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The effect of surfactants on the tail and film dynamics of elongated gas bubbles
propagating through circular capillary tubes is investigated by means of an extensive
three-dimensional numerical study using a hybrid front-tracking/level-set method. The
focus is on the visco-inertial regime, which occurs when the Reynolds number of the
flow is much larger than unity. Under these conditions, “clean” bubbles exhibit interface
undulations in the proximity of the tail, with an amplitude that increases with the Reynolds
number. We perform a systematic analysis of the impact of a wide range of surfactant
properties, including elasticity, bulk surfactant concentration, solubility, and diffusivity, on
the bubble and flow dynamics in the presence of inertial effects. The results show that the
introduction of surfactants is effective in suppressing the tail undulations as they tend to
accumulate near the bubble tail. Here large Marangoni stresses are generated, which lead
to a local “rigidification” of the bubble. This effect becomes more pronounced for larger
surfactant elasticities and adsorption depths. At reduced surfactant solubility, a thicker
rigid film region forms at the bubble rear, where a Couette film flow is established, while
undulations still appear at the trailing edge of the downstream “clean” film region. In
such conditions, the bubble length becomes an influential parameter, with short bubbles
becoming completely rigid.

DOI: 10.1103/PhysRevFluids.5.093605

I. INTRODUCTION

The dynamics of elongated bubbles within liquid-filled capillary channels is receiving increasing
scientific and industrial attention due to its widespread occurrence in many processes such as
modern electronic cooling systems, enhanced oil recovery, and coating processes, to name a few.
When an elongated gas bubble is transported by liquid in a capillary tube, the front and rear caps
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are separated by a cylindrical region where the thickness of the liquid film trapped against the
channel wall is uniform. Initial experimental work by Taylor [1] showed that the film thickness ratio
h0/R (where R and h0 refer to the tube radius and the uniform liquid film thickness, respectively)
attains an asymptotic value of 1/3 when the bubble capillary number Cab = μUb/σ approaches 2
(with μ being the viscosity of the liquid, σ the surface tension, and Ub the bubble velocity). Using
lubrication theory, Bretherton [2] showed that h0/R ≈ Ca2/3

b in the limits of Cab � 1 and Reb � 1,
where Reb = 2ρUbR/μ refers to the Reynolds number (with ρ being the density of the liquid).

Since the seminal works of Taylor [1] and Bretherton [2], the motion of long gas bubbles in cap-
illary tubes has become a classical fluid mechanics problem and has been studied extensively. The
effect of inertia on the front meniscus and film thickness of the bubble was studied experimentally
by Aussillous and Quéré [3], who provided an empirical correction to Bretherton’s law to fit Taylor’s
film thickness data [1] at large capillary numbers, and proposed a scaling law for the film thickness
in the presence of inertia. Han and Shikazono [4] performed direct film thickness measurements
with optical techniques using low-viscosity fluids and, in the limit of Reb < 2000, found that their
experimental data were best correlated as

h0

R
= 1.34Ca2/3

b

1 + 3.13Ca2/3
b + 0.504Ca0.672

b Re0.589
b − 0.352We0.629

b

, (1)

where the Weber number was defined as Web = 2ρU 2
b R/σ .

A lubrication theory approach to quantify film thickness in the presence of inertia was used by
de Ryck [5]. Numerical studies of the behavior of the front meniscus in the presence of inertia have
looked into the meniscus shape and film thickness [6], vortical structures ahead of the bubble tip
[7], and pressure drop across the bubble [8]. Numerical studies into the rear meniscus of the bubble
have reported that bubble undulations appear in the proximity of the tail when Reb � 1 and become
more apparent as Reb increases [9,10]. More recently, Magnini et al. [11] have used both lubrication
theory and direct numerical simulation approaches to study systematically the effect of Reb on the
tail dynamics. They observed that increasing inertia decreases monotonically the wavelength of the
tail undulations, which was also observed experimentally by Khodaparast et al. [12].

Often bubble dynamics is affected by deliberately placed or accidentally found surface active
agents. Surfactants find it more energy favourable to migrate toward fluid interfaces, where they act
to reduce surface tension. The presence of nonuniform interfacial species concentration can lead to
surface tension gradients, which, in turn, give rise to Marangoni stresses that drive fluid away from
regions of high surfactant concentration [13]. The presence of surfactants for confined gas-liquid
systems plays a significant role on the reopening of pulmonary airways [14–17], where the lack of
surfactants can lead to higher surface tension at the air-liquid interface, leading to blockage of the
passage way [17].

The significance of surfactant effects on confined gas-liquid systems has led to a number of
theoretical works, built upon the simplifying assumption of negligible inertia (Re � 1). Ginley and
Radke [18] studied the effect of adsorption controlled soluble surfactant transport on the motion
of gas bubbles in cylindrical tubes and reported that their presence results in an increased pressure
drop across the bubble and a slightly decreased thin film thickness. Ratulowski and Chang [19]
have shown that the presence of surfactant bulk concentration gradients can act to increase the
liquid film thickness by a maximum factor of 42/3 in comparison to the Bretherton theory [2].
This result was later confirmed by works from Park [20] and Stebe and Barthès-Biesel [21] and
was largely attributed to the presence of higher surfactant concentration at the front of the bubble
in comparison to the thin film region, where Marangoni stresses act to drive fluid from the front
into the thin film region. Further theoretical work by Borhan and Mao [22] focused on the effect of
insoluble surfactants on the motion and deformation of gas bubbles and reported that the presence of
Marangoni stresses acts to retard the bubble motion by opposing surface convection. Experimental
works on the effect of surfactants on film thickness have been primarily focused on coating
processes. Ou Ramdane and Quéré [23] focused on fiber coating and observed a film-thickening
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factor ranging between 1 and 42/3 compared to the “clean” interface case, depending on the radius
of the coated wire. Film thickening in the presence of surfactants was also found in plate-coating
applications [24,25], often referred to as the “Landau-Levich problem.”

Other numerical works have focused on the effect of soluble surfactants on liquid displacement
by a gas phase in the negligible inertia regime [26,27]. Severino et al. [27] reported film thickening
in all cases, whereas Ghadiali and Gaver [26] found that for bulk Péclet number Pec > 10, where
Pec = UbR/Dc with Dc being the bulk diffusion coefficient, or low adsorption rates, film thinning
may occur. Further computational efforts by Johnson and Borhan [28] investigated the effect of
soluble surfactants on bubble motion and concluded that at low surface coverage, reduced drop
mobility is uniform, whereas at high concentration a stagnant bubble cap forms. More recently,
Olgac and Muradoglu [29] performed an extensive study of the effect of a wide range of surfactant
parameters on the film thickness of the bubbles.

The review of the literature above highlights the fact that the existing studies have primarily
focused on the impact of surfactants in flow conditions where inertia is negligible. The aim of
this work is to investigate the effect of surfactants on elongated gas bubbles propagating through
capillary tubes, when inertial forces have a significant impact on the liquid film dynamics (Re � 1).
In particular, this work will focus on the effect of surfactant addition on the undulatory structures
observed at the bubble tail. The dynamics of the tail undulations plays a role for a number of engi-
neering and scientific applications such as microchannel flow boiling [30], with specific emphasis on
the potential occurrence of liquid film rupture and dryout [31], and cleaning of microorganisms from
the walls of confined microgeometries [32]. In these applications, water and other low-viscosity
refrigerant fluids are utilised, at high flow rates, such that the Reynolds number may exhibit values
of Re ∼ 103 even in submillimetric capillaries [12].

We employ fully three-dimensional direct numerical simulations, using a hybrid interface-
tracking/level-set method (also known as the Level Contour Reconstruction Method), proposed
by Shin et al. [33–37], where the unsteady dynamics of the free-interface is resolved explicitly. A
comprehensive computational study is performed to assess the influence of a range of dimensionless
groups associated with the flow (e.g., Reynolds and capillary numbers) and the surfactants properties
(e.g., Péclet number, elasticity number, Biot number, Damkohler number, and adsorption depth), on
the bubble dynamics. The rest of this paper is organised as follows: in Sec. II the governing equations
are presented, along with a description of the computational setup, scaling, and validation of the
numerical procedure. The main results and discussion are presented in Sec. III, where the overall
effect of surfactant addition is discussed first, followed by a thorough parametric study. Finally, the
main conclusions of this work are detailed in Sec. IV.

II. FORMULATION AND PROBLEM STATEMENT

A. Governing equations

In this section, the governing equations are presented in the context of the Level Contour
Reconstruction Method (LCRM). The propagation of a gas bubble through a liquid-filled cylindrical
tube of diameter D is considered, as shown in Fig. 1. The gas and liquid are assumed to be
immiscible, incompressible Newtonian fluids, and gravitational effects are neglected. The continuity
and momentum equations are written in a three-dimensional Cartesian domain using a single-fluid
formulation, respectively:

∇ · u = 0,

ρ
(∂u

∂t
+ u · ∇u

)
= −∇p + ∇ · μ(∇u + ∇uT ) +

∫
A
σκnδ(x − x f ) dA +

∫
A
∇sσδ(x − x f ) dA,

(2)
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FIG. 1. (a) Initial three-dimensional bubble shape and parabolic velocity profile imposed at the tube inlet.
(b) Schematic representation of the problem in a vertical centerline (x, y) plane, where D denotes the tube
diameter, Ub is the bubble-tip velocity, h is the vertical distance of the liquid-gas interface from the y = 0 axis,
and h0 is the uniform liquid film thickness.

where t , u, and p denote time, velocity, and pressure, and the density ρ and viscosity μ are given by

ρ(x, t ) = ρb + (ρl − ρb)I (x, t ),

μ(x, t ) = μb + (μl − μb)I (x, t ). (3)

Here I (x, t ) represents a smoothed Heaviside function, which is zero in the bubble (gas) phase and
unity in the liquid phase, while the subscripts l and b designate the individual liquid and bubble
phases, respectively. The last two terms on the right-hand side of Eq. (2) represent the normal and
tangential components of the surface tension force, respectively. The former is associated with the
mean surface tension, σ , whereas the latter appears as a consequence of surface tension gradients,
giving rise to Marangoni stresses; κ denotes the interface curvature, ∇s is the surface gradient
operator, and n is the outward-pointing unit normal to the interface. The three-dimensional Dirac
delta function, δ(x − x f ), vanishes everywhere except at the interface localised at x = x f .

The surfactant concentration on the interface, �, is governed by the following conservation
equation:

∂�

∂t
+ ∇s · (�ut ) = Ds∇2

s � + Ṡ�, (4)

where ut = (us · t)t is the tangential velocity vector in which us is the surface velocity and t is the
unit tangent to the interface. The diffusion of surfactant along the interface is accounted for in the
first term on the right-hand side, where Ds is the surface diffusion coefficient. The sorptive flux,
which characterizes the exchange of surfactant species between the bulk and the interface, is given
by the source term

Ṡ� = kaCs(�∞ − �) − kd�, (5)

where ka and kd are adsorption and desorption coefficients, respectively, Cs is the concentration of
surfactant in the bulk subphase, immediately adjacent to the interface, and �∞ is the interfacial
surfactant concentration at saturation. The transport of surfactant concentration C in the bulk is
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governed by

∂C

∂t
+ u · ∇C = Dc∇ · (∇C), (6)

where Dc refers to the surfactant diffusivity in the bulk phase. The source term in Eqs. (4) and (5)
can be related to the bulk concentration by

n · ∇C|interface = − Ṡ�

Dc
. (7)

The equation of state used in this work to describe the decrease of σ with � is given by the
Langmuir relation [37,38]:

σ = σs + �T �∞ ln
(

1 − �

�∞

)
= σs

[
1 + βs ln

(
1 − �

�∞

)]
, (8)

where σs is the surface tension of the “clean” interface, � is the ideal gas constant, T is temperature,
and βs = �T �∞/σs is defined as the surfactant elasticity parameter.

All variables are rendered dimensionless by using the following scalings:

x̃ = x
D

, ũ = u
U

, t̃ = t

D/U
, p̃ = p

ρlU 2
, σ̃ = σ

σs
, �̃ = �

�∞
, C̃ = C

C∞
, C̃s = Cs

C∞
,

(9)

where the tildes designate dimensionless quantities. Here the diameter D, the average liquid velocity
at the tube inlet U , and C∞, are used as the characteristic length, velocity, and bulk concentration
scales. As a result of this scaling, Eqs. (2)–(8) become

∇ · ũ = 0,

ρ̃
(∂ũ

∂ t̃
+ ũ · ∇ũ

)
= −∇ p̃ + 1

Re
∇ · [μ̃(∇ũ + ∇ũT )] + 1

Re Ca

∫
Ã

(σ̃ κ̃n + ∇sσ̃ )δ
(
x̃ − x̃ f

)
dÃ,

(10)

ρ̃(x, t ) = ρb

ρl
+

(
1 − ρb

ρl

)
I (x, t ),

μ̃(x, t ) = μb

μl
+

(
1 − μb

μl

)
I (x, t ), (11)

∂C̃

∂ t̃
+ ũ · ∇C̃ = 1

Pec
∇ · (∇C̃), (12)

∂�̃

∂ t̃
+ ∇s · (�̃ũt ) = 1

Pes
∇2

s �̃ + Bi
[
kC̃s(1 − �̃) − �̃

]
, (13)

n · ∇C̃|interface = −Pec Da Bi
[
kC̃s(1 − �̃) − �̃

]
, (14)

σ̃ = 1 + βs ln (1 − �̃). (15)

The dimensionless parameters appearing in these equations are given by

Re = ρlUD

μl
; Ca = μlU

σs
; Pec = UD

Dc
; Pes = UD

Ds
; Bi = kd D

U
; Da = �∞

DC∞
; k = kaC∞

kd
, (16)

where Ca and Re are the liquid capillary and Reynolds numbers, and the density and viscosity
ratios are represented by ρl/ρb and μl/μb, respectively. The competition between convection and
diffusion for the surfactant species at the interface and in the bulk is characterized by Pes and Pec,
respectively. Other surfactant-related parameters are the Biot number, Bi, Damkohler number, Da,
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and the adsorption depth, k. The bulk surfactant concentration, used as an initial condition, and kept
constant throughout the simulation, is represented by C∞. The surface tension gradients give rise to
the Marangoni stresses, which can be expressed in terms of � by

1

Re Ca
∇sσ̃ · t ≡ τ̃

Re Ca
= −Ma

1

(1 − �̃)
∇s�̃ · t, (17)

where Ma ≡ βs/Re Ca = �T �∞/ρlU 2D is a Marangoni parameter.

B. Problem statement and validation

The flow domain is a tube of circular cross section of diameter D and length 27.8D, which is
modeled with a three-dimensional geometry. The walls of the tube are constructed via a module
that defines solid objects by means of a signed distance function, an approach that was previously
adopted for more complex geometries when using the present numerical solver [39,40]. The
elongated bubble is initially located at the beginning of the channel, and its shape is initialized using
a cylindrical body with a cross-sectional diameter Db = 0.94D, and two hemispherical caps at its
two ends, as indicated in Fig. 1(a). We adopt a reference frame where x represents the streamwise
coordinate, y the vertical coordinate with y = 0 being the bottom line of the tube, and z the horizontal
coordinate. The length of the bubble, Lb, is one of the parameters varied in this work. The flow is
initiated by imposing a fully developed parabolic velocity profile at the inlet (i.e., x = 0). A no-slip
boundary condition is imposed on the channel wall. The channel length is set to be sufficiently long
to allow for the development of steady-state motion of the bubble.

The effect of the governing dimensionless groups in Eq. (16) is explored through a systematic
parametric study throughout which the density and viscosity ratios are kept constant at ρl/ρb =
1000 and μl/μb = 100, respectively, representing the values associated with an air-water system. A
“base” case is defined, characterized by the following dimensionless parameters listed in Eq. (16):
Re = 443, Ca = 0.0089, Pec = 100, Pes = 100, βs = 0.5, Bi = 1, Da = 0.1, k = 1, and Ma =
0.13; the initial dimensionless length of the bubble for the base case is kept as L̃b ≡ Lb/D = 5.
At equilibrium, adsorption and desorption are equal and the source term in Eq. (5) is equal to zero.
Assuming that the surfactant concentration near the interface is equal to the surfactant concentration
in the bulk Cs = C∞, the following relationship for �eq can be obtained:

�eq

�∞
= k

k + 1
. (18)

For the base case (e.g., k = 1), this relationship becomes �eq = 0.5�∞. The initial interfacial
surfactant concentration is specified to be 50% of the equilibrium concentration.

The computations are assumed to reach steady state when the change in total bubble concentra-
tion is below 0.1% for one period of dimensionless time as suggested by Olgac and Muradoglu [29].
In addition, the steady propagation of the bubble is also monitored. The “clean” case is presumed
to be at steady state when the change in velocity of the bubble front and back menisci is less than
0.1%. As suggested by Ratulowski and Chang [19], a balance between adsorption and interfacial
convection is achieved if the Stanton number, St = ka�∞/U , is St ≈ O(Ca1/3), which is the case
for the selected base case parameters. Following the guidelines by Ratulowski and Chang [19],
the selected bulk Péclet number represents a system where both convective and diffusive transport
[Pec ≈ O(Ca−2/3)] parts play a role in the dynamics and both need to be resolved.

The computational work in this study employs a three-dimensional uniform Cartesian grid.
The grid dependence analysis [see Fig. 2(a)], performed for the base case surfactant-free bubble
parameters, shows that doubling the cell count in each direction has a negligible effect on the
bubble shape. All subsequent simulations are performed using the coarser grid of 56.6 million
cells (i.e., 3456 × 128 × 128). Validation is performed against the empirical correlation for film
thickness presented by Han and Shikazono [4] and given by Eq. (1). The film thickness in the
computational results is evaluated at the midpoint between the bubble nose and tail, where the
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FIG. 2. (a) Mesh dependence study for a “clean” bubble with reference parameters Re = 443 and Ca =
0.0089; (b) comparison of the experimental correlation of Han and Shikazono [4] with the simulation results
from this study, for a varying capillary number and fixed Re = 443.

liquid film is uniform. At this location, the value of the film thickness is representative of an average
value for the bubble. The numerical results are found to be in good agreement with the experiment,
with a maximum 10% deviation that is within the uncertainty of the experimental correlation [4].

III. RESULTS AND DISCUSSION

A. Effect of Marangoni stresses

In this section, the effect of key flow and surfactant dimensionless groups on the bubble
dynamics is studied. First, the effect of the base case surfactant parameters is considered. As
described previously, the addition of surface active species acts to reduce the surface tension and
gives rise to surface tension gradients. In order to isolate the effect of the Marangoni stresses, a
simulation is performed where the surface tension, σ , is set equal to the steady-state average surface
tension for the surfactant base case. As σ = σ (�), the average interfacial concentration is evaluated
and then used to calculate the effective surface tension, σeff , given by Eq. (8). To distinguish between
the cases, a capillary number based on the effective surface tension is defined for this section,
Caeff = μlU/σeff . This effective capillary number for the surfactant base case is Caeff = 0.0094.
Although the change in capillary number is not expected to influence the bubble dynamics
significantly, the Caeff = 0.0094 case allows us to separate the effect of surfactants on reducing the
mean surface tension, from that associated with the formation of Maragoni stresses due to surface
tension gradients. This case will be referred to below as the “no-Marangoni” case, or τ̃ = 0.

The effect of the base case surfactant parameters in comparison to the “clean” and “no-
Marangoni” cases is presented in Fig. 3. In Fig. 3(a) it is seen that the surfactant is swept to the
back of the bubble by the flow and accumulates in that region as also shown in Fig. 3(b), which
illustrates the variation of the interfacial concentration, �̃, along x̃ for the Marangoni-supported
case. The �̃ profile exhibits an increase to a peak value, which is spatially coincident with the peak
of the interfacial oscillation at the bubble tail shown in Fig. 3(c). The concentration then decreases
via mild undulations towards an essentially constant value, which extends over a substantial fraction
of the bubble; these �̃ variations are mirrored by similar characteristics in the bubble shape where
the constant �̃ region coincides with that of the film of uniform thickness that separates the bubble
from the wall. The concentration �̃ then undergoes a decrease followed by an increase in response of
a stagnation point located near the bubble tip, as it will be revealed below by the analysis of the fluid
flow. The average film thickness for the surfactant base case is seen to decrease when compared to
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FIG. 3. Effect of surfactant on the flow characteristics; (a) three-dimensional representation of the bubble
shape for the surfactant-free (top) and surfactant-laden (bottom) cases, with the color indicating the magnitude
of surfactant interfacial concentration, �̃; (b) variation of �̃ along x̃; (c) two-dimensional projection (in the
z = 0 plane) of the bubble shape for the surfactant-free (solid line), and surfactant-laden cases in the presence
(dashed) and absence (dotted) of Marangoni stresses. Also shown in (c), as a red dashed line, is the x̃ variation
of the Marangoni stresses, τ̃ . The capillary numbers for the surfactant-free and surfactant-laden cases are
0.0089 and 0.0094, respectively, while the rest of the parameters are Re = 443, Pec = Pes = 100, Da = 0.1,
k = 1, Bi = 1, βs = 0.5, and Ma = 0.13.

the “clean” and “no-Marangoni” cases by 2.5% and 3.6%, respectively; similar observations were
made by Ghadiali and Gaver [26].

The nonuniform distribution in �̃ near the two extremes of the domain gives rise to concentration
gradients and Marangoni stresses whose spatial variation is also shown in Fig. 3(c). A close
comparison of the tail dynamics associated with the “clean” and “no-Marangoni” cases shown in
the inset of Fig. 3(c) reveals that these dynamics are essentially independent of the presence of
surfactant; in contrast, the oscillations in the Marangoni-supported case are damped significantly
thereby illustrating that the damping is Marangoni-driven. This is explained further via inspection
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FIG. 4. Effect of surfactant on the magnitude of the dimensionless strain rate S̃, (a), and vorticity 
̃, (b),
for the surfactant-free (top) and Marangoni-supported surfactant-laden (bottom) cases for the same parameters
as in Fig. 3; here S and 
 are scaled on D/U . The streamlines are drawn in the bubble-tip reference frame.
The vortical structures identified in zones “A,” “C,” and “E” and B,” “D,” and “F” rotate in a clockwise and
counterclockwise direction, respectively.

of the surfactant distribution near the bubble tail, which induces Marangoni stresses that drive flow
away from the peak of the interfacial oscillation, decreasing its amplitude. The Marangoni stresses
are predominantly positive in this region, and thus they act to retard the flow and “rigidify” the
interface. As the right domain boundary is approached, the magnitude of the Marangoni stresses
decreases considerably though they remain positive-valued apart from a narrow region in which
they are negative in response to surfactant accumulation at the bubble nose. The rigidifying effect
of the Marangoni stress at the front and the back of the bubble reduces the speed of the bubble by
approximately 5%, an effect previously observed by Borhan and Mao [22].

In Fig. 4 we show the effect of surfactant on the strain rate and vorticity for the same parameter
values as those used to generate Fig. 3. A comparison of the strain rate and vorticity patterns asso-
ciated with the “clean” and surfactant-laden, Marangoni-supported cases reveals some similarities
in terms of the counterrotating vortical structures in regions “A” and “B” and “D” and “E,” in the
former and latter cases, respectively. Note the stagnation point at the boundary between the regions
’E” and ’D” for the surfactant-laden case; here the streamlines diverge driving the surfactant away
from the stagnation point, which yields the local minimum of �̃ observed in Fig. 3(b). It can also
be seen that Marangoni-driven damping of the tail oscillations leads to suppression of the vortical
structures in regions “B” and “C” that are a feature of the back of the “clean” bubble case. Vortex
“F” in Fig. 4 is related to the change in the sign of the Marangoni stresses near the back of the
surfactant-laden bubble discussed above.

Next, we investigate the effect of altering the Marangoni parameter, Ma, on the flow profiles with
Ca = 0.0089 and Re = 443 with all other parameters remaining unchanged from Fig. 3. In Fig. 5
it is seen that increasing Ma leads to more effective suppression of the bubble tail interfacial and ũt

oscillations, as shown in Figs. 5(a) and 5(c); the increase in Ma also results in a slight elongation
of the bubble. The reduced interface mobility resulting from the rise in Ma results in more uniform
�̃ distributions, as can be seen in Fig. 5(b), and, therefore, the weakest �̃ gradients, and hence
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FIG. 5. Effect of varying Ma on the steady spatial distribution of the Marangoni stresses and two-
dimensional projection (in the z = 0 plane) of the bubble shape (a), the interfacial surfactant concentration
and resulting surface tension (b), and the streamwise component of the interfacial velocity in the frame of
reference of the bubble tip (c), where ũt = (ut − Ub)/Ub; here Ca = 0.0089 and the rest of the parameters
remain unchanged from Fig. 3.

smallest steady Marangoni stresses. As a result, the largest Marangoni stresses are those observed at
the bubble tail for the lowest finite Ma studied, as was also reported by Olgac and Muradoglu [29].

B. Effect of Ca and Re

This section focuses on the effect of varying the Reynolds and capillary numbers in the presence
of surfactant, where the base case surfactant parameters remain unchanged from Pec = Pes = 100,
Da = 0.1, k = 1, Bi = 1, βs = 0.5, and Ma = 0.13. The investigation begins with variation of
the capillary number as shown in Fig. 6 generated for Ca = 0.0089 and Ca = 0.0377 for both
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FIG. 6. Effect of varying Ca on the steady spatial distribution of the Marangoni stresses and two-
dimensional projection (in the z = 0 plane) of the bubble shape (a), the interfacial surfactant concentration
(b), and the streamwise component of the interfacial velocity in the frame of reference of the bubble tip (c),
where ũt = (ut − Ub)/Ub; the rest of the parameters remain unchanged from Fig. 3.

surfactant-free and surfactant-laden bubbles, with Re = 443. Inspection of Fig. 6(a) reveals that
an increase in Ca results in film thickening, while the amplitude of the interfacial undulations
near the back of the bubble increases and their wavelength decreases with Ca, as also previously
observed by Magnini et al. [11]. It is also seen clearly that the addition of surfactant dampens these
oscillations for both capillary numbers, as demonstrated in the inset of Fig. 6(a). This is due to the
accumulation of surfactant at the bubble rear, depicted in Fig. 6(b), which leads to the formation of
large Marangoni stresses in this region, as discussed in Sec. III A, whose magnitude increases with
Ca [see Fig. 6(a)].
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It is also instructive to examine the variation of the interfacial tangential velocity component
in the bubble-tip reference frame ũt ≡ (ut − Ub)/Ub, where Ub is the bubble-tip speed, along
x̃, x̃ = x/D, shown in Fig. 6(c). For all the cases considered, ũt = 0 at the bubble tip due to
the chosen moving frame of reference; ũt then becomes positive-valued behind the tip before
decreasing through zero, which coincides with the location of the stagnation point that separates
the counterrotating vortices at the bubble front discussed above in connection with Fig. 4. The
tangential velocity assumes a value of ũt = −1, indicating a free-slip interface, over a significant
proportion of the flat film region of the bubble before reaching ũt = 0 at the bubble rear through
oscillations that are damped severely in the surfactant-laden case, due to the rigidifying effect of the
surfactant-induced Marangoni stresses.

In Fig. 7 we study the effect of increasing inertia on the bubble dynamics by raising Re from Re =
443 to Re = 728 with Ca = 0.0089 and the rest of the parameters remaining unaltered from Fig. 3. It
is observed from Fig. 7(a) that a rise in Re in the surfactant-free case increases the amplitude and the
frequency of the interfacial oscillations at the bubble tail; this is similar to the observations made
by Magnini et al. [11] who examined the interfacial undulations of elongated “clean” bubbles in
confined geometries. The accumulation of surfactants at the trailing end of the bubble [see Fig. 7(b)]
and the associated Marangoni stresses lead to dampening of these oscillations for both investigated
Re. This effective Marangoni-induced reduction in the mean radius at the back of the bubble is
accompanied by a slight increase in bubble length, which is more pronounced for the Re = 443 case.
The rigidifying effect of the Marangoni stresses also manifests itself clearly in Fig. 7(c) through
the suppression of the oscillations in the dimensionless streamwise component of the interfacial
velocity, ũt , present at the back of the surfactant-free bubble; this effect is also seen in the decrease
of the peak amplitude of ũt near the bubble tip and its shift upstream.

C. Bulk surfactant effects

We now examine the effect of varying the Damkohler number, Da, and the surfactant adsorption
depth, k, on the flow profiles with Ca = 0.0089, Re = 443, the rest of the parameters remain
unchanged from Fig. 3. The dimensionless group Da, within the context of the present work,
measures the relative significance of the bulk surfactant concentration, C∞. The parameter k controls
the surfactant sorption kinetics: for a fixed C∞, large values of k correspond to small desorption
and/or large adsorption constants, and hence slow desorption and/or rapid adsorption. In order to
keep all other parameters constant, we vary Da and k simultaneously. In Fig. 8 we show the bubble
shape, and spatial distributions of �̃, ũt , and the Marangoni stresses for Da = 0.01, 0.1, 1 with
k = 10, 1, 0.1, respectively. For Da = 1 and k = 0.1, the bubble shape and the ũt profiles exhibit
virtually no difference from the surfactant-free case since the bulk concentration is relatively low
and a limited amount of surfactant remains on the interface [see Fig. 8(b)]. Decreasing the value of
Da from unity to 0.1, with k increasing to 1, leads to a significant increase in �̃ accompanied by a
rise in the magnitude of the Marangoni stresses, which result in damping of the bubble oscillations
and rigidification of the tail region. A further decrease in Da from 0.1 to 0.01, with k increasing
to 10, corresponding to an order of magnitude rise in C∞, leads to more surfactant being adsorbed
onto the interface, and a qualitative change in the structure of the �̃ spatial distribution. As shown
in Fig. 8(b), although �̃ remains highest at the bubble tail, its distribution no longer exhibits a
quasiconstant region in the middle of the bubble as had been observed in Figs. 3–7. As a result,
the Marangoni stresses are nonzero over the entire bubble, even in the thin film region, which
no longer has a uniform thickness but is sloped from the bubble midpoint towards the front and
rear menisci [see Fig. 8(a)]; furthermore, it is seen that the bubble is elongated significantly for
Da = 0.01. Although the magnitude of the Marangoni stresses for Da = 0.01 at the bubble tip and
tail are respectively higher and lower than those associated with Da = 0.1, the cumulative effect is
a substantial reduction in the magnitude of ũt , as shown in Figs. 8(a) and 8(c), i.e., the interface
allows only partial slip.
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FIG. 7. Effect of varying Re on the steady spatial distribution of the Marangoni stresses and two-
dimensional projection (in the z = 0 plane) of the bubble shape (a), the interfacial surfactant concentration
(b), and the streamwise component of the interfacial velocity in the frame of reference of the bubble tip (c),
where ũt = (ut − Ub)/Ub; here Ca = 0.0089 and the rest of the parameters remaining unchanged from Fig. 3.

Next, we study the effect of the Biot number, Bi, which is a ratio of the flow and desorption time
scales; thus, small Bi values are characteristic of slow surfactant desorption kinetics. In Fig. 9 which
depicts the steady bubble shape and �̃, ũt , and Marangoni stress distributions for Bi in the range
0.01–5, it is seen clearly that this parameter has a profound effect on these profiles. In particular,
there is a critical Bi value that is a function of the remaining parameters, for which there is a flow
regime transition.

For Bi = 1, 5, all flow variables shown in Fig. 9 exhibit similar profiles to those discussed above:
surfactant accumulation at the bubble rear, and Marangoni-driven rigidification leading to damping
of tail oscillations. As depicted in Fig. 9(b) for Bi = 0.1, however, it appears that the bubble is
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FIG. 8. Effect of varying Da and k on the steady spatial distribution of the Marangoni stresses and two-
dimensional projection (in the z = 0 plane) of the bubble shape (a), the interfacial surfactant concentration (b),
and the streamwise component of the interfacial velocity in the frame of reference of the bubble tip (c), where
ũt = (ut − Ub)/Ub; here Ca = 0.0089, and the rest of the parameters remaining unchanged from Fig. 3.

divided into two distinct regions: a surfactant-covered region, Region “1,” in which �̃ decreases
from the bubble rear to very low values at the bubble midpoint approximately, which gives way
to Region “2” that extends to the bubble tip with much smaller concentrations. Following the tail
undulation, the liquid film in Region 1 decreases gradually to an essentially constant value, which
marks the beginning of the Region 2, as shown in Fig. 9(a). Inspection of Fig. 9(c) reveals that ũt is
essentially zero at the bubble rear, highlighting the rigidifying effect of the surfactant in Region 1,
before reaching a value of ũt = −1, via a damped oscillation, at the start of Region 2. Due to the
virtual absence of surfactant, Region 2 is considerably more mobile than Region 1 for the Bi = 1
case. Interestingly, Region 2 also exhibits undulations at its trailing edge, which are similar to those
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FIG. 9. Effect of varying Bi on the steady spatial distribution of the Marangoni stresses and two-
dimensional projection (in the z = 0 plane) of the bubble shape (a), the interfacial surfactant concentration
(b), and the streamwise component of the interfacial velocity in the frame of reference of the bubble tip (c),
where ũt = (ut − Ub)/Ub; here Ca = 0.0089, and the rest of the parameters remaining unchanged from Fig. 3.

observed at the tail of a “clean” bubble though of smaller amplitude. This is due to the sign of the
interfacial curvature upstream of the undulations, which is positive in the clean bubble case, and neg-
ative at the beginning of Region 2 wherein the interface must adjust to an essentially flat Region 1.

The trends for the Bi = 0.1 case become more pronounced by lowering Bi further to Bi = 0.01:
there is a significant rise in �̃ in Region 1, the majority of which is rigid, and whose length is
extended beyond the bubble midpoint. The transition between Regions 1 and 2 is much sharper for
Bi = 0.01 in comparison to the Bi = 0.1 case characterized by abrupt film thinning, rapid variation
in ũt from ũt = 0 to ũt = −1, and a frontlike structure exhibited by the Marangoni stress at the
leading edge of Region 1. The bubble also becomes more elongated following the decrease in Bi.
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FIG. 10. Flow profiles associated with the Bi = 0.01 case with the rest of the parameters remaining
unchanged from Fig. 9; (a) three-dimensional representation of the bubble shape colored by the magnitude
of the interfacial surfactant distribution, �̃; (b) profiles of the dimensionless streamwise velocity component,
ũx = (ux − Ub)/Ub, calculated in a bubble-tip frame of reference, along the cross-stream direction, y, for the
two axial locations indicated in (a), which are in Regions 1 and 2, as described in the text; vortical structure
evolution at t̃ = 3 and at steady state, shown in (c) and (d), with the magnitude of the dimensionless vorticity,

̃, and strain rate, S̃, depicted in the top half and bottom half of each panel, respectively. The vortices
labeled “A” and “B” in panel (c) rotate in the clockwise and counterclockwise directions, respectively. In panel
(d) the vortices labeled “C” and “E” and vortex “D” rotate in the counterclockwise and clockwise directions,
respectively; identical structures in the top half of the panel rotate in the opposite directions. All streamlines
are presented in a frame of reference moving with the bubble tip.

It is worth remarking on the fact that the surfactant-laden interface becomes, effectively, a no-slip
surface in Region 1 for Bi = 0.01; this is chiefly the reason underlying the film-thickening in this
region shown in Fig. 9(a). Parallels can be drawn with the work of Yu et al. [41], where similar
observations were made when the bubble rear was coated with particles. These authors found that
the measured film thickness of the particle-coated thicker film region grows by a factor of 22/3 in
comparison to the solution for a “clean” bubble. The thickening factor observed in this work in the
case of Bi = 0.01 is 1.5876, which is approximately 22/3.

In Fig. 10(a) we show a three-dimensional representation of the bubble shape for the Bi = 0.01
case with the color being indicative of the magnitude of �̃; this shows clearly the surfactant-laden
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and surfactant-free regions discussed above. We also plot in Fig. 10(b) the variation of the dimen-
sionless streamwise velocity component, ũx, in the wall-normal direction within the films in Regions
1 and 2 in a frame of reference moving with the bubble. It is seen that in Region 1, ũx = −1 and zero
at the tube wall and the gas-liquid interface, respectively, which correspond to no-slip conditions
reflecting the rigidified nature of the interface in this region. As a result, the ũx profile in Region
1 is predominantly Couette-like due to the absence of significant pressure gradients arising from
interfacial curvature effects. In the more mobile Region 2, the liquid in this region is effectively
in plug flow since ũx = −1 at the wall located at ỹ = 1, and the interfacial condition corresponds,
effectively, to one of no-shear stress, ∂ ũx/∂ ỹ ≈ 0, due to the absence of surfactant.

The Couette-like profile in Region 1 leads to the development of a zone with nearly uniform
vorticity and strain rates across this region, as shown in Figs. 10(c) and 10(d). Exploring the
evolution of the vortical structures, it is seen in Fig. 10(c) that prior to the development of Region 1
two counterrotating recirculation zones form at the front and the back of the bubble [see zones “A”
and “B” in Fig. 10(c)]. The vortex identified in zone “A” helps the migration of surfactant species
towards the bubble tail, whereas the one at the bubble tail [see zone “B” in Fig. 10(c)] inhibits
the surfactants from migrating further back. This gives rise to elevated Marangoni stresses, which
as seen leads to the creation of the thicker film region by pushing the liquid towards the center
of the tube. At steady state, the larger vortex that spans across the thicker film region [see zone
“E” in Fig. 10(d)] is counterrotating to the one ahead of it [see zone “D” in Fig. 10(d)], helping
the preservation of a constant vorticity rate across that region. An additional vortex forms at the
bubble head promoting the migration of surfactant species towards the bubble tip [see zone “C” in
Fig. 10(d)].

We now examine the effect of diffusion, whose relative significance is characterized by the
interfacial and bulk Péclet numbers, on the steady flow profiles of the Bi = 0.01 case; the results
are shown in Fig. 11 with Pec = Pes, and the rest of the parameters remaining unchanged from
Fig. 9. First we inspect the effect of Pec,s on the surfactant-covered Region 1. Upon investigation
of the bubble shape in Fig. 11(a), we see that Region 1 is the thickest and longest one observed for
the highest investigated Péclet number (i.e., Pec,s = 500). Lowering bulk and interfacial diffusion
allows for the Marangoni stress field to push further towards the bubble tip in comparison to
Pec,s = 100. In addition, inspection of Fig. 11(b) reveals a steeper concentration gradient between
Regions 1 and 2 for Pec,s = 500 in comparison to Pec,s = 100, whereas, for Pec,s = 10, the spatial
distribution of �̃ is more gradual between the two regions, highlighting the stronger diffusive
effects. The elimination of the abrupt concentration gradient in the case of Pec,s = 10 results in
the suppression of undulation structures at the beginning of Region 2. In Fig. 11(c) we observe that
the mobility of this zone is also reduced.

D. Effect of bubble length at low Bi

Finally, we study the effect of varying the dimensionless bubble length, L̃b ≡ Lb/D, on the flow
profiles for the Bi = 0.01 case with Ca = 0.0089 and the rest of the parameters remaining unaltered
from Fig. 3. We focus on the influence of L̃b on the development of the two regions that arise for
sufficiently low Bi values discussed above. A summary of the results is shown in Fig. 12. It is seen
clearly from Fig. 12(a) that for the shortest bubbles examined, the interface is covered fully with
surfactant, with the peak of the distribution located near the bubble rear. The Marangoni stresses
associated with this case act to smooth the tail oscillations and “rigidify” the interface effectively,
as indicated by the low value of ũt presented in Fig. 12(c). Furthermore, the two-region structure
observed for low Biot numbers discussed in the previous section is absent in the L̃b = 2 case. In
contrast, the remaining cases examined, for which L̃b = 3 − 5, all demonstrate the development of
a trailing edge, the shape and length of which is governed by the elevated Marangoni stress zone, and
ahead of which there is a markedly thinner surfactant-free region, as shown in Fig. 12(a). Though
the latter region becomes more fully developed with increasing L̃b, there is very little qualitative
difference between the flow profiles associated with these L̃b = 3 − 5 cases.
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FIG. 11. Effect of varying Pec (set equal to Pes) on the steady spatial distribution of the Marangoni
stresses and two-dimensional projection (in the z = 0 plane) of the bubble shape (a), the interfacial surfactant
concentration, (b) and the streamwise component of the interfacial velocity in the frame of reference of the
bubble tip (c), where ũt = (ut − Ub)/Ub; here Ca = 0.0089, Bi = 0.01, and the rest of the parameters remain
unchanged from Fig. 3.

IV. CONCLUSION

The effect of surfactants on the dynamics of elongated bubbles propagating through capillary
tubes was studied extensively using a hybrid front-tracking/level-set method. The convective-
diffusive transport of surfactant species along the gas-liquid interface and in the bulk is fully
coupled to the Navier-Stokes equations, where surface tension is related to the interfacial surfactant
concentration using a nonlinear Langmuir equation of state. The simulations performed in this work
consider the effects of inertia, capillarity, bulk and interfacial diffusion, and Marangoni stresses
arising from the presence of surfactant-induced surface tension gradients, on the flow dynamics;
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FIG. 12. Effect of varying the initial dimensionless bubble length, L̃b on the steady spatial distribution of
the Marangoni stresses and two-dimensional projection (in the z = 0 plane) of the bubble shape for L̃b = 2 − 5
(a), the interfacial surfactant concentration (b), and the streamwise component of the interfacial velocity in the
frame of reference of the bubble tip (c), where ũt = (ut − Ub)/Ub; here Bi = 0.01, Ca = 0.0089, and the rest
of the parameters remaining unchanged from Fig. 3.

attention was focused on high Reynolds numbers. The numerical predictions were validated against
previous experimental work [4] before performing a full parametric study.

It was found that the presence of surfactants is effective in suppressing the bubble tail undu-
lations, which are otherwise present in surfactant-free systems. In addition, at the lower range of
the capillary and Reynolds numbers examined, surfactants are found to have a wall-film-thinning
effect, attributed to the formation of Marangoni stresses. We have also shown that increasing the
strength of Marangoni stresses reduces the mobility of the interface at the bubble rear significantly,
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and at high bulk concentrations these stresses influence the flow profiles over the entire bubble.
At low surfactant solubility, characterized by small Biot numbers, the steady bubble shape features
the formation of two distinct regions: a surfactant-covered, interfacially immobile region at the
bubble rear, and another, mobile region downstream extending to the bubble tip. The thick liquid
film associated with the former region gives way to a thinner film via a transition region whose
length decreases with decreasing Biot and increasing Péclet numbers. Connections are established
with previous studies involving armored confined bubbles, where the bubble rear is covered with
colloidal particles [41], in which similar phenomena are observed.

Finally, the effect of bubble length in the context of low-solubility surfactants was also investi-
gated. It was shown that almost complete rigidification of the bubble interface occurs for bubbles
with sufficiently small initial length, beyond which qualitatively similar profiles were observed,
characterized by the formation of the two-region structures mentioned above.
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