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Stability analysis of gravity-driven flow of a thermoviscous liquid on the exterior
surface of a uniformly heated or cooled vertical cylinder is presented. The film evolution
model derived using lubrication approximation consists of four dimensionless groups,
namely, Marangoni number, Biot number, Bond number, and thermoviscosity number. The
viscosity of the liquid is modeled as an exponentially varying function of temperature.
The thermocapillary stress significantly affects the Rayleigh-Plateau instability for flow
over a nonisothermal cylinder with intricate dependence on various parameters involved.
For the temporally unstable system, spatiotemporal stability analysis is performed to
delineate the parameter regions for convectively and absolutely unstable systems. Brigg’s
criterion is employed and the critical value of a composite parameter β is evaluated to
study the transition from convective to absolute instability. A proper rescaling of the
dispersion relation shows that the condition on the composite parameter is β < 1.507 for
the existence of absolute instability, which is consistent with an earlier work on isothermal
flows. Further, an expression is found for the critical composite Marangoni number beyond
which the film is always absolutely unstable independent of the Bond number. This critical
value is shown to be an increasing function of thermoviscosity number. Results from the
nonlinear simulations are in agreement with the predictions of the linear temporal and
spatiotemporal analyses.
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I. INTRODUCTION

The dynamics of a thin liquid film flowing down a vertical cylinder under the influence of gravity
has been studied extensively due to its wide applications [1–3], including patterning cylindrical
surfaces [4], cooling optical fibers [5], and condensing vapor on heat pipes [6]. This system of thin
film flow exhibits complex and interesting dynamics due to the stabilizing and destabilizing roles
of the axial and azimuthal film curvatures, respectively [7], leading to the formation of droplets
and traveling wave patterns [8,9]. Motivated by the experimental work by Quéré [8] on the film
instability on vertical fibers, several authors [10–13] have investigated the evolution of film interface
into undulating surface leading to traveling waves and droplets.

Coating flows over a heated or cooled cylindrical surface is an essential component of technologi-
cal applications. In such processes, a nonuniformity in the film profile leads to temperature gradients
at the liquid-air interface. It has been shown earlier that for a film on the exterior or interior of a
heated cylinder, the interfacial thermal gradients generate the unbalanced thermocapillary stress that
has a destabilizing effect on the film [14–16]. For various applications, the viscosity of the liquid
may also vary with temperature, and can affect the dynamics of the film. The thermoviscous liquid
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film flow over a flat plate has been studied earlier [17,18]. Coating and rimming flows have also
been studied for thermoviscous liquids. [19,20]

Temporal stability analysis of a thin-film flowing down a vertical cylinder for viscous fluids has
been explored in various studies [10,12,21,22]. The existence of absolute and convective instabilities
in thin-film flow down a vertical cylinder was first examined in detail, both experimentally and
theoretically, by Duprat et al. [23]. For sufficiently thin films, they found critical condition using
long-wave approximation, below which the flow was absolutely unstable. Experimentally they
found that for a thicker film or when the drops formed due to the instability assume the same
order as the fiber radius, this critical condition gets modified and can be captured using the model
of Kliakhandler, Davis, and Bankoff [21]. In their experiments, noise was introduced near the inlet,
and the formation of a regular wavy regime was considered as the absolute instability and used
to validate the critical condition found theoretically. Camassa et al. [24] studied the stability of
a gravity film flow in the interior of a tube. In the case of flow in the interior of a tube, the
film instability can grow large, leading to choking of the tube. Using the long-wave asymptotic
model, they were able to predict the formation of the liquid plug and transition between absolute
and convective type instabilities, which was also validated using experiments. Stability analysis of
gravity-driven viscous film coating on the interior surface of a heated vertical tube was presented by
Ding et al. [25]. They demonstrated that the thermocapillary stress (also referred to as the Marangoni
stress) was able to generate absolute instability even for sufficiently thin film. Using direct numerical
simulations, they showed that the film had more tendency to rupture or breakup into droplets in the
absolute instability parametric regime.

The present work is focused on the study of dynamics and stability of a gravity-driven
thermoviscous film flowing down the exterior surface of a heated or cooled vertical cylinder in the
limit of lubrication approximation, wherein the thickness of the film is assumed to be much smaller
than the cylinder radius. Temporal stability analysis is carried out to investigate the stability of the
film to small perturbations in Sec. IV. Nonlinear simulations of the derived interfacial film profile
subject to initial sinusoidal disturbance are performed, and the results are compared with the growth
rates found from the linear theory in Sec. V. Further, the nature of instability is determined by
accomplishing spatiotemporal stability analysis and is discussed in Sec. VI. Nonlinear simulations
subject to initial Gaussian disturbance are implemented in Sec. VII to study the spatiotemporal
dynamics of the flow and the linear spatiotemporal properties are deduced from the nonlinear
simulations. Discussions are presented in Sec. VIII followed by the conclusions in Sec. IX.

II. PROBLEM FORMULATION

Consider an axisymmetric flow of a thin film of liquid with density ρ, temperature-dependent
viscosity μ, and surface tension γ flowing down due to gravity on the outside surface of a vertical
cylinder of radius R. The thickness of the film is considered to be much smaller than the radius of the
cylinder in this work. The cylinder wall temperature is uniform and maintained at constant surface
temperature, Ts, which, in general, is not equal to the ambient temperature, T∞. The film flows along
the z direction, and r is the radial direction pointing normal to the surface of the cylinder surface, as
shown in Fig. 1. The velocity v and pressure p are governed by the Navier-Stokes equation and the
continuity equation for the incompressible flow,

∇ · v = 0, (1)

ρ
∂v

∂t
+ ρv · ∇v = −∇p + ∇ · (μ∇v ) + ρg , (2)

where v = ur r̂ + uzẑ with ur and uz being the radial and axial components of the velocity vector,
respectively. Temperature distribution, T (r, z, t ), across the film is determined by the energy balance
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FIG. 1. Schematic of the flow geometry: sectional and three-dimensional views of the cylindrical geometry.

equation

∂T

∂t
+ v · ∇T = α∇2T, (3)

where α = kth/ρcp is the thermal diffusivity of the liquid and, cp and kth represent the specific heat
capacity and thermal conductivity of the liquid, respectively.

The widely used exponential viscosity model [26] is employed for a thermoviscous fluid,

μ = μ0 exp

[−λ(T − Ts)

μ0

]
, (4)

which satisfies μ = μ0 and λ = −dμ/dT when T = Ts, where λ is a positive constant (λ > 0).
An appropriate nondimensional thermoviscosity number V is defined to quantify the effect of

viscosity variation with temperature

V = λ�T

μ0
, (5)

where �T = (Ts − T∞) is positive for the heated (Ts > T∞) and negative for the cooled (Ts < T∞)
cylinder surface. As V is proportional to �T , they assume the same sign. The surface tension γ is
assumed to vary linearly with temperature as

γ (T ) = γ 0 + γ T (T − T∞), (6)

where γ 0 is the surface tension of the liquid at the ambient temperature T∞ and γ T = dγ /dT < 0,
which is true for most of the liquids.

The no-slip and no-penetration boundary conditions are applied at r = R (surface of the cylinder)

ur = 0, (7)

uz = 0. (8)

At the liquid-air interface, the normal and tangential stress balance conditions are imposed

−p + n · τ .n = −γ∇s · n, (9)
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t · τ · n = t · ∇sγ , (10)

where τ is the viscous stress tensor, t is the tangential vector to the free surface, ∇s = (I − nn) · ∇
is the surface gradient operator and I is the identity tensor.

The boundary conditions for the energy equation are the constant temperature at the surface of
the cylinder, i.e., at r = R,

T = Ts, (11)
and the convective cooling at the liquid-air interface, i.e., at r = R + h(z, t ),

−kth∇T i · n = h f (T i − T∞), (12)
where h f is the film heat transfer coefficient, and T i is the interfacial temperature.

The kinematic boundary condition at the free surface, r = R + h(z, t ), is
∂h

∂t
+ uz

∂h

∂z
= ur . (13)

A. Lubrication approximation

The variables are nondimensionalized using the following scales:

r̃ = r

R
, z̃ = z

R
, t̃ = tρgH2

0

Rμ0
, ũz = uz

ρgH2
0 /μ0

,

ũr = ur

ερgH2
0 /μ0

, p̃ = p

ρgR
, T̃ = T − T∞

Ts − T∞
, (14)

where H0 is the average film thickness, and ε = H0/R(�1) is an aspect ratio. Further, a new
radial coordinate ỹ = (r̃ − 1)/ε is introduced, and the governing equations and boundary conditions
discussed above are nondimensionalized in terms of the dimensionless variables.

Within the lubrication approximation, Eqs. (1)–(3) become

∂ ũr

∂ ỹ
+ ∂ ũz

∂ z̃
= 0, (15)

∂ p̃

∂ ỹ
= 0, (16)

∂ p̃

∂ z̃
= 1 + ∂ (μ̃∂ ũz/∂ ỹ)

∂ ỹ
, (17)

∂2T̃

∂ ỹ2
= 0. (18)

In the above equations, inertial term has been neglected with εRe � 1, where Re = ρUzH0/μ0 and
contains the velocity scale for the axial flow as described in Eq. (14). The convective heat transfer
term has been neglected in the energy equation, Eq. (18) with εPe � 1, where Pe = UzH0/α is the
Péclet number. Further, the solution is obtained with thin film approximation, i.e., ε < 1 [19]. The
dimensionless form of no-slip and no-penetration boundary conditions at ỹ = 0 (cylinder surface)
are

ũr = 0, (19)

ũz = 0. (20)

The nondimensional and simplified normal stress balance Eq. (9), tangential stress balance Eq. (10),
and kinematic boundary condition Eq. (13) at ỹ = h̃ are

p̃ = Bo−1(ε−1 − h̃ − h̃z̃z̃ ), (21)

094005-4



GRAVITY-DRIVEN THERMOVISCOUS LIQUID FILM DOWN …

μ̃
∂ ũz

∂ ỹ
= −ε

�T γ T

μ0Uz

∂T̃i

∂ z̃
, (22)

ũr = ∂ h̃

∂ t̃
+ ũz

∂ h̃

∂ z̃
. (23)

Integrating energy balance Eq. (18) subject to the nondimensional constant surface temperature
condition at ỹ = 0,

T̃ = 1, (24)

and energy balance at ỹ = h̃,

∂T̃

∂ ỹ
= −BiT̃, (25)

yields an expression for the temperature profile across the film as

T̃ = 1 + Bi(h̃ − ỹ)

1 + Bih̃
. (26)

Interfacial temperature is therefore given by

T̃ (ỹ = h̃) = T̃ i = 1

1 + Bih̃
. (27)

The exponential viscosity model Eq. (4) after incorporating the temperature profile Eq. (26) is

μ̃ = exp[−V (T̃ − 1)] = exp(νỹ), (28)

where

ν = V Bi

1 + Bih̃
, (29)

and μ̃ = μ/μ0. In the work of Leslie et al. [27], it was mentioned that the thermoviscosity number
can vary from a small to a very large value, for example, for �T = 25K , |V | = 0.3825 for acetic
acid, |V | = 0.5225 for silicone oil, |V | = 0.625 for water, |V | = 2.5125 for glycerol, |V | = 1 for
wax and slurry, |V | = 5 for basaltic lava, |V | = 7 for syrup, and |V | = 10–18 for silicic lava.
Therefore, a wide range of values of V is used in this study. In the experimental work of Zeng
et al. [2] it was shown that Rayleigh-Plateau instability can lead to the heat transfer coefficient value
of about 100 W/(m2K). For a thin film of H0 ∼ 0.1 mm (a cylinder radius of 1 mm implies ε = 0.1)
and kth ∼ 0.1 W/mK, Bi ∼ O(0.1) can be obtained. In this study Biot number of up to O(1) has
been used for all the results except for a few plots where Biot number has been varied up to O(10)
following the previous theoretical studies [19,20,25]. Equations (15)–(17) are integrated subject to
the boundary conditions given by the Eqs. (19)–(22) to obtain the velocity profile as

ũz̃ = (1 + h̃z̃/Bo + h̃z̃z̃z̃/Bo)ν−2{h̃ − 1 + [1 + (ỹ − h̃)] exp(−νỹ)} − MaT i
z̃ ν−1[1 − exp(−νy)].

(30)

Using the velocity profile in Eq. (23) an equation governing the evolution of the interface shape is
obtained as

∂ h̃

∂ t̃
= − ∂

∂ z̃

∫ h̃

0
ũzdỹ = −∂Qz

∂ z̃
, (31)
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TABLE I. Dimensionless parameters present in the governing equation.

Parameter Representation Physical meaning

Ma −ε�T γ T /μ0Uz Dimensionless surface tension gradient
Bo ρgR2/εγ 0 Ratio of gravitational force to surface tension force
Bi hf H0/kth Ratio of convective heat transfer at the film surface to

conduction across the film
V λ�T /μ0 Quantifies the effect of temperature on viscosity

where Qz is the flux in the axial direction and is given by

Qz(z, t ) =−(1 + h̃z̃/Bo + h̃z̃z̃z̃/Bo)

[
2h̃

ν2
− h̃2

ν
− 2

ν3
+ 2

ν3
exp(−νh̃)

]

− MaT i
z̃

[
h̃

ν
− 1

ν2
+ exp(−νh̃)

ν2

]
. (32)

The key dimensionless parameters that appear in this model are summarized in Table I.
In Eq. (32), the first term on the right-hand side is the convective term due to mean flow under

gravity, while the second and third terms correspond to the azimuthal and axial curvature effects
respectively, and the fourth term accounts for the nonisothermal effects generated due to interfacial
temperature gradient along the flow direction. In the following discussions, the tilde decoration on
all the variables is dropped for the sake of convenience.

B. Linearized model for small perturbations

The linear stability of the base state is explored by introducing the film thickness h(z, t ) =
h0(z) + δh1(z, t ) in the evolution equation Eq. (31) where h1(z, t ) represents the perturbation to
the film, and h0(z) = 1 is the base state profile where the flow profile is governed by the gravity and
the opposing viscous stress. Collecting the O(δ) terms the following linear equation is derived for
the perturbation,

∂h1

∂t
+ Ah1z + Bh1zz + Ch1zzzz = 0, (33)

where,

A = −1

ν3
0

[(
ν0 + ν1 + 3ν1

ν0

)
2D + 3ν0ν1

]
, B = MaDT i

1

ν2
0

+ C,

C = 1

Boν3
0

(
2D + ν2

0

)
, D = 1 − ν0 − exp (−ν0).

The interfacial temperature T i in Eq. (27) and the parameter of the viscosity model ν in Eq. (29)
are dependent on the film thickness and therefore when the film is perturbed, these quantities get
perturbed as

ν = ν0(z) + δh1(z, t )ν1(z), T i = T i
0 (z) + δh1(z, t )T i

1 (z), (34)

where

ν0 = V Bi

(1 + Bi)
, ν1 = −V Bi2

(1 + Bi)2
, T i

0 = 1

(1 + Bi)
, T i

1 = −Bi

(1 + Bi)2
. (35)
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III. LIMITING CASES

Some limiting models are discussed in this section.

A. Weak thermoviscous effect (V → 0)

For the extreme limit of V → 0, the governing equation, Eq. (31), becomes

∂h

∂t
+ ∂

∂z

[
(1 + hz/Bo + hzzz/Bo)

h3

3
− MaT i

z

h2

2

]
= 0. (36)

Continuing with this equation, the parameters in Eq. (33) become

A = 1, B = −MaT i
1

2
+ 1

3Bo
, C = 1

3Bo
, D = 0. (37)

These equations correspond to the case when the viscosity of the fluid is a constant (independent
of temperature). This model is also valid for the case when the convective heat transfer is absent,
i.e., Bi = 0, except that for such a case, the thermocapillary term will also vanish. For Ma = 0 or
Bi = 0 (equivalent to a nonheated surface) the analysis follows that of Duprat et al. [23] for thin
films, except the length scales. In their study, the length scale for z direction was chosen so that
the axial curvature is balanced by the gravity, and therefore obtained a parameter βD that quantified
the contribution of azimuthal curvature to the film dynamics with respect to the axial curvature.
To balance the axial curvature term (hzzz ) with gravity (O(1)) in Eq. (36), z variable needs to be
rescaled with Lz = Bo−1/3. The azimuthal term becomes of order Bo−2/3, and it is exactly equal to
βD as given by the expression in Eq. (1) in Duprat et al. [23]. Thus, for Bo−2/3 � 1, the contribution
from the azimuthal curvature becomes negligible, and the equation for flow over a planar substrate
[7,28] is obtained. This limit is valid for the model with the thermoviscous effect [Eq. (31)] as well.

B. Strong convection (Bi � 1)

For Bi � 1, the Marangoni stress disappears from the governing equation as T i → 0, and ν →
V/h in Eq. (29). Therefore, the governing equation, Eq. (31) becomes,

∂h

∂t
+ f

∂

∂z
[(1 + hz/Bo + hzzz/Bo)h3] = 0, (38)

where f = [(V − 1)2 + 1 − 2 exp(−V )]/V 3 is termed as fluidity as suggested by Wilson and Duffy
[26]. Subsequently, the parameters in Eq. (33) become

A = 3 f , B = C = f

Bo
. (39)

It is noted that for a constant viscosity fluid, V → 0, the fluidity parameter approaches a constant
value, f → 1/3. Thus, the model becomes similar to that presented in Sec III A except for the
thermocapillary stress term. Thus, it can be seen that the convective heat transfer ceases to affect the
thermoviscous terms for this limiting case.

IV. TEMPORAL STABILITY ANALYSIS

Temporal stability analysis is performed by introducing normal mode perturbations of the form
h1 = ĥ1ei(kz−ωt ) in the stability equation, Eq. (33), where ĥ1 is the amplitude, k is a real wave number
and ω is a complex frequency, i.e., ω = ω

temp
r + iωtemp

i . Furthermore, ωtemp
i quantifies the growth rate

of the temporal evolution of the perturbation amplitude and ω
temp
r quantifies the oscillation frequency

of the perturbation. The system is temporally unstable if and only if ω
temp
i > 0. The normal mode

decomposition about the base profile h0(z) = 1 yields the following dispersion relation:

ω = Ak + ik2(B − Ck2). (40)
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Therefore, the temporal growth rate is given by the expression

ω
temp
i = Bk2 − Ck4, (41)

which can be used to find the maximum temporal growth rate of the wave and is given by

ωmax
i = Bk2

max

2
, (42)

where kmax = √
B/2C. The cutoff wave number, kcutoff that delineates the stable and unstable regions

in the k versus ω
temp
i space is

kcutoff =
√

B

C
=

√
1 + MaBoDT i

1 ν0(
2D + ν2

0

) . (43)

From these expressions, it can be seen that even in the absence of heating, i.e., Ma = 0, the
system has a positive growth rate implying an unconditionally unstable system. This is due to the
amplification of long-waves by the azimuthal curvature, leading to the well known Rayleigh-Plateau
instability. As noted in many previous studies on the Rayleigh-Plateau instability, the cutoff
wave number is simply kcutoff = 1 and is independent of the surface tension [8]. As shown in
Sec. III B, even for strong convection, the thermocapillary effect disappears, and the Rayleigh-
Plateau instability is recovered.

For the limiting case when the thermoviscous effect is negligible, the maximum growth rate is
given by

ωmax
i (V → 0) = 1

3Bo

(
1 + 3Bo

2

MaBi

(1 + Bi)2

)2

. (44)

For an isothermal case, Ma = 0, or in the absence of convective heat transfer, Bi = 0, the growth rate
of the disturbance on the gravity-driven film is governed by the curvature effects only as mentioned
before, and hence is dependent only on Bond number. On a nonisothermal surface, Ma 	= 0, the
presence of thermal convection, Bi 	= 0 creates temperature gradient on the free surface with troughs
closer to the cylinder temperature and crests closer to the ambient temperature. As mentioned earlier,
the surface tension is a decreasing function of temperature. Thus, in the case when cylinder surface
temperature is higher than the ambient temperature (Ts > T∞), the troughs are hotter and therefore
have lower surface tension than the crests. The thermocapillary stress is thus generated from the
region of lower surface tension to the region of higher surface tension. This stress convects more
liquid from the troughs to the crests leading to a larger growth rate of the instability for a heated
substrate. The reverse argument holds true for the stabilizing effect of the thermocapillary stress
on a substrate which is at a lower temperature than the ambient (Ts < T∞). For a much larger
convective heat transfer at the free surface, Bi → ∞, the interfacial temperature gradient tends
to zero as the entire free surface attains the ambient temperature, i.e., T i → 0. Thus, the growth rate
again becomes independent of the thermocapillary stress as is evident from Eq. (44).

Shown in Fig. 2(a) is the plot of the temporal growth rate as a function of wave number k for
the case when thermocapillary stress is absent, i.e., Ma = 0. In this figure, the V = 0 case then
corresponds to the isothermal flow (same as Bi = 0), and shows the results for the Rayleigh-Plateau
problem. For a heated cylindrical surface (i.e., Bi 	= 0 and V > 0), the thermoviscous effect starts
to stabilize the film due to a reduced velocity at the interface caused by an increase in viscosity
at the free surface as a result of the convective cooling. The thermoviscous effect on the viscosity,
and therefore on the unperturbed velocity profiles are shown in Fig. 3. The unperturbed velocity
profile is simply due to the balance between the driving force, which is gravity and the opposing
viscous stress. For a cylinder surface, which is cooler than the surrounding (V < 0), the film
interface temperature is higher due to the convective heating at the interface by the surrounding,
leading to a destabilizing role of the thermoviscous effect. This mechanism of thermoviscous
effect due to change in the fluid mobility close to the interface is consistent with the previous
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FIG. 2. (a). Effect of thermoviscosity number (V ) on the stability of the film in the absence of thermocap-
illary stress, i.e., Ma = 0. (b) Effect of thermocapillary stress for a heated (V = 5) and a cooled (V = −5)
substrate. For these results, Bi = 1 and Bo = 1.

studies on thermoviscous fluid flow over a planar substrate [17,29,30]. The destabilizing effect of
thermocapillary stress in the case of flow over a heated substrate is shown in Fig. 2(b). As mentioned
earlier, thermocapillary stress acts from regions of lower surface tension to higher surface tension,
pushing more fluid from the troughs to the crests of a wavy film leading to further destabilization
of the film. By the same argument it is clear that the Marangoni stress tends to stabilize the film in
case of a cooling substrate. For example, for the given parameter values, Ma = −2 is sufficient to
completely stabilize the film for all wave numbers. To further explore the role of thermocapillary
stress, the leading growth rates ωmax

i are plotted as a function of Ma for various values of V in Fig. 4.
It is interesting to note that for V > 0, kcutoff increases as Ma increases indicating a broader unstable
spectrum whereas it is reduced by an increase in V . In contrast, for V < 0 and an increase in the
thermocapillary action (indicated by an increase in the magnitude of Ma), the unstable spectrum is
reduced.

As shown in Fig. 3(a), an increase in V enhances the average viscosity of the film for a fixed value
of Biot number. The role of Biot number appears in both thermocapillary as well as thermoviscous
effects. The presence of Biot number affects the temperature T i and, therefore, the temperature
gradient T i

z at the interface. For negligible convective heat transfer at the interface, Bi → 0 leads
to T i = 1, which implies that the interfacial temperature is uniform and is equal to the substrate
temperature. As Biot number increases, the temperature gradient increases, and thus it enhances

FIG. 3. (a) Viscosity variation along the radial direction for V = 0, 1, and 5, and (b) corresponding
(unperturbed) velocity profiles [Eq. (30)] with Bi = 1, Bo = 1, and Ma = 0.
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FIG. 4. Temporal growth rate of the most unstable wave ωmax
i and kcutoff as a function of Ma for (a) heated

(V > 0) and (b) cooled (V < 0) substrates. The other parameters are Bi = 1 and Bo = 0.5.

the thermocapillary stress. For sufficiently large Biot number, Bi → ∞, the interfacial temperature
becomes T i = 0, i.e., the interface attains the temperature of the surrounding. Thus, the effect
of Biot number on thermocapilarity is nonmonotonic. However, temperature variation within the
film due to a nonzero Biot number leads to the thermoviscous effect which is indicated by ν. At
moderate Biot number the thermoviscous effect is enhanced by an increase in the Biot number, and
viscosity variation exists within the film. For a sufficiently large value of Biot number, ν tends to a
constant value and does not change further with Bi. For a heated substrate, an increase in the Biot
number increases the average viscosity and hence stabilizes the film. The dual role of Biot number
is indicated in Fig. 5 where ωmax

i is plotted versus Bi for various values of V . For V = 1 the growth
rate first increases and then decreases with Bi due to the nonmonotonic thermocapillary effect as
explained above. The thermoviscous part dominates at larger values of V , stabilizes the flow and,
therefore, the curve monotonically decreases. A similar effect is observed on kcutoff, as shown in the
inset of Fig 5.

FIG. 5. Temporal growth rate of the most unstable wave, ωmax
i and kcutoff plots as a function of Bi for

different values of V and Ma = 1.5 Bo = 2.
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FIG. 6. Variation of ωmax
i and kcutoff versus Bi (a) Ma = −0.5, and (b) Ma = −3, respectively, with Bo =

0.5.

For V < 0 (colder solid surface), the film becomes less viscous as Bi increases due to enhanced
convective heating at the interface. Thus, as shown in Fig. 6(a), the film becomes more unstable
with an increase in Biot number at a moderate value of Ma. However, the thermocapillary effect is
reversed compared to the V > 0 case as the stress due to surface tension gradient moves fluid from
crests to the troughs, making the film more stable. Thus, when the stabilizing action of Marangoni
stresses are strong, as in the case of Fig. 6(b), growth rate (ωmax

i ) decreases for a range of Bi
values and then increases. For a large magnitude of Ma and V there is a range of Bi for which
zero maximum growth rate is observed, as shown in the figure before the effect of thermoviscosity
results in increasing growth rates with Bi. The cutoff wave number, kcutoff correspondingly varies
with Bi.

The neutral stability curves that demarcate the stable and unstable regions are shown in Fig. 7
where the critical Marangoni number Matemp, beyond which the flow is temporally unstable, is
plotted as a function of Bi. As mentioned earlier, the flow is always unstable for flow over a
hotter cylinder. Therefore, such neutral curves are valid only for flow over a colder cylinder, which
exhibits stable and unstable regions. The thermoviscous effects destabilize, and, however, the flow
is stabilized by the Marangoni stresses. At lower values of Bi, the stable region expands with Bi
as a result of the enhanced stabilizing effect of Marangoni stress, whereas, at higher values of Bi,
the Marangoni stress reverses the role and, therefore, the stable region shrinks. At sufficiently large
magnitudes of V , Matemp becomes independent of Bi as indicated in Eq. (38).

FIG. 7. Neutral stability curves illustrating stable and unstable regions in (a). Ma-Bi parameter space for
Bo = 1, and Ma-Bo parameter space for Bi = 1.
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(a) (b)

FIG. 8. (a) Different regions of the temporal evolution of perturbations for the real wave number k =
1.02, and Ma = 1.5, Bi = 1, Bo = 2,V = 1. (b) Temporal evolution of perturbations generated by an initial
sinusoidal disturbance introduced at t = 0. (1) Amplitude grows exponentially with time in the linear regime
and (2) nonlinear saturation is achieved.

V. NONLINEAR COMPUTATIONS FOR TEMPORAL GROWTH

Nonlinear evolution of a perturbation on the thin film was computed by solving Eq. (31) using
the finite-element method with quadratic basis functions and implementing through COMSOL 5.0.
A sinusoidal perturbation with a prescribed value of real wave number, kr in the z direction was
introduced at time t = 0. Calculations were carried out over the periodic domain of length 2L =
N (2π/kr ), where N = 40 was chosen, subjected to the following boundary conditions at the left
boundary:

h(z = −L, t ) = 1,
∂h

∂z
(z = −L, t ) = 0, (45)

and the following soft conditions at the right boundary [28,31,32]:

∂h

∂z
(z = L, t ) = 0,

∂3h

∂z3
(z = L, t ) = 0. (46)

Absolute tolerance of 10−9 was chosen for all the nonlinear computations.
The growth of the perturbation is quantified as

H = ln

[ ||h(z, t ) − h0(z)||
||h(z, t = 0) − h0(z)||

]
, (47)

where ||(·)|| is the 2-norm and h0(z) = 1 is the base state profile. The time evolution of a sinusoidal
perturbation is presented in Fig. 8(a) for the parameter values, as shown. There is a transient period
(t < 15), followed by the exponential growth (15 < t < 38), and then the perturbation amplitude
achieves nonlinear saturation beyond a certain time. The corresponding evolution of the film profile
is presented in Fig. 8(b), wherein h(z, t ) − h0 is plotted as a function of z at different time instants.

The temporal growth rate is extracted from nonlinear simulations by calculating the slope of the
linear regime in H versus t curve. For example, the range 15 < t < 38 in Fig. 8 is used to compute
the linear growth rate for the given set of parameter values. Thus,

ω
temp
i,NLS ∼ dH

dt
. (48)
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FIG. 9. Phase distribution versus time at kr = 0.707 for Ma = 0, Bi = 1, V = 0.01, and Bo = 0.5.

The imaginary part of the growth can be deduced from the nonlinear computations using the
following methodology formulated by Delbende et al. [33]. The axial Fourier transform of h(z, t ) is

Ĥ (kr, t ) =
∫ L

−L
[h(z, t ) − h0(z)]e−ikr zdz.

A measure φ̂(kr, t ) of the associated phase distribution is conveniently chosen as [33]

φ̂(kr, t ) = arg[Ĥ (kr, t )], 0 � φ̂(kr, t ) � 2π. (49)

The imaginary part of the complex wave frequency is then

ωr (kr ) = dφ̂(kr, t )

dt
, (50)

and the descritized form is

ωr (kr ) = φ̂(kr, t3) − φ̂(kr, t2)

t3 − t2
. (51)

Figure 9 displays the plot of φ̂(kr, t ) as a function of time. As noted by Delbende et al. [33], the
phase function φ̂(kr, t ) is discontinuous every time it attains the value 0 or 2π , so the time interval
[t2, t3] is chosen in Eq. (51) such that the interval does not contain the points of discontinuity. The
characteristic frequency of the wave oscillations thus recovered from the slopes of all the linear
curves in Fig. 9 are exactly the same, so the specific choice of t2 and t3 does not matter.

A comparison between the linear stability results and the corresponding results from the
nonlinear computations are presented in Table II for different parameter values. For the calculations
of the growth rate and wave frequency, kr = kr,max (wave number of the fastest growing mode) was
chosen for the initial sinusoidal perturbation. It can be seen that the agreement between the linear
growth rate ω

temp
i,LSA and that recovered from the nonlinear simulations ω

temp
i,NLS are in an excellent

agreement along with the wave frequency found from the linear (ωtemp
r,LSA) and nonlinear (ωtemp

r,NLS)
analysis. The threshold wave number kcutoff was found from the nonlinear simulations by varying
the prescribed real wave number kr in the imposed sinusoidal perturbation and tracking the transition
from an unstable to a stable flow. The compliance between the two results indicates that the results
from the temporal linear stability analysis are physically realizable.

094005-13



SANA KHANUM AND NAVEEN TIWARI

TABLE II. Comparison of temporal growth rate of the most unstable wave, ωtemp
i,max and oscillation frequency

of the perturbed wave ωtemp
r determined from linear stability analysis (LSA) and retrieved from nonlinear

numerical simulation results (NLS). These calculations were performed with Bi = 1.

Ma Bo V ω
temp
i,max,LSA ω

temp
i,max,NLS ω

temp
r,LSA ω

temp
r,NLS kLSA

cutoff kNLS
cutoff

0 0.5 0.01 0.1664 0.165 −0.706 −0.7051 1.00 0.99
1.5 2 1 0.1600 0.1573 −0.8868 −0.8864 1.44 1.43
3 4 10 0.1749 0.1739 −0.5483 −0.5482 2.12 2.11

VI. SPATIOTEMPORAL STABILITY ANALYSIS

Temporal stability analysis determines whether the flow is stable or unstable. An unstable
flow can be further divided into convectively and absolutely unstable flows. The system is said
to be absolutely unstable if a local perturbation propagates both upstream and downstream, and
invades the entire spatial domain. However, the local disturbance flows downstream from the
source while growing in amplitude, and eventually leaves the domain in the case of a convectively
unstable system. Therefore, spatiotemporal stability analysis needs to be accomplished to determine
the occurrence of absolute and convective instabilities for the temporally unstable systems. The
differential operator from the linear stability analysis represents a dispersion relation D(k, ω) = 0 in
the complex space (k, ω). An impulse disturbance is imposed upon the operator and a corresponding
Green’s function, G(z, t ), gives the response. Subsequently, the long-time behavior of G(z, t ) is
analyzed along the rays along which z/t is constant. This quantity corresponds to the group velocity
(Vg) of the mode, i.e.,

dω

dk
(k∗) = z

t
. (52)

The mathematical definition of convectively unstable flows is

lim
t→∞ G(z, t ) = 0 along the ray z/t = 0 (53)

and for absolutely unstable flows

lim
t→∞ G(z, t ) = ∞ along the ray z/t = 0. (54)

According to the definitions Eqs. (53) and (54), absolute and convective instability depend on
examining the long-time behavior of the wave number k∗ observed along the ray z/t = 0 at a
fixed spatial location. This wave number k∗ has, by definition, zero group velocity (Vg), i.e.,
Vg = dω/dk = 0 and d2ω/dk2 	= 0, at the first-order saddle point. Briggs [34] criterion is then
employed to find a pinch point in the complex k-plane, which is a crucial step in detecting the
absolute and convective instabilities. Further, the cusp method of Kupfer et al. [35] is used to
ascertain that the pinch point found using the Briggs criterion indeed corresponds to the group
velocity associated with the spatiotemporal instabilities. Further theoretical details of the methods
can be found in Ref. [36].

The procedure of the computations are presented now. Normal mode perturbations of the
form exp[i(kz − ωt )] are introduced in the evolution model Eq. (31), where k = kr + iki and
ω = ωr + iωi are complex variables, and are related by the general dispersion relation, D(k, ω) = 0
as shown in Eq. (40). Spatial evolution of disturbances is taken into account by the complex nature
of wave number where ki represents the spatial development of the perturbation and kr denotes
the wave number of the perturbed wave. For a set of parameters, Brigg’s method [34] is employed
to calculate the saddle point in the k plane, as shown in Fig. 10(a). Further, the corresponding
cusp-point formation in the ω plane is shown in Fig. 10(b), as mentioned in the work of Kupfer
et al. [35]. This figure shows an example of an absolute instability.
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FIG. 10. (a) The contour map of ωi in k plane for the parameters Ma = 0, Bi = 1, Bo = 0.5, and V = 0.01.
The saddle point forms at kr = 0.8291 and ki = −0.2500, and ωi = 0.0208. (b) The correpsonding cusp point
in ω-plane forms at ωr = 0.7598 and ωi = 0.0208 for ki = −0.25 and varying kr

The dispersion relation of Eq. (40) is rescaled by using ω = ω′(A4/3)/(3C)1/3 and k =
k′(A/3C)1/3. The rescaling transforms the dispersion equation into a standard form,

ω′ = k′ + ik′2

3
(β − k′2), (55)

where β = B(9/A2C)1/3. This standard form of the dispersion relation has also been derived by
Duprat et al. [23] in the context of an isothermal film flow on the exterior surface of a cylinder. The
absolute growth rate, ω′

i is evaluated following the Brigg’s method [34] as illustrated in Fig 10(b).
For absolutely unstable flows, the absolute growth rate ω′

i > 0 and for convectively unstable flows,
ω′

i < 0. Thus, ω′
i = 0 marks the transition from an absolutely unstable flow to a convectively

unstable flow. By equating the absolute growth rate, ω′
i at the saddle point to zero yields the critical

value of β,

βcritical ∼ 1.507, (56)

and equivalently,

B

[
9

A2C

] 1
3

= 1.507, (57)

where A, B, and C are given by Eqs. (33). The critical value of β obtained is consistent with that in
the work of Duprat et al. [23]. Critical values of Ma are thus evaluated using

Macritical = v2
0

DT i
1

(
−C + 1.507

[
A2C

9

] 1
3

)
. (58)

It can be seen that for the limit V → 0, Eq. (58) reduces to

Ma∗
critical ≈ 1.005Bo−1/3 − (2/3)Bo−1, (59)

where Ma∗ = MaBi/(1 + Bi)2 is a composite Marangoni number. For a nonheated substrate (Ma =
0), the condition on the Bond number for the transition from convective to absolute instability is
obtained as Bo = 0.5403. The film is absolutely unstable for a smaller value of Bo than this critical
value. This condition on Bond number is consistent with Eq. (3) in Ref. [23].

The neutral stability and marginal curves are demonstrated in Fig. 11. For the cooling case (V =
−10), the temporally unstable flow exhibits convective instability (in other words, the absolute
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FIG. 11. Stable and convective/absolute unstable regions in the (a) Ma-Bi space for Bo = 1, and (b) Ma-Bo
space for Bi = 1 and V = −10, 10.

instability is absent), and thus the flow becomes convectively unstable at the onset of the instability.
However, flow over a hotter cylinder (V = 10) features both absolute and convective instabilities.
The marginal curve demarcates the absolute and convective unstable flow regimes. Therefore, it
can be concluded that the flow transits from convective to absolute instability regime when the
Marangoni number is increased beyond a critical value.

Following the marginal curve sketched in Fig. 12(a), it is inferred that the flow is convectively
unstable at smaller Bi for a wide range of Ma. As discussed earlier, when Bi is smaller the
interfacial temperature gradient along the flow direction is smaller. Subsequently, the destabilizing
thermocapillary stresses developed are also weaker. Thus, for the flow to exhibit absolute instability,
the Marangoni force needs to be increased beyond a threshold value (higher Ma). As Bi increases,
the flow transits to the absolute instability region on account of the elevated destabilizing role
of Marangoni stress generated due to an increased interfacial temperature gradient. However,
with further increase in Bi, interfacial temperature gradients are reduced, and consequently, the
destabilizing Marangoni stress becomes weaker, in addition to enhanced viscosity of the film.
Hence, the flow to become absolutely unstable larger values of Ma are required. Gravitational
force drives the flow of liquid down the cylinder and is responsible for the instability getting
convected away from the point of initiation. In the Ma-Bo parameter space Fig. 12(b), the flow
exhibits convective instability at higher Bo due to the stronger effect of gravitational force. With
the further increase in Bo, stabilizing role of streamwise curvature reduces and hence absolutely

FIG. 12. Plot of neutral stability curves that mark the transition from absolute to convective instability
(a) Macritical versus Bi at Bo = 1, and (b) Macritical versus Bo at Bi = 1.
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unstable region increases. However, when the gravitational force is weaker at smaller Bo, the flow
is absolutely unstable for arbitrary Ma and V .

In the work of Kliakhandler et al. [21], castor oil was used to study the formation of beads
due to the instability of a thick film on a vertical wire. Castor oil can be a good model fluid to
experimentally study the effect of thermoviscosity on the spatiotemporal stability of a thin film. For
castor oil, ρ = 961 kg/m3, μ(T = 18 oC) = 1 cp, and γ (T = 18 oC) = 0.031 N/m. The gradient
of surface tension with temperature is γT = −5 × 10−5 N/m/K [25]. The viscosity variation
with temperature for castor oil [37] when fitted into the exponential model, as given in Eq. (4),
yields λ = 0.121 Pa.s/K. For an isothermal flow over a cylinder (e.g., a wire or a fiber of radius,
R = 1 mm and film-thickness of H = 0.1 mm, the aspect ratio is ε = 0.1, and Bo = 3.04. The
lubrication approximation is easily satisfied with εRe ∼ O(10−6) � 1 and εPe ∼ O(10−3) � 1.
The Bond number for this flow configuration exceeds the critical value (Bo = 0.5403), and therefore
convective instability is expected. For a heated substrate with �T = 40 oC, the parameters can
be computed as V = 4.84 and Ma = 2.12. For Bi = 1, the critical Marangoni number as given
by Eq. (58) is found to be Macritical = 2.06. Since Ma > Macritical, the system now transitions into
the absolute instability regime due to the thermal effects. Recently, liquid metals such as Gallium
have been of interest due to their applications in stretchable and soft electronics, and instability
generated on a flat substrate has been explored as a way to make interesting patterns relevant to the
applications [38–40]. Therefore, instability over a cylindrical geometry may also lead to structures
for such interesting applications. For liquid Gallium, ρ = 6048 kg/m3, μ(T = 350 K) = 1.369 cp,
and γ (T = 350 K) = 0.705 N/m [41,42]. The Bond number Bo = 0.84, for the above-mentioned
cylinder radius and film thickness, shows that the system is convectively unstable. With γT =
−6.6 × 10−5 N/m/K and λ = 0.003 Pa s/K, a temperature difference of �T = 100 oC gives
V = 0.22 and Ma = 1.11. For Bi = 1, the system will transition into the absolute instability regime
as Ma > Macritical = 1.08. In both the above analyses, the velocity scale due to natural convection
was found to be at least two orders-of-magnitude smaller than that for the gravity-driven flow, and
hence has been neglected.

VII. NONLINEAR SPATIOTEMPORAL EVOLUTION OF DISTURBANCES

A. Wave packet evolution

Nonlinear simulations of Eq. (31) were performed to study the nonlinear spatiotemporal
dynamics of a localized impulse disturbance of the form

h(z, t ) = 1 + 0.001 exp

(
− z2

4

)
, (60)

over a computational domain z ∈ [−L, L]. The domain size was chosen sufficiently large to
accurately capture the spatial evolution of the disturbance. The boundary conditions are already
discussed in Eqs. (45) and (46).

The wave packet evolves with time, as shown in Fig. 13(a), wherein the disturbance grows
exponentially in the linear regime 70 � t � 180. The instability is convected away from the
source in the downstream direction, finally leaving the system in the undisturbed state. In contrast,
for absolutely unstable flows, the disturbance spreads in the upstream as well as downstream
direction; thus, the disturbance amplitude, outlined in Fig. 13(b), grows exponentially in the linear
regime 8 � t � 20, followed by the wave packet spreading over the computational domain in the
interval 20 � t � 120, and then the nonlinear saturation is attained by the instabilities. Shown in
Fig. 14(a) are the film thickness profiles at different time instants for a convectively unstable flow
corresponding to the growth curve in Fig. 13(a). The evolving film thickness profiles corresponding
to the growth curve of Fig. 13(b) for the absolute instability are shown in Fig. 14(b).

The spatial and temporal progression of instabilities may also be followed on the waterfall curves
[43] of Fig. 15, where the film thickness is sketched as a function of z at various time instants.
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(a) (b)

FIG. 13. Temporal evolution of the wave packet generated by an initial Gaussian perturbation for
(a) convectively unstable flow, with the parameters Ma = 0.5, Bi = 1, Bo = 2,V = 10, and (b) absolutely
unstable flow, with the parameters Ma = 1.5, Bi = 1, Bo = 0.5,V = 1. H is the amplification ratio as defined
in Eq. (47).

The wave packet edges along which neutral waves propagate are also illustrated in Fig. 15. For
convective instability, the front (V+) and rear (V−) end velocities are positive, and therefore the
instability gets convected away from the point of initiation. In contrast, for the absolute instability,

(a) (b)

FIG. 14. (a) Convectively unstable flow at Ma = 0.5, Bi = 1, Bo = 2,V = 10. (b) Absolutely unstable
flow at Ma = 1.5, Bi = 1, Bo = 0.5,V = 1.
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(a) (b)

FIG. 15. Waterfall plot of film thickness h(z, t ) in the (z, t) plane for (a) convectively unstable flow at
Ma = 0.5, Bi = 1, Bo = 2,V = 10, and (b) absolutely absolute flow at Ma = 1.5, Bi = 1, Bo = 0.5,V = 1.
The wave packet edges are also shown.

V+ is positive and V− is negative, and the initial localized instability eventually contaminates the
entire flow.

B. Spatiotemporal instability properties

In this section, the temporal and spatial evolution of the wave packet structure is investigated
from nonlinear simulations, implemented in Sec. VII A. The nonlinear temporal evolution of the
disturbance given by the initial condition Eq. (60) is shown in Fig. 13. For convective and absolute
unstable flows, the perturbation amplifies exponentially in the linear regime, 70 � t � 180 and
8 � t � 20, respectively. The wave packet characteristics are analyzed for this linear growth regime
and compared with the linear spatiotemporal instability results. The numerical procedure discussed
by Delbende et al. [33] is adopted to determine the spatiotemporal instability properties of the flow
from the nonlinear computations.

The temporal growth rate observed along each ray is

σ (Vg) = ωi(Vg) − ki(Vg)Vg. (61)

The amplitude of the perturbation as a function of space and time is defined as

A′(z, t ) = |h(z, t ) − h0|. (62)

The amplitudes of the wave packet are enveloped by a Gaussian function, A(z, t ). This quantity
A(z, t ) has been shown to behave as

A(z, t ) ∝ t−1/2 exp[σ (Vg)t]. (63)

The temporal growth rate σ (Vg) along the ray z/t = Vg is calculated as follows:

σ (Vg) ∼ d

dt
ln[t1/2A(Vgt, t )], (64)

and the descretized form is

σ (Vg) ∼ ln[A(Vgt2, t2)/A(Vgt1, t1)]

t2 − t1
+ ln(t2/t1)

2(t2 − t1)
, (65)
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FIG. 16. Amplitude A(Vg, t ) at various times for (a) Ma = 0.5, Bi = 1, Bo = 2,V = 10, and (c) Ma =
1.5, Bi = 1, Bo = 0.5,V = 1. Spatiotemporal growth rate σ (Vg) retrieved from nonlinear simulation results
(NL) and theoretical calculations, (b) corresponding to (a), and (d) corresponding to (c).

where t2 = 180 (20) and t1 = 70 (8) for convective (absolute) instability. The imaginary part ki of
the wave number is evaluated using

ki(Vg) = − dσ

dVg
(Vg). (66)

The above equation avails the fact that the maximum achievable value of σ max(Vg) along any ray
z/t coincides with the maximum temporal growth rate ωmax

i,temp, and that σ max is observed along
the specific ray V max

g = dωr/dki(kmax
i ) [36]. The temporal growth rate, ωi(Vg), is deduced from

Eq. (61),

ωi(Vg) = σ (Vg) + ki(Vg)Vg. (67)

The amplitude of the perturbation A(z, t ) versus Vg is shown in Fig. 16(a) for a convective
instability and in Fig. 16(c) for an absolute instability. The associated spatiotemporal growth rates
are illustrated on Figs. 16(b) and 16(d), as a function of the group velocity z/t = Vg. The two curves
shown on each plot correspond to the theoretical results obtained using Eqs. (55) and (61), and
the symbols correspond to the numerical results (NLS) retrieved from nonlinear simulations. The
agreement between the theoretical and the nonlinear computation result is satisfactory.

The edge velocities are positive in Fig. 16(b), indicating that the flow is convectively unstable for
the set of parameters studied. The σ max (Theoretical) coincides with the maximum temporal growth
rate ωmax

i , and it occurs along the ray z/t = V max
g . The maximum attainable value of σ represents

the dominant spatiotemporal mode over the spectrum of ray velocities and occurs when the ray
velocity z/t equals the group velocity of the most unstable wave (ωmax

i ) for real kr . Thus, V max
g
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FIG. 17. Absolute and convectively unstable regions in the parameter space αN versus (R/lc ), (a) for
various values of V at Bi = 1, and (b) for various values of Bi at V = −10. In (a), the dashed lines correspond
to V < 0 and the solid lines correspond to V > 0. The thermocapillary stress is absent with Ma = 0.

denotes the group velocity of the dominant wave, and σ max signifies the temporal amplification of
the wave packet. The temporal growth rate calculated from the plot of H in Fig. 13(a), that represents
the perturbation amplification, also corresponds to the ωmax

i . The value is in agreement with the
theoretical result within 7%. Shown in Fig. 16(d) is the growth plot for an absolutely unstable flow,
where the front end velocity V+ is positive, and the rear end velocity V− is negative. The absolute
instability is governed by the wave with the group velocity V max

g and perturbation evolves with
σ max

i , which matches with the value of ωmax
i [obtained from the linear slope in Fig. 13(b)] within

2%. Thus, it can be concluded that for an initial Gaussian disturbance, the dominant spatiotemporal
mode governs the dynamics, implying that the perturbation amplifies temporally with ωmax

i .

VIII. DISCUSSION

Detailed computational and theoretical studies on the transition between convective and absolute
instabilities for flow down a vertical fiber was done by Duprat et al. [23]. They presented the absolute
and convective instability regions in the parametric plane αN = H0/R (= ε in this paper) versus R/lc,
where lc = (γ0/ρg)1/2 is the capillary length. Note that the Bond number as defined in Table I is
related to these parameters as Bo = (R/lc)2/αN . For the experimental work in Duprat et al. [23],
silicone oil was used as the working fluid, and the radius of the fiber was varied from 0.23 to 1.5 mm.
For a thin film αN < 1, the instability became absolute for αN > 1.85(R/lc)2 (or, equivalently, Bo <

1/1.85 ≈ 0.5405). They further extended the model to account for the dynamics when drops become
comparable to the radius of the fiber and the thin film approximation breaks down. In this section,
the discussion is limited to the thin film assumption.

Ignoring the thermocapillary effect in Eq. (57), the expression for the critical Bond number for
the transition between convective and absolute instabilities is given by

Bo = −1.62
(
2D + ν2

0

)
[(ν0 + ν1 + 3ν1/ν0)2D + 3ν0ν1]

, (68)

which can be expressed in terms αN and (R/lc) as

αN = − [(ν0 + ν1 + 3ν1/ν0)2D + 3ν0ν1]

1.62
(
2D + ν2

0

) (R/lc)2. (69)

For V → 0, the expression reduces to the same condition as mentioned earlier from the work of
Duprat et al. [23]. The parameter region is plotted in Fig. 17(a) where the effect of V on the
critical curve between the convective and the absolute instability regions is shown. The dashed lines
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FIG. 18. Absolute and convectively unstable regions in the parameter space (a) Ma∗ versus Bo and (b) αN

versus (R/lc ) for Ma∗ = 0 and Ma∗ = −0.2. Inset in (b) shows the parameter space for Ma∗ = 0.45. Here
V = 0.

correspond to V < 0, and the solid lines correspond to V > 0. Consistent with an earlier discussion
on the magnitude of V for various fluids, a wide range of |V | is used in Fig. 17(a).

It is seen from Fig. 17(a) that for V > 0, an increase in the value of thermoviscosity number leads
to an increase in the absolutely unstable region while shrinking the convectively unstable region. In
contrast, for V < 0 the absolutely unstable region shrinks. This indicates that a lower viscosity near
the liquid-air interface as compared to the bulk makes the film convectively unstable. The role of
Biot number is nonmonotonous as, shown in Fig. 17(b) for a constant thermoviscosity number,
V = −10. As Biot number increases for V = −10, the absolute region shrinks, but beyond certain
value, the critical curve again moves toward the Bi = 0 curve. This is indicated in the expressions of
ν0 and ν1 in Eq. (35) where for Bi � 1, the expressions become independent of the Biot number. At
such large values, the entire film cross-section attains a constant temperature and hence the results
follow an isothermal case. This result can also be verified by substituting the expressions of A, B,
and C in Eq. (39), valid for strong convection, into Eq. (57).

The effect of thermocapillary stress for a nonthermoviscous fluid, V = 0, is shown in Fig. 18(a)
where the critical curve is plotted using Eq. (59). The curve delineates the parameter space for
the absolute and convective instabilities. For a heated substrate (Ma∗ > 0), an absolute instability
region expands with an increase in the strength of the thermocapillary stress. For a cooled substrate
(Ma∗ < 0) only a narrow region exists for the absolute instability. The information is replotted in
the parameter space of αN versus (R/lc) in Fig. 18(b). For the cooled substrate, again the expansion
of the convective region is indicated with respect to the isothermal case (Ma∗ = 0). For Ma∗ > 0,
at any constant value of Ma∗, there exist two values of Bo at which the transition from absolute to
convective instability occurs. The two values can be found from Fig. 18(a) or by solving Eq. (59)
for Bo at the constant value of Ma∗. The critical curves for such a case are plotted in the inset of
Fig. 18(b) where Ma∗ = 0.45. The transition occurs at two values of Bo, Bo = 1.7, and Bo = 5.35
as indicated in the figure. Therefore, a very narrow region is obtained in which convective instability
is achieved outside which absolute region exists. This narrow region of convective instability keeps
becoming narrower as Ma∗ is increased further. It is interesting to note that beyond a critical point
of Ma∗

cp = 0.4749 (maxima of Ma∗ versus Bo curve), the flow is absolutely unstable for all values
of the Bond number. For a thermoviscous fluid, this critical point found from Eq. (58), is given by
Ma∗

cp = −0.2374ν2
0 A/D, which is an increasing function of V (V > 0), indicates that the critical

Marangoni number increases with the thermoviscosity number. The values from this expression
indeed match with the maxima of the critical curves shown in Fig. 12. Note that such a critical point
does not exist for V < 0 because, as can be seen from the nature of the curve in Fig. 11(b), the
critical curve asymptotically approaches Ma = 0.
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FIG. 19. (a) Nonlinear growth H versus time when δ = 10−3. One case with δ = 0.1 is also shown for
Bo = 0.54. Also shown is a growth curve for Bo = 0.6 with periodic boundary conditions. (b) Zoomed view
of the decaying segment of the curves in (a). Inset also shows the nature of the evolving disturbance for an
absolute instability (Bo = 0.54) and a convective instability (Bo = 0.6). The profiles shown are for t = 200,
400, 600, 800, and 1000. The flow is considered to be isothermal here (Ma = V = 0).

The nonmodal and nonlinear growth assumes importance in the study of thin liquid films [28,44].
These effects may also affect the transition between convective and absolute instability regimes
[45]. Nonlinear computations are performed close to the transition curve to quantify this effect
on the transition. The computational approach given in Sec. V is adopted in which a sinusoidal
perturbation was imposed with a magnitude of δ = 10−3. The growth of the perturbation is plotted
in Fig. 19 for Ma = 0 and V = 0. As mentioned earlier, the critical parameter value for the transition
from absolute to convective instability is Bo � 0.5403. As can be noted from the figure, for all
the values of Bo the perturbation grows at early times with the growth rate as predicted from the
eigenvalues in Sec. IV. At later times, a convective instability leaves the domain [e.g., inset in
Fig 19(b) for q = 0.6], but, however, the absolute instability saturates to a self-sustained oscillatory
mode [23,45]. This distinction is quantified by the slope of H versus t , as shown in Fig. 19(b).
For Bo � 0.55, there is a negative slope indicating a convective instability. Due to the absence of a
self-sustained disturbance, these instabilities were termed as globally stable in the review by Huerre
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and Monkewitz [36]. However, for Bo � 0.54, a globally unstable mode was found, and the slope of
H versus t was close to zero (for the computations a slope of 10−5 was chosen as the cutoff). Thus,
the nonlinear computations were able to capture the transition well. Close to the transition point,
for Bo = 0.54 growth of a large-amplitude perturbation of δ = 0.1 was also computed and is shown
in Fig. 19(a). This perturbation attains the saturation earlier but yields the same exponential growth
as well as the slope of the curve at later times as obtained for δ = 10−3. It must be noted that the
periodic boundary conditions for such nonlinear computations cannot capture the transition because
for the convective instability the waves leaving the domain downstream will enter the domain again
from upstream due to the periodic conditions. One such case is illustrated for Bo = 0.6 in Fig. 19(a)
where periodic boundary conditions are employed for the nonlinear computation. The curve follows
the same exponential growth regime at early times as obtained by the soft boundary conditions, but
the decay at later times is not observed. The nonlinear computations were performed for several
transition curves with the combined thermocapillary and thermoviscous effects as well with the
approach mentioned, and again the transition values were found to be consistent with those predicted
from the linear theory.

IX. CONCLUSION

The gravity-driven coating flow of thin film outside a heated/cooled vertical cylinder was studied.
Lubrication approximation was employed to derive the hydrodynamic equations governing the
flow. The linear stability equations were derived to study the influence of various factors on the
temporal stability. For an isothermal cylinder, the Rayleigh-Plateau exists, which is expectedly
further augmented by the thermocapillary stress for a heated substrate. The thermoviscous effect
tends to stabilize the flow on a heated cylinder due to larger viscosity at the liquid-air interface
as compared to that at the solid surface. The scenario reverses on a cooled cylinder where the
thermocapillary stress stabilizes the system, and the Rayleigh-Plateau instability can be suppressed
completely for certain parameter values. Biot number (Bi) determines the relative effect of the
thermocapillary stress and thermoviscous effect on the stability. As Biot number increases, the
stabilizing effect of thermocapillary stress increases but then decreases for sufficiently large values
of Bi. For small to moderate Bi the interfacial viscosity is smaller than that close to the substrate
leading to a stable film. For much larger values of Bi, the liquid becomes less viscous making the
thermoviscous effect more destabilizing. The Neutral stability curves indicate that this destabilizing
effect of the thermoviscous effect is restricted to small magnitudes of the Marangoni number (Ma)
and becomes stabilizing for large magnitudes of the Marangoni numbers. Bond number significantly
affects these results and augments the effect of thermocapillarity on the temporal stability.

The occurrence of absolute and convective instabilities in the laboratory frame of reference was
characterized by carrying out the spatiotemporal stability analysis. It was shown that the standard
dispersion relation can be obtained by rescaling the variables, which is similar to that found in the
work of Duprat et al. [23]. The saddle points were calculated using the Brigg’s method [34], and
the formation of cusp point in the ω plane and the corresponding pinch point in the k plane were
obtained by following the method outlined by Kupfer et al. [35]. The critical value of the composite
parameter β that appeared in the standard form of the dispersion relation, was evaluated to study
the transition from convective to absolute instability in the Ma-Bo and Ma-Bi parameter space.
It was shown that for a cooled substrate, only convective instability exists for certain parameter
values. An expression for the critical composite Marangoni number was found as a function of the
thermoviscosity number beyond which the film was always absolutely unstable independent of the
Bond number. This critical composite Marangoni number showed a monotonous increase with the
thermoviscosity number.

Nonlinear simulations were performed to validate the linear analysis of the temporal and
spatiotemporal dynamics. The numerical methodology suggested by Delbende et al. [33] was
followed to retrieve the spatiotemporal properties, which were found to be in fair agreement
with the theoretical results. Further, the transition between convective and absolute instability was
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studied using sinusoidal perturbation as the initial condition, and a soft boundary condition at the
downstream boundary (instead of the regular periodic condition, which is unable to capture the
transition). The transition was found to be consistent with the linear theory even when the initial
perturbation magnitude was 10% of the film thickness. The temporal growth rate and oscillation
frequency were also retrieved from the nonlinear computations implying that the results of the
eigenvalue analysis are physically determinant.

As far as we know, this is the first study of the flow of a thermoviscous fluid over a heated/cooled
vertical cylindrical geometry. The instability of the isothermal flow leading to the breakup of the
thin film into a series of droplets has been well understood. The challenge in such problems is
that although the temporal instability leads to the pattern formation, which is desired for several
applications as mentioned earlier, however, the instability needs to be further categorized as a
convective or an absolute instability. In the case of a convective instability, though the pattern
forms on the cylinder, it moves out of the domain with time, and the pattern does not exist.
If the flow is absolutely unstable, then the pattern remains on the geometry (i.e., and shows
well-behaved structures). Such a distinction between convective and absolute instabilities has been
done both theoretically and experimentally by Duprat et al. [23]. Thus, the present work extends
the understanding and provides a parameter regime in which absolute instability can found for
a nonisothermal application. The compliance between linear and nonlinear analysis suggests that
the analytical expressions obtained from the linear stability analysis are capable of providing such
parameter regimes, as illustrated in this study, thus leading the future experimental studies and
applications.
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