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Yield stress fluid behavior of foam in porous media
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Flow of foams is studied in a model porous medium, in a large range of capillary
numbers Ca and relative gas flow rates fg. From pressure measurements, we find that the
effective viscosity is a decreasing power-law function of Ca, with the exponent ranging
from −1 to −0.75. Direct observation reveals that the flow is heterogeneous. The fraction
of preferential paths increases with both fg and Ca. In a straight channel of varying cross
section, a bubble train behaves as a shear-thinning yield stress fluid. This feature accounts
quantitatively for the effective viscosity in the micromodel.
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I. INTRODUCTION

Many industrial processes involve gas-liquid flows through porous media. Prominent examples
can be found in petroleum [1] and in chemical engineering [2]. Some take advantage of the addition
of surfactants to stabilize the gas-liquid interfaces, leading to the formation of foam in earth’s
subsurface flows, in particular to enhance oil recovery or to clean polluted soils [3]. Injecting foams
into rocks presents numerous advantages as the needed volumes of water are considerably lowered
and as the specific rheological properties of the foam allow better invasion into small pores [4].
Because of its high effective viscosity, foam also reduces both channeling flows (flows of gas
in the high-permeability streaks) and viscous fingering. In this context, understanding physical
mechanisms behind foam flow behavior in porous media has been the subject of many studies and
still holds open questions today.

Most experimental studies focused on macroscopic flows of foam in realistic porous materials
such as packed grains and porous solids [5–8]. Although these studies provide important insights,
flow at the level of the pore cannot be accessed, and they yield only a limited microscopic
description of the mechanisms ruling foam flows in porous media. One of the major difficulties
originates from the multiple physical mechanisms at work [4] (foam formation and lamella division,
coalescence, transport, channeling, buoyancy effects, wetting properties, etc.) and the multiple
parameters involved, usually not accessible experimentally in real rocks.

Therefore, two-dimensional micromodels have been used for a few decades to better understand
the relevant mechanisms in two-phase flows in porous media [9–11]. Such devices have been
used in the past few years to visualize foam flows in heterogeneous media [12–16] but have not
yet been applied to quantitatively characterize the most important parameter of foam from the
application standpoint, i.e., its effective viscosity in porous media. Bubble and droplet traffic has
been extensively studied and is rather well understood in the dilute limit pertaining to applications
in digital microfluidics [17–23], but these studies focus on too simple geometries or on too dilute
regimes to be directly extended to porous media.
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Foam rheology in porous media totally differs from that evaluated in bulk measurements, with
generally higher viscosities linked to confinement of foam bubbles in pore space [4]. It exhibits
two regimes macroscopically, depending on the relative gas flow rate fg = Qg/(Qg + Ql ), where
Qg and Ql are the gas and liquid flow rates, respectively [7,24]. Below fg ∼ 0.8 (the so-called
low-quality regime), it increases when fg is increased, whereas at higher fg, it decreases due to
lamella coalescence [25]. In the low-quality regime, on which we focus here, recent experimental
results revealed that the foam is strongly shear thinning; its viscosity scales as Ca−n, with n ranging
from 0.6 to 0.9 [26,27] and Ca being the capillary number, defined as Ca = μV/γ , where μ is
the water viscosity, V is the velocity, and γ is the surface tension. The high effective viscosity is
usually described in mechanistic models as the combination of two mechanisms [4,28]. First, the
motion of the dispersed gas phase involves dynamic menisci [22,29], as theoretically studied by
Bretherton [30], which induces extra dissipation that scales as Ca2/3. Second, as inferred [4,31]
and experimentally demonstrated [8,14,15], only a fraction of the gas contributes to the flow in
preferential paths, while the other fraction remains trapped. Intuitively, it is tempting to attribute
the strong shear thinning behavior to the combination of the two mechanisms. We experimentally
demonstrate here that none of them are relevant.

We consider in this work foam flow in a heterogeneous two-dimensional (2D) porous medium
with well-controlled geometry. The key experimental results are obtained by combining pressure
measurements and direct observations, varying both gas and liquid flow rates in a very large range,
in the low-Reynolds-number regime. We observe the generic behavior and foam effective viscosity
values that were reported in three-dimensional (3D) porous media, in the low-quality regime. In
particular, we find that the effective viscosity scales as a power law of the capillary number: Ca−n,
with n between 0.7 and 0.9. In contrast, unexpectedly, the number of preferential paths exhibits a
weak dependency on Ca, ruling out their impact on foam shear-thinning behavior. We then report
results from further experiments prompted by this finding. In a single channel of varying cross
section, we evidence a deviation from Bretherton’s law at low Ca. Using this result, we are able to
account quantitatively for the effective viscosity measured in the micromodel.

II. EXPERIMENTAL METHODS

The device used in this study is a microfluidic chip made in optical glue [32,33] consisting
of an L × W = 3 × 2 cm2 2D random porous medium [34], obtained using a simple numerical
algorithm (see the Supplemental Material for details [35], Sec. I B) and displayed in Fig. 1 (top left
panel). The height h of the device is 180 μm. The correlation length of the porous medium is set to
lc = 200 μm; its 2D porosity φ is set to 0.7. The pore size exhibits a mean value of 〈w〉 = 134 μm,
while the mean pore throat diameter is about 95 μm [36]. Its permeability has been determined
experimentally, k = 9.25 × 10−11m2 (see the Supplemental Material for details [35], Sec. I C).

The flow is controlled using a syringe pump (Nemesys), and the outlet is connected to a
pressurized reservoir, set at 3 bars to allow neglecting the impact of gas compressibility. A
differential pressure sensor is used between the inlet and the outlet to determine the pressure drop.
The experimental setup is complemented by a fast camera (Mikrotron) mounted on an optical lens
(Nikon). All experiments are carried out with an aqueous solution of 5% in weight of Solvay
SurfEOR surfactant, which allows avoiding bubble coalescence and ensures total wetting, a typical
situation in real rocks. The surface tension γ of the solution is 33 mN m−1, as determined using the
pendant drop method.

The gas-liquid coinjection protocol has been carefully established to avoid entrance effects and
to dissociate foam formation from its steady-state flow properties. We proceed as follows: first, we
generate big bubbles by using a T junction connected to two syringes, controlled at flow rates of
Qg and Ql , for the gas and liquid phases, respectively. When entering the porous medium, these
bubbles progressively divide, provided that the total flow rate is high enough. Eventually, they
reach a size which is similar to that of the pore size, so that division mechanisms are subsequently
inefficient [14,37]. Then, in order to ensure a steady state, we collect the effluents and reinject
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FIG. 1. Top: images of the mask used to fabricate the device and a magnified image taken during foam
flow. Bottom: Relative foam effective viscosity μeff/μ as a function of Ca for various fg. Lines correspond to
the semiempiric predictions (see text): solid ones for the threshold regime, and dashed ones for the Bretherton
regime.

them into the porous domain once again at high flow rate. In this second step, we observe that the
mean bubble size remains constant. We thus obtain a so-called strong foam [38] which consists
of bubbles of about the pore size, generated by the porous medium itself. This foam is finally
injected at a desired flow rate, which is generally much lower. By construction, the relative gas
flow rate fg = Qg/(Qg + Ql ) is controlled by the first generation step. This protocol ensures that
the injected phases have the same texture whatever the value of Ca. In the following, the capillary
number is precisely defined as Ca = μ(Ql + Qg)/γ φhW , where μ is the aqueous solution viscosity]
(1 ± 0.08) × 10−3 Pa s].

III. RESULTS

A. Foam effective viscosity measurement in the model porous medium

Figure 1 (bottom) summarizes the main result of this work. It displays the relative effective
viscosity μeff/μ, corresponding to the measured pressure drop �P in the presence of bubbles
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FIG. 2. Examples of time-averaged image differences highlighting preferential paths. In the inset, the
fraction of these paths, N/N0, is plotted as a function of Ca for various relative gas flow rates fg.

normalized by the pressure drop �P◦ due to water flowing at the same total flow rate. This
definition of the effective viscosity implicitly assumes a generalized Darcy’s law, commonly used
for monophasic non-Newtonian fluids, with the capillary number being a normalized shear rate. For
every fg tested, the effective viscosity decreases when the capillary number is increased and follows
a power law with the exponent ranging between −1 for the lowest fg tested and −0.75 for the highest
one. When fg is increased, the effective viscosity increases as well. Let us highlight that the very
high values of the relative effective viscosity reached at low Ca (more than 2000!) correspond to
orders of magnitude reported for foams flows in real rocks [5]. Furthermore, the power-law behavior
with respect to Ca is similar to that in real porous media [25–27]. Thus, these model experiments
contain the minimal physical ingredients for describing effective viscosity in foam flow in porous
media.

B. Study of the preferential paths

The movies acquired together with the pressure measurements reveal that the flow is heteroge-
neous (see, for example, the movies available in the Supplemental Material [35]): in some regions
of the porous domain, gas bubbles are trapped and do not contribute to the flow. The latter is
concentrated in preferential paths. In order to characterize these, we compute the absolute difference
between successive images and average in time (see the Supplemental Material for details [35]).
Examples are displayed in Fig. 2, and the complete data set is available in the Supplemental
Material [35]. These images highlight qualitatively the preferential paths. One can notice that their
number slightly increases when increasing Ca and also when increasing fg. More quantitatively, we
estimate the fraction of the pores that contributes to the flow by computing the mean value of the
binary image obtained after thresholding. This fraction is defined hereafter as the ratio of effective
flowing paths N over the number of available ones N0. The results are displayed in Fig. 2. For a
given fg, N/N0 does not greatly vary when varying Ca. On the contrary, this ratio strongly depends
on fg. Strikingly, the higher fg is, the more homogeneous the flow is.
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Since we know precisely the characteristics of the porous medium and we get an estimate of the
ratio of preferential paths, we now try to discuss more quantitatively the mobility reduction values.
The simplest model to test consists of a bundle of N parallel channels, in which bubble trains
are flowing. Dedicated microfluidic studies [22] on bubble trains have verified that Bretherton’s
law [30] applies, even for dense bubble trains. Each bubble creates an extra pressure drop
proportional to pcCa2/3

l , where pc is the mean capillary pressure, set by the channel geometry,
pc = 2γ (1/h + 1/〈w〉), and Cal is the local capillary number. Since only a fraction N/N0 of
the medium contributes to the flow, local velocities are greater by a factor of N0/N than the
pore velocity estimated for a mean homogeneous flow, i.e., Cal = CaN0/N . Neglecting the other
contributions to the total pressure drop, which is justified by the high values of the mobility
reduction, we expect that the latter would be proportional to Ca−1/3(N0/N )2/3 since �P0 is
proportional to Ca. However, as the fraction of preferential paths shows only a weak dependence
on Ca, the above model cannot account for the strong shear thinning found experimentally.
We conclude that Bretherton’s law in straight channels cannot be directly extrapolated to the
tortuous flow paths in the porous medium, although that is a common assumption in mechanistic
models [6,29,39,40].

C. Flow of a train of bubbles in two different geometries of a single channel

In order to get deeper insights into the mechanisms responsible for the effective viscosity,
we performed similar experiments in two much simpler geometries, which consist of a single
channel, either with a uniform cross section or with a sinusoidal cross section. In the second
case, our intention is to mimic the succession of constrictions during bubble motion in the
porous medium [41–43]. The geometric features of this device (width and height, amplitude, and
wavelength of the sine function) are close to those of the pores in the micromodel. Details are given
in the Supplemental Material [35]. Using a flow-focusing element [44], we inject a periodic train of
monodisperse bubbles in these channels. The bubble size is slightly larger than the mean width. We
systematically measure the pressure drop as a function of the two parameters of the problem: the
wavelength of the bubble train and the capillary number.

We aim at measuring the extra pressure drop due to a single bubble �Pb. For that purpose, we
substract from the total pressure the contribution of the continuous phase in between the bubbles,
assuming Poiseuille’s law, and then divide it by the number of bubbles in the channels estimated
knowing the wavelength of the bubble train [19,22]. The results are displayed in Fig. 3. For both
channels, all the data collapse when plotted as a function of Ca. This shows that the bubble density
has no direct influence on pressure drop per bubble, although the total pressure drop depends on the
bubble wavelength. For the channel with a uniform cross section, the data are rather well accounted
for by Bretherton’s law, �Pb = αpcCa2/3. The empiric prefactor α is quite high—and different
from the theoretical prediction of Bretherton—since we find α = 17. This deviation is similar to
previously reported data [19,22] and might be associated with the impact of the surfactant and
could thus depend on its interfacial properties. For the channel with a sinusoidal cross section,
we find a very different behavior. Two regimes are evidenced around a threshold capillary number
Cac = 2.3 × 10−4. For Ca > Cac, we recover a Bretherton-like law, with α � 35. At lower capillary
numbers, data deviate from this law, and the bubble pressure drop exhibits a plateau, around β〈pc〉,
where β � 0.13. The motion of a bubble train in a channel with constrictions is thus similar to that
of a yield stress fluid: there is a pressure threshold below which a bubble does not flow, and its
value is a fraction of the capillary pressure. In the following, we refer to these two regimes as the
threshold regime and the Bretherton regime.

IV. DISCUSSION

Since the geometrical features of the channel with a sinusoidal cross section are very similar to
the ones of the porous media, we may use quantitatively the results obtained in the channel and
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FIG. 3. Pressure drop induced by a single bubble �Pb, normalized by the capillary pressure 〈pc〉 =
2γ (1/h + 1/〈w〉) as a function of Ca, in two geometries: a channel of uniform cross section (red circles) and
a channel of sinusoidal width (black crosses). Data correspond to various wavelengths, so that this parameter
appears to be irrelevant. Solid lines represent the best fit to the data. For the uniform-cross-section case, we find
a Bretherton law αCa2/3, with α = 17. For the varying-cross-section case, we find β = 35 in the Bretherton
regime (for Ca > 2.3 × 10−4) and β = 0.13 in the threshold regime.

extrapolate to the porous medium case. By estimating the number of bubbles involved in one of the
preferential paths, we obtain (see the Supplemental Material for details [35]) that, in the threshold
regime, �P/�P0 = aβ fgCa−1, where the geometric constant a � 0.066 [35,45]. When the local
capillary number exceeds Cac, i.e., for CaN0/N > Cac, the Bretherton regime should hold, and we
expect that �P/�P0 = aα fg(N0/N )2/3Ca−1/3.

The two regimes are plotted in Fig. 1. It turns out that most experiments fall in the threshold
regime; only the highest tested flow rate is in the Bretherton regime. Thus, the present set of data
does not evidence the transition. Nevertheless, the above semiempiric predictions account rather
nicely for the effective viscosity data, although they slightly overestimate the effective viscosity at
high fg and low Ca and underestimate the power-law exponent at high fg. We can thus infer that the
threshold regime also occurs in the porous medium and that it is responsible for the strong apparent
shear-thinning effect which is measured. Strikingly, the number of preferential paths has no direct
effect on the effective viscosity in this regime and influences only the onset of the Bretherton regime.

Eventually, it is worth discussing the physical mechanisms underlying the threshold regime.
Such a threshold has been predicted theoretically [46]. It originates from a coupling between the
meniscus motion and the capillary pressure difference that appears between the front and rear
menisci of a bubble passing a constriction. Although this pressure difference is symmetric with
respect to the bubble position, the fact that a bubble moves slower upstream than downstream
of the constriction leads, after averaging over time and space, to a net pressure drop. It is of
the order of a fraction of 〈pc〉, as observed in our experiments. To verify this mechanism, we
perform image analysis on the movie acquired in the straight channel with a varying cross
section and estimate the curvature difference between the front and rear menisci of single
bubbles. As shown in Fig. 4, we find that it fluctuates in correspondence to bubble displacement
through successive constrictions. Bubble motion is nonsteady, and the bubble spends more time
upstream of the constriction, where the pressure difference between the front and rear menisci
is positive, rather than downstream, where it is negative. As a result, the pressure mean value is
nonzero and in qualitative agreement with the value of β = 0.13 obtained from the pressure drop
measurement.
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FIG. 4. Example of normalized instantaneous pressure difference per bubble as a function of time, as
determined by the estimation of the menisci curvature on the images. In this experiment, Ca = 10−5. In the
six images labeled from A to F, the bubble of interest is highlighted in red. The times corresponding to these
six images are displayed on the plot. The dashed line represents the mean value.

V. CONCLUDING REMARKS

In summary, we reported in this paper a complete data set of foam effective viscosities in the
low-quality regime, acquired in a bidimensional transparent porous medium. We evidenced, as
in real rocks, high values of effective viscosity and a strongly shear thinning behavior. Direct
observation revealed that the flow is heterogeneous and concentrated in some preferential paths.
Interestingly, the flow becomes more homogeneous when the bubble density is high. This result
has strong practical consequences since foam is generally used (either in oil recovery or in soil
remediation) to better sweep porous media and the most homogeneous flow is interesting for that
purpose. Contradicting an usual paradigm, we showed that variation in the number of preferential
paths with capillary number is irrelevant to adequately describe foam rheology in porous media.
Indeed, using model experiments in a simple channel of varying cross section, we evidenced that, at
the low capillary numbers investigated, the pressure drop per bubble actually becomes independent
of the flow rate and is simply a fraction of the capillary pressure. Extrapolation of this result to
the porous medium allows, without additional significant assumptions, capturing reasonably well
the measured values of the effective viscosity in a large range of Ca and fg. Foam flow at larger
scale in 3D porous media would, however, require us to incorporate buoyancy effects, permeability
heterogeneities, foam stability issues, etc. In addition, some features of the problem still remain to be
investigated. We observed, but did not analyze in detail, that the motion of the bubbles is locally not
steady but intermittent at high bubble densities, even though the flow appears to be rather continuous
when averaged over time. The variation of the shear-thinning exponent, from 1 at low fg to about
0.75 at high fg, is currently not captured by the model and calls for refinements and additional work.
It would also be interesting to increase further the capillary number in order to confirm the existence
of a Bretherton-like regime above Cac.
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