and comparison
problems, respectively. Furthermore, �αβ2 and Fx2 are linear in U2 [20]

Fx2 = − 8πU2

2α0 − tanh 2α0
, (4.5)

and

�αβ2 = 4U2 sinh 2α0 sin β

sinh 2α0 − 2α0 cosh 2α0
(cosh α0 − cos β ). (4.6)

Neglecting at this stage the DEP force, the resultant viscous force on the freely suspended
particles vanishes as well, Fx1 = 0. Substitution of Eqs. (4.5) and (4.6) in Eq. (4.4) then yields

U1 = − 1

2π
tanh 2α0

∫ 2π

0
us1 (α0, β ) sin βdβ. (4.7)

B. Anti-symmetric motion

The reciprocal theorem is here implemented via comparison of the fluid and particle motion
associated with the slip velocity

us1 = ±êβ(cosh α0 − cos β )B(α0, β ) sin θ cos θ, (4.8)

giving rise to the antisymmetric mode of motion consisting of a combination of (as yet unknown)
equal angular velocities � = êz �1 and opposing equal-magnitude translational velocities ±êy V1

perpendicular to the LOC [cf. Fig. 3(b)] and the corresponding reference problem of a pair of
cylinders having equal angular velocities � = êz �2 and opposing equal-magnitude translational
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velocities perpendicular to the line of centers ±êy V2, satisfying, in turn, no slip and the relation
[20]

V2 = − α

sinh2α
�2, (4.9)

for α = ±α0 [where similarly to Fig. 3(b), �2 < 0], ensuring far-field decay of the reference veloc-
ity field. As mentioned above, this requirement is not trivially satisfied in the present problem and
is addressed next. Pending this, we substitute the above in Eq. (4.1) while omitting the contribution
on S∞ to obtain∫

α0

dS · �2 · (
êy V1 + êz �1 × (r − ri) + us1

) =
∫

α0

dS · �1 · [êy V2 + êz �2 × (r − ri)].

(4.10)
Carrying out the integration yields

Fy2V1 + T2�1 −
∫ 2π

0

�αβ2us1 dβ

cosh α0 − cos β
= Fy1V2 + T1�2. (4.11)

Similarly to the above, in view of the required vanishing of the resultant force and torque on the
freely suspended particles, in the absence of DEP the hydrodynamic force and torque both vanish,
Fy1, T1 = 0, resulting in

Fy2V1 + T2�1 =
∫ 2π

0

�αβ2us1 dβ

cosh α0 − cos β
. (4.12)

Use of the relations [20]

Fy2 = 4π�2

sinh2α0
, T2 = −4π�2 cosh α0

sinh3α0
, �αβ2 = 2(cosh α0 − cos β )�2 cosh α0

sinh2α0
,

then yields a first equation for V1 and �1

V1 − �1 coth α0 = −cosh α0

2π

∫ 2π

0
us1 (α0, β )dβ. (4.13)

A second equation results from imposing the attenuation condition (2.7). The far-field fluid
velocity is represented via the superposition of the contributions of translation with the velocities
±êy V1, rotation of the particles with the equal angular velocity êz �1, and the electro-osmotic
contribution of us1 . By the definition, Eq. (3.1), of the bipolar coordinates

r2 = x2 + y2 = cosh α + cos β

cosh α − cos β
∼ 4

α2 + β2
[1 + O(α2, β2)],

r 
 1 corresponds to α, β � 1, namely α, β ∼ O(r−1). Thus, the former pair of contributions to
the far field are [20]

uV 1 ∼ V1sinh2α0

α0 + sinh α0 cosh α0
(−y, x) + O(r−1)

and

u�1 ∼ �1α0

α0 + sinh α0 cosh α0
(−y, x) + O(r−1),

while uEO, the corresponding electro-osmotic contribution, has been obtained in Eqs. (3.28) and
(3.30). The attenuation condition thus yields the required second equation for V1 and �1, namely

V1sinh2α0 + �1α0 = 1
2 H0(α0)(2α0 + sinh 2α0) sin θ cos θ. (4.14)

With a view to subsequent analysis of particle trajectories, the original length scale c′ which,
for constant particle radius a′ is varying with separation, is replaced by the latter. Thus, the value
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of α corresponding to the particle pair is now varying with the center separation, r = coshα.
Accordingly, instead of α0 we henceforth use α (which, by the symmetry properties of the various
modes of relative motion is, similarly to α0, considered positive). Rescaling velocities with the
particle radius a′ as a characteristic length we have

ε′E
′2
0 c′

μ′ (U, V ) → ε′E
′2
0 a′

μ′ (Ū , V̄ ) (4.15a)

with, since c′ = a′ sinh α,

(Ū , V̄ ) = (U, V ) sinh α. (4.15b)

Thus,

Ū (α, θ ) = Ā(α)cos2θ + C̄(α)sin2θ, (4.16a)

where, by substituting Eq. (4.2) in Eq. (4.7), we obtain

(Ā(α), C̄(α)) = − tanh 2α sinh α

2π

∫ 2π

0
[A(α, β ),C(α, β )](cosh α − cos β ) sin βdβ (4.16b)

with A(α, β ) and C(α, β ) as given in Eqs. (A1) and (A3). Similarly to the above we obtain from
Eqs. (4.8), (4.13), and (4.14)

V̄1 = sinh αV1 = −B̄(α) cos θ sin θ, (4.17a)

where

B̄ =
[

H0(α)coshα + α sinh α cosh α

2π
(
α + 1

2 sinh 2α
) ∫ 2π

0
B(α, β )(cosh α − cos β )dβ

]
(4.17b)

with H0(α) and B(α, β ) as given in Eqs. (3.28) and (A2), respectively.

C. Particle paths

Particle-center paths are described relative to a stationary frame (X, Y) with its X axis aligned
with the (constant) direction of the uniform external field and its origin, as before, at the stationary
LOC midpoint. Denote by θ1 the instantaneous orientation of the LOC (the X axis in Fig. 1)
relative to the new X axis. The instantaneous radial- and tangential-velocity components (along
the LOC and perpendicular thereto, respectively) are readily obtained from the above results via the
substitution θ = − θ1 (cf. Fig. 1). Particle-center trajectories are thus calculated via integration of
the quasistationary kinematic equations of motion

ṙ = Ū (α, θ1) = Ā(α)cos2θ1 + C̄(α)sin2θ1 (4.18)

and

rθ̇1 = V̄ (α, θ1) = B̄(α) cos θ1 sin θ1, (4.19)

based on the instantaneous geometric configuration (r = coshα, θ1; as mentioned above,
α is now varying with particle location).

Appearing in the above are the coefficients Ā < 0 (C̄ > 0) associated with the attractive (re-
pulsive) effects of the external-field components parallel (perpendicular) to LOC, respectively, and
the coefficient B̄ representing the interaction effect of both external-field components resulting
in LOC rotation. Figure 5 presents the variation of these coefficients with the distance r of the
particle center from the LOC midpoint (i.e., half the center-separation distance). With diminishing
particles separation Ā is vanishing while C̄ is approaching a finite limit. These reflect the difference
between the weak- and strong- local fields within the narrow gap for nearly touching particles
under an external field parallel or perpendicular to the line-of-centers, respectively. We further
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FIG. 5. Variation with the distance r (scaled by particle radius) of the coefficients Ā, C̄, and B̄ and their
corresponding asymptotes (solid and dashed lines, respectively).

note that, at small separations, B̄ becomes substantially larger than both C̄ and |Ā|. Thus, at these
relatively small values of r and intermediate LOC orientations, tan−1(|Ā/B̄|) � θ1 � tan−1(|B̄/C̄|),
we anticipate relative particle-pair motion to be dominated by LOC rotations associated with the
nonlinear interaction of both external-field components.

With increasing r, the magnitudes of Ā and C̄ are both diminishing like ∼1/r, becoming nearly
equal for r � 3; the coefficient B̄ is diminishing much more rapidly, like ∼(5/8) r−3 as presented
by the corresponding (dashed) asymptotes. At large r we therefore anticipate a slow, nearly radial
(along LOC), inwards or outwards motion according as θ1 < π/4 or θ1 > π/4, respectively; for
θ1≈ π/4 where the effects associated with Ā and C̄ are mutually canceling, the small positive B̄
results in a slow counterclockwise (clockwise) LOC rotation for the particle pairs residing in the
first and third (second and fourth) quadrants, respectively.

The close agreement between the coefficients Ā, C̄ and B̄ and their respective leading-order
asymptotic approximations, as observed in Fig. 5 already at r � 3, suggests an approximate analytic
description of moderately remote particle-center trajectories. To this end we replace in Eqs. (4.18)
and (4.19) the coefficients Ā, C̄, and B̄ by their asymptotic counterparts thereby obtaining the
simplified kinematic equations of motion

ṙ ∼ r−1 cos (2θ1) and rθ̇1 ∼ (5/8) r−3 sin (2θ1) (4.20)

indicating minima r = rmin at θ1 = π/4. Integration of Eqs. (4.20) readily yields a single-parameter
family of particle-center paths

sin (2θ1) = exp
[
(5/16)

(
1/r2 − 1/r2

min

)]
(4.21)

symmetric about θ1 = π/4.

Figure 6 presents the cylinder-pair motion under a uniform DC field parallel to the X axis as
obtained via integration of the above kinematic equations of motion. This has been carried out for
r � 1.01 inasmuch as for microparticles at smaller separations the very assumption of thin EDL may
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FIG. 6. The cylinder– pair relative motion: Paths (solid lines) and local speed (color code) of particle-
center motion relative to (stationary) midpoint of line-of-centers under a uniform DC field parallel to X axis.
Coordinates are scaled by particle radius (hence white quarter unit circle inaccessible to particle center). Light-
green curves present pairs of exact- and (moderately large separation) approximate-trajectories corresponding
to common values of rmin (= 2, 3, and 4.4, respectively).

not apply within the narrow gap. Point symmetry relative to the origin (the stationary midpoint of the
LOC) together with the mirror-image symmetry relative to both axes allows us to limit description
to the first quadrant of the (X,Y ) plane. With coordinates now scaled by particle radius, the white
quarter unit circle marks the domain inaccessible to particle center. The solid lines describe particle-
center trajectories with the local speed represented by the color code, both obtained from Eqs. (4.18)
and (4.19). The light-green curves present pairs of exact (solid) and approximate (dashed, obtained
from Eqs. (4.20) for moderately large separation) trajectories corresponding to common values of
rmin (= 2, 3, and 4.4, respectively); the purple line which (on the scale of the figure) initially appears
to nearly coincide with the X axis, describes the path for which rmin = 1.01 (with any path starting
nearer to the X axis reaching excluded separations r < 1.01). As such, the purple curve delimits
the domain of entire trajectories entering from the right (at X = 5, Y � 0.003) and leaving at the
top of the figure (X � 2.43, Y = 5). Accordingly, the paths to the left of the purple line result from
integration of Eqs. (4.18) and (4.19) starting at points r = 1.01 just above the excluded domain.

The general trends observed agree with the above qualitative predictions based on the variation
with particles separation of Ā, C̄, and B̄. The dashed curve marks the locus of points of zero
radial velocity, thus dividing the plane into subdomains of inward and outward motion (below and
above this line, respectively). Since |Ā| is vanishing as r → 1 this curve emanates from a small
θ1(≈ 4.5◦ for r = 1.01) and with increasing r, in agreement with the above observed near equality
of C̄ and |Ā|, asymptotically approaches the ray θ1 = π/4. Together with the rapid decrease of
B̄, for moderate (and larger) r, away from this line, the motion is indeed essentially radial. In the
vicinity of this line, pair motion is dominated by the LOC rotation associated with the nonlinear
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interaction effect, which becomes more prominent with diminishing separation. Since B̄ > 0 for all
r, the nonlinear interaction between both external-field components gives rise to a counterclockwise
LOC rotation for all particles at θ1 �= 0, π/2. Thus, within the present calculation, practically all
particles are eventually moving away from each other in the general direction perpendicular to
the external field. Particles which are initially located under the dashed curve experience transient
pairing events qualitatively similar to those described by Saintillan [7] in the corresponding problem
of the relative ICEP motion of spherical-particle pairs.

The approximate moderately far trajectories (4.21) are symmetric relative to θ1 = π/4 and, with
increasing rmin, appear confined to a narrower sector. For rmin = 2 the dashed curve only provides
a qualitative approximation to the corresponding exact path, owing to asymmetry of the latter
associated with the inequality |Ā| < C̄, i.e., outward radial motion being generally faster than the
corresponding inward one. This asymmetry is all the more noticeable the closer the path starting
point is to the X axis. The ensuing path then attains a smaller rmin and the particle stays longer
where the difference between C̄ and |Ā| is large while B̄ being larger than both with the relative
motion thus dominated by (counterclockwise) LOC rotation. At rmin = 2, C̄ is still nearly 40% larger
than |Ā|. With increasing rmin the difference between C̄ and |Ā| is decreasing hence the trajectory
asymmetry and associated error in the approximate path are visibly diminishing.

As mentioned above, within the present calculation the trajectories at the left part of the figure
strictly describe particle-center motion emanating at r = 1.01, just above the inaccessible domain,
i.e. when both particles are nearly in contact. An interesting issue regards the origin of these
particles. While no conclusive answer is provided within the present model, we may gain some
qualitative insight focusing on the purple path following its passage through rmin = 1.01 where
|Ā|/C̄ ≈ 6 × 10−3 and C̄/B̄ ≈ 0.3. Beyond this point Ū/V̄ < C̄(r)/B̄(r)tanθ1. Thus the particle-
center follows a nearly circular arc (with the particle pair thus rotating like a rigid dumbbell) until
tanθ1 increases sufficiently to allow for a significant radial motion, which only becomes visible for
θ1 ≈ 16◦. Extrapolating to still smaller rmin (< 1.01), C̄/B̄ becomes smaller with the corresponding
paths following a longer nearly circular arc before emerging above the excluded domain at a larger
θ1. Thus, these paths may represent the later phase of relative particle-center motion for pairs starting
with their LOC closer to field direction than the corresponding initial orientation for the purple path.
Evidently, this rather ad hoc extrapolation cannot serve to relate the paths at the left of the figure to
their earlier-phase counterparts.

Finally, in marked contrast to the present results, the finite-volume simulations of Kang [12]
predict that ICEP makes both particles follow spiral trajectories converging on stationary points
(at a finite separation from each other). This mode of motion is attributed to the presence of the
square-cavity walls. Indeed, the above calculation of the antisymmetric mode of particle-pair motion
(V , �) is intimately related to the attenuation condition, Eq. (4.14). Apparently, imposing instead
no-slip at a f inite distance, on the cavity walls, can significantly modify the resulting pair motion.

V. DEP EFFECT ON THE RELATIVE (DIP) PARTICLE MOTION

Making use of the electric field, Eq. (3.8), obtained from the solution of the electrochemical
problem, Eqs. (3.5)–(3.7), one readily obtains �M , Eq. (2.11), and the resultant electric force
FM = êxF M

x + êyF M
y and torque T M = êz T M from the corresponding parts of Eqs. (2.8) and (2.9),

respectively. By the required vanishing of the resultant force and torque on the freely suspended
particles FM and T M would then show up in the equations resulting from application of the
reciprocal theorem. We note that, by the homogeneous Neumann condition, Eq. (2.1), the electric
field is tangent to the particle surface and the associated local traction vector is normal thereto, i.e.,
in the radial direction, hence no electric torque is generated on the circular cylindrical particles,
T M = 0. By use of the transformation of the unit vectors, Eqs. (3.29a) and (3.29b), the components
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of FM obtained from Eq. (2.8) are

F M
x = ±

∫ 2π

0

1

(cosh α − cos β )2

[
1

2
(1 − cosh α cos β )(EβEβ − EαEα ) + EαEβ sinh α sin β

]
dβ,

(5.1)
and

F M
y = ±

∫ 2π

0

1

(cosh α − cos β )2

[
1

2
sinh α sin β(EαEα − EβEβ ) + EαEβ (1 − cosh α cos β )

]
dβ,

(5.2)
at α = ±α0, respectively. From the symmetry properties of the electric field on the surface of the
cylinders, we obtain

F M
x = ĀM (α)cos2θ + C̄M (α)sin2θ and F M

y = ±B̄M (α) sin θ cos θ. (5.3)

Actual calculation of ĀM , C̄M , and B̄M is straightforward but tedious resulting in cumbersome
expressions, which are therefore omitted here.

Substituting Fx1 = −F M
x on the RHS of Eq. (4.4) while making use of Eq. (4.5) we obtain the

relative DEP contributions to the rescaled [with respect to a′, cf. Eq. (4.15)] particle velocity along
LOC represented by the ratios

(RĀ, RC̄ ) =
(

1

8π

)
(2α − tanh 2α)

[
ĀM (α)

Ā(α)
,

C̄M (α)

C̄(α)

]
. (5.4)

For the antisymmetric mode of motion we substitute on the RHS of Eq. (4.11) Fy1 = −F M
y and

T1 = 0. The relative DEP contribution to the rescaled transverse velocities resulting from the thus
modified Eq. (4.11) together with Eq. (4.14) is

RB̄ = α2 sinh 2α

2π (2α + sinh 2α)

[
F̄ M

y (α)/B̄(α)
]
. (5.5)

For future reference we note that both Ā(α) and ĀM (α) represent attractive forces, being both
positive (negative) for α > 0 (<0). The opposite signs apply to the pair C̄(α) and C̄M (α) both
representing, in turn, repulsive forces. In contrast B̄ and F̄ M

y have opposite signs. Thus, ICEP acts to
rotate LOC to an orientation perpendicular to E0 whereas DEP acts to align it with the external field.
Figure 7 presents the variation with r of RĀ, RC̄ , and RB̄. The peak values of the former ratios are
slightly over 3%. Because of this small relative magnitude, the associated DEP mechanisms which,
as mentioned above, act in the same direction as their ICEP counterparts, are expected to only have
a minor effect on the particle-pair motion.

Acting to induce LOC rotation in a sense opposite to that induced by ICEP, F̄ M
y may, in principle,

have a more noticeable effect. This prediction needs, however, to be qualified since the relatively
larger (≈7.3%) peak value of the ratio RB̄ takes place at radial distances where B̄ itself is already
substantially diminished (cf. Fig. 5).

Figure 8 is the trajectory pattern of Fig. 6 with the curves marked in red presenting pairs of
ICEP and corresponding dipolophoretic (DIP, combined ICEP and DEP) paths (solid and dashed
lines, respectively), each pair emanating from the same point. As could be anticipated from the
above, the (relatively modest) differences are primarily associated with the transverse motion where
both mechanisms have opposing effects, which is manifested in that, owing to DEP effect, when
the particles are moving apart the DIP trajectories are somewhat biased towards the direction of the
external field (along the X axis). The most conspicuous effect is observed in the path starting near the
X axis. Out of the four pairs presented, the particles following this specific track attain the smallest
separation distance and spend a relatively large part of their motion under a significant combined
effect of transverse DIP motion. Consistently with the discussion of Fig. 6, within the framework of
the present model, the resulting bias is indeed larger the closer the path starting point is the X axis.
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FIG. 7. Variation with r of RĀ, RC̄, and RB̄.

FIG. 8. The trajectory pattern of Fig. 6 with the curves marked in red presenting pairs of ICEP and
corresponding dipolophoretic (DIP, combined ICEP and DEP) paths (solid and dashed lines, respectively),
each pair emanating from the same point.
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As mentioned above, DEP effects associated with the separate contributions of the external-field
components are cumulative with the corresponding ICEP contributions, giving rise to larger inward
and outward velocities. This is manifested in the DIP trajectories passing through smaller rmin,
which is clearly visible in the more remote of the pairs presented.

VI. CONCLUDING COMMENTS

We have studied the relative ICEP motion of a pair of ideally polarizable particles freely
suspended in an unbounded electrolyte solution under a constant (DC) uniform external field
acting in an arbitrary direction relative to the line-of-centers of the particle pair, assuming a thin
electric double layer and weak fields. These assumptions together with the 2D geometry facilitate a
comprehensive semi-analytic description of particle-pair motion.

As a result of nonlinear interaction between the effects of the external-field components par-
allel and perpendicular, respectively, to the line of centers, particles experience transient pairing
eventually moving away from each other in the general direction perpendicular to the external
field. The interaction between external-field components through DEP acts to rotate the LOC in
the opposite sense (i.e., clockwise in Fig. 6). While, as demonstrated in Fig. 8, this mechanism only
has a relatively minor effect in the present problem for ideally polarizable particles, it is well known
that ICEP is rapidly diminishing due to a variety of physical processes (e.g., surface contamination),
in which case DEP effect is no longer secondary and may lead to permanent ‘chaining’ [9].

The present analysis involves the assumptions of thin EDL and weak fields. The former safely
applies to microparticles (except for extremely dilute electrolyte solutions or nearly touching
particles). Furthermore, it can, in principle, be relaxed (e.g., for nanoparticles) via application of
the general method presented for weak fields and small Peclet numbers in Ref. [10]. The weak-field
approximation requires that the product E

′
0a′ be small relative to the thermal potential (typically

≈25 mV). While this requirement is safely satisfied for nanoparticles, it may not be the case in a
variety of applications involving microparticles. This, in turn, results in the emergence of significant
(nonuniform) surface conduction and accompanying bulk-concentration polarization. Relaxation of
the weak-field assumption thus necessitates the incorporation of these physical phenomena into the
model, which involves challenging issues on both the conceptual and technical levels [22,23].

APPENDIX: THE COEFFICIENTS A(α0, β), B(α0, β) AND C(α0, β)

A(α0, β ) = −
[

2
∞∑

n=1

ne−nα0 tanh nα0 sin nβ + sinh α0 sin β

(cosh α0 − cos β )2

]

×
[

2
∞∑

n=1

e−nα0 tanh nα0(e−nα0 − cos nβ ) +
(

coth α0 − sinh α0

cosh α0 − cos β

)]
, (A1)

B(α0, β ) =
[

2
∞∑

n=1

ne−nα0 coth nα0 cos nβ + cosh α0 cos β − 1

(cosh α0 − cos β )2

]

×
[

2
∞∑

n=1

e−nα0 tanh nα0(e−nα0 − cos nβ ) +
(

coth α0 − sinh α0

cosh α0 − cos β

)]

+
[

2
∞∑

n=1

e−nα0 coth nα0 sin nβ + sin β

cosh α0 − cosβ

]

×
[

2
∞∑

n=1

ne−nα0 tanh nα0 sin nβ + sinh α0 sin β

(cosh α0 − cos β )2

]
, (A2)
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and

C(α0, β ) = −
[

2
∞∑

n=1

e−nα0 coth nα0 sin nβ + sin β

cosh α0 − cos β

]

×
[

2
∞∑

n=1

ne−nα0 coth nα0 cos nβ + cosh α0 cos β − 1

(cosh α0 − cos β )2

]
. (A3)
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