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Development of magnetoelastic fingering patterns in a rectangular
Hele-Shaw cell
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We study the occurrence of a magnetoelastic fingering instability when a viscous
ferrofluid is displaced by a nonmagnetic fluid of negligible viscosity in a horizontal,
rectangular Hele-Shaw cell. Interfacial disturbances result from the interplay of viscous,
elastic, and magnetic effects when the system is subjected to a uniform magnetic field,
applied in the plane of the cell, and perpendicular to the initially flat interface separating
the fluids. We approach the problem perturbatively through a third-order mode-coupling
theory and investigate the development of interfacial patterns at early nonlinear stages
of the flow. A representative collection of possible magnetoelastic fingering structures is
presented which differ significantly from the classical Saffman-Taylor fingers that arise in
such a rectangular cell setup in the absence of magnetic and elastic effects.
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I. INTRODUCTION

Viscous fingering is an interfacial instability that occurs during the displacement of a viscous
fluid by a less viscous fluid in a spatially confined environment. In their original experiments,
Saffman and Taylor [1] used a rectangular channel (a rectangular Hele-Shaw cell) consisting of
two horizontal, narrowly spaced, parallel glass plates. Initially, the cell is filled with a viscous oil,
and then air is injected between the plates. At the beginning of the flow process, small undulations
on the fluid-fluid interface are observed. Subsequently, these disturbances are amplified to fingers
that penetrate into the viscous fluid. Under such conditions, the dynamic competition among the
fingers eventually leads to the formation of a single smooth finger having a rounded tip. Notice
that in this traditional setup of the original Saffman-Taylor problem, one deals with a situation in
which there is a large difference between the values of the fluid’s viscosities (large viscosity contrast
limit), and gravitational forces do not play a role in determining the instability of the system (the
Hele-Shaw cell is horizontal).

An alternative version of the Hele-Shaw cell setup is the so-called radial Hele-Shaw cell arrange-
ment [2] in which a small hole is drilled through the top or bottom plate to allow the injection of fluid
between the plates. In this situation, an initially circular interface turns into a deformed structure,
where radially growing fingers evolve. In contrast to the rectangular cell case, these fingers are
not smooth but tend to bifurcate at their tips via a tip-splitting process, creating complex branched
patterns. Note that in both geometries the fingering patterns result from the interplay of viscous,
pressure gradient, and surface tension effects.

A great deal of research has been done on the study of these patterns in rectangular and radial
Hele-Shaw geometries. Viscous fingering belongs to a larger class of problems involving Laplacian
growth, and since its discovery it has become a paradigmatic system in the area of interfacial pattern
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formation. For a survey of different experimental and theoretical developments on viscous fingering,
see, for instance, the review articles listed in Ref. [3].

Since the seminal work by Saffman and Taylor [1], there have been many variations on the vis-
cous fingering problem. Our current work is motivated by two particularly interesting modifications
of their traditional problem in rectangular Hele-Shaw cells. The first modification, related to elastic
fingering phenomena [4], introduces the action of elastic forces on the fluid-fluid interface. The
second one adds the effect of magnetic forces into the fingering problem, by assuming that the
displaced viscous liquid is a magnetic fluid (a ferrofluid) [5,6] and that the system is subjected to
an external magnetic field. Our aim is to examine how the combined action of elastic and magnetic
forces (in addition to the already participating physical effects connected to viscous forces, and
pressure gradients) affects the linear stability, as well as the shape of the rising interfacial patterns
at the onset of nonlinear effects. Below, we briefly present some key issues pertaining to the general
behavior of elastic and magnetic field effects in existing Hele-Shaw studies. Then we lay out
more specific aspects of our proposed interfacial instability problem in rectangular Hele-Shaw cell
geometry, where these elastic and magnetic effects can act simultaneously.

First, let us discuss what has been known as the elastic fingering phenomenon. Recently,
appealing aspects of a modified viscous fingering situation have been addressed by the consideration
of interfacial elastic effects in the problem. Some years ago, an experimental study was carried out
by Podgorski et al. [4]. They performed experiments in both radial and rectangular flow geometries
to explore the possibility of creating fingering patterns on the interface separating fluids of equal
viscosities. The peculiar nature of their system relies on the fact that, when the fluids are brought
into contact, a chemical reaction occurs, and as a result the fluidâfluid interface becomes a thin
gellike, elastic layer. Their experiments have shown that, regardless of the fluids having the same
viscosities, the produced elastic interface turned out to be unstable, leading to the formation of
a number of unusual patterned morphologies. In radial geometry, instead of the traditional tip-
splitting patterns, unexpected mushroom-like and tentaclelike fingered structures arise. Meanwhile,
in rectangular geometry, the traditional Saffman-Taylor finger having a rounded tip is replaced by
a finger presenting a different feature: a flattened tip, perpendicular to the direction of motion. In
conclusion, it has been verified that the existence of an elastic interface separating the fluids had a
strong impact on the dynamics and morphology of the emerging interfacial patterns.

The experimental elastic fingering results reported in Ref. [4] inspired some theoretical inves-
tigations on this exciting research topic. By modeling the interface separating the fluids as a thin
elastic membrane having a curvature-dependent bending rigidity, He and Belmonte [7] performed
a linear stability analysis of the problem in a radial Hele-Shaw cell. They have examined both
the viscosity-matched case addressed in Ref. [4], as well as the traditional maximum viscosity
difference situation studied in the usual (nonelastic) Saffman-Taylor problem [1,2], where a fluid
of negligible viscosity displaces a fluid of finite viscosity. Their linear results have been able to
account for the fact that the reactive system is more unstable than the nonreactive one, so that
reaction has a destabilizing effect. They have also shown that the elastic interface can become
unstable even if the fluids have the same viscosity, consistent with the experimental findings of
Ref. [4]. In addition, weakly nonlinear analysis [8] and sophisticated boundary integral numerical
simulations [9] have tackled various issues related to the morphology of the elastic fingering patterns
that emerge in radial geometry. These investigations [8,9] used the theoretical model proposed in
Ref. [7] and consider that elastic effects dominate the behavior of the interface, in such a way that
surface tension forces can be neglected. The detailed justification for the neglect of surface tension
effects is given in Refs. [4,7], but essentially it is justified by the fact that, as the fluids are put into
contact, a chemical reaction rapidly occurs, and a thin elastic gellike layer is immediately formed
between the fluids, preventing any further direct contact between them. Under such circumstances,
surface tension forces can be safely neglected. Irrespective of the scientific relevance of the elastic
fingering phenomena examined in Refs. [7–9], it should be emphasized that all these theoretical
works focused on the radial elastic fingering situation. Curiously, the theoretical exploration of the
elastic fingering phenomena in rectangular Hele-Shaw cells has been largely overlooked.

094002-2



DEVELOPMENT OF MAGNETOELASTIC FINGERING …

At this point, we succinctly describe some of the most salient changes that occur in the traditional
viscous fingering patterns in rectangular Hele-Shaw cells when one of the fluids is a ferrofluid and
an external magnetic field is applied. Ferrofluids consist of stable colloidal suspensions of magnetic
nanoscale particles dispersed in a nonmagnetic carrier liquid (water, oil, etc.) [5,6]. In the absence of
an applied magnetic field, a ferrofluid behaves like a regular nonmagnetic fluid. However, when an
external magnetic field is applied, it tends to align the tiny magnetic moments in the ferrofluid along
its direction. The interplay of hydrodynamic and magnetic forces may dramatically modify the shape
of traditional fingering patterns, when a ferrofluid is confined in a Hele-Shaw cell and subjected to
an applied field. For examples of various types of experimental pattern-forming ferrofluid structures
in Hele-Shaw cells, we refer the reader to Refs. [10–13]. These patterns arise under the influence
of various magnetic field configurations and are normally induced by the competition of magnetic,
surface tension, and gravity forces.

An example of a ferrofluid system markedly consistent with the original Saffman-Taylor setup
[1], i.e., in a horizontal rectangular Hele-Shaw where a nonmagnetic fluid of negligible viscosity
(air) pushes a viscous ferrofluid, can be found in the experiments of Ref. [14]. For instance, by
inspecting Fig. 7 in Ref. [14] one can clearly see that, under the presence of an external magnetic
field applied in the plane of the cell, and normal to the initial flat air-ferrofluid interface, the resulting
fingered shape is completely different from the usual finger obtained in the nonmagnetic version
of the problem [1]. In this in-plane field configuration the finger becomes much sharper than the
classical, nonmagnetic Saffman-Taylor finger and develops a pointy tip (a peak). A qualitatively
analogous behavior, i.e., the emergence of a finger with a sharp tip, has been detected by the
fully nonlinear numerical simulations of the system, as briefly reported in M. Igonin’s Ph.D. thesis
[15] (in particular, see Fig. 3.27 on page 143). A similar type of ferrofluid spiky structures, also
activated by an in-plane magnetic field, are obtained when a more viscous and denser ferrofluid
is placed below a nonmagnetic fluid in a vertical Hele-Shaw cell under gravity [16–22]. However,
the arrangement of the system investigated in Refs. [16–22] is not exactly compatible with the
configuration of the original Saffman-Taylor problem [1]. It is worthwhile to note that, similar to
what occurred in the elastic fingering systems commented above, theoretical studies of the in-plane
field ferrofluid instability in horizontal rectangular Hele-Shaw cells have also been considerably
unexplored in the literature.

From the discussion presented above on the elastic [7–9] and ferrofluid [5,6,10–15] fingering
patterns that emerge in horizontal, rectangular Hele-Shaw cells, it is apparent that in both systems
the resulting finger shapes are very different from the one unveiled in the conventional Saffman-
Taylor problem [1], where both elastic and magnetic effects are not taken into account. Based on
this evidence, and stimulated by the fact that theoretical explorations of such effects in rectangular
cells are scarce, we present our current study. It should also be emphasized that the majority
of the existing investigations dealing with elastic fingering analyze systems composed solely of
nonmagnetic fluids, for which magnetic effects are obviously not important. On the other hand,
most studies of pattern formation in confined ferrofluids assume that on the fluid-fluid interface
there is a surface tension (i.e., the presence of capillary forces), meaning that interfacial elastic
effects are not present and can be neglected. Therefore, it seems that a study that involves the
simultaneous action of both elastic and magnetic forces on the development of fingered structures
in the spirit of the original Saffman-Taylor problem is still lacking. A pertinent issue to be examined
in a magnetoelastic fingering situation (in which elastic and magnetic effects act together) would be,
for instance, to find out what would be the shape of the finger tip. Would it be flat as prescribed by
the elastic forces, or sharp as induced by magnetic effects? Questions like this need to be addressed.

It should be noted that the theoretical magnetoelastic problem we study in this work can be
connected to some real applications involving the interplay of fluid dynamic, magnetic, and elastic
forces. In fact, investigators [23–28] have examined the occurrence of interfacial instabilities when
ferrofluid-filled, elastic membrane systems like capsules and vesicles are under the influence of
externally applied magnetic fields. A particularly interesting experimental work have been carried
out in Ref. [23], where a magnetic field has been used to manipulate the shape of vesicles filled
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with a ferrofluid. It has been found [23] that the applied magnetic field tends to elongate the
elastic vesicle along the field’s direction, making its morphology change from nearly spherical to
a prolate shape. Computer simulations as well as analytical calculations more recently performed
in Ref. [24] have also detected the formation of prolate spheroids at small and moderate magnetic
fields, whereas elongated shapes having cusped tips have been observed at high magnetic fields.
The basic techniques developed in the studies of closed elastic structures filled with ferrofluid
subjected to external fields [23,24] and the encapsulation of magnetic fluids in elastic shells
examined in Ref. [25] have been utilized as helpful tools to allow magnetic shape control of
giant magnetoliposomes [26]. Moreover, these techniques are also utilized to probe mechanical
and rheological properties of certain biological materials such as developing tissues [27] and living
cells [28]. These more practical and interdisciplinary examples of soft matter, biomedical, and fluid
mechanical systems involving the interaction of magnetic, hydrodynamic, and elastic effects support
the academic relevance and possible practical usefulness of studies like the one we present in this
work.

In this paper, we execute a linear and weakly nonlinear analysis of the magnetoelastic fingering
problem in a horizontal, rectangular Hele-Shaw cell. This is done by taking into consideration both
the absence and the presence of a uniform magnetic field applied in the plane of the cell. In this
framework, our focus is to gain useful insights into the influence of elastic and magnetic effects on
the emerging interfacial patterns, during the early nonlinear stages of the dynamics.

Before closing this section, we discuss how our current paper differs from other recent works of
our research group dealing with the flow of elastic ferrofluids in Hele-Shaw cells. In Ref. [29]
Livera et al. studied the second-order nonlinear dynamics of a confined magnetic fluid droplet
(either a ferrofluid or a magnetorheological fluid) having an elastic boundary and subjected to an
in-plane, nonuniform radial magnetic field. In contrast to our current problem, which involves a
uniform applied magnetic field, in Ref. [29] the radial magnetic field increases linearly with the
radial distance. It turns out that the presence of such a field nonuniformity introduces a huge
difference between these two ferrohydrodynamic problems. When a ferrofluid sample is subjected
to an externally applied magnetic field, the local magnetic field acting on the sample can include
contributions from the applied field, as well as the demagnetizing field in the polarized ferrofluid.
It is well known that the existence of a gradient in the local magnetic field is a key ingredient for
producing a nonzero magnetic body force in a ferrofluid [5,6]. The theoretical description of such
demagnetizing effects is in general quite involved and usually not amenable to analytical treatment.
The particularly simple radially applied magnetic field used in Ref. [29] naturally offers a nonzero
magnetic field gradient, which is not produced by complicated demagnetizing effects. On the other
hand, the uniformly applied field used in this work, and in Ref. [22], has a zero gradient, and
one cannot avoid dealing with intricate demagnetizing effects. In this sense, the uniform magnetic
field configuration studied here and in Ref. [22] is much harder to handle analytically. Another
noteworthy difference between the work performed in Ref. [29] and here is the fact that while in
Ref. [29] interesting results can be extracted by a second-order perturbation theory, in this work
and in Ref. [22] one has to go at least third order to have access to more stimulating nonlinear
effects. In terms of differences between the physical results obtained in Ref. [29] and in this
work, the most important one can be described as follows. Generally speaking, the magnetoelastic
pattern-forming effects detected in Ref. [29] mostly rely on the so-called curvature weakening
effect originally proposed in Ref. [7]. This effect makes fingering structures arise and protrude
more easily in regions of lower bending rigidity. However, this is not exactly true in this work.
For the magnetic-field-driven instability we study here, not only the bending rigidity, but also the
demagnetizing field effects, are shape-dependent. Therefore, the magnetoelastic responses in our
current system cannot be solely explained by weakening curvature effects. In this sense, our present
magnetoelastic problem is richer than the one we studied in Ref. [29].

As mentioned earlier in this section, our current problem introduces a magnetoelastic analog of
the original Saffman-Taylor problem setup [1]. For consistency with their problem, we consider
flow induced by an external flow velocity, in a horizontal Hele-Shaw cell (for which gravitational
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effects can be neglected), in which a nonmagnetic fluid of negligible viscosity displaces a viscous
ferrofluid subjected to an in-plane uniform magnetic field. In a recent paper [22], we have examined
a closely related physical situation involving the emergence of fingering patterns in a vertical
rectangular Hele-Shaw cell containing a more viscous and denser, elastic interface ferrofluid placed
below a nonmagnetic fluid. The system we analyzed in Ref. [22] was under the influence of
both gravity and in-plane magnetic field (identical to the one used in this work), and interface
deformations take place in the absence of an external flow velocity. In Ref. [22] we have also
used a third-order mode-coupling theory to obtain useful information on the shape of the resulting
magnetoelastic structures. These are the most important similarities and differences between the
pattern formation problems studied here and in Ref. [22]. At first glance, it may appear that our
magnetoelastic investigations carried out here for a horizontal Hele-Shaw cell, and in Ref. [22] for
a vertical Hele-Shaw cell, are too similar physically and as a result should lead to exactly identical
pattern-forming shapes and dynamical behaviors. Nevertheless, this is not necessarily true. In the
midst of all this, it should be clear that a common feature to both magnetoelastic problems we
study (i.e., in horizontal and vertical setups) is the fact that the systems evolve dynamically up to
nonlinear stages. Therefore, one cannot a priori determine the weakly nonlinear behavior of the
system we examine in this work, based on the existing information of the system we studied in
Ref. [22]. This is in fact what justifies the work performed by experimentalists while investigating
the development of confined, nonelastic ferrofluid peak patterns under the very same in-plane
magnetic field configurations examined here and in Ref. [22]: in Ref. [14] they analyzed the problem
in a horizontal Hele-Shaw cell, and in Ref. [17] they examined the equivalent problem in a vertical
Hele-Shaw cell. Their experimental results revealed the development of ferrofluid peak structures
arising in both Hele-Shaw cell arrangements, but the details of the resulting shapes could eventually
differ depending on whether they emerge in horizontal or vertical cells. Likewise, several different
research groups have investigated seemingly identical situations in both horizontal and vertical
rectangular Hele-Shaw cell setups for the study of viscous fingering with nonmagnetic fluids [3]. For
all these reasons, we believe the investigation performed in this work is fully justified. In the end,
as discussed in Sec. III C, we will show that some of the magnetoelastic pattern-forming structures
found here have not been detected in Ref. [22]. An example of such structures are the ones we have
obtained under the absence of external magnetic field, a situation that could not have been explored
in Ref. [22], since in a vertical cell the corresponding interface is flat and stable. Another interesting
pattern-forming structure that is unique to the horizontal cell case, and obtained at low magnetic field
intensities, is the magnetoelastic finger that presents a peculiar straight front. Moreover, contrary
to what has been done in Ref. [22], in this work we also exploited possible weakly nonlinear,
third-order shapes emerging when the elastic forces are replaced by surface tension at the interface
separating the fluids (Sec. III C 1 and the Appendix), finding good qualitative agreement with the
associated patterns obtained by experiments [14] and fully nonlinear numerical simulations [15].
These horizontal Hele-Shaw cell findings allow one to gain useful insights into the morphology of
still unexplored magnetoelastic patterns in the rectangular flow setup.

II. GOVERNING EQUATIONS AND THE MODE-COUPLING APPROACH

Consider a horizontal Hele-Shaw cell of thickness b containing two semi-infinite immiscible
viscous fluids. The viscosities of the displacing and displaced fluids are denoted, respectively, as
η1, and η2, and the cell lies on the xy plane (see Fig. 1). The displacing fluid is injected at constant
external flow velocity v∞ at y = −∞, and the displaced fluid is withdrawn at the same velocity at
y = +∞. We describe the problem in a frame moving with velocity v∞ so that the interface may
deform, but it does not displace from y = 0 on average. The displacing fluid is nonmagnetic (zero
magnetization), and the displaced fluid is a ferrofluid having a magnetization M. A uniform external
magnetic field

H0 = H0ŷ (1)
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FIG. 1. Schematic representation of the magnetoelastic fingering problem in a horizontal, rectangular Hele-
Shaw cell of thickness b. Fluid 1 is nonmagnetic and has viscosity η1, while fluid 2 is a ferrofluid (in gray) of
viscosity η2 (where η2 � η1). The constant external flow velocity is given by v∞. The interface separating the
fluids is elastic and has a curvature-dependent bending rigidity given by ν [see Eq. (8)]. A uniform magnetic
field H0 is applied in the plane of the cell (x-y plane), pointing along the positive y direction. The initially
unperturbed interface lies along y = 0, and interfacial perturbations are represented by y = ζ = ζ (x, t ), where
0 � x � L.

is applied in the plane of the cell, being normal to the initially flat boundary that separates the fluids.
In Eq. (1) ŷ represents the unit vector along the y direction. For the sake of generality, we perform
our calculations considering the situation in which there is a general viscosity contrast between
the fluids. However, we focus on the classical Saffman-Taylor situation, which has been largely
explored both theoretically and experimentally in rectangular Hele-Shaw flows [1,3,14], where the
viscosity of the displacing fluid is negligible compared with the viscosity of the displaced one.

For the quasi-two-dimensional geometry of the rectangular Hele-Shaw cell involving ferrofluids,
our fluid dynamics problem is described by a modified Darcy’s law for the gap-averaged velocity
[5,6]

v j + v∞ = − b2

12η j

{
∇p j − 1

b

∫ +b/2

−b/2
μ0(M · ∇)H dz

}
, (2)

where j = 1 ( j = 2) labels the displacing (displaced) fluid, v j is a velocity field, p j denotes
the pressure, and μ0 is the free-space magnetic permeability. In Eq. (2) it should be noted that
|M| = M = 0 for the nonmagnetic fluid. Here we follow the standard approximations used by other
investigators [5,6,10–14] and assume that the ferrofluid is magnetized such that its magnetization is
constant and collinear with the applied field M(H) = M(H0)ŷ. Therefore, we include just the lowest
order effect of the magnetic interactions that would result in fluid motion.

The local magnetic field appearing in Eq. (2) differs from the applied field H0 [Eq. (1)] by a
demagnetizing field of the polarized ferrofluid

H = H0 + Hd , (3)

where Hd = −∇ϕ, and ϕ is a scalar magnetic potential. Notice that since in this work the applied
field is spatially uniform, it eventually drops out in the calculation of the magnetic term in Eq. (2),
and the magnetic effects are entirely due to the demagnetizing field. Inasmuch as H0 has a zero
gradient, the complicated demagnetizing field contribution must be taken into account since it is
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the first nonzero correction to the magnetic body force. In fact, the demagnetizing effects play an
important role in the emergence of the magnetoelastic peak patterns we study in this work.

It is convenient to rewrite Eq. (2) in terms of velocity potentials because the velocity field v j is
irrotational. Since we are interested in perturbations of the velocity field around a steady flow, we
write v j = −v∞ − ∇φ j where φ j defines a velocity potential. Both sides of Eq. (2) are recognized
as gradients of scalar fields. Integrating both sides of Eq. (2) yields

φ j = b2

12η j

{
p j + μ0

M

b

∫ +b/2

−b/2

∂ϕ

∂y
dz

}
+ η jv∞y (4)

after dropping an arbitrary constant of integration. For the geometry of our problem the magnetic
potential appearing in Eq. (4) is written as

ϕ = 1

4π

∫
S

M · n′

|r − r′|d2r′ = 1

4π

∫ +∞

−∞

∫ +b/2

−b/2

Mŷ · n′ dx′ dz′√
(x − x′)2 + (y − y′)2 + (z − z′)2

, (5)

where the z axis points along the direction transverse to the plates of the cell. In Eq. (5) the unprimed
coordinates r denote arbitrary points in space, the primed coordinates r′ are integration variables
within the magnetic domain S , and d2r′ = dx′ dz′ represents the infinitesimal area element. The
vector n′ represents the unit normal to the magnetic domain in consideration. Note that from Eq. (4),
and the incompressibility condition ∇ · v j = 0, it can be verified that the velocity potentials obey
Laplace’s equation. Therefore, the velocity potentials can be written as

φ j =
∑
k �=0

φ jk (t )e(−1) j−1|k|yeikx. (6)

Observe that in obtaining these potentials we assume that, for points far from the interface, we
expect uniform, steady flow uninfluenced by the interface. So we require that the system evolves
with uniform velocity v∞ in the limits y → ±∞. Recall that v j are measured in the comoving
frame and thus vanish at these limits. Therefore, the velocity potentials φ j given in Eq. (6) go
to constants (that we set to zero) as y → ±∞. It is also clear that these potentials obey periodic
boundary conditions along the x axis.

By subtracting Eq. (4) for one fluid from the same equation for the other fluid, and then dividing
the resulting expression by the sum of the two fluids’ viscosities, we obtain

A

(
φ1 + φ2

2

)
−

(
φ1 − φ2

2

)
= − b2

12(η1 + η2)

[
(p1 − p2) + μ0

M2

b
ϕ

]
+ Av∞y, (7)

which is a basic equation of motion of our problem expressing the discontinuity of velocity
potentials at the two-fluid interface. On the right-hand side of Eq. (7), p1 − p2 is the pressure jump
across the interface. On the other hand, on the left-hand side of Eq. (7) A = (η2 − η1)/(η2 + η1)
stands for the viscosity contrast, which in our case of interest is equal to one.

As commented in Sec. I, in addition of considering that the displacing fluid is a ferrofluid, we
also assume that the boundary separating the fluids is elastic. Concerning the elastic properties of
the interface, we follow Ref. [7] and consider that the interface separating the fluids is a thin elastic
membrane presenting a curvature-dependent bending rigidity given by

ν = ν(κ ) = ν0[Ce−λ2κ2 + 1 − C], (8)

where

κ =
(

∂2y

∂x2

)[
1 +

(
∂y

∂x

)2]− 3
2

(9)

represents the local interfacial curvature in the plane of the Hele-Shaw cell. This model is based on
the fact that interface deformations tend to decrease the rigidity. Therefore, ν(κ ) should decrease
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as κ is increased. In Eq. (8) ν0 is the maximum rigidity that expresses the largest resistance
to disturbances, and 0 � C < 1 is the bending rigidity fraction, which measures the fraction of
intramolecular bonds broken through surface deformation. Moreover, λ > 0 denotes a characteristic
length beyond which ν(κ ) decreases substantially.

In order to bolster the practical relevance of our theoretical study, and to make reference to
possible experimental realizations of our magnetoelastic problem, we stress that we consider that
the elastic, gellike ferrofluid interface we model is originated by a chemical reaction as in the
case already studied experimentally [4] and theoretically [7–9] for nonmagnetic fluid flows in
Hele-Shaw cells. We emphasize that, even though there are a couple of recent theoretical studies
on elastic interface ferrofluids in radial [29,30] and rectangular [22] Hele-Shaw cells, to the best
our knowledge there are no existing experimental realizations of such magnetoelastic phenomena
in Hele-Shaw flows. Nevertheless, in principle, this is no practical impediment in combining
ferrofluids with micellar systems if, for instance, one mixes the magnetic colloids with one of the
solutions used in Ref. [4] (or another surfactant/salt couple) [31]. But one has to take care about
orders of magnitudes of the viscoelastic properties of the micellar gel that forms at the interface,
and the forces that arise from ferrofluid, so that one is not negligible compared to the other. Also,
for micellar systems, the fluids must be water based [31], so one should use a water-based ferrofluid
[5,6,10–13]. As a displacing fluid of negligible viscosity one could use a dilute, water-based “white
spirit” (an organic liquid), which usually has viscosity orders of magnitude lower than ferrofluids
(see, for example, Refs. [17,32]).

Due to the interplay of magnetic, viscous, and elastic forces, the interface separating the fluids
may deform, and its perturbed shape is described as

y = ζ (x, t ) =
+∞∑

k=−∞
ζk (t ) exp (ikx), (10)

where

ζk (t ) = 1

L

∫
ζ (x, t ) exp (−ikx) dx (11)

denotes the complex Fourier mode amplitudes with wave numbers k, and 0 � x � L. Equation (10)
includes all possible modes k, with the exception of k = 0 since we are in the comoving frame. The
wave vectors can be either positive or negative and are constrained to lie on the x axis. We apply
periodic boundary conditions along the x axis, limiting the values of the wave number to discrete
allowed values 2πn/L, for integer n.

In this work, we pay closer attention to the intermediate dynamic stage that bridges the initial,
purely linear [i.e., O(ζk )], and the fully nonlinear, late-time regimes of the interface evolution.
A great deal of research has been done on the advanced time stages of rectangular Hele-Shaw
flows, namely, on the development of steady state fingers and on the selection of finger widths
[1,3]. However, in this work we focus on the analysis of the weakly nonlinear time-dependent
stages of the flow and will not directly address these well-studied steady state structures. To do
that, we use a perturbative weakly nonlinear approach and keep terms up to third order in ζ

[O(ζ 3
k )]. We underscore that the incorporation of such relatively high-order perturbative terms is

essential to properly capture and describe the underlying magnetoelastic fingering process and
related morphological aspects of the interface. From this point onwards, our main goal is to derive
a mode-coupling differential equation that describes the time evolution of the interfacial amplitudes
ζk (t ). To get such a differential equation for ζk (t ), we have to deal with the relevant boundary
conditions of the problem.

The first boundary condition gives the pressure jump across the perturbed interface y = ζ [7–9]:

(p1 − p2)|y=ζ = 1

2
ν ′′′κ2κ2

s + ν ′′
(

3κκ2
s + 1

2
κ2κss

)
+ ν ′

(
1

2
κ4 + 3κ2

s + 2κκss

)
+ ν

(
1

2
κ3 + κss

)

− 1

2
μ0(M · n)2. (12)
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In Eq. (12) the primes indicate derivatives with respect to the curvature κ , while the subscripts of
κ indicate derivatives with respect to the arclength s. Note that Eq. (12) differs significantly from
the traditional Young-Laplace condition applied to immiscible nonreactive fluids in Hele-Shaw cells
[1,3] that is much simpler and involves only the product of the curvature κ by the surface tension
σ . Similarly to what is done in Refs. [7–9], we consider that elastic effects dominate the condition
at the interface, in such a way that the surface tension effects are not considered in Eq. (12). Notice
that within the framework of our study, and consistent with Refs. [4,7–9], the effects of the chemical
reaction are fully taken into account by the consideration of the nontrivial pressure jump boundary
condition given in Eq. (12). In other words, it is through Eq. (12) that the effects of the chemical
reaction associated with our elastic fingering problem are incorporated into the derivation of our
mode-coupling differential equation for ζk (t ) [Eq. (14)].

Note that Eq. (12) also includes a contribution coming for the magnetic nature of the displaced
fluid. The last term on the right-hand side of Eq. (12), which is commonly known as the magnetic
normal traction term [5,6], takes into account the influence of the discontinuous normal component
of the magnetization at the interface. This magnetic piece produces terms associated only with even
powers of ζ , so it is at least of second order in the interface perturbation. In spite of this, the magnetic
traction term will also have a role in determining the overall shape of the emerging magnetoelastic
patterns when nonlinear effects take over.

The problem is then fully specified with the consideration of a second relevant boundary
condition, the so-called kinematic boundary condition, which states that the normal components
of each fluid’s velocity are continuous at the interface [1,3,5,33,34]:

n · ∇φ1 = n · ∇φ2. (13)

This condition holds for either fluid-fluid, fluid-elastic, or fluid-solid interfaces and states that the
fluid cannot penetrate into the other medium. In our case, the problem effectively involves three
immiscible phases (the two liquids and the elastic interface). Nonetheless, since the elastic phase has
negligible thickness (and thus cannot be compressed in the normal direction), the normal component
of the fluid velocity must be continuous across the interface.

At this point we have all ingredients to get a mode-coupling differential equation that describes
the time evolution of the interfacial amplitudes ζk (t ). We proceed by using boundary conditions
(12) and (13) to express φ j [Eq. (6)] in terms of ζk [Eq. (10)] consistently up to third order. Then,
by substituting these relations in Eq. (7), and Fourier transforming, this yields a dimensionless
mode-coupling equation for the system (for k �= 0):

ζ̇k = �(k) ζk +
∑
q �=0

{F (k, q) ζqζk−q + G(k, q) ζ̇qζk−q}

+
∑

p,q �=0

{H (k, p, q) ζ̇pζq−pζk−q + I (k, p, q) ζ̇pζqζk−p−q

+ [J (k, p, q) + K (k, p, q)] ζpζqζk−p−q}, (14)

where the overdot represents a total time derivative, and

�(k) = |k|[NBW1(k) + AU − k4] (15)

denotes the linear growth rate. The parameter

NB = μ0M2b3

ν0
(16)

represents a magnetoelastic number and measures the ratio of magnetic to elastic forces. The
magnetic integral

W1(k) = 1

4π

∫ ∞

−∞
(1 − eikτ )

{
2

τ 2
[
√

1 + τ 2 − |τ |]
}

dτ, (17)
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is a positive quantity [W1(k) > 0], being the first-order contribution from the demagnetizing field.
In addition

U = 12(η2 + η1)b2v∞
ν0

(18)

defines a characteristic velocity and measures the importance of viscous effects relative to the elastic
ones.

At second order, the mode-coupling terms are given by

F (k, q) = NB

2
|k|q(k − q) (19)

and

G(k, q) = A|k|[1 − sgn(kq)], (20)

with the sign function sgn being equal to ±1 according to the sign of its argument. The coupling
term (19) comes from magnetic normal traction contribution in the pressure jump condition (12).
Moreover, the nonlinear term given by Eq. (20) originates from the coupling of the perturbed flow
ζ̇ with the interface shape perturbation ζ . Note that there is no demagnetizing field contribution at
second order.

Finally, the third-order mode-coupling terms are

H (k, p, q) = |k||q|sgn(pq)[1 − sgn(kq)], (21)

I (k, p, q) = p

[
k − q − p

2
− |k||p|

2p

]
, (22)

J (k, p, q) = |k|(k − p − q)2

[
Cλ2 p2q3(12p + 6q) − 5

2
(k − p − q)2 pq − 10p3q − 5

2
p2q2

]
. (23)

Similar to what occurred in second order, the third-order terms given in Eqs. (21) and (22) result
from the coupling of the perturbed flow with the perturbed interface shape. Nonetheless, it is worth
pointing out that the coupling term (23) is the only term in the entire equation of motion (14) that
contains a contribution from the bending rigidity fraction C. This particular third-order term is of
importance to evaluate the role of the curvature-dependent bending rigidity [Eq. (8)] in determining
the nature and intensity of the finger peak instability that may arise in our problem. The last third-
order mode-coupling term is given by

K (k, p, q) = NB|k|
[

3

2
W2(k − p − q, p, q) − pq

2
W3(k − p − q, p, q)

]
, (24)

where the magnetic integrals

W2(k, p, q) = 1

4π

∫ ∞

−∞
[(eikτ − 1)(eipτ −1)(eiqτ −1)]

{
2

3τ 2

[
2
√

1+ τ 2 − |τ |
τ 2

− 1√
1+ τ 2

]}
dτ

(25)

and

W3(k, p, q) = 1

4π

∫ ∞

−∞
[(eikτ − 1)eipτ eiqτ ]

{
2

τ 2
[
√

1 + τ 2 − |τ |]
}

dτ (26)

express the third-order contributions from the demagnetizing field.
It should be stressed that in Eqs. (14)–(26) lengths and velocities are rescaled by b and

ν0/[12(η1 + η2)b2], respectively. Recall that we focus on the situation in which η2 � η1, so that A =
1. This is done to allow some connection with existing experiments reported in Refs. [1,3,5,6,14]
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and with numerical simulations [15], where ferrofluid patterns arise in the absence of elastic effects.
For a detailed study of the role of the viscosity contrast in determining the dynamics of the interface
for a rectangular Hele-Shaw case in which magnetic and elastic effects are not considered, see
Ref. [35]. Note that the theoretical results presented in this work utilize dimensionless quantities
which are consistent with physical parameters used in Refs. [4,7–9,14,16,17,36].

Equation (14) is the third-order mode-coupling equation of the magnetoelastic problem in a
horizontal rectangular Hele-Shaw cell. A similar set of equations have been recently obtained in
Ref. [22] for the equivalent problem in a vertical Hele-Shaw cell, under the action of gravitational
effects, and in the absence of an externally applied velocity field. Note that while the linear
growth rate �(k) gives information about the linear stage of the interface dynamics, the nonlinear
terms given by Eqs. (19)–(26) allow one to extract valuable information about most prominent
morphological features of the patterns produced in the weakly nonlinear regime.

III. DISCUSSION

A. First order

As commented in Sec. I, there are some linear stability analyses of elastic fingering phenomena in
radial Hele-Shaw cells (involving nonmagnetic [7–9], as well as magnetic fluids [29,30]). However,
with the exception of our previous on vertical Hele-Shaw cells [22], corresponding studies in
rectangular Hele-Shaw cells have been unexplored. So, although the main focus of our work is to
study the influence of elastic and magnetic effects on the weakly nonlinear dynamics of the system,
before proceeding to higher orders, we briefly discuss some noteworthy features of the linear regime
(first-order in ζ ) in rectangular flow geometry.

First order in the mode-coupling expansion reduces to usual linear stability analysis. From
the first term on the right-hand side of Eq. (14), one can see that each mode grows or decays
independently of all others, with exponential growth rate �(k) given by Eq. (15). Positive values of
�(k) make a mode unstable to growth of an initially small perturbation. Keeping this in mind, and
by observing the linear dispersion relation (15), it is apparent that the first term inside the square
brackets (NBW1(k)) is destabilizing (i.e., demagnetizing field effects induce a positive growth rate).
Likewise, the characteristic velocity U acts to destabilize the interface. On the other hand, the term
proportional to k4 which is associated with the constant bending rigidity ν0 [Eq. (8)] is stabilizing
and tends to restrain interface deformation. Therefore, at the linear level of the dynamics in
rectangular Hele-Shaw cells, elasticity acts similarly to surface tension in the equivalent, nonelastic
version of the problem [1,3].

Note that the relevant curvature-dependent bending rigidity parameters C and λ [Eq. (8)] are
not present in the linear growth rate expression (15). This particular observation, valid for the
fingering problem including an elastic interface in rectangular Hele-Shaw cells, is quite different
from the corresponding scenario in radial Hele-Shaw cells [7–9]. In radial geometry [7–9] the
linear growth rate expression is a bit more involved and presents a bending elasticity term that
does depend explicitly on C and λ. It turns out that in Refs. [7–9] the presence of such parameters
allows the elasticity term in the growth rate to be either negative or positive. This means that in
radial geometry, and already at the linear level, depending on the values of C and λ, the bending
elasticity contribution could be either stabilizing or destabilizing. This peculiar behavior revealed in
the theoretical studies for the radial elastic fingering problem was essential to allow the authors of
Ref. [7] to show, consistently with the experiments of Ref. [4], that the elastic interface could deform
under unexpected circumstances. For example, the elastic interface could be unstable if the viscosity
of the fluids are equal or even if the displacing fluid is more viscous. These findings substantiate
the usefulness and validity of the curvature-dependent bending rigidity model proposed in Ref. [7],
which is also employed in this work. However, as expressed by Eq. (15), this interesting effect
detected for radial elastic fingering does not show up during the linear regime in the rectangular
version of the problem.
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FIG. 2. Plot of the linear growth rate �(k) as a function of wave number k, for three values of the
magnetoelastic number NB and two values of the characteristic velocity U .

A useful quantity that can be extracted from Eq. (15) is the wave number of maximum growth
rate k∗, obtained by setting [d�(k)/dk]k=k∗ = 0. This specific value of k characterizes the dominant
wave number of the emergent patterns in the linear stage. Note that due to the presence of the
demagnetizing field integral W1(k) in Eq. (15), k∗ cannot be easily calculated analytically. In this
way, we determine k∗ by solving a transcendental equation numerically. The most unstable wave
number k∗ will be used as the dominant (or, fundamental) mode in our mode-coupling, weakly
nonlinear analysis. Another special wave number is the threshold (or, critical) wave number kc

[obtained by setting �(k) = 0], beyond which all modes are stable. This critical mode defines a
band of linearly unstable modes.

To illustrate some of these linear stability issues a bit more quantitatively, in Fig. 2 we plot the
linear growth rate �(k) for three values of the magnetoelastic number NB: 0, 4, and 6. For each
value of NB, we graph �(k) for two values of the characteristic velocity: U = 0 (dashed curves),
and U = 2 (solid curves). The curves in Fig. 2 display a range of wave numbers over which �(k)
can be positive or negative. First, look at the case in which U = 0 (dashed curves). Of course, when
U = 0 and NB = 0 the interface is stable, and the growth rate is negative. The in-plane magnetic
field is destabilizing, while the elastic rigidity of the interface tends to stabilize short-wavelength
deviations. As NB grows, the system becomes increasingly unstable, and regions of �(k) > 0 arise.
When U = 2 (solid curves), both U and NB conspire to destabilize the system. Consequently, the
fastest growing mode k∗ and the critical mode kc shift to the right. As a result, modes of higher wave
number become unstable. Likewise, for any particular mode k, the linear growth rate �(k) increases,
causing perturbations to grow more rapidly. These findings exemplify the essential information one
can get at first order. Recall that, at the linear level, one cannot identify the role played by the
curvature-dependent bending rigidity (i.e., of parameters C and λ) and is unable to make any specific
predictions on how the combined whole of C, λ, and NB influence the shape of the elastic interface.

B. Second order

To analyze pattern formation processes at the onset of nonlinearities, and to examine the impact
of magnetic and curvature-dependent bending rigidity effects on the morphology of the elastic
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interface, we go beyond linear stability analysis. After the initial interface deformation, as the
unstable modes of perturbation grow, they become coupled in a weakly nonlinear stage of evolution.
It is well known that mode-coupling analysis can offer useful insights into the morphology of the
growing interface during the weakly nonlinear regime in Hele-Shaw flows [35,37]. Therefore, we
use such a theoretical tool to explore early nonlinear aspects of our magnetoelastic problem. Even
though in Sec. I we carried out our mode-coupling calculations to third order, we systematically
examine nonlinear terms in order of their strength at the onset of the instability. Therefore, we
initiate our discussion on nonlinear effects by examining relevant contributions that arise at second
order. Third-order contributions will be discussed in Sec. III C.

Inspecting the mode-coupling Eq. (14), and more specifically the second-order terms given in
Eqs. (19) and (20), we observe that, as in the case of the linear growth rate �(k) [Eq. (15)],
they do not involve the curvature-dependent bending rigidity parameters parameters C and λ. In
addition, there is no contribution from the important demagnetizing field effects at second order. As
a consequence, and unfortunately, we simply cannot have access to the influence of such important
physical effects at the second-order level.

However, the second-order mode-coupling terms F (k, q) and G(k, q) have a dependence on NB,
and A, respectively. Our research group has previously analyzed the role of these second-order terms
in rectangular flow geometry for magnetic [20] and nonmagnetic [35] fluids. The results obtained
in Refs. [20,35] remain unchanged under the circumstances of our current problem, so here we will
simply highlight a few important points. First, notice that the second-order mode-coupling term
F (k, q) is originated from the magnetic normal traction contribution in the pressure jump condition
(12). In Ref. [20], the rising of nonelastic ferrofluid peaks was analyzed by considering the coupling
of modes k = k∗ (the fundamental mode) and 2k (its first harmonic). It has been shown that this
nonlinear coupling forces the growth of mode 2k and selects a preferred phase that provokes a
finger-tip-sharpening phenomenon induced by magnetic effects. In this context, it has been found
that larger NB lead to the formation of sharper ferrofluid finger tips. On the other hand, in Ref. [35]
it has been shown that the viscosity contrast A acts to break the statistical up-down symmetry of
the linear stability theory. Essentially, the second-order term G(k, q) can accelerate growth of the
subharmonic mode k/2, generating a finger competition process dependent upon A. Nonetheless,
such a finger competition mechanism does not really affect the focus of our current work, which is
essentially on understanding how the shape of a finger is impacted by magnetoelastic effects, in the
traditional high-viscosity limit (i.e, for a fixed A = 1) [1,3].

C. Third order

In this section, we examine the whole mode-coupling equation (14), taking into account the con-
tributions coming from the third-order terms [Eqs. (21)–(26)]. By examining these terms, the need
to study our magnetoelastic, rectangular geometry problem perturbatively up to such high-orders
becomes clear: a closer look at Eq. (23) shows that this particular third-order term does depend
on the curvature-dependent bending rigidity terms C and λ. Furthermore, an inspection of Eq. (24)
reveals that this term is composed of pieces coming from demagnetizing field effects related to the
magnetic integrals W2 and W3 [Eqs. (25) and (26)]. Therefore, this is the lowest perturbative order
at which we can investigate how curvature-dependent elastic effects come into play and act jointly
with magnetic effects to influence the shape of the fingered patterns. Thus, despite the lengthy and
somewhat complicated nature of Eqs. (21)–(26), it should be noted that our third-order calculation
is motivated by nothing more than a practical necessity.

To investigate the development of magnetoelastic interfacial patterns in horizontal, rectangular
Hele-Shaw cells at third order, we follow Refs. [20,29,35–37] and consider the nonlinear coupling
of a relatively small number of Fourier modes. More specifically, in accordance with Ref. [36],
we consider the coupling of just four modes: a dominant fundamental mode taken as the fastest
growing mode k = k∗ and its three subsequent harmonic modes 2k, 3k, and 4k. It is worth noting
that once k = k∗ is the maximum of the linear growth rate, all the harmonic modes lie to the right
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of the band of unstable modes defined by kc. As a result, the harmonics are always linearly stable,
and any growth of the harmonic modes is genuinely caused by weakly nonlinear effects. It has been
shown [36] that the consideration of these four participating Fourier modes allows one to capture the
most relevant morphological aspects of the emerging nonlinear patterns (e.g., finger-tip broadening,
finger-tip sharpening, side-branching events, etc.). It has also been verified that the addition of more
harmonic modes would not introduce any significant qualitative modifications in the shape or basic
dynamics of the resulting fingers.

Several morphological scenarios can result from the weakly nonlinear interaction of these par-
ticipating modes. Growth of the dominant fundamental mode creates a sinusoidal oscillation of the
initially flat interface, forming fingers of each fluid penetrating into the region previously occupied
by the other fluid. On the other hand, through mode coupling, the harmonic modes influence the
ultimate shape of the emerging fingering structures. For example, favored growth of mode 2k
may determine if the fingers are sharp or wide, inducing finger-sharpening or finger-broadening
behaviors [35,37]. Preferred growth of mode 3k may dictate whether fingers develop protuberances
near their tips connected to side-branching phenomena (front lobe accompanied by two other
smaller lobes growing sideways) [38]. Moreover, enhanced growth of mode 4k may lead to finger
tip quadrifurcation [39], etc. Of course, the nonlinear coupling among these modes could also lead
to a multitude of other morphological structures. In this fashion, our perturbative mode-coupling
scheme can be very helpful in the search for still unexplored pattern-forming shapes that might
arise under the presence of magnetoelastic effects in horizontal, rectangular Hele-Shaw cells.

To study the development of interfacial patterns in our problem, we rewrite Eq. (14) for the
complex mode amplitudes ζk in terms of the real-valued cosine amplitudes ak = ζk + ζ−k and write
the perturbed elastic interface as

ζ (x, t ) = ak (t ) cos(kx) + a2k (t ) cos(2kx) + a3k (t ) cos(3kx) + a4k (t ) cos(4kx). (27)

The time-dependent mode amplitudes ak , a2k , a3k , and a4k are obtained by numerically solving
a considerably lengthy set of somewhat convoluted, coupled differential equations, composed of
Eqs. (14)–(26).

Before examining the finger-shape behaviors at third order, we make a few important remarks.
Notice that the equation of motion of our problem [Eq. (14)] involves the dimensionless parameters:
NB, A, U , λ, and C. However, for the sake of simplicity, and without loss of generality, throughout
this work we concentrate our attention on examining the influence of the magnetoelastic number
NB and of the bending rigidity parameter C on the formation of the fingered patterns. This is done
for the following reasons: first, as mentioned previously in this work, to keep a connection with the
most traditional circumstances in horizontal, rectangular Hele-Shaw flows [1,3], we choose to focus
on the popular situation of maximum viscosity contrast A = 1. In addition, without affecting the
generality of our theoretical analysis, we take a representative value of the characteristic velocity
U = 2. In the linear stability (Sec. III A), we have seen that U has a destabilizing role, and this is
essentially its role at third order. In any case, we have verified that our results are not unexpectedly
changed if other allowed values of U are used. Finally, as long as elastic effects are concerned,
we consider a fixed value of the characteristic radius (λ = 1) and alter elastic effects by varying
the bending rigidity fraction parameter C, where 0 � C < 1. So, without affecting the validity and
relevance of our theoretical analysis, in the remainder of this work, the understanding of the most
relevant physical aspects of our problem will be described by the action of only two parameters: NB

and C.
We begin our discussion by analyzing Fig. 3, which presents a representative set of weakly

nonlinear, third-order patterns. Since the central goal of our study is to reveal the effects of NB

and C on the morphology of the magnetoelastic fingering patterns, the results presented in Fig. 3
focus on illustrating the most characteristic aspects of the fingers for different combinations of these
parameters. Therefore, in Fig. 3(a) C = 0 and NB = 0, in Fig. 3(b) C = 0.99 and NB = 0, while in
Fig. 3(c) these two patterns are overlaid. Likewise, in Fig. 3(d) C = 0 and NB = 4, in Fig. 3(e)
C = 0.99 and NB = 4, while in Fig. 3(f) these interfaces are superimposed. The values of the fastest
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FIG. 3. Representative weakly nonlinear, third-order, magnetoelastic interfacial patterns for (a) C = 0,
NB = 0; (b) C = 0.99, NB = 0; (d) C = 0, NB = 4; (e) C = 0.99, NB = 4. In (c) the patterns depicted in (a) and
(b) are overlaid. Likewise, in (f) the patterns illustrated in (d) and (e) are superimposed.

growing modes used in Figs. 3(a) and 3(b) is k∗ = 0.795, whereas in Figs. 3(c) and 3(d) is k∗ =
0.917. Moreover, we utilize the initial conditions: ak (0) = 10−5, and a2k (0) = a3k (0) = a4k (0) = 0.
The initial conditions are set in such a way that we can ensure that the initial growth of the modes
2k, 3k, and 4k are driven solely by nonlinear effects. This is done to make sure that the interfacial
behaviors we observe in this work are spontaneously induced by the weakly nonlinear dynamics,
and not by artificially imposing large initial amplitudes for the harmonic modes.

It should be noted that while plotting the interfacial patterns shown in Fig. 3, and in subsequent
figures in this work, we stop the time evolution as soon as the base of the fingers (or the valleys
that separate an array of fingers) start to present small-amplitude oscillations. These oscillations
definitely do not appear in real experiments of (nonelastic) ferrofluid peak formation induced
by in-plane magnetic fields in rectangular Hele-Shaw cells [14,16,17]. They are also not seen in
numerical simulations of the system [15,21]. Nevertheless, some perturbative studies [18,19] that
try to model these experiments sometimes reveal the development of such small oscillations at the
finger bases or valleys of the fingering structures (see, for instance, Figs. 4 and 5 in Ref. [18], and
Fig. 1(b) in Ref. [19]). It turns out that these oscillations are an artifact of these types of perturbative
descriptions, when one goes beyond the validity of the models used (for example, when the time
considered is too long). Therefore, in this work we adopt the longest time before the appearance of
such nonphysical small oscillations as the upper-bound time (tmax) for the validity of our perturbative
third-order theoretical description. Having said this, the times tmax used in Fig. 3 are (a) 8.956, (b)
6.450, (d) 8.770, and (d) 6.157.

We initiate our discussion of Fig. 3 by examining the situation when no external magnetic field
is applied (NB = 0). The fingering pattern displayed in Fig. 3(a) for C = 0 corresponds to the
case of largest resistance of the elastic interface to disturbances; i.e., it is the case of maximum
rigidity. Under such circumstances, the result is the formation of a finger having a fairly rounded
tip. On the other hand, in Fig. 3(b) we have a large value of the rigidity fraction (C = 0.99),
meaning that the elastic interface is much more flexible. Consequently, a significantly different

094002-15



ÍRIO M. COUTINHO AND JOSÉ A. MIRANDA

pattern is formed, leading to the development of a finger that is sharper at the finger tip than the
one obtained in Fig. 3(a). Note that the finger depicted in Fig. 3(b) is different from the classical
Saffman-Taylor finger [1] where the interface is not elastic and surface tension is present. The
increased tendency toward the appearance of sharper tips for larger values of C can be understood
as a result of the curvature-dependent bending rigidity model [Eq. (8)]: flow-induced interfacial
deformations decrease the rigidity, allowing the elastic interface to be deformed more easily as the
local interfacial curvature increases. The distinctions between the patterns for C = 0 and C = 0.99
can be easily verified in Fig. 3(c). It is worthwhile noting that the types of finger morphologies
portrayed in Figs. 3(a)–3(c), obtained in the absence of an applied magnetic field (NB = 0), has no
parallel with shapes found in the equivalent magnetoelastic problem in a vertical Hele-Shaw cell
studied in Ref. [22]. After all, if NB is set to zero in the circumstances considered in Ref. [22], the
elastic ferrofluid interface would be flat and stable.

Now we turn our attention to the cases in which an external magnetic field is applied (NB = 4),
acting concurrently with the elastic effects of the interface. By inspecting Fig. 3(d) for C = 0, we see
that despite the large rigidity of the elastic interface, the action of the magnetic field produces fingers
that are considerably narrow along their bodies, as well as significantly sharper near the tips than
the corresponding structure obtained when NB = 0 [Fig. 3(a)]. Observe that the narrow and sharp
central finger displayed in Fig. 3(d) has some similarities with the equivalent structure obtained
experimentally in Ref. [14] for the nonelastic, ferrofluid flow case (their Fig. 7). Yet another type
of finger shape is unveiled in Fig. 3(e) when C = 0.99 and NB = 4. The presence of the magnetic
field, and the reduced rigidity of the interface lead to a finger that is quite sharp at the finger tip,
exhibiting a characteristic peak shape. The differences in shape obtained when C changes from 0 to
0.99 when NB = 4 are graphed in Fig. 3(f). Additionally, by contrasting Figs. 3(b) and 3(e) it is also
clear that the action of the applied magnetic field exacerbates the existing tendency to form sharp
fingers induced by the decreased rigidity conditions of the elastic interface. The third-order results
shown in Fig. 3 demonstrate that our willingness to go the such a high-order perturbation level has
been rewarded by the appearance of interesting pattern-forming structures.

Figure 3 offers a representative compilation of interface shapes for our magnetoelastic fingering
problem in horizontal, rectangular Hele-Shaw geometry, for two extreme values of the bending
rigidity fraction (C = 0 and C = 0.99) and for a characteristic magnetoelastic number (NB = 4). To
better characterize the impact of the parameters NB and C on the morphologies of the fingers for a
whole range of values of C and also for other typical values of NB, in Fig. 4 we plot the finger tip
curvatures κ as a function of C (0 � C � 0.99) at times t = tmax, for NB = 0, 0.2, 2, and 4. The rest
of the parameters (A, U , and λ) are those utilized in Fig. 3. But, as expected, the values for k∗, and
tmax vary from point to point.

Figure 4 unfolds a rich spectrum of possible finger tip behaviors as NB and C are varied. For
example, when NB = 0 we can see the finger tip curvature modestly decreases from C = 0 up to
C ≈ 0.1 and then slowly increases as C → 0.99. However, already for small nonzero values of the
magnetoelastic number (NB = 0.2) one can verify that the sequence of events change considerably:
initially, for small C, κ drops to a minimum and then rises monotonically as C is increased. This
scenario changes even more radically for larger values of NB. For example, when NB = 2, the initial
responses are qualitatively similar to the case NB = 0.2, but after reaching a certain value of C
(C ≈ 0.68), the tip curvature abruptly increases, reaches a maximum, and then falls off. A somewhat
similar trend is followed by κ when NB = 4. The general qualitative behavior of κ for higher values
of the magnetoelastic number takes similar steps as those observed for NB = 4.

Figure 4 makes clear that, by varying the values of C and NB, one can identify a variety
of interesting dynamical behaviors and possible morphological responses for the magnetoelastic
patterns. However, it is also evident that the interplay of C and NB in determining the finger tip
curvature, and consequently the overall finger shape, is not at all trivial. This complex scenario
arises due to the fact that here, not only the bending rigidity ν(κ ), but also the demagnetizing field
effects, are dependent on the shape of the interface. In order to illustrate a representative example
of the various pattern-forming structures that may arise within a plethora of possibilities offered in
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FIG. 4. Behavior of the curvature of the finger tip κ as the bending rigidity parameter C is varied from
0 to 0.99 at times t = tmax, for four values of the magnetoelastic number NB: 0, 0.2, 2, and 4. The weakly
nonlinear, third-order magnetoelastic shapes corresponding to points (a)–(d) given by the intersection of the
vertical dashed line at C = 0.5 with the various curves are presented in Fig. 5.

Fig. 4, in Fig. 5 we portray the interfacial patterns that arise at points (a), (b), (c), and (d) indicated in
Fig. 4. These points are given by the intersection of the vertical dashed line with the curves for κ for
an intermediate value of the bending rigidity fraction (C = 0.5). Notice that the values of the wave
numbers of maximum growth and the maximum possible times in these cases are the following:
(a) k∗ = 0.795, tmax = 8.822; (b) k∗ = 0.801, tmax = 8.685; (c) k∗ = 0.857, tmax = 7.474; and (d)
k∗ = 0.918, tmax = 6.307.

For point (a) [Fig. 5(a)], which is related to a situation for which NB = 0, we have the formation
of a traditional looking finger having a rounded tip. This structure is pretty similar to the one we
have obtained in Fig. 3(a). Nonetheless, for point (b) [Fig. 5(b)], when the magnetoelastic number
is increased to NB = 0.2, we observe a remarkable feature at the finger tip: it acquires a straight
front, perpendicular to the direction of motion. This is completely unlike the rounded tips of most
conventional Saffman-Taylor fingers [1,3]. Interestingly, a similar type of flat tip fingered pattern
was detected in the experiments of elastic fingering for nonmagnetic fluids in rectangular Hele-Shaw
flow perform by Podgorski et al. [4]. The straight front finger illustrated in Fig. 5(b) is another
example of finger morphology that has not been detected in Ref. [22]. Then, for point (c) [Fig. 5(c)],
for an augmented value of the magnetoelastic number NB = 2, the finger tip becomes rounded again,
irrespective of the fact that NB has been increased. Finally, for point (d) [Fig. 5(d)], for which
NB = 4, one encounters a finger having a very sharp tip, reminiscent of the finger shape found in
Fig. 3(e). Other type of scenarios can be found if one chooses different values of C in Fig. 4. But
the point here is that Figs. 3–5 already capture and illustrate well the basic types of magnetoelastic
patterns one can get in horizontal, rectangular Hele-Shaw cells.

1. Nonelastic fingering patterns

In this section, we briefly discuss how the morphology of the typical magnetoelastic fingering
patterns obtained in this study (where magnetic, elastic, and viscous effects compete) compare with
the corresponding fingering structures studied experimentally in Ref. [14], where elastic effects
are replaced by capillary effects in such a way that magnetic, surface tension, and viscous forces
rival one another. To produce these nonelastic patterns, we had to derive the equivalent third-order
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FIG. 5. Representative weakly nonlinear, third-order magnetoelastic patterns that arise at points (a)–(d) in
Fig. 4.

mode-coupling equation for the nonelastic case (see the Appendix). Notice that the study of such
types of nonelastic fingering patterns was not explored in Ref. [22].

Figure 6 depicts typical nonelastic viscous fingering counterparts of the magnetoelastic fingers
illustrated in Figs. 3 and 5. Recall that the main difference between the two situations is that in
Fig. 6 elastic effects are not present and on the interface there is a surface tension. Other than that,

FIG. 6. Typical weakly nonlinear, third-order, nonelastic interfacial patterns for U = 2 and (a) NB = 0,
and (b) NB = 0.1.
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the physical system is exactly the same: a fluid of negligible viscosity displaces a viscous ferrofluid
in a horizontal, rectangular Hele-Shaw cell, under the presence of an in-plane, uniform magnetic
field.

The nonelastic patterns are obtained by utilizing the same initial conditions and participating
modes used in Figs. 3 and 5. Nevertheless, now we have new definitions for the relevant dimen-
sionless parameters of the nonelastic system. In the nonelastic case we deal with a magnetic Bond
number NB and with a characteristic velocity parameter U (see the Appendix). The particular values
of the parameters used Fig. 6 are such that they generate fastest growing modes similar to those
produced in the corresponding magnetoelastic fingering cases. Naturally, to get the patterns shown
in Fig. 6 we use the third-order mode-coupling differential equation [Eq. (14)] and its first-, second-,
and third-order coefficients presented in the Appendix. The nonelastic patterns portrayed in Fig. 6
are obtained by setting U = 2, when NB = 0 [Fig. 6(a)] and NB = 0.1 [Fig. 6(b)]. In addition,
the values for the fastest growing modes and maximum allowed times used are (a) k∗ = 0.816,
tmax = 10.73 and (b) k∗ = 0.909, tmax = 9.44.

As exemplified well in Fig. 6, in the nonelastic case we basically have the uprising of two types
of patterns. As expected, in the absence of a applied external field [Fig. 6(a)] one gets a typical
Saffman-Taylor-like finger, having a rounded tip. On the other hand, when the in-plane magnetic
field is applied [Fig. 6(b)] we observe the formation of a different fingering structure, where the
finger is much sharper near its tip, due to the action of the demagnetizing field effects. Moreover,
the width of the finger illustrated in Fig. 6(b) varies more strongly along its length than in the zero
applied field case shown in Fig. 6(a). It is reassuring to see that the third-order perturbative pattern
presented in Fig. 6(b) captures the essential morphological features of the experimental pattern
obtained by Pacitto et al., as depicted in Fig. 7 of Ref. [14], and of the numerically simulated
pattern shown in Fig. 3.26 of Ref. [15]. Despite this, it should be stressed that the representative
nonelastic shapes plotted in Fig. 6 are indeed the only two basic pattern-forming structures we were
able to get. This is in contrast with the richer magnetoelastic scenario exposed in Figs. 3–5, where a
number of different patterns may arise by tuning C and NB. This reinforces the relevance of studying
magnetoelastic fingering in horizontal, rectangular Hele-Shaw cells.

IV. CONCLUSION

In this work we have provided a theoretical study of the magnetoelastic flow in a horizontal, rect-
angular Hele-Shaw cell. Our current third-order mode-coupling investigation expands our previous
lower-order analyses for the development of magnetoelastic interfacial patterns in radial Hele-Shaw
cell geometry [29,30] to the rectangular flow setup. In addition, it complements our recent study
[22] where a similar problem has been examined in a vertical rectangular Hele-Shaw cell under the
presence of gravity and without any external flow velocity. While in the traditional Saffman-Taylor
situation in horizontal cells the interplay of viscous and surface tension forces generates a finger
having a rounded tip, our third-order weakly nonlinear theory reveals the emergence of significantly
different fingered structures that result from the competition of magnetic, elastic, and viscous
effects.

At early stages, our linear stability analysis indicates that the applied magnetic field is destabiliz-
ing and competes with a stabilizing constant bending rigidity. We have found that at the linear level
such an elastic effect acts similar to its surface tension counterpart in the classical Saffman-Taylor
problem [see Eqs. (15) and (A2)]. No curvature-dependent bending rigidity contribution has been
detected in the linear stage. In the weakly nonlinear, second-order regime, we have verified that the
magnetic field favors the formation of fingers that are sharp at their tips. This particular second-order
finger-tip-sharpening effect is due to the action of a magnetic traction contribution in the pressure
jump boundary condition [Eq. (12)]. This magnetic term is maximized when the unit normal vector
at the interface n is collinear to the applied field H0, so that once a finger protuberance is formed at
the tip, the growing peak tends to become sharper. No influence of the curvature-dependent bending
rigidity has been found at second order.
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Nevertheless, at third order a much more interesting pattern-forming scenario is unveiled, where
curvature-dependent bending rigidity, magnetic, and viscous effects rival each other. By tuning
two controlling dimensionless parameters, namely, the magnetoelastic number NB and the bending
rigidity fraction C, we have obtained a representative collection of fingered structures, revealing the
formation of patterns having different shapes, where their finger tip may vary from flat, rounded,
or sharp, to very pointy, as the values of NB and C are changed. Our third-order theoretical
results indicate that these magnetoelastic patterns are not only significantly distinct from the usual
nonmagnetic Saffman-Taylor finger [1], but also differ from the nonelastic finger generated when a
ferrofluid is pushed by a nonmagnetic fluid under the action of an applied, in-plane magnetic field
[14]. Our theoretical results highlight the effect of replacing surface tension by bending rigidity in
the instabilities observed in horizontal, rectangular Hele-Shaw flows involving nonmagnetic, as well
as magnetic fluids.

As commented earlier in this work, our current magnetoelastic study should not be viewed
simply as a complex theoretical but somewhat hypothetical exercise. In principle, experimental
realizations are possible and should be pursued. Moreover, the development of fully nonlinear
numerical simulations for the magnetoelastic problem reported here in rectangular Hele-Shaw
cell geometry could also be a possible extension of this perturbative work, in the same spirit of
the extensive numerical investigation performed in Ref. [9] for the nonmagnetic elastic fingering
problem in radial geometry. Hopefully, this work will instigate further theoretical and experimental
studies on this pattern formation research topic.
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APPENDIX: MODE-COUPLING DIFFERENTIAL EQUATION TERMS
FOR THE NONELASTIC FINGERING PROBLEM

This Appendix presents the expressions for the first-, second-, and third-order coefficients which
appear in the third-order mode-coupling differential equation for the nonelastic fingering situation.
Under nonelastic circumstances, elastic effects are absent, and magnetic, surface tension, and
viscous forces compete. It is worthwhile to note that such a nonelastic third-order mode-coupling
equation is formally identical to Eq. (14) but has some different coefficients. In the nonelastic
case, the pressure boundary condition corresponding to our Eq. (12) is much simpler and given
by [1,3,5,33]

(p1 − p2)|y=ζ = −σκ − 1
2μ0(M · n)2, (A1)

where σ is the surface tension between the fluids. Performing our weakly nonlinear analysis in
the same away as we did in Sec. II for the magnetoelastic fingering case, we obtain the nonelastic
analogues of Eqs. (15)-(26), namely,

�(k) = |k|[NBW1(k) + AU − k2], (A2)

J (k, p, q) = − 3
2 |k|p2q(k − p − q), (A3)

where

NB = μ0M2b

4πσ
(A4)
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is the magnetic Bond number which relates magnetic to surface tensions effects, and

U = 12(η2 + η1)v∞
σ

(A5)

is a characteristic velocity parameter that measures the relative strength between viscous and surface
tension forces.

We stress that all the equations presented in this Appendix are made dimensionless by using
the following rescaling: lengths are rescaled by b as in our current magnetoelastic problem, but
velocities are rescaled by σ/[12(η1 + η2)]. Note that the functions G(k, q), H (k, p, q), I (k, p, q)
and the magnetic integrals W1(k), W2(k), and W3(k) are the same as the ones obtained in the
magnetoelastic case in Sec. II. In addition, the functions F (k, q) and K (k, p, q) for the nonelastic
case can be obtained from their magnetoelastic counterparts [Eqs. (19) and (24), respectively]
simply by replacing NB by NB.
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