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Synchronization of Marangoni waves by temporal modulation
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It is known that a horizontal two-layer liquid film heated from above is subject to a
long-wave oscillatory Marangoni instability. The action of a time-periodic modulation of
interfacial heat consumption on the temporal dynamics of nonlinear Marangoni waves is
investigated. The problem is studied numerically in the framework of long-wave amplitude
equations. We focus on the phenomenon of synchronization between instability-induced
oscillations and external parameter modulation. It is found that the time-periodic heat
consumption modulation can create either a time-periodic regime (synchronization) or a
quasiperiodic regime (no synchronization). Diagrams of regimes are constructed.

DOI: 10.1103/PhysRevFluids.5.094007

I. INTRODUCTION

Marangoni convection in liquid layers has been extensively studied in the past few decades,
due to its importance in microgravity engineering and microfluidics (for a review, see [1–3]).
The early works on the development of Marangoni convection in a liquid layer heated from
below have revealed two basic modes of Marangoni instabilities: (i) the “Pearson mode” of
cellular convection with a negligible deformation of the interface [4–8] and (ii) the “Scriven-
Sternling mode” which manifests itself through a long-wave interface deformation leading
to the layer rupture [9–11]. For a two-layer system, the full monotonic curve was obtained
by Smith [12].

However, there exist physical systems where both monotonic and oscillatory Marangoni instabil-
ities are possible. First, an oscillatory Marangoni instability was discovered by Sternling and Scriven
[13] for a mass transfer through an interface separating two semi-infinite fluid layers. The oscillatory
Marangoni instability in binary mixtures with Soret effect was studied in [14,15]. In two-layer liquid
systems, an oscillatory instability can be produced by the hydrodynamic and thermal interaction
between the layers. For the Pearson mode of the Marangoni convection, the oscillatory instability
in two-layer liquid systems was investigated in [2,16].

Both monotonic and oscillatory Marangoni instabilities are possible in a two-layer liquid film
with deformable interfaces. The advantage of that physical system is the possibility to apply a
long-wave asymptotic approach (“lubrication approximation”) which allows one to reduce the
full nonstationary three-dimensional problem to a system of strongly nonlinear two-dimensional
evolution equations that governs long-wave deformations of interfaces [17–21].

The oscillatory Marangoni instability in a two-layer film has been revealed by heating from
above [22] as well as by heat release and consumption at the interface between two liquids [23].
The latter way of controlling the Marangoni instability is the most efficient, because the Marangoni
flow is determined by the interfacial temperature field. There are several physical processes which
can create a heat source or sink on the interface. For example, the interfacial heating may be
generated, e.g., by an infrared light source. The infrared absorption bands of different liquids can
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FIG. 1. Geometric configuration of the region and coordinate axes.
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FIG. 2. Snapshots of contour lines of h1(X,Y, τ ) − 1 for alternating rolls with basic wave vectors (2k0, 2k0 )
and (2k0, −2k0 ) (AR1): (a) τ = 1, 200, 000; (b) τ = 1, 200, 250; (c) τ = 1, 200, 750; (d) τ = 1, 201, 000;
M = −2, MQ = −0.5.
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FIG. 3. Snapshots of contour lines of h1(X,Y, τ ) − 1 for alternating rolls with basic wave vectors (k0, 3k0 )
and (3k0, −k0 ) (AR2): (a) τ = 399, 003; (b) τ = 399, 100; (c) τ = 399, 300; (d) τ = 399, 400; M = −2,
MQ = −0.5.

be essentially different [24], therefore the light frequency can be chosen in a way that one of the
liquids is transparent, while the characteristic length of the light absorption in another liquid is short.
Fluid flows generated by infrared heating were studied experimentally in [25]. The interfacial heat
consumption accompanies the evaporation [26].

It is significant that in a contradistinction to the monotonic deformational mode which leads
typically to the layer rupture the oscillatory deformational mode generates finite-amplitude two-
dimensional and three-dimensional patterns [25–27].

An important problem is controlling the development of patterns. An efficient way of control-
ling instabilities and pattern formation is the temporal modulation of the control parameter, e.g.,
vibration or heating modulation. The influence of vibration on instabilities in liquids is a subject of
a number of books [28,29]. A review of recent works on the application of parameter modulations
for the control of instabilities can be found in [30]. Specifically, the influence of high-frequency
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FIG. 4. Snapshots of contour lines of h1(X,Y, τ ) − 1 for alternating rolls with basic wave vectors (k0, 2k0 )
and (2k0, −k0 ) (AR3): (a) τ = 1, 200, 000; (b) τ = 1, 200, 500; (c) τ = 1, 200, 750; (d) τ = 1, 201, 000; M =
−2, MQ = −0.5.

vibrations on the deformational Marangoni instability was studied in [31,32], while the excitation
of that instability by a heating modulation was considered in [33–35].

The presence of a primary oscillatory instability allows one to arrange a parametric excitation of
Marangoni waves by means of vibration [36] and heating modulation [37] on the background of a
mechanical equilibrium state.

The goal of the present paper is different. We consider the action of a time-periodic parameter
modulation on the nonlinear Marangoni waves rather than a motionless state. In that case, the basic
phenomenon is the synchronization of the spontaneous convective oscillations created by an oscil-
latory instability to the imposed modulation of a parameter, which is similar to the synchronization
of a nonlinear oscillator to a periodic external force [38]. Under some conditions, the nonlinear
oscillations in the fluids change their frequency so that it becomes commensurate to the frequency
of the external modulation. If the synchronization does not take place, the motion is characterized
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FIG. 5. Temporal evolution of amplitudes r22(τ ) (solid line) and r2,−2(τ ) (dashed line) for M = −2, MQ =
−0.5, pattern AR1.

FIG. 6. Phase trajectory in the plane (r22, r2,−2) for M = −2, MQ = −0.5, pattern AR1.
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FIG. 7. Temporal evolution of hmax,2(τ ) for M = −2, MQ = −0.5, pattern AR1.

by two incommensurate frequencies, the natural frequency of the nonlinear oscillations and the
imposed external frequency; hence it is quasiperiodic in time.

In the present paper, we apply the temporal modulation of the interfacial heat consumption as
a way to change the temporal behavior of nonlinear Marangoni waves. The physical problem is
formulated in Sec. II. In Sec. III, long-wave amplitude equations are presented. Section IV contains
a brief description of the numerical method. In Sec. V, nonlinear wave regimes in the absence
of parameter modulation are described. The results of the numerical investigation of nonlinear
Marangoni waves under the action of modulation are presented in Sec. VI. Section VII contains
concluding remarks.

II. FORMULATION OF THE PROBLEM

Consider a system of two superposed layers of immiscible liquids with different physical
properties (see Fig. 1). The bottom layer rests on a solid substrate; the top layer is in contact with
the adjacent gas phase. All the variables referring to the bottom layer are marked by subscript 1, and
all the variables referring to the top layer are marked by subscript 2. The equilibrium thicknesses of
the layers are H0

m, m = 1, 2. The deformable interfaces are described by equations z = H1(x, y, t )
(liquid-liquid interface) and z = H2(x, y, t ) (liquid-gas interface).

The mth fluid has density ρm, dynamic viscosity ηm, thermal diffusivity χm, and heat conductivity
κm. The temperature of the solid substrate is Ts; the temperature of the gas near the interface is Tg.
At the interface, there is a heat source/sink which creates a jump Q∗(t ) of the normal heat flux. The
surface tension coefficients on the lower and upper interfaces, σ1 and σ2, are linear functions of the
temperature T : σ1 = σ 0

1 − α1T , σ2 = σ 0
2 − α2T . The effect of gravity and the intermolecular forces

are neglected.
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FIG. 8. Temporal evolution of Fourier components r22(τ ) (solid line) and r2,−2(τ ) (dashed line) for M =
−2, M̄Q = −0.5, A = 0.25, ω = 0.0042.

The Marangoni convection is governed by the following system of nonlinear equations [1]:

ρm

[
∂vm

∂t
+ (vm · ∇ )vm

]
= −∇Pm + ηm�vm, (1)

∂Tm

∂t
+ vm · ∇Tm = χm�Tm, (2)

∇ · vm = 0, m = 1, 2. (3)

Here vm and Tm are the velocity and the temperature in the mth liquid, and Pm is the difference
between the pressure in the mth liquid and the uniform gas pressure.

The dynamic boundary conditions on the deformable interface z = H1 are

P2 − P1 + 2σ1K1 =
[
−η1

(
∂v1i

∂xk
+ ∂v1k

∂xi

)
+ η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)]
n1in1k; i, k = 1, 2, 3, (4)

where K1 is the mean curvature of the interface (condition for the normal stress balance), and[
−η1

(
∂v1i

∂xk
+ ∂v1k

∂xi

)
+ η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)]
τ

(l )
1i n1k − α1τ

(l )
1i

∂T1

∂xi
= 0, l = 1, 2; i, k = 1, 2, 3

(5)
(conditions for the tangential stress balance). Here n1 is the normal vector and τ

(l )
1 , l = 1, 2 are

orthogonal tangential vectors. In the quantities with two subscripts, the first subscript corresponds
to the liquid (m = 1, 2) and the second subscript determines the number of the Cartesian coordinate
(i, k = 1, 2, 3; x1 = x, x2 = y, x3 = z). The usual summation convention is applied.
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FIG. 9. The phase trajectory in the plane (r22, r2,−2) for M = −2, M̄Q = −0.5, A = 0.25, ω = 0.0042.

FIG. 10. Oscillations of hmax,2(τ ) for M = −2, M̄Q = −0.5, A = 0.25, ω = 0.0042.
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FIG. 11. Snapshots of the isolines of h1(X,Y, τ ) − 1: (a) τ = 1, 200, 000; (b) τ = 1, 200, 250; (c) τ =
1, 200, 500; (d) τ = 1, 201, 250. M = −2, M̄Q = −0.5, A = 0.25, ω = 0.0042.

Also, the kinematic boundary condition is imposed:

∂H1

∂t
+ v1x

∂H1

∂x
+ v1y

∂H1

∂y
= v1z. (6)

Across the interface, the fields of velocity and temperature are continuous:

v1 = v2, T1 = T2. (7)

In a contradistinction to the case considered in [3], there is a jump of normal heat flux density due
to the heat release or consumption:

(
κ1

∂T1

∂xi
− κ2

∂T2

∂xi

)
n1i = Q∗(t ). (8)

Later on, we assume that Q∗ is a given function of time.
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FIG. 12. The phase trajectory in the plane (s22, s2,−2) for M = −2, M̄Q = −0.5, A = 0.25, ω = 0.0043.

The boundary conditions on the deformable surface z = H2 are as follows:

−P2 + 2σ2K2 = −η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)
n2in2k, (9)

−η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)
τ

(l )
2i n2k − α2τ

(l )
2i

∂T3

∂xi
= 0, l = 1, 2, i, k = 1, 2, 3, (10)

∂H2

∂t
+ v2x

∂H2

∂x
+ v2y

∂H2

∂y
= v2z, (11)

n2 is the normal vector and τ
(l )
2 , l = 1, 2, are the tangential vectors of the upper surface, and K2 is

the mean curvature. For a heat flux on the liquid-gas interface we use an empirical condition:

κ2
∂T2

∂xi
n2i = −q(T2 − Tg), (12)

where q is the heat exchange coefficient which is assumed to be constant.
The boundary conditions on the rigid boundary z = 0 are

v1 = 0, T1 = Ts. (13)

III. LONG-WAVE AMPLITUDE EQUATION

The system of equations and boundary conditions (1)–(13) is rather complicated. However, in
the case of thin-film flows, when the fluid system is thin in one direction and extended in other
directions, the nonlinear model governing three-dimensional flows with a deformable interface
can be drastically simplified by means of a long-wavelength expansion. The leading order of this
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FIG. 13. The phase trajectory in the plane (r22, r2,−2) for M = −2, M̄Q = −0.5, A = 0.25, ω = 0.0043.

FIG. 14. Oscillations of hmax,2(τ ) for M = −2, M̄Q = −0.5, A = 0.25, ω = 0.0043.
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FIG. 15. A snapshot of the isolines of (a) h2(X,Y, τ ) − 2.5 and (b) h1(X,Y, τ ) − 1. M = −2, M̄Q = −0.5,
A = 0.25, ω = 0.0042.

expansion is known as the lubrication approximation. The long-wave approach is based on the
assumption that the characteristic spatial scales in the directions x and y are much larger than that in
the direction z. In the framework of that approach, the solution of equations and boundary conditions
(1)–(12) depends on the scaled horizontal coordinates X̃ = εx and Ỹ = εy, ε � 1, rather than on
x and y, while the appropriate scaled time variable is τ̃ = ε2t . Also, it is assumed that the surface
tension is strong: σm = σ 0

mε−2, σ 0
m = O(1), m = 1, 2, while the dependence of interfacial tensions

on the temperature is relatively weak and can be neglected in the boundary conditions for normal
stresses (but not in those for tangential stresses where it is the source of a thermocapillary motion).
The details of the long-wave approach applied to thermocapillary flows can be found in review
papers [18,19].
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FIG. 16. The phase trajectory in the plane (r22, r2,−2) for the synchronized (periodic) regime. M = −2,
M̄Q = −0.5, A = 0.18, ω = 0.00424.

The application of the long-wave approach leads to a closed system of equations that governs the
evolution of a heated two-layer film:

∂H1

∂τ
+ ∇̃ · Q1 = 0,

∂H2

∂τ
+ ∇̃ · Q2 = 0, (14)

where ∇̃ denotes the differentiation with respect to X̃ = (X̃ , Ỹ ). A detailed derivation of (14) is
given in [26]. We omit it here and present only the final result.

The film flows are created by two mechanisms. First, the temperature gradients along the
interfaces generate thermocapillary flows. Also, flows are caused by the gradients of Laplace
pressures. Therefore, the total fluxes Q j , j = 1, 2, can be written as

Q j = QT
j + Qσ

j ,

where fluxes

QT
1 = (Ts − Tg)κ2

2η1
H2

1 ∇̃[D(qα1H1 − α2κ1)] − H1
1

2η1
∇̃{Q∗(τ̃ )DH1[(α1 + α2)κ2 + α1q(H2 − H1)]},

(15)

QT
2 = (Ts − Tg)

2η1η2

(
H2

2 ∇̃[(−α2κ1η1)D] + (2H2 − H1)H1∇̃{D[qα1η2H1 − α2κ1(η2 − η1)]})

− κ2

2η1η2
[η2(α1 + α2)H1(2H2 − H1) + η1α2(H2 − H1)2]∇̃[Q∗(τ̃ )DH1]
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FIG. 17. The temporal evolution of hmax,2(τ ) for M = −2, M̄Q = −0.5, A = 0.18, ω = 0.00424.

FIG. 18. The phase trajectory in the plane (r22, r2,−2) for M = −2, M̄Q = −0.5, A = 0.21, ω = 0.00424.
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FIG. 19. Snapshots of the isolines of h2(X,Y, τ ) − 2.5: (a) τ = 2, 600, 000; (b) τ = 2, 600, 250; (c) τ =
2, 600, 500; (d) τ = 2, 601, 250. M = −2, M̄Q = −0.5, A = 0.21, ω = 0.00424.

− α1q

2η1
H1(2H2 − H1)∇̃[Q∗(τ̃ )DH1(H2 − H1)], (16)

D = [κ1κ2 + q(κ2 − κ1)H1 + qκ1H2]−1 (17)

are caused by the thermocapillary flows, and fluxes

Qσ
1 = F11∇̃P1 + F12∇̃P2, Qσ

2 = F21∇̃P1 + F22∇̃P2 (18)

are generated by the gradients of the Laplace pressures:

P1 = −σ1∇̃2H1 − σ2∇̃2H2, (19)

P2 = −σ2∇̃2H2; (20)

here the mobility functions are

F11 = − 1

3η1
H3

1 , F12 = − 1

2η1
H2

1 (H2 − H1), F21 = 1

6η1
H3

1 − 1

2η1
H2

1 H2,

F22 = (H2 − H1)

[
H2

1

(
1

2η1
− 1

3η2

)
+ H1H2

(
− 1

η1
+ 2

3η2

)
− 1

3η2
H2

2

]
.
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FIG. 20. Snapshots of the isolines of h1(X,Y, τ ) − 1: (a) τ = 2, 600, 000; (b) τ = 2, 600, 250; (c) τ =
2, 600, 500; (d) τ = 2, 601, 250. M = −2, M̄Q = −0.5, A = 0.21, ω = 0.00424.

Let us transform Eqs. (14)–(20) to a nondimensional form. The vertical length scale is the mean
thickness of the lower layer, H0

1 . We do not fix the horizontal length scale, L∗ (see [27]).
We choose

τ ∗ = η1(L∗)4

σ 0
1

(
H0

1

)3 (21)

as a time scale,

p∗ = σ 0
1 H0

1

(L∗)2
(22)

as a pressure scale, and |Ts − Tg| as the temperature scale, define nondimensional variables

X = X̃/L∗, τ = τ̃ /τ ∗, h j = Hj/H0
1 , π j = Pj/p∗, j = 1, 2,

and introduce the following set of nondimensional parameters: η = η1/η2, κ = κ1/κ2, ρ = ρ2/ρ1,
σ = σ 0

2 /σ 0
1 , α = α2/α1, h = H0

2 /H0
1 ,

Bi = qH0
1

κ2
(23)
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FIG. 21. The shapes of (a) the free surface h2(X,Y, τ ) and (b) the interface h1(X,Y, τ ). M = −2, M̄Q =
−0.5, A = 0.21, ω = 0.00424, τ = 2 × 106.

is the Biot number,

M = α1(Ts − Tg)

σ 0
1

(
L∗
H0

1

)2

(24)

is the modified Marangoni number corresponding to the temperature difference between the sub-
strate and the gas,

MQ(τ ) = α1Q∗(τ )(L∗)2

σ 0
1 H0

1 κ2
(25)

094007-17



A. A. NEPOMNYASHCHY AND I. B. SIMANOVSKII

FIG. 22. The phase trajectory in the plane (r22, r2,−2) for the nonsynchronized (quasiperiodic) regime. M =
−2, M̄Q = −0.5, A = 0.18, ω = 0.00424.

FIG. 23. The diagram of regimes in the plane (ω, A) for the AR1 pattern, ω ≈ 2ω1: diamond, synchronized
regime; asterisk, nonsynchronized regime; circle, bistability of synchronized and nonsynchronized regimes.
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FIG. 24. The temporal evolution of hmax,2(τ ) for M = −2, M̄Q = −0.5, A = 0.25, ω = 0.0085.

is the modified Marangoni number corresponding to the heat source/sink at the interface:

d (τ ) = [κ + Bi(1 − κ )h1(X, τ ) + Biκh2(X, τ )]−1. (26)

Equations (14) written in the nondimensional form look as follows:

h1τ + ∇ · q1 = 0, h2τ + ∇ · q2 = 0, (27)

where

q j = qT
j + qσ

j , j = 1, 2,

qT
1 = M

2
h2

1∇[d (Bih1 − ακ )] − 1

2
h2

1∇{MQ(τ )dh1[1 + α + Bi(h2 − h1)]}, (28)

qT
2 = M

2

(−h2
2∇(dηακ ) + (2h2 − h1)h1∇{d[Bih1 − ακ (1 − η)]})

− 1

2
[(1 + α)h1(2h2 − h1) + ηα(h2 − h1)2]∇[MQ(τ )dh1]

− Bi

2
h1(2h2 − h1)∇[MQ(τ )dh1(h2 − h1)]. (29)

The nondimensional expressions for qσ
1 and qσ

2 are

qσ
1 = f11∇p1 + f12∇p2, qσ

2 = f21∇p1 + f22∇p2, (30)
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FIG. 25. The temporal evolution of amplitudes r22(τ ) (solid line) and r2,−2(τ ) (dashed line) for M = −2,
M̄Q = −0.5, A = 0.25, ω = 0.0085.

where the nondimensional mobilities are

f11 = −1

3
h3

1, f12 = −1

2
h2

1(h2 − h1),

f21 = 1

6
h3

1 − 1

2
h2

1h2, f22 = −(h2 − h1)

[
1

2
h1(2h2 − h1) + η

3
(h2 − h1)2

]
,

and the capillary pressures are

p1 = −∇2h1 − σ∇2h2, (31)

p2 = −σ∇2h2. (32)

IV. NUMERICAL METHOD

We have performed nonlinear simulations of Eqs. (27) with a time-periodic modulation of the
Marangoni number MQ corresponding to the heat source/sink at the interface:

MQ(τ + T̃ ) = MQ(τ ). (33)

Specifically, we have performed the simulations with the interfacial heat consumption determined
by the formula

MQ(τ ) = M̄Q(1 + A sin ωτ ), ω = 2π/T̃ . (34)
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FIG. 26. The phase trajectory in the plane (r22, r2,−2) for M = −2, M̄Q = −0.5, A = 0.25, ω = 0.0085.

FIG. 27. Oscillations of Fourier harmonics s22(τ ) and c22(τ ) for M = −2, M̄Q = −0.5, A = 0.25, ω =
0.0085.
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FIG. 28. The diagram of regimes in the plane (ω, A) for the AR1 pattern, ω ≈ 4ω1: diamond, synchronized
regime; asterisk, nonsynchronized regime; circle, bistability of synchronized and nonsynchronized regimes.

Equations (27) have been discretized by central differences for spatial derivatives and solved using
an explicit scheme of the first order in time. Initial conditions for hj , j = 1, 2 have been chosen in
such a way that the mean value of h1(X,Y, 0) was equal to 1 and the mean value of h2(X,Y, 0) was
equal to h, where h > 1. Small random deviations of hj (X,Y, 0) from their mean values (with the
magnitude 10−3) were imposed using a code creating pseudorandom numbers. The computations
have been carried out in the region L × L = 240 × 240 with periodic boundary conditions using the
grid 80 × 80. For moderate values of M, the fields h1 and h2 are rather smooth, thus the grid 80 × 80
gives a good resolution of large scale wave patterns. Let us note that some trial simulations have
been made on the grids 100 × 100 and 120 × 120, and no qualitative changes have been observed.
The time step used in simulations typically changed between 0.00125 and 0.005, and it is definitely
below the linear scheme stability boundary. The simulations done with different time steps did not
reveal any qualitative changes.

The primary analysis of the obtained nonlinear regimes has been performed using snapshots of
the fields of hj (X,Y, τ ), j = 1, 2. This analysis has been supplemented by the investigation of the
Fourier components

cmn(τ ) = 2

L2

∫ L

0

∫ L

0
h1(X,Y, τ ) cos

[
2π

L
(mX + nY )

]
dXdY, (35)

smn(τ ) = 2

L2

∫ L

0

∫ L

0
h1(X,Y, τ ) sin

[
2π

L
(mX + nY )

]
dXdY, (36)

where m and n are integer numbers.
We have used also variables

rmn(τ ) =
√

c2
mn(τ ) + s2

mn(τ ), (37)
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FIG. 29. Snapshots of the isolines of h1(X,Y, τ ) − 1: (a) τ = 1, 600, 000; (b) τ = 1, 600, 250; (c) τ =
1, 600, 500; (d) τ = 1, 601, 250. M = −2, M̄Q = −0.5, A = 0.25, ω = 0.0084, regime 1.

characterizing the amplitudes of corresponding complex Fourier harmonics, and quantities

hmax, j (τ ) = max
X,Y

h j (X,Y, τ ), j = 1, 2, (38)

which describe the deformations of the surfaces.

V. MARANGONI WAVES IN THE ABSENCE OF MODULATION

First, let us recall the basic results on the stability of the mechanical equilibrium and the nonlinear
flow regimes in the case of constant heating obtained in [26,27]. It has been shown that in addition to
a monotonic instability leading to the rupture of the film the two-layer film is subject to an oscillatory
instability that generates self-sustained Marangoni waves. In the absence of the interfacial heat
release/consumption, the oscillatory instability is developed by heating from below (M > 0) if
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FIG. 30. The shapes of (a) the free surface h2(X,Y, τ ) and (b) the interface h1(X,Y, τ ). M = −2; M̄Q =
−0.5; A = 0.25; ω = 0.0084; τ = 1, 600, 000; regime 1.

Bi < Bic, and by heating from above (M < 0) if Bi > Bic, where

Bic = 1 + α(1 + ηκa2 + 2κa)

a
;

here a = h − 1 (see [27]). As shown in [26], the oscillatory instability is retained in the presence of
the interfacial heat release/consumption within a definite interval of parameter

Q = MQ

MBiκ
.

As an example, below we consider the particular system of liquids, that of fluorinert FC70 (liquid
1) and silicone oil 10 (liquid 2) (see, e.g., [39]) with the following values of parameters: η = 3.04,
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FIG. 31. The temporal evolution of amplitudes r22(τ ) (solid line) and r2,−2(τ ) (dashed line) for M = −2,
M̄Q = −0.5, A = 0.25, ω = 0.0084, regime 1.

κ = 0.522, α = 2, ρ = 0.482, σ = 2.6, a = 1.5, Bi = 10. For that system, the interval of oscilla-
tory instability by heating from above is −0.00497 < Q < 0.0710 (see [26]).

The periodic boundary conditions on the boundaries of a finite computational region 0 � X � L,
0 � Y � L determine the set of admissible disturbance wave vectors:

kx = mk0, ky = nk0, k0 = 2π/L,

where m and n are integer numbers. At definite values of L, M, and MQ, there exist several stable
wave patterns satisfying the periodicity conditions.

For instance, in the case when L = 240, M = −2, and MQ = −0.5 (Q = 0.048), three kinds
of alternating roll patterns are stable (tristability): (i) with basic wave vectors (2k0, 2k0) and
(2k0,−2k0) (AR1) (see Fig. 2), (ii) with basic wave vectors (k0, 3k0) and (3k0,−k0) or (k0,−3k0)
and (3k0, k0) (AR2) (see Fig. 3), and (iii) with basic wave vectors (k0, 2k0) and (2k0,−k0) or
(−k0, 2k0) and (2k0, k0) (AR3) (see Fig. 4). The conditions for their existence can be determined
using the linear stability theory [26].

Pattern AR1 is a nonlinear superposition of two standing waves with basic wave vectors
(2k0, 2k0) and (2k0,−2k0). In the course of oscillations, the pattern keeps its symmetry with respect
to symmetry axes of the kind Y − X = const and Y + X = const. The basic Fourier components
c22(τ ), s22(τ ), c2,−2(τ ), and s2,−2(τ ) oscillate with period T̃1 ≈ 3000. We define the basic frequency
as ω1 = 2π/T̃1 ≈ 0.00211. Because

c2,±2(τ + T̃1/2) = −c2,±2(τ ), s2,±2(τ + T̃1/2) = −s2,±2(τ ),
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FIG. 32. The phase trajectory in the plane (r22, r2,−2) for M = −2, M̄Q = −0.5, A = 0.25, ω = 0.0084,
regime 1.

the amplitudes of standing waves

r2,±2(τ ) =
√

c2
2,±2(τ ) + s2

2,±2(τ )

oscillate with period T̃1/2 ≈ 1500. The oscillations of both standing waves have a phase shift
equal to T̃1/4 ≈ 750 (see Fig. 5). The phase trajectory in the plane (r22, r2,−2) is shown in
Fig. 6; maxτ r2,−2(τ ) = maxτ r22(τ ). The wave pattern at the time instant τ + T̃1/4 can be obtained
from the wave pattern for time instant τ by rotation by angle π/2. Therefore, the quantities hmax, j ,
j = 1, 2, oscillate with period T̃1/4 (see Fig. 7).

Patterns AR2 and AR3 are quite similar to AR1, except the orientation of basic vectors and
corresponding symmetry axes (see Figs. 3 and 4). The temporal period of oscillations of the
basic Fourier components is T̃2 ≈ 2400 for pattern AR2 and T̃3 ≈ 5150 for pattern AR3. The
corresponding basic frequencies are ω2 = 2π/T̃2 = 0.00261 and ω3 = 2π/T̃3 = 0.00122.

VI. MARANGONI WAVES UNDER THE ACTION OF MODULATION

Let us discuss now the modification of nonlinear waves with periods T̃j ( j = 1, 2, 3) described
in the previous section, by the temporal oscillation of parameter MQ with period T̃ .

Generally, the action of an external periodic force with period T̃ = 2π/ω on a nonlinear
oscillatory system with the characteristic period T̃j = 2π/ω j of its natural oscillations can lead to
two different kinds of dynamics. The motion can be quasiperiodic, i.e., the support of its temporal
Fourier spectrum is the set mω + nω j , where m and n are integer numbers, while ω and ω j are
mutually incommensurable (� = ω/ω j is irrational). For a quasiperiodic motion, the trajectory of

094007-26



SYNCHRONIZATION OF MARANGONI WAVES BY …

FIG. 33. The temporal evolution of hmax,2(τ ) for M = −2, M̄Q = −0.5, A = 0.25, ω = 0.0084, regime 1.

the system in the phase space is dense on a certain two-dimensional torus. In physical terms, one
observes “beatings,” i.e., the oscillations with an amplitude which is not constant but oscillates itself
with an incommensurable period. In that case, one can say that there is no synchronization between
the external and internal frequencies.

Another outcome of the external force action is the generation of a periodic motion with a certain
period NT̃ , where N is an integer number. That means that the nonlinear system adjusts the period
of its own oscillations in such a way that it becomes a multiple of the external force period. We can
define that phenomenon as synchronization. According to the general theory (see [40]), around each
value of ω, such that � = ω/ω j is rational, there exists a finite interval (ω−, ω+), ω ∈ (ω−, ω+),
where that frequency adjustment takes place (“Arnold tongue”).

Practically, finding such an interval numerically is very difficult, because (i) the width of
the synchronization interval �ω = ω+ − ω− can be very small and (ii) the period NT̃ can be
very large, so that it will be impossible to distinguish between a long-periodic and quasiperiodic
motion. Nevertheless, we managed to find several examples of synchronization (i.e., perfectly
periodic motion) with relatively small N (equal to 2, 4, and 8), inside some intervals of ω.
That motion can be clearly distinguished from the quasiperiodic ones found for ω outside those
intervals.

A. Modulation with the frequency ω close to 2ωi

As an example of synchronization, let us consider the modification of the AR1 pattern dynamics
under the action of the heat consumption modulation with the frequency ω = 0.0042, which is
close to 2ω1 = 0.00422; the modulation parameter A = 0.25. Figures 8–10 clearly show that the
quantities r22, r2,−2, and hmax,2 change periodically. However, all these quantities oscillate with the
period 2π/ω [recall that in the absence of the modulation, r22, r2,−2 oscillate with the period π/ω1,
and hmax,2 oscillates with the period π/(2ω1)]. Note that the shapes of oscillations of r22(τ ) and
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FIG. 34. Snapshots of contour lines of (a) h2(X,Y, τ ) − 2.5 and (b) h1(X,Y, τ ) − 1. M = −2, MQ = −0.5,
A = 0.25, ω = 0.0084, regime 2.

r2,−2(τ ) are now different (see Fig. 8) and the phase diagram in the plane (r22, r2,−2) is asymmetric
(see Fig. 9). That is because there is no symmetry with respect to the time shift by T̃ /2. The
difference between the amplitudes of rolls along the different diagonals leads to the difference in
heights of corresponding maxima of hmax,2 (see Fig. 10). The symmetry of the pattern with respect
to its symmetry axes is retained (see Fig. 11).

As an example of the lack of synchronization, consider the case of ω = 0.0043. The evolution
of the basic Fourier components s22 and s2,−2 (Fig. 12), as well as that of the amplitudes r22 and
r2,−2 (Fig. 13), look as the motions on tori. The evolution of hmax,2 reveals beating caused by the
superposition of close, apparently incommensurable, frequencies (Fig. 14). Let us emphasize that
the spatial symmetry of the pattern is not changed (see Fig. 15).
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FIG. 35. Temporal evolution of amplitudes r22(τ ) (solid line) and r2,−2(τ ) (dashed line). M = −2, M̄Q =
−0.5, A = 0.25, ω = 0.0084, regime 2.

FIG. 36. Temporal evolution of hmax,2 for M = −2, M̄Q = −0.5, A = 0.25, ω = 0.0084, regime 2.
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FIG. 37. Snapshots of contour lines of h1(X,Y, τ ) − 1: (a)τ = 2, 100, 000; (b) τ = 2, 100, 250; (c) τ =
2, 100, 500; (d) τ = 2, 101, 250; M = −2, M̄Q = −0.5, A = 0.1, ω = 0.00976.

The flows described above do not exhaust the whole set of regimes generated by a temporal
parameter modulation. Also, for the same values of parameters one can observe both a synchronized
dynamic regime and a nonsynchronized one, depending on initial conditions. As an example, let us
consider the dynamic regimes found at A = 0.18, ω = 0.00424.

The first regime is time periodic. It is developed as the result of a period doubling bifurcation (see
Fig. 16): the phase trajectory in the plane (r22, r2,−2) is doubled. The period doubling is clearly seen
in the plot of hmax,2(τ ) (see Fig. 17). While the period of the parameter modulation T̃ = 2π/ω ≈
1480, the variable hmax,2(τ ) oscillates with the period 2T̃ ≈ 2960 [as well as variables r22(τ ) and
r2,−2(τ )].

With the growth of A, the distance between the fragments of the doubled phase trajectory
increases (see Fig. 18).

Note that the spatial symmetry characteristic for pattern AR1 persists after the period doubling
(see Figs. 19–21).

The dynamics of the second regime, which is observed for the same values of parameters A and
ω, is quasiperiodic [see the phase trajectory in the plane (r22, r2,−2) in Fig. 22].

The diagram showing the regions of synchronization and nonsynchronization for the AR1 pattern
modulated with frequency ω close to 2ωi is displayed in Fig. 23.

Similar synchronized and nonsynchronized flow regimes have been observed for ω close to 2ωi

for AR2 and AR3 patterns.
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FIG. 38. Temporal evolution of amplitudes r−1,2(τ ) (solid line) and r21(τ ) (dashed line). M = −2, M̄Q =
−0.5, A = 0.1, ω = 0.00976.

B. Modulation with the frequency ω close to 4ωi

Oscillatory AR1 patterns perfectly periodic in time are developed also under modulations with
frequency ω close to 4ω1 = 0.008 44. In a contradistinction to the case ω ≈ 2ω1, now only the
quantities hmax,m(τ ), m = 1, 2, oscillate with the imposed period 2π/ω ≈ π/(2ω1) (see Fig. 24).
Quantities r2,2 and r2,−2 oscillate with the doubled period 4π/ω ≈ π/ω1, and their shapes are
similar, i.e.,

r2,2(τ ) = r2,−2(τ + 2π/ω) (39)

(see Fig. 25). Therefore, the phase diagram in the plane (r2,2, r2,−2) is symmetric (see Fig. 26). The
Fourier components s2,±2(τ ) and c2,±2(τ ) oscillate with the period 8π/ω ≈ 2π/ω1 (see Fig. 27).
The spatial symmetry characteristic for the AR1 pattern persists.

Note that the properties of the periodic regime synchronized to modulations with the frequency
ω ≈ 4ω1 (Figs. 24– 26) are more similar to those of nonmodulated oscillations (Figs. 5– 7) than
the properties of the periodic regime under modulation with frequency ω ≈ 2ω1 (Figs. 8– 10). The
frequency interval of synchronization around ω = 4ω1 (see Fig. 28) is significantly wider than that
around ω = 2ω1 (see Fig. 23).

At ω = 0.0084, we have observed two time-periodic regimes with different spatial structures.
Regime 1 develops due to a bifurcation related to spatial symmetry breaking (see Figs. 29 and 30).
The symmetry with respect to axes of the kind Y + X = const persists, while the symmetry with
respect to axes of the kind Y − X = const is broken.

Relation (39) is violated (see Fig. 31), and the phase trajectory in the plane (r22, r2,−2) becomes
asymmetric (see Fig. 32). The violation of relation (39) leads to the period doubling for oscillations
of hmax,m(τ ), which have now the same period 4π/ω ≈ π/ω1 as r22 and r2,−2 (see Fig. 33).
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FIG. 39. The diagram of regimes in the plane (ω, A) for the AR3 pattern, ω ≈ 8ω1: diamond, synchronized
regime; asterisk, nonsynchronized regime.

For the same values of parameters, another regime has been observed (see Fig. 34). The spatial
period is doubled: the quantities r11 and r1,−1 are now different from zero, while the symmetry
is retained. For that regime, relation (39) is satisfied (see Fig. 35), and the phase trajectory in the
plane (r22, r2,−2) is symmetric. Note that the quantity hmax,2 has four nonequal minima during the
period of oscillations, which is equal to 8π/ω ≈ 2π/ω1, rather than 2π/ω ≈ 2π/ω1 observed for
ω = 0.0085 (see Fig. 36).

C. Modulation with the frequency ω close to 8ωi

A synchronization can also be reached by modulation with the frequency ω close to 8ωi. As
an example, let us consider the synchronization of the AR3 pattern. The modulation with ω ≈ 8ω3

creates symmetric alternating roll patterns oscillating with the period equal to 16π/ω, which is close
to 2π/ω3 (see Fig. 37). As expected for alternating roll patterns, quantities r−1,2 and r2,1 oscillate
with the period 8π/ω ≈ π/ω3 (see Fig. 38), while hmax, j oscillate with the period 4π/ω ≈ π/(2ω3).
The synchronization region is rather wide (see Fig. 39). Outside the synchronization region, the
oscillations are quasiperiodic.

VII. CONCLUSIONS

The influence of a periodic parameter modulation on the oscillatory regimes of Marangoni con-
vection in a two-layer film has been studied. The analysis has been carried out in the framework of
the long-wave amplitude equations. In some intervals of the modulation frequency the phenomenon
of synchronization is observed: the natural frequency of oscillations is shifted in such a way that
it becomes commensurate to the external modulation frequency. Typically, the spatial structure of
the Marangoni oscillatory pattern is not changed. However, in some cases the synchronization is
accompanied by a change of the spatial structure: e.g., a spatial period doubling or a reflection
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symmetry breaking can take place. Outside the synchronization regions, the Marangoni oscillations
are quasiperiodic. Diagrams of regimes have been constructed.
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