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We consider the bypass transition in a flat-plate boundary layer subject to free-stream
turbulence and compute the evolution of the second-order structure function of the
streamwise velocity, 〈du2〉(�x, �r), from the laminar to the fully turbulent region using
DNS. In order to separate the contributions from laminar and turbulent events at the
two points used to define du(�x, �r), we apply conditional sampling based on the local
instantaneous intermittency, τ (1 for turbulent and 0 for laminar events). Using τ (�x, t ),
we define two-point intermittencies, γ (T T ), γ (LL), and γ (T L), which physically represent
the probabilities that both points are in turbulent patches, both are in laminar patches,
or one is in a turbulent and the other in a laminar patch, respectively. Similarly, we also
define the conditionally averaged structure functions, 〈du2〉(T T ), 〈du2〉(LL), and 〈du2〉(T L),
and decompose 〈du2〉(�x, �r) in terms of these conditional averages. The derived expressions
generalize existing decompositions of single-point statistics to two-point statistics. It is
found that in the transition region, laminar streaky structures maintain their geometrical
characteristics in the physical and scale space well inside the transition region, even after
the initial breakdown to form turbulent spots. Analysis of the 〈du2〉(T T ) fields reveals that
the outer mode is the dominant secondary instability mechanism. Further analysis reveals
how turbulent spots penetrate the boundary layer and approach the wall. The peaks of
〈du2〉(T T ) in scale space appear in larger streamwise separations as the transition progresses
and this is explained by the strong growth of turbulent spots in this direction. On the
other hand, the spanwise separation where the peak occurs remains relatively constant
and is determined by the initial inception process. We also analyze the evolution of the
two-point intermittency field, γ (T T ), at different locations. In particular, we study the
growth of the volume enclosed within an isosurface of γ (T T ) and note that it increases
in both directions, with growth in the streamwise direction being especially large. The
evolution of these conditional two-point statistics sheds light on the transition process from
a different perspective and complements existing analyses using single-point statistics.
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I. INTRODUCTION

Boundary layer transition affects the performance of many engineering devices. For example, in
aeronautical applications, it increases friction drag, thereby increasing fuel costs and the emission
of harmful pollutants to the environment. When the disturbances are relatively strong, e.g., a high
turbulent intensity in the free stream (larger than about 0.51%), roughness, acoustic waves, etc., the
transition process bypasses the natural route of Tollmien-Schliching waves; this is called bypass
transition [1].

In the present paper, we consider bypass transition due to free-stream turbulence, which has
been studied extensively through experiments [2–5] and numerical simulations [6–9]. The transition
starts with the penetration of low-frequency free-stream modes inside the boundary layer, while
the high-frequency ones remain outside due to shear sheltering [10,11]. Forward (high-speed) and
backward (low-speed) streaks are then formed, which were called Klebanoff modes by Kendall
[2,12]. The mechanism of streak formation can be explained by rapid distortion theory [13]. The
strong streamwise amplification is due to the liftup effect (see [14] for a review and refer also
to Landahl [15] for a description of how streaks are generated through a vortex tilting process).
Mathematically, in the context of bypass transition, it is more appropriate to explain the growth
as the resonant solution of the Squire equation for the wall normal vorticity when forced by the
continuous Orr-Sommerfeld modes that have a sinusoidal shape and reside in the free stream (see
[8] for more details and a perspective review [16] that summarizes the different points of view for
streak formation and growth).

The streaky structures evolve as they propagate downstream; the low-speed ones lift up to the
edge of the boundary layer, interacting with high-frequency modes in the free stream. Secondary
instability occurs due to this interaction, causing turbulent spots, which eventually lead to break-
down to turbulence [6]. This process is explored in [17], which describes the streak breakdown
from a three-dimensional perspective (sinuous secondary instability). More recently, Vaughan and
Zaki [18] used Floquet theory to analyze idealized unsteady streaks that appear inside the boundary
layer when forced by monochromatic (i.e., single-frequency) modes. They found that the Kelvin-
Helmholtz-type secondary instability is of two types: ‘outer’ and ’inner.’ In a follow-up work, Hack
and Zaki [19] successfully predict the localized secondary instability of particular streaks under
broadband free-stream forcing.

Intermittent turbulent spots appear after the breakdown of the laminar streaky structures. The
first description of turbulent spots appeared in the experimental work of Emmons [20]. Following
from this early work, artificially generated spots were studied by experimentalists in visualization
studies [21–23]. Anthony et al. [24] explored turbulent spots in bypass transition, showing that spots
due to free-stream turbulence differ from conventional spots (spots in Emmons’ experiment [20]).
More recently, a numerical study of turbulent spots in bypass transition was done by Wu et al. [25].
Hairpin packets were found before streaks, and then the packets directly led to the formation of
turbulent spots. Using conditional sampling, Nolan and Zaki [26] studied the growth of turbulent
spots in terms of the propagation rate and size under different external pressure gradients. Further
research by Marxen and Zaki [27] examined the intermittent turbulence characteristics in the bypass
transition region. Both conditional and ensemble averaging were used to study the intermittent
turbulent spots. They found that in the core region of the spots, first- and second-order statistics
are similar to those of a fully turbulent flow.

Most of the aforementioned work has focused on one-point statistics, i.e., the distribution of mean
velocities, normal and shear stresses, etc. As mentioned by Eckhardt [28], one of the challenging
questions in transition is the emergence of the turbulent cascade. This provides the motivation to
employ two-point statistics in order to investigate the transition process. Previous two-point analyses
have employed the velocity correlation function [3,4,9,29]. For example, Matsubara and Alfredsson
[4] investigated the streamwise velocity correlation function and found that the spanwise length
scale, which corresponds to the minimum of the correlation, does not vary much in the streamwise
direction. The detailed behavior is dependent on the grid used to generate the free-stream turbulence;
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in some cases it increases, and in others it decreases. On the other hand, when scaled with the
displacement thickness of the boundary layer, δ∗, it approaches a constant value, approximately 3δ∗

for all cases. They found also that the streaks have a streamwise length scale, which increases along
the downstream direction. In the DNS of transition due to high-intensity free-stream turbulence of
[9], the evolution of the velocity correlation function was also found to be case dependent. For
the case of a small turbulence length scale at the inlet, which is more similar to the one examined
in this paper, the spacing of streaks (in physical units) was found to slowly increase along the
downstream distance. On the other hand, when normalized with δ∗, it decays slowly; values close to
2δ∗ have been reported. Theoretical analysis using optimal perturbation theory applied to the Navier-
Stokes equations linearized around the Blasius velocity profile [30,31] show that the maximum
amplification is found for a spanwise wave number, β∗, that scales with δ∗ as β∗δ∗ = 0.77. This
corresponds to a minimum in the correlation function located at 4.08δ∗, thus it is expected to grow as
∼x1/2 when expressed in physical units. In the experiments and DNS, the growth is generally found
to be slower, which may be due to the nonlinear effects induced by transition. The experiments in
[3] also indicate slower growth.

In this paper, instead of using two-point velocity correlation functions, we employ the second-
order structure function for the fluctuation of the streamwise velocity, u. This is a two-point
statistical quantity, defined as 〈du2〉 = 〈(u+ − u−)2〉, where the superscript plus and minus signs
indicate two points in space. Their coordinates are defined using the midpoint �X = (X,Y, Z ) and
the separation vector �r = (r1, r2, r3), i.e., �x± = �X ± �r/2. Similarly to the velocity correlation, 〈du2〉
is also a six-dimensional quantity, 〈du2〉(X,Y, Z, r1, r2, r3). We prefer, however, to work with the
second-order structure function, as opposed to the two-point correlation, for the following reasons:

i. There is no loss of information, because there is a direct relationship between these two-
point statistical quantities, 〈du2〉 = 〈(u+ − u−)2〉 = 〈(u+)2〉 + 〈(u−)2〉 − 2〈u+u−〉; the last term is
the velocity correlation function.

ii. It has a more clear physical meaning, because 〈du2〉 + 〈dv2〉 + 〈dw2〉 can be regarded as
the scale energy in physical space, i.e., it quantifies the energy contained within an eddy of size
(length scale) |�r|, which is centered at point �X = (X,Y, Z ); refer to [32] for more details on this
interpretation and the caveats for small |�r|. In the above sum, 〈du2〉 has the highest contribution, so
this term is a good approximation of the scale energy. Since the structure function is formulated in
physical space, it is applicable to spatially varying flows.

iii. Its transport equation is the generalized Karman-Howarth equation [33,34], which has been
increasingly used as a statistical tool for the analysis of interscale energy transfer in inhomogeneous
and anisotropic flows, for example, channel flow [35], flow around a square prism [36], and flow in
the wake of a fractal grid [37].

Additionally, since we are studying a transitional flow, it is of interest to analyze the effect
of intermittency on the statistics of 〈du2〉 via conditional sampling. Although this approach has
long been applied to single-point statistics [38], we could not find a similar analysis for two-point
statistics in the literature. We therefore derive the relevant equations and study the conditionally
averaged fields. As shown, many interesting physical features of transition can be elucidated from
the analysis of these fields.

The paper is organized as follows. In the next section, Sec. II, we briefly describe the numer-
ical method and show a comparison with reference results from the literature (computational or
experimental) for validation purposes. We then proceed in Sec. III to derive the decomposition of
the conditionally averaged 〈du2〉. In Sec. IV we analyze 〈du2〉 in the laminar and fully turbulent
regions, and in Sec. V the evolution of the conditionally averaged fields in the transitional region.
In Sec. VI we study the two-point intermittency field γ (T T ), and finally, we conclude in Sec. VII.

II. NUMERICAL METHOD AND ONE-POINT STATISTICS (VALIDATION T3A CASE)

The DNS simulation was performed using our in-house finite-volume solver, Pantarhei, a finite-
volume solver for Navier-Stokes equations that employs the fractional step method to enforce the
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continuity equation and update the pressure at every time step. For more details and applications of
the solver to various transitional and fully turbulent flows refer to [36] and [39–41].

The spatial coordinates are normalized by the Blasius similarity variable, L0 = √
νX0/U∞, where

X0 is the distance of the domain inlet from the leading edge of the plate. The computational domain
size is 3000 × 200 × 150 in the streamwise (X ), wall-normal (Y ), and spanwise (Z) directions,
respectively. The numbers of cells in each direction are 2049 × 192 × 169. The mesh is uniform
in the streamwise and spanwise directions, while in the wall-normal direction the cells grow with
expansion ratio 1.06 until Y = 20L0; farther away from the wall the mesh is uniform. The resulting
spacings in wall units (indicated by a superscript plus sign) are �x+

max ∼ 11.78, �y+(w)
max ∼ 0.24, and

�z+
max ∼ 7.14. The subscript “max” denotes maximum values (found in the fully turbulent region),

while �y+(w)
max is evaluated at the centroid of the first cell close to the wall. The inlet Reynolds number

is ReL0 = 160.
We let the flow develop for a sufficiently long time to reach statistical steady state and then

collect statistics for three flow-through times. The time step is set to 0.2T0 (where T0 = L0/U∞),
which results in a maximum CFL number of around 0.35. Two-point statistics are calculated from
350 samples with time and spanwise averaging. The time separation between two samples is 20T0,
i.e., we sample every 100 time steps. Convergence is reported in Fig. 18 in the Appendix, where
〈du2〉 is plotted vs the number of samples at a fixed streamwise position (located in the turbulent
region) and wall-normal distance, for small and large streamwise separations r1 (and r3 = 0). It can
be seen that after about 200 samples, the average has reached a converged value. Similar results are
found at other streamwise positions, wall-normal locations, and separations.

The free-stream turbulent intensity, Tu, is set to 3.4% to match the transition onset location; this
is close to the 3.5% value of Jacob and Durbin [6]. The Von Karman spectrum

E (k) = Tu2 1.196(kL11)4

[0.558 + (kL11)2]17/6
L11, Tu = 3.4%, L11 = 5L0, (1)

is assumed for the turbulent fluctuations in the free stream. The length scale is set to L11 = 5L0,
which is approximately equal to the boundary layer thickness at the inlet.

For generation of the inlet conditions that satisfy the aforementioned spectrum, we follow
a process similar to previous DNS simulations [7]. To check the implementation of the inlet
conditions, in Fig. 1(a) we compare the decay rate of the free-stream turbulence intensity with
the results of Jacob and Durbin [6]; we note that the two sets of results match well. The skin friction
coefficient, Cf , vs the momentum thickness, Reθ , also matches well with the T3A experiments [42],
as shown in Fig. 1(b). There is a small deviation for 250 < Reθ < 350, where the current result is
slightly lower than the experimental data. In Jacob’s work, the Cf is slightly overestimated (refer to
Fig. 4 in Ref. [6]).

In Fig. 1(c) we compare the mean streamwise velocity (in wall units) with the T3A experiment
[42]. In the late transition and fully turbulent region the matching is good, however, the mean
velocity in the transition region is more difficult to match. This is due to differences in the
free-stream conditions that are very difficult to reproduce exactly. Figure 1(d) displays the profile of
rms(u)/rms(u)max vs the Blasius variable, η. The circles are calculated using the raw data from the
T3A database [42]. The profile matches well (up to η ≈ 4) with the normalized shape of ηF ′′, where
F ′′ is the Blasius function. The latter formula was originally used by Taylor [43] and Klebanoff
[2] for experimental data fitting. The streamwise velocity fluctuation profile clearly indicates the
presence of the so-called Klebanoff modes.

It is instructive at this point to visualize some instantaneous velocity fields. In the left panels in
Fig. 2, we use the instantaneous wall-normal fluctuation velocity, v, to visualize turbulent structures
(spots) at Y/L0 = 5. A large, fully formed structure can be seen at the right in the top-left panel.
Note the rapid change of the sign of v over the structure. A smaller structure, just forming, can
be discerned in the area (X − X0)/L0 ≈ 1050-1100 and Z/L0 ≈ 25. We track the growth of this
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FIG. 1. (a) Free-stream turbulent intensity Tu vs Rex; (b) skin friction coefficient Cf vs Reθ ; (c) mean
streamwise velocity U + vs y+; (d) rms(u)/rms(u)max vs the Blasius variable, η.

turbulent structure at four instants in time (left panels, from top to bottom). The growth of the
structure in the streamwise and spanwise directions is evident.

In the right panels in Fig. 2, we show the contours of the instantaneous streamwise velocity
fluctuations through the center of the spot, at the same instants. The horizontal domain visualized

FIG. 2. Flow snapshots tracking a spot from its incipient formation (top row) to its fully developed form
(bottom row); wall-normal velocity fluctuations at Y = 5L0 (left panels); streamwise velocity fluctuations in
the plane at Z = 25L0 (indicated as horizontal dashed lines in the left panels) that pass through the center of
the spot (right panels). Note the translation of the domain visualized in the streamwise direction in the right
panels. The time interval between each snapshot is 190L0/U∞.
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FIG. 3. Contour plot of the intermittency field γ . The dashed red line represents the boundary layer thick-
ness. The solid green, red, and blue vertical lines represent the streamwise locations where the second-order
structure functions are calculated. The green line is in the laminar region ((X − X0 )/L0 = 540) and the blue
line in the turbulent region ((X − X0)/L0 = 2415). The eight red lines, T RM1 and T R0 − T R6, are in the
transition region and their coordinates are 940, 1065, 1215, 1365, 1515, 1665, 1815, and 1965, respectively.

in the right panels is shifted in the streamwise direction in order to account for the translating
motion of the structure; the domain shown corresponds to the horizontal dashed lines in the left
panels. In the top-right panel, we see the lifting-up of the low-speed streak (negative fluctuating
velocities). The velocity field at this instant in time is smooth, but in the panel below the footprints of
secondary instability start to appear at Y ∼ 12L0, (X − X0)/L0 ∼ 1180-1220. The turbulent motion
moves closer to the wall and fills the boundary layer below 10L0; a fully formed spot has been
formed, as can be seen in the bottom row (left and right panels). The observed growth of spots
cannot be captured with single-point statistics, but as shown later, two-point statistics, especially
ones conditioned on turbulent events, is a very effective statistical tool for this purpose.

III. DERIVATION OF CONDITIONALLY AVERAGED TWO-POINT STATISTICS

A. Binary indicator function

We define an instantaneous binary indicator function, τ (X,Y, Z, t ), that takes the value 1 if the
flow is turbulent and 0 if it is laminar. Similarly to the work by Marxen and Zaki [27], this indicator
function is based on the standard deviation of D = |v| + |w|, where v and w are the wall-normal
and spanwise velocities, respectively (using the standard deviation to detect the turbulent patches is
consistent with the snapshots shown in Fig. 2). We also use Otsu’s method [44] to find an optimal
threshold to identify the turbulent and nonturbulent regions.

The time and spanwise average of the τ field

γ (X,Y ) = 1

�T Lz

∫ �T

0

∫ Lz

0
τ (X,Y, Z, t )dzdt (2)

is known as the intermittency, γ . A contour plot is shown in Fig. 3; it is very similar to Fig. 5 in
[27]. By arguing that turbulent spots are born with equal probability, Narasimha [45] proposed a
‘universal’ distribution for intermittency, which matches well with the present result of γmax(X ) =
max(γ (X,Y )), as shown in Fig. 4.

The binary indicator function and the intermittency field allow us to define conditional averaged
statistics, as explained in the next subsection.
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FIG. 4. Variation of γmax (solid line) in the streamwise direction and comparison with the formula of
Narashima (dashed line), where ξ = (X − Xs )/(Xγ=0.75 − Xγ=0.25), and Xs is the location where the transition
starts, taken to be (Xs − X0)/L0 = 1100.

B. Derivation of the conditional two-point structure function

We start by summarizing the existing expressions for single-point statistics. We use capital
symbols, for example, Ui and �, to denote instantaneous quantities and lowercase symbols, ui and
φ, to denote fluctuations around a time- and spanwise-averaged variable, 〈Ui〉 or 〈�〉.

A conventionally averaged quantity, 〈�〉, can be decomposed into conditionally averaged quan-
tities using the intermittency γ as

〈�〉 = γ 〈�〉(T ) + (1 − γ )〈�〉(L), (3)

where the superscripts (T ) and (L) indicate averages conditioned on turbulent and laminar events,
respectively. The conditionally averaged variables are defined as

〈�〉(T ) = 1

�T Lzγ

∫ �T

0

∫ Lz

0
τ�dzdt, 〈�〉(L) = 1

�T Lz(1 − γ )

∫ �T

0

∫ Lz

0
(1 − τ )�dzdt . (4)

Using the Reynolds decomposition φ = � − 〈�〉, the variance of fluctuations can be written as

〈φ2〉 = 〈�2〉 − 〈�〉2, (5)

and similarly for the conditional variances,

〈φ2〉(T ) = 〈�2〉(T ) − (〈�〉(T ) )2, 〈φ2〉(L) = 〈�2〉(L) − (〈�〉(L) )2. (6)

The variance can also be written in terms of conditional-averaged quantities as [38]

〈φ2〉 = γ 〈φ2〉(T ) + (1 − γ )〈φ2〉(L) + γ (1 − γ )(〈�〉(T ) − 〈�〉(L) )2. (7)

We can employ the same decomposition for the time- and spanwise-averaged Reynolds stresses.
The latter can be written in terms of conditional-averaged quantities as [27,38]

〈uiu j〉 = γ 〈uiu j〉(T ) + (1 − γ )〈uiu j〉(L) + γ (1 − γ )(〈Ui〉(T ) − 〈Ui〉(L) )(〈Uj〉(T ) − 〈Uj〉(L) ). (8)

We can extend this decomposition to two-point statistics; the two points are indicated by the plus-
and minus-sign superscripts. The conditional averaging now includes three different states, which
are defined as follows:

States =
{turbulent-turbulent (T T ), τ+ = 1, τ− = 1;

turbulent-laminar (T L) τ+ = 1, τ− = 0 or τ+ = 0, τ− = 1;
laminar-laminar (LL) τ+ = 0, τ− = 0.

(9)
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FIG. 5. Sketches of the three states. Red ovals represent turbulent spots. Both points within a turbulent spot
(state TT; left); one point inside a turbulent spot, the other in the laminar region (state TL; middle); both points
in the laminar region (state LL; right).

A schematic for each state is shown in Fig. 5.
Using the identity

τ+τ− + (τ+(1 − τ−) + (1 − τ+)τ−) + (1 − τ+)(1 − τ−) = 1, (10)

the instantaneous velocity difference dU = U + − U − can be written as

dU = τ+τ−dU + (τ+(1 − τ−) + (1 − τ+)τ−)dU + (1 − τ+)(1 − τ−)dU . (11)

Taking the time and spanwise average of the above equation, we get the decomposition

〈dU 〉 = γ (T T )〈dU 〉(T T ) + γ (T L)〈dU 〉(T L) + γ (LL)〈dU 〉(LL), (12)

where

〈dU 〉(T T ) = 1

�T Lzγ (T T )

∫ �T

0

∫ Lz

0
τ+τ−(U + − U −)dzdt,

〈dU 〉(T L) = 1

�T Lzγ (T L)

∫ �T

0

∫ Lz

0
(τ+(1 − τ−) + (1 − τ+)τ−)(U + − U −)dzdt,

〈dU 〉(LL) = 1

�T Lzγ (LL)

∫ �T

0

∫ Lz

0
(1 − τ+)(1 − τ−)(U + − U −)dzdt (13)

are the conditional averages and

γ (T T ) = 1

�T Lz

∫ �T

0

∫ Lz

0
τ+τ−dzdt,

γ (T L) = 1

�T Lz

∫ �T

0

∫ Lz

0
(τ+(1 − τ−) + (1 − τ+)τ−)dzdt,

γ (LL) = 1

�T Lz

∫ �T

0

∫ Lz

0
(1 − τ+)(1 − τ−)dzdt (14)

are the two-point intermittencies; the latter generalize Eq. (2). Due to the identity, (10), their sum is

γ (T T ) + γ (T L) + γ (LL) = 1. (15)

Definition (14) indicates that γ (T T ), γ (T L), γ (LL) can be physically interpreted as probabilities.
For example, γ (T T ) is the probability that both points �x± are located within turbulent patches; similar
interpretations can be given to γ (T L) and γ (LL). The sum of the probabilities is equal to 1 [Eq. (15)],
and (12) is a weighted sum that involves the probabilities of the three states and the corresponding
conditional averages.

Similarly to the single-point case, the variance and conditional variance for the fluctuations
difference can be written as

〈du2〉 = 〈dU 2〉 − 〈dU 〉2, 〈du2〉(T T ) = 〈dU 2〉(T T ) − (〈dU 〉(T T ) )2,

〈du2〉(T L) = 〈dU 2〉(T L) − (〈dU 〉(T L) )2, 〈du2〉(LL) = 〈dU 2〉(LL) − (〈dU 〉(LL) )2. (16)
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FIG. 6. 〈du2〉 on the (r3,Y ) (left) and (r1,Y ) (right) planes in the laminar region. Note that the left
and bottom axes are normalized by the local boundary layer thickness (δ), while the top and right axes are
normalized by the inlet Blasius similarity variable, L0.

Using Eqs. (12) and (16) and after some algebra, we obtain the decomposition of 〈du2〉,
〈du2〉 = γ (T T )〈du2〉(T T ) + γ (T L)〈du2〉(T L) + γ (LL)〈du2〉(LL) + (〈dU 〉(T T ), 〈dU 〉(T L), 〈dU 〉(LL) ),

(17)

where

(〈dU 〉(T T ), 〈dU 〉(T L), 〈dU 〉(LL) ) = γ (T T )(〈dU 〉(T T ) )2 + γ (T L)(〈dU 〉(T L) )2 + γ (LL)(〈dU 〉(LL) )2

− (γ (T T )〈dU 〉(T T ) + γ (T L)〈dU 〉(T L) + γ (LL)〈dU 〉(LL) )2. (18)

The above equation generalizes the existing decomposition of single-point statistics, Eq. (7), to
two-point ones. We checked its validity by performing numerical experiments with synthetic data.

IV. TWO-POINT STRUCTURE FUNCTION IN THE LAMINAR AND TURBULENT REGIONS

In this section, contour plots of the time- and spanwise-averaged streamwise structure functions
on the (r3,Y ) and (r1,Y ) planes at the streamwise locations Xi, shown as solid vertical lines in
Fig. 3, are presented. For each plane, we consider that the other separations are 0. For example,
for the (r1,Y ) plane we plot 〈du2〉(r1, Y ; Xi, r2 = 0, r3 = 0), while for the (r3,Y ) plane we plot
〈du2〉 (r3, Y ; Xi, r1 = 0, r2 = 0). For all plots, the values are normalized by the square of the local
friction velocity, u2

τ (Xi ).
The conventionally averaged 〈du2〉 is first plotted in the laminar and turbulent regions. This is

followed by similar plots in the transitional region, and finally, we present maps of the conditionally
averaged quantities.

A. Streaky laminar region

The structure function in the streaky laminar region, corresponding to the green line in Fig. 3, is
shown in Fig. 6. Note that the separations in the spanwise and streamwise directions as well as the
wall-normal distance are normalized by two scales: one local (boundary layer thickness, δ) and one
global (inlet Blasius variable, L0).

A clear peak can be observed in the 〈du2〉 on the (r3,Y ) plane as shown in the left panel in Fig. 6.
The peak corresponds to r3 ≈ 1.1δ (or r3 ≈ 3δ∗, or r3 ≈ 10-11L0 in global units). As mentioned
in Sec. I, in the homogeneous direction, 〈du2〉 = 2(〈u2〉 − 〈u+u−〉), and due to the negative sign
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FIG. 7. Second-order streamwise velocity correlation function with respect to the spanwise separation at
the wall-normal distance Y0 ∼ 4L0.

before the correlation term, the minimum of the 〈u+u−〉 corresponds to a maximum of the structure
function. This distance is the average spacing between the laminar high- and low-speed streaks. The
value r3 ≈ 1.1δ matches the location of the first minimum point of the streamwise two-point velocity
correlation function (red circle in Fig. 7). When normalized with the displacement thickness, the
value of ≈3δ∗ is within the region reported in experimental and numerical theoretical studies [4,9]
but smaller than 4.08δ∗, the value predicted by the optimal perturbation theory of [30,31]. This
may be related to the fact that the peak in the optimal perturbation (Fig. 2 in Ref. [30]) is not very
sharp, and the exact value selected is determined by the imposed length scale and the intensity of
the free-stream turbulence at the inlet.

The scale energy peak in the wall-normal direction is located at Y ≈ 0.4δ (or Y ≈ 4L0). This
indicates the presence of Klebanoff modes, where the largest turbulent intensity of streamwise
fluctuation is located around the middle of the laminar boundary layer [4,30]. This is also consistent
with the one-point statistics shown in Fig. 1(d), i.e., peak at η ≈ 2.2 (with thickness η ≈ 5).

The right panel in Fig. 6 shows the structure function on the (r1,Y ) plane. The largest values
are also located at Y ≈ 0.4δ as expected, but 〈du2〉 increases continuously with the streamwise
separation r1, even until the maximum value considered, r1 = 15δ. We have examined also larger
separations (plots not shown) and found that 〈du2〉 continues to increase, but at a slower rate. We
expect that at very large r1, the velocity fluctuations at the two points �x± will become uncorrelated
and 〈du2〉 will tend to 〈(u+)2〉 + 〈(u−)2〉. If the flow were homogeneous in the streamwise direction,
then 〈du2〉 would tend to a constant value, equal to 2〈u2〉; this is nicely shown in Fig. 2 in Ref. [46].
In our case, however, the flow has strong spatial inhomogeneity and 〈du2〉 continues to increase for
large r1, but at a reduced rate.

B. Fully turbulent region

The structure function in the fully turbulent region corresponding to the blue line in Fig. 3 is
shown in Fig. 8. Again we normalize the separations and wall-normal distances using local wall
units (bottom axes) as well as the global reference quantity L0 (top axes). On the (r3,Y ) plane
(left panel), a peak is found at r+

3 ≈ 70 and Y + ≈ 16. This corresponds to the spanwise distance
of the near-wall streaks and the energy peak region is located in the buffer layer. The results are
very similar to the structure function calculated for channel flow [35,47]. In terms of global units,
the maximum is located at r3 ≈ 7-8L0, while in the laminar region it is at r3 ≈ 10-11L0. It is also
closer to the wall, because the mean velocity profile has become steeper (as can be seen from the Cf

coefficient) and the production takes place closer to the wall. From the (r1,Y ) plane (right panel), we
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FIG. 8. 〈du2〉 on the (r3,Y ) (left) and (r1,Y ) (right) planes in the fully turbulent region. The left and bottom
axes are in local wall units, while the top and right axes are in global units of L0.

can see that the structure function grows over much larger separations in the streamwise direction
compared to the spanwise one; this is indicative of very long streaky structures. Again the largest
values in the wall-normal direction for different separations are located within the buffer layer, at
Y + ≈ 16, as expected.

V. TWO-POINT STRUCTURE FUNCTION MAPS IN THE TRANSITIONAL REGION

In this section, we plot maps of the standard and conditionally averaged structure functions in the
transition region on the (r3,Y ) and (r1,Y ) planes, at the locations of the red lines shown in Fig. 3.

A. Evolution of the standard structure function on the (r3/r1,Y ) plane

In Fig. 9, we see the morphing of the structure functions on the (r3,Y ) plane from the laminarlike
to the turbulentlike shape; compare with the left panels in Figs. 6 and 8, respectively. In the

FIG. 9. Evolution of 〈du2〉 on the (r3,Y ) plane along the streamwise direction. The locations, denoted
T R0-T R6, are defined in Fig. 3. In this and all subsequent figures, the dashed red line represents the local
boundary layer thickness.
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FIG. 10. Variation of the r (min)
3 /δ∗ along the streamwise direction. The solid red line refers to the maps of

〈du2〉 in Fig. 9, while the dashed blue and dotted black lines refer to the maps of γ (LL)〈du2〉(LL) in Fig. 12 and
γ (T T )〈du2〉(T T ) in Fig. 14, respectively. Circles mark the streamwise locations of Fig. 3.

streamwise locations T R0-T R3, the characteristics of the laminar streaks are largely retained, i.e.,
the peak appears at Y ≈ 5L0 (slightly farther from the wall compared to the distance of 4L0 in
the fully laminar regime) and r3 ≈ 10L0. At later stages, however, starting from T R4, and more
evidently in T R5 and T R6, the shape changes significantly and the peak location approaches closer
to the wall, Y ≈ 1.6L0. The spanwise location of the peak, however, is maintained up to T R5, and
only in T R6 is it reduced to the turbulent value of 7-8L0.

In Fig. 10 we plot the location of the peak normalized with the displacement thickness, r (min)
3 /δ∗

(solid red line). The values are between 2 and 3 until the late stage of transition [location T R4;
(X − X0)/L0 ≈ 1700] and match the numerical results in [9] [Fig. 12, in which r (min)

3 tends to 2δ∗]
and the experimental results in [4] [Fig. 8, in which r (min)

3 tends to 3δ∗]. Differences might be due
to the different inlet conditions of the free-stream turbulence. After T R4 the spacing decreases,
approaching the value for the fully turbulent region.

Similarly to the results on the (r3, y) plane, the structure function 〈du2〉 on the (r1,Y ) plane,
shown in Fig. 11, morphs from a laminarlike to a turbulentlike shape. The peak of the scale
energy moves from Y ≈ 5L0 down to Y ≈ 1.6L0. It appears that at T R3, there is an extended peak

FIG. 11. Evolution of 〈du2〉 on the (r1,Y ) plane in the transitional region.
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FIG. 12. Evolution of γ (LL)〈du2〉(LL) on the (r3,Y ) plane.

region from Y ≈ 1-5L0. This is the streamwise location where the peaks amalgamate, and farther
downstream the bottom peak starts to dominate.

The structure functions presented above evolve smoothly between the two limiting shapes pre-
sented in Sec. IV. However, standard time and spanwise averaging conceals important information.
The next subsections present the evolution of conditionally averaged structure functions. As shown,
the latter provide richer information about the transition, especially when the conditioning is based
on turbulent events.

B. Evolution of the structure function on the (r3/r1,Y ) plane conditioned on laminar events

The evolution of γ (LL)〈du2〉(LL) is shown in Fig. 12. Note that we chose to plot γ (LL)〈du2〉(LL),
instead of 〈du2〉(LL), because the former appears in the decomposition, (17). It is evident that
the laminar streaks persist throughout the transition, retaining the same spanwise length scale
and peak energy location, i.e., peak at r3 ≈ 11L0 and Y ≈ 5L0. It is also interesting to ob-
serve that the peak energy stays at Y ≈ 5L0, even though the boundary layer is growing (the
dashed red lines represent the thickness of the boundary layer). Compare, for example, the
bottom row in Fig. 12 with that in Fig. 9; the differences at locations T R4 and T R5 are
striking. In the last plot for T R6, the laminar characteristics become less clear and the peak
of γ (LL)〈du2〉(LL) decreases to r3 ≈ 8L0. The plot is also less smooth compared to the other
plots, because in the late stages of transition streaks start to merge with the turbulent boundary
layer, thereby reducing the number of samples available for averaging conditioned on laminar
events.

The variation of r (min)
3 /δ∗ along X is also shown in Fig. 10, by the dashed blue line. It is similar to

the red line, i.e., the the values slowly decrease to 2.3δ∗, remain nearly constant, and then decrease
more rapidly (as expected due to the rapid growth of δ∗).

Similar conclusions can be made for the (r1,Y ) maps, shown in Fig. 13. The laminar streaky
structures retain their characteristics deep into the transition region. Indeed, compared with
Fig. 11, we note strong similarities for locations T R0-T R2 as expected, but for T R3 and T R4
we observe significant differences; in Fig. 13 the shape of the latter two is much closer to the
laminar shape. For T R5 and T R6 the shape again becomes similar to that shown in Fig. 11.
Even though we condition on laminar events, the underlying average flow has been modified
and its footprint is reflected in the γ (LL)〈du2〉(LL) maps and the peak appears closer to the
wall. As before, the plot for T R6 is not very smooth because of the reduced number of valid
samples.
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FIG. 13. Evolution of γ (LL)〈du2〉(LL) on the (r1,Y ) plane.

C. Evolution of the structure function on the (r3/r1,Y ) plane conditioned on turbulent events

The maps conditioned on turbulent events are shown in Fig. 14. It is very interesting to note that,
at the earliest stage of transition at location T R0, turbulent motions exist near the middle of the
boundary layer, with a spanwise length scale ≈7.5L0. These motions can be detected only when
we apply conditional averaging; indeed they are absent when we apply standard time and spanwise
averaging as evidenced in Fig. 9. This demonstrates that the proposed conditional sampling can
reveal features that would not have been possible to bring to the fore otherwise.

The presence of turbulent motions in the middle of the boundary layer at the very early stages
of transition is consistent with the outer type of secondary instability mentioned in [18]. In order to
shed more light into this feature, we have considered one more location, T RM1, located upstream
of T R0, as shown in Fig. 3. At this location, we can clearly see that the turbulent activity starts
near the edge of the boundary layer, at Y ≈ 12L0, entirely consistent with the instantaneous pattern
shown in Fig. 2 (second row from the top, on the right). The spanwise length scale at this earlier
location is 5L0, exactly equal to the length scale L11 that we impose on the energy spectrum at the
inlet, Eq. (1). Note also that the turbulent motions outside the boundary layer, i.e., in the free stream,
are also captured and have the imposed length scale of L11 = 5L0.

FIG. 14. Evolution of γ (T T )〈du2〉(T T ) on the (r3,Y ) plane; their corresponding locations are T RM1 and
T R0-T R6, shown in Fig. 3.
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FIG. 15. Evolution of γ (T T )〈du2〉(T T ) on the (r1,Y ) plane.

The succession of maps also demonstrates how the turbulent motions that were initiated at the
top of the boundary layer penetrate deep inside it and approach the wall quite early, even at T R1
and more clearly in T R2. These near-wall coherent structures (turbulent spots) become more visible
in the late stages of the transition T R4-T R6.

It is very instructive to compare Figs. 12 and 14, which show γ (LL)〈du2〉(LL) and γ (T T )〈du2〉(T T ),
respectively, on the (r3,Y ) plane. When conditioning on laminar events, the peak is located
at separation r3 ≈ 10 at all positions T R0-T R6; as already mentioned, this is very close to
the peak observed in the laminar state (see left panel in Fig. 6). When conditioning on tur-
bulent events, however, the location moves to r3 ≈ 7-8 at all streamwise positions, very close
to the peak for the fully turbulent state (see left panel in Fig. 8). The two states, therefore,
coexist during the whole transition process, and most importantly both retain their structural
and geometric features, which are determined at their inception. For the laminar state, the in-
ception of Klebanoff modes is determined by the receptivity process between the free-stream
turbulence and the laminar boundary layer; for the turbulent state, by the secondary instabil-
ity. Note that it is only through conditional averaging that we can elucidate these important
characteristics.

We note that in the experiments in [29] with and without boundary layer suction, the spanwise
scale of the streaky structures was found to be the same, despite a twofold reduction in the thickness
of the boundary layer during suction. This led the authors to conclude that the length scale was
determined by the receptivity process, which was the same for both cases. This is in accordance
with our findings. The present results are also consistent with those of Marxen and Zaki [27]. Using
conditional averaging, they demonstrated the similarity of the first-order statistics between spots
and fully turbulent flow at the late stages of transition (not in the baby spots).

The variation of r (min)
3 /δ∗ is also shown in Fig. 10 by the dotted black line. The first point, at

T RM1, and the last one, in the fully turbulent region, show a difference of 5%, but the two peaks are
located at very different wall-normal distances. This figure also shows very clearly the coexistence
of two length scales that correspond to the two different states of the flow.

Figure 15 shows similar behavior on the (r1,Y ) plane, i.e., turbulent motions start near the top
half of the boundary layer and then penetrate towards the wall; again, this is consistent with the
outer-type secondary instability [18]. However, the (r1,Y ) maps are distinctly different compared
with the (r3,Y ) ones. In the latter, as we have just shown, the r3 separation corresponding to the
maximum value of γ (T T )〈du2〉(T T ) was nearly constant throughout the transition process. From the
(r1,Y ) maps, however, it is evident that the separation r1 corresponding to the maximum increases
significantly, from r1 ≈ 30L0 to r1 > 140L0. The peak area also becomes long and flat. There is a
very clear physical explanation for this change of the length scale in the r1 direction; it is due to the
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FIG. 16. Evolution of γ (T T ) on the (r3,Y ) plane; pink isolines are defined as γ (T T ) = 0.7γ (T T )
max .

longitudinal growth of the structures within the turbulent spots. We explore this growth in the next
section, by investigating the three-dimensional structure of the γ (T T ) fields.

VI. TWO-POINT INTERMITTENCY FIELD γ (TT )

The intermittency γ (X,Y ) shown in Fig. 3 is a single-point, two-dimensional quantity and is not
suitable for analysis of the spot growth. On the other hand, the two-point intermittency field, γ (T T ),
contains a lot more information and, as we show below, is a more appropriate quantity to use; for
this reason, in this section, we focus on γ (T T ).

As mentioned in Sec. III, γ (T T )(X,Y ; r1, r2, r3) has a clear physical interpretation as the prob-
ability that both points �x± = �X ± �r/2 are located in turbulent patches or spots (but not necessarily
the same spots). This probability is of course equal to the percentage of time that both points spend
inside turbulent spots (averaged in the spanwise direction). It is clear that setting the separation
distance to 0, i.e., r1 = r2 = r3 = 0, results in γ (T T )(X,Y ; 0, 0, 0) = γ (X,Y ), i.e., the intermittency
shown in Fig. 3.

Let us now fix the physical location (X,Y ) and consider an isosurface of constant γ (T T )(r1, r2, r3)
and the volume of fluid enclosed by this surface. Based on the aforementioned interpretation,
the fluid contained within this volume has a probability greater than or equal to the value of the
isosurface of being within one (or more) turbulent region. This does not mean that this isosurface
indicates the shape of a turbulent spot. The proper way to identify the spot shape is to follow the
tracking method described in [27]. Nevertheless, we would expect the volume enclosed within an
isosurface of constant value to grow as the transition process develops, in a similar way as a spot
grows.

In Fig. 16 we plot γ (T T ) on the (r3,Y ) plane at different streamwise locations, i.e., we assume
r1 = 0, r2 = 0. The distribution of γ (T T ) for r3 = 0 in each map corresponds to the intermittency
shown in Fig. 3. In essence, then, this figure shows the spanwise extent of the turbulent region at
each streamwise location. The dashed pink lines indicate the isoline γ (T T ) = 0.7γ (T T )

max , where γ (T T )
max

is the maximum value for the particular X location. Note that the plots are symmetric with respect to
r3 = 0. Indeed, γ (T T ) does not depend on the sign of r3; a negative value will simply swap the points
�x± without changing γ (T T ). The same is valid for all separations, i.e., γ (T T )(X,Y ; r1, r2, r3) =
γ (T T )(X,Y ; −r1,−r2,−r3).
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FIG. 17. Three-dimensional plots of γ (T T ) at streamwise locations T R2, T R3, and T R4 (from left to right).
Black isolines denote γ (T T ) = 0.7γ (T T )

max (r3 = 0).

The plots in Fig. 16 are consistent with the scenario in the previous section. At T R0 the peak of
the γ (T T ) is located at Y ≈ 10-12 and occupies a narrow region. It then moves in the wall-normal
direction and expands horizontally in the r3 direction. It is evident that the spot forms in the top
half of the boundary layer and then gradually fills the lower part. This corresponds to the top-down
mechanism due to outer-type instability [26]. This top-to-bottom process can also be seen in the
plots on the (r1,Y ) plane, which is similar to the results on the (r3,Y ) plane (not shown here).

In Fig. 17 three-dimensional plots of γ (T T ) in the (r1, r3,Y ) domain are shown for three
streamwise locations: T R2, T R3, and T R4. Each plot was obtained by considering different values
of r3 and computing γ (T T ) (r1,Y ; r3) and stacking the results. For T R2 we considered the values
r3 = 0, 3, 5, 6; for T R3 and T R4, r3 = 0, 5, 10, 12 and r3 = 0, 5, 10, 12, 13, 15, 20, 21,
respectively. The black isolines are defined as γ (T T ) = 0.7γ (T T )

max , where γ (T T )
max is evaluated at r3 = 0

(the black line on the bottom contour); the values of γ (T T )
max are 0.084, 0.21, and 0.35 for T R2, T R3,

and T R4, respectively. In these plots, a large volume can be observed with a long streamwise length
and much shorter spanwise extent. The size of the volume increases along with the streamwise
direction, as expected. This feature explains the growth of the r1 separation shown in Fig. 15.

VII. CONCLUSIONS

We use the second-order structure function of the streamwise velocity as a statistical tool to
explore bypass transition due to free-stream turbulence in a flat-plate boundary layer. In order to
account for the intermittent formation of turbulent spots during the transition process, we derive a
new decomposition of the time- and spanwise-averaged structure function in terms of conditionally
averaged quantities. The conditioning process is based on the instantaneous state of the flow at the
two points that are used to define the structure function. Three states are defined: (a) both points
are in turbulent patches (TT state), (b) both are in the laminar region (LL state), and (c) one is in
the laminar region and the other in a turbulent patch (LT state). The derived expressions generalize
existing expressions for one-point statistics to two-point statistics. This analysis sheds light on the
process of bypass transition from a new perspective.

The conditional structure functions are calculated along the streamwise direction, at eight
locations, from the laminar region to the fully turbulent. The results conditioned on the laminar
state indicate that the laminar streaks maintain their physical features even after mixing with the
intermittent turbulent spots. Results conditioned on the turbulent state show that the initial turbulent
motion starts near the boundary layer edge, consistent with the so-called outer secondary instability.
Again, the spanwise length scale of the turbulent spots is retained throughout the transition, but the
streamwise increases significantly. Only through the use of conditional statistics can these features
be clearly elucidated. The two-point intermittency γ (T T ) was also examined. We noted the growth
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in the volume of fluid enclosed by isosurfaces of this quantity along both directions. The growth
was observed mostly along the r1 separation, indicative of the large increase in the length of the
turbulent spots.

We close this section with some thoughts on future perspectives. Recall that 〈du2〉 + 〈dv2〉 +
〈dw2〉 (where 〈du2〉 makes the largest contribution) represents the energy contained within an eddy
of size |�r| which is centered at point �X = (X,Y, Z ). Its evolution is governed by the Karman-
Howarth equation, which is valid for general inhomogeneous flows, so it is applicable to the present
case. Using the database generated, we can compute the rate of energy transfer between structures
of different length scales and use this information to draw the energy flow paths that determine
the growth of turbulent spots. Furthermore, it is well known that spots merge to form larger spots.
This implies an inverse energy transfer process, i.e., energy flowing from small to large scales, in
contrast to the standard view of forward cascade (energy from large to small scales). Is there a
competition between extracting energy from the mean flow (forward cascade) and from the inverse
cascade process? What is the relative contribution of these two mechanisms? Future work in this
direction will help to answer such questions.
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APPENDIX: CONVERGENCE OF 〈du2〉 WITH THE NUMBER OF SAMPLES

Figure 18 shows two examples of convergence of 〈du2〉 with an increasing number of samples.
The location considered is in the fully turbulent region, (X − X0)/L0 = 2415, and the wall-normal

FIG. 18. Running average of 〈du2〉 versus the number of samples at a streamwise location inside the fully
turbulent region, (X − X0)/L0 = 2415, at the fixed height Y/L0 = 1.3 and two different r1 separations.
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distance is fixed at Y/L0 = 1.3. The top panel represents a small streamwise separation, r1/L0 = 5,
and the bottom panel a larger separation, r1/L0 = 100.
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