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Revisiting the Taylor-Culick approximation. II. Retraction of a viscous sheet
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We study the retraction of a viscous liquid sheet of finite length with negligible effect
of the ambient medium. Using the long-wavelength model we derive the scaling laws
and similarity solution for the interface profile of the retracting sheet. Far from the tip,
the similarity solution for the interface profiles converges to an asymptotic value of 1/4.
Direct numerical simulations are performed to compare the theoretical results with the
simulations. When the inertia is negligible, the interface profiles remain flat during the
retraction process which is in agreement with the self-similar solution. Using this similarity
solution we derive the expression for the temporal variation of the tip speed for finite liquid
sheets. We demonstrate that unlike an infinite sheet where the sheet retracts with a steady
speed (known as Taylor-Culick speed), the tip speed decreases as a function of time for a
finite liquid sheet. This is true when the viscous effects are larger than or of the same order
with the inertia effects. Otherwise, the sheet retracts with the formation of a bulbous tip
whose speed reaches a value closer to the Taylor-Culick speed.

DOI: 10.1103/PhysRevFluids.5.093603

I. INTRODUCTION

The retraction of liquid sheets has caught the attention of many researchers because of its
importance in a variety of applications such as atomization [1–3] and coating [4–6]. The first
theoretical investigation was performed by Dupré [7], where he reported that during the rupture
of an inviscid soap film, the hole expands at a constant speed. Using energy balance, he derived
the expression for the rim speed as U = √

2γ /ρh0, where γ is the surface tension coefficient, ρ is
the density of the soap film, and h0 is half of the initial thickness of the soap film. However, the
experimental results obtained by Ranz [8] showed that the actual speed is less than that predicted
by Dupré’s formula. Later, Taylor [9] and Culick [10] independently showed that the speed of the
rim is 1/

√
2 smaller than that predicted by Dupré’s formula, which was confirmed experimentally

by McEntree and Mysels [11]. By balancing surface tension and inertia effects, and assuming that
the liquid sheet retracts with the formation of a bulbous rim at its end, Taylor [9] and Culick [10]
obtained the rim speed. This speed, also known as Taylor-Culick speed, is given as

UTC =
√

γ

ρh0
. (1)

Following that, many studies have been performed on the retraction of liquid sheets [6,12–16].
The dynamics can be characterized in terms of the Ohnesorge number (Oh = μ/

√
ργ h0; μ is vis-

cosity of the liquid sheet), which represents the relative importance of viscous and inertia-capillary
forces. At low Ohnesorge number, the elongated sheet retracts with the formation of a bulbous rim
which, after a transient stage, reaches the Taylor-Culick speed [6]. In the opposite regime of high
Ohnesorge number, the film retracts with uniform thickening of the film without the formation of
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a bulbous end [14,17]. Earlier numerical studies have shown that despite the change in geometry
for high Ohnesorge number, for a sufficiently long sheet, the Taylor-Culick speed is reached in the
long-time limit [6,14]. Murano and Okumura [16] recently studied experimentally the retraction of
a liquid sheet formed by the bursting of a bubble at a free surface in a confined geometry. In the
high-Ohnesorge-number regime they found that the rim speed is better characterized by a balance
between viscous and capillary effects rather than by Taylor-Culick speed. Thus, a natural question
is What is the rim speed of a liquid sheet of finite length in the high Ohnesorge number regime?

In part I of this study [18] we have analyzed the retraction of an axisymmetric liquid ligament.
We show that the Ohnesorge number has a dramatic influence on the retraction speed. In the present
study, we focus on the viscous-dominated regimes of two-dimensional (2D) retracting sheets. To
address this problem, we use a combination of theoretical arguments and numerical simulations. A
long-wave model [19] for the retracting sheet is used to develop the theory. Based on the long-wave
equations, we find a self-similar solution in the Stokes flow limit. Numerical simulations are also
performed by solving the complete Navier-Stokes equations in order to examine the validity of the
theoretical results. Two idealized configurations are simulated representing either the bursting of a
soap film or a bursting bubble at a liquid-air interface. The rest of the paper is arranged as follows:
First, we present our theoretical analysis, and then we present the numerical results and discuss
those results in comparison to the theory. Finally, we wind up with a discussion and concluding
remarks.

II. THEORETICAL ANALYSIS

A. Long-wave equations

A convenient and widely used theoretical model to study the retraction of a viscous sheet is the
long-wave model. The long-wave equations are derived by Erneux and Davis [19] assuming that the
elongated liquid sheet is slender h0 � L0 (h0 is half of the initial thickness of the liquid sheet and
L0 is half of its initial length) and the surrounding fluid has negligible effect on the flow dynamics.
The long-wave equations for the motion of the slender liquid sheet can be written as [19,20]

∂h

∂t
+ ∂ (hu)

∂x
= 0, (2)

∂u

∂t
+ u

∂u

∂x
= 4μ

ρh

∂

∂x

(
h
∂u

∂x

)
− γ

ρ

∂κ

∂x
. (3)

Here h(x, t ) is the half-thickness of the sheet, u(x, t ) is the x-directional velocity, t is time, μ is the
dynamic viscosity, ρ is the density of the sheet liquid, and γ is the surface tension coefficient. The
curvature κ of the film is given by

κ = − ∂2h/∂x2

[1 + (∂h/∂x)2]3/2
. (4)

The complete expression for curvature is retained to capture the spherical cap at the tip of the
retracting sheet. The same technique has been successfully used by many researchers [6,14,17].

Equation (3) is made dimensionless using the following scaling: h = h0h∗, κ = (1/h0)κ∗, z =
L0z∗, t = (L0/u0)t∗, and u = u0u∗, where u0 is a characteristic velocity which is a priori unknown.
It gives

ρh0u2
0

γ

(
∂u∗

∂t∗ + u∗ ∂u∗

∂x∗

)
= μu0h0

γ L0

4

h∗
∂

∂x∗

(
h∗ ∂u∗

∂x∗

)
− ∂κ∗

∂x∗ . (5)

By balancing surface tension effect and viscous effect we obtain the characteristic velocity u0 =
(γ /μ)L0/h0 (hereafter the capillary velocity γ /μ and the capillary-viscous timescale μh0/γ are
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respectively written as Uv and tv). Replacing u0, Eq. (5) can be rewritten as

(L0/h0)2

Oh2

(
∂u∗

∂t∗ + u∗ ∂u∗

∂x∗

)
= 4

h∗
∂

∂x∗

(
h∗ ∂u∗

∂x∗

)
− ∂κ∗

∂x∗ . (6)

The inertial term becomes negligible if Oh � L0/h0. However, even at high Oh, the inertial term
can be nonnegligible if Oh ∼ L0/h0. This scaling is similar to the one obtained in part I of this study
[18] for an axisymmetric ligament.

B. Self-similar solution for Oh � L0/h0

In this study, we are interested in the retraction dynamics a liquid sheet for which the flow is
governed by the viscous and the capillary forces. Following the analysis of Sec. II A, we assume
Oh � L0/h0 and we completely neglect the inertial term. Therefore, Eq. (3) can be written as

0 = 4μ

h

∂

∂x

(
h
∂u

∂x

)
− γ

∂κ

∂x
. (7)

Integrating Eq. (7) from x to L, i.e., from an arbitrary position on the sheet to its tip

0 =
∫ L

x

[
4μ

∂

∂x

(
h
∂u

∂x

)]
dx −

∫ L

x

(
γ h

∂κ

∂x

)
dx. (8)

After some algebra we get

[
4μh

∂u

∂x

]L

x

−
{
γ

[
− hh′′

(1 + h′2)3/2
− 1

(1 + h′2)1/2

]}L

x

= 0. (9)

To evaluate the integral we assume that the liquid sheet has a round end-tip. The assumptions
lead to the following boundary conditions: h(L, t ) = 0 and ∂h/∂x(L, t ) = ∞. Applying the above
boundary conditions in Eq. (9) and neglecting the higher-order terms for the curvature we obtain

4
∂u

∂x
+ γ

μh
= 0. (10)

Equation (10) gives the evolution of the sheet far from the tip. We now assume that the sheet is
sufficiently long to be considered as semi-infinite such that the idealized problem is independent of
the initial length of the sheet. Moreover, without the loss of generality, we set the location of the tip
at x = 0. The only physical parameter that appears in Eq. (10) is γ /μ. The thickness of the sheet
can be written as h = h(x, t, γ /μ, h0) since we have assumed that the sheet is semi-infinite. Here
two of the governing parameters have independent dimension: γ /μ and t . Hence, by dimensional
analysis [21] we get

h = γ

μ
(t + t0)H

(
x

(γ /μ)(t + t0)
,

h0

(γ /μ)(t + t0)

)
, (11)

where t0 is a shift in time which has to be determined a posteriori from the initial condition. We
assume that h0/[γ /μ(t + t0)] � 1 which requires that 1 � t/tv , i.e., that the solution we are seeking
for becomes valid after a sufficiently long time. Hence we look for a self-similar solution written as

η = x

(γ /μ)(t + t0)
; h = γ

μ
(t + t0)H (η); u = γ

μ
U (η), (12)

where η is the self-similar variable and H and U are self-similar functions. Now, inserting the
self-similar variables in Eqs. (2) and (10), we get the following ordinary differential equations (the
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primes represent derivative with respect to self-similar variable η):

HU ′ + UH ′ + H − H ′η = 0, (13)

U ′H + 1
4 = 0. (14)

The above two equations can be combined to deduce a differential equation for H ,

H ′′(1 − 4H ) = H ′2/H. (15)

Equation (15) is similar to that evinced by Eggers [22] while studying the postbreakup of an
axisymmetric thread. Although no analytical solution can be obtained from Eq. (15), it can be shown
that far from the tip, i.e., for η � 1, H ∼ 1/4. This leading-order solution can also be obtained
from the solution evidenced by Munro and Lister [23], who studied an infinite retracting sheet
stretched along its edge. Indeed, considering the longitudinal strain rate as zero in their Eq. (2.5)
the self-similar thickness H reduces to 1/4. Although the derivation presented in Munro and Lister
[23] is different from the present one, they nicely complement each other.

Equation (12) predicts that far from the tip, the thickness of the sheet evolves as

h(x, t ) = γ

μ

(t + t0)

4
= h0

(
1 + 1

4

t

tv

)
, (16)

where we have used the initial condition h(t = 0) = h0 to find the value of t0 = 4tv . Now using this
similarity solution H = 1/4 in Eq. (14) we obtain U = 2C − η, where C is a constant. To understand
the meaning of C we follow Eggers and Fontelos [24]. Integrating Eq. (13) from 0 to η we obtain∫ η

0

[η

2
+ HU − Hη

]′
dη =

∫ η

0

[
1

2
− 2H

]
dη. (17)

Inserting the asymptotic behavior H = 1/4, U = 2C − η valid for large η, and the boundary
condition at the tip H = 0 at η = 0, we get

C

2
=

∫ η

0

[
1

2
− 2H

]
dη. (18)

Equation (18) can be rearranged as∫ η

0
2Hdη =

∫ η

0

1

2
dη − 1

2

∫ C

0
dη = 1

4

∫ η

C
2dη. (19)

This implies that C is the tip position of a rectangle that has the same area as that of the liquid sheet.
The obtained similarity solutions for H and U are only valid far from the tip. To find the similarity

solution valid everywhere we use numerical results. We have used the Basilisk solver [25–27], which
solves the complete Navier-Stokes equations in the interior and exterior fluids. We have performed
numerical simulations with two constant volume liquid sheets of initial aspect ratio 10 and 20. The
similarity solutions obtained from the numerical simulation for L0/h0 = 10 and L0/h0 = 20 are
shown in Fig. 1. In Fig. 1(a), the retracting sheet profile is plotted in terms of the similarity variables
H and η. There is no observable difference between the two cases considered here. Moreover, we
plotted the results at different instant of time (larger than tv) in terms of the self-similar variable H
and η, and all the data collapsed on the same master curve. Hence, the sheets are sufficiently long to
be considered as semi-infinite and represent well the self-similar solution. It is evident in Fig. 1(a)
that the similarity solution for H quickly reaches the a constant thickness 1/4. The end shape of the
similarity profile can be represented by a semicircle with good accuracy [see Fig. 1(a)]. Figure 1(b)
shows the velocity profile within the liquid sheet in terms of the similarity variable U and η. A good
agreement between the numerical simulations (circles and solid line) with the theoretical solution
for the velocity profile U = 2C − η (dashed line) corroborates the validity of the similarity solution.
Fitting with the numerical data suggests that the value of the coefficient C is 0.0978 approximately.
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FIG. 1. (a) The self-similar interface profile and (b) the self-similar velocity profile. The numerical results
for L0/h0 = 10 are shown by the solid line, while the circles are the results for L0/h0 = 20. The tip of the
self-similar interface profile can be represented by a semicircle with good accuracy [the dashed-dot line is a
reference circle in (a)]. In the velocity profile, the dashed line represents the theoretical solution U = 2C − η.

III. NUMERICAL RESULTS

Finite liquid sheets may appear in different practical situations such as rupture of a soap film
[11] or bursting of a bubble at the surface of a pool [16]. These different cases encounter different
boundary conditions far away from the tip. For example, during the bursting of a soap bubble in
air [see Fig. 2(a)], symmetry boundary condition can be observed at the axis of symmetry of the
film. On the other hand, during the bursting of a bubble at a liquid-air interface [see Fig. 2(b)], an
outward flux of liquid is expected at the junction between the sheet and the pool. In this section,
we intend to study numerically the effect of each of these configurations on the retraction process.
We consider simplified versions of the aforementioned configurations by neglecting the curvature
of the sheet and considering the geometry as two dimensional. Thus, the bursting of the soap film is
investigated by considering the retraction of a symmetric 2D sheet while the bursting of the bubble
is studied by assigning a pool at the end of a 2D sheet and joining the sheet and the pool by a large
curvature region. The numerical details can be found in Refs. [18,28] and typical script used to run
the simulations can be found on the Basilisk website [27]. The results are discussed in different
sections depending on the relative magnitude of Oh and L0/h0 as we observe different dynamics for
different values of these parameters.

A. Oh � L0/h0

In this part, we consider Oh � L0/h0, i.e., the flow is controlled by the balance between the
viscous and capillary forces, and the inertia of the fluid can be neglected.

Air

(b)(a)

Liquid

Air

FIG. 2. (a) Schematic of a bursting soap film in air (midsection view) and (b) schematic of a bursting bubble
at a liquid-air interface (midsection view).
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FIG. 3. (a) Interface profiles of the retracting sheet at different time instants. The profiles are plotted at time
interval �t/tv = 1. (b) Temporal variation of the thickness of the sheet at x = 0. The dimensionless parameters
are Oh = 40 and L0/h0 = 10.

1. Bursting of a soap film

The numerical results are in excellent agreement with the theory. This is evident in Fig. 3, which
shows the temporal variation of the sheet thickness for the symmetry boundary condition mentioned
above. The dimensionless parameters considered here are Oh = 40 and L0/h0 = 10. Figure 3(a)
shows the interface profiles of a retracting sheet at different time instants. The temporal variation of
the thickness of the retracting sheet is presented in Fig. 3(b), which shows that the thickness grows
linearly with time in accordance with Eq. (16) or the self-similar solution discussed in Sec. II B.
A deviation is seen in Fig. 3(b) toward the later stage of retraction. Indeed, in the final stage of
retraction, the length and the width of the sheet become comparable (or the tip region covers the
whole domain) and the similarity solution is not valid. The self-similar solution is derived assuming
that the liquid sheet is semi-infinite, which is not valid when the length and the width of the sheet
become comparable. Nevertheless, the numerical simulations suggest that the similarity solution
remains valid until the length of the sheet is approximately two times the thickness of the sheet.

A model for the retraction speed of the tip at the initial stage of the retraction has already
been given by Savva and Bush [14]. They showed that the initial speed of the tip reads as
ut = UTC

√
t/(πtv ). This analytical result compares well with the numerical results for very short

time t � 0.01tv [Fig. 4(a)]. The agreement is even better for a larger aspect ratio. In a longer time,
a noticeable deviation of the theory from the simulation is observed. It can be seen in Fig. 4(a) that
the speed of the tip (for both aspect ratios considered here) quickly reached a peak value while the
theoretical model predicts a monotonic increase of the speed. This deviation from the theoretical
model implies that the initial acceleration stage is over and the self-similar solution has become
valid. Indeed, the self-similar solution is supposed to be valid at t/tv � 1.

Based on the self-similar solution, we now build a model for the speed of the tip. We assume
that the sheet is rectangular with a semicircular tip. The volume of the liquid sheet is constant and
is equal to V0 = (L − h)2h + πh2/2 and, hence, we have L = V0/2h + (1 − π/4)h. Replacing h
using Eq. (16) we obtain

dL

dt
= Uv

[
−4(L0/h0 − 1) + π

(t/tv + 4)2
+ 1

4

(
1 − π

4

)]
, (20)

where −dL/dt is the tip speed. Remarkably, Eq. (20) shows that the slender liquid sheet does not
retract at a steady speed. Indeed, the retraction speed of a finite liquid sheet decreases as a square
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FIG. 4. Comparison of the retraction speed of the liquid sheet obtained from numerical simulations (solid
lines) with the theoretical prediction (dashed lines). (a) The numerical results are compared with the early
stage retraction theory of Savva and Bush [14]. (b) Comparison of the numerical results with the present
theory [Eq. (20)] for the later stage of retraction. The results are shown for Oh = 40, L0/h0 = 10 (red) and
Oh = 40, L0/h0 = 20 (blue). A zoomed view at the later stage when the self-similar solution is no longer valid
is shown in the inner image for Oh = 40, L0/h0 = 10.

of time. Moreover, the retraction speed in this regime is independent of the Ohnesorge number.
The maximum speed scales linearly with the aspect ratio. Indeed, in the case of large aspect ratio
(L0/h0 � 1) the maximum speed (at t = 0) scales as 1/4(L0/h0)Uv .

Figure 4(b) shows the comparison of the present long-time asymptotic theory [Eq. (20)] with the
numerical result. As evident in Fig. 4(b), the numerical results are in very good agreement with the
theoretical results corroborating that the speed of the retracting sheet is inversely proportional to the
square of the time of retraction. The same level of agreement has been observed for the other values
of dimensionless parameters (for example, Oh = 10, 20) which are not repeated here. Moreover, the
maximum speed reached by the tip scales linearly with the aspect ratio as predicted by the theory. At
the later stage when the length and width of the sheet become comparable, the self-similar solution
is no longer valid and the numerical results deviate a little from the theory although this deviation is
not very significant. This deviation can be seen in the zoomed inner image of Fig. 4(b).

2. Bursting of a bubble at a liquid-air interface

Next, we simulate the retraction of a liquid sheet attached to a pool. Figure 5(a) shows the
interface profiles of the sheet when the other end of the sheet is connected to a pool. A circular
arc of radius 5h0 is defined to match the planar pool and the sheet. Since the curvature of this region
is large in comparison with the curvature of the tip, capillary effects are expected to be smaller.
Hence the motion in this region is less pronounced in comparison with the sheet as evidenced in
Fig. 5(a). Remarkably, the sheet retracts with a uniform increase in thickness, which suggests that
the self-similar solution is valid. A zoomed view of the interfaces of the sheet at different time
instants are shown in Fig. 5(b). The temporal variation of the sheet thickness is plotted in Fig. 5(c),
which shows that the sheet thickness increases linearly with time with a slope 1/4 in accordance
with that predicted by the self-similar solution. As evinced in the previous section, we observe the
same deviation in the temporal variation of sheet thickness with the theory in the long-time limit
due to the limitation of the self-similar solution when the aspect ratio reaches a value close to 2.

The short-time asymptotic theory of Savva and Bush [14] is in good agreement with the
numerical results (see Fig. 6) for the early stage of retraction. We observe that the time at which the
numerical predictions deviate from the short-time asymptotic theory is larger than the symmetric
film studied in the last section. As a consequence, for the same dimensionless parameters, the
maximum speed reached by the tip is higher.
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FIG. 5. (a) Interface profiles of the retracting sheet at different time instants. The profiles are shown at a
time interval �t/tv = 1. (b) The zoomed view of the interface profiles is shown in (a). (c) Temporal variation
of the thickness of the sheet at x/h0 = 10. The dimensionless parameters are Oh = 40 and L0/h0 = 10.

Next we derive the retraction speed at the tip of the liquid sheet. The constant volume assumption
of the liquid sheet used in deriving Eq. (20) is not valid in this case. Indeed, the volume of the liquid
sheet where the self-similar solution is valid (assumed to be the matching point between the circular
arc and the 2D sheet) decreases continuously as the liquid drains out into the pool. Figure 7(a)
shows the outflow velocity at the end of the sheet (x = 10h0), i.e., at the location where the sheet
is connected to the large curvature region connecting to the pool. It is approximatively equal to the
viscous-capillary velocity γ /μ and decreases slowly as a function of time. Now considering that
the end velocity is ue = γ /μ, we calculate the tip velocity of the retracting sheet. We include the
outflow rate at the end of the sheet (up to which self-similar solution is valid) in the theoretical
derivation. The volume of the portion liquid sheet (V ) up to the connecting point to the pool after
time t can be calculated as

V = V0 −
∫ t

0
2huedt, (21)
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FIG. 6. Comparison of the retraction speed of the liquid sheet obtained from numerical simulations (solid
lines) with the early stage retraction theory of Savva and Bush [14] (dashed line). The results are shown for
Oh = 40, L0/h0 = 10 (red) and Oh = 40, L0/h0 = 20 (blue).

where V0 is the initial volume of the liquid sheet. Now, assuming the tip of the liquid sheet to be
semicircular and considering the volume of the liquid sheet to be V = (L − h)2h + πh2/2, we have

L = V0

2h
+ h

(
1 − π

4

)
− 1

2h

∫ t

0
2huedt . (22)

Now, using the similarity solution in a similar way as described in Sec. III A 1, we can find the tip
speed as

dL

dt
= Uv

[
−4(L0/h0 − 1) + π

(t/tv + 4)2
+ 1

4

(
1 − π

4

)
− 1

2
− 8

(t/tv + 4)2

]
. (23)

It is evident in Fig. 7(b) that the numerical results are in reasonably good agreement with the
theory. A deviation toward the later stage of retraction is a consequence of two factors: First, the
self-similar solution used in deriving Eq. (23) is not valid toward the later stage of retraction, and,
second, the assumed constant velocity at the end of the sheet decreases by a small amount in reality.

)b()a(
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v

t / tv

FIG. 7. (a) Velocity at the junction between the sheet and the initially circular arc (x/h0 = 10). (b) Com-
parison of the retraction speed of the liquid sheet obtained from numerical simulations (solid lines) with the
theoretical prediction of Eq. (23) (dashed line). The results are shown for Oh = 40, L0/h0 = 10 (red) and
Oh = 40, L0/h0 = 20 (blue).
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FIG. 8. Comparison of the retraction speed of the liquid sheet obtained from numerical simulations (solid
lines) with the theoretical predictions (dashed lines) for the early stage (Savva and Bush [14]) and later stage
[Eqs. (20) and (23)] of retraction. Here (a) and (b) show the comparison of the numerical results and theory
for the soap film (symmetric retraction) in the early stage and later stage of retraction, respectively. Panels
(c) and (d) show the comparison of the numeric and theory in the early stage and later stage of retraction for
the case of bursting bubble at the interface of a pool. The results are shown for Oh = 20, L0/h0 = 20 (red) and
Oh = 40, L0/h0 = 40 (blue).

B. Oh ∼ L0/h0

In this regime, the dimensional analysis of Sec. II A states that inertia and viscous effects
are comparable. Therefore, a natural question that arises here is whether the similarity solution
mentioned above is valid in this limit or not. Numerical simulations reveal that the thickness of the
sheet increases linearly with time with a slope of 1/4 (not shown here) in good agreement with the
self-similar solution.

Figure 8 shows the velocity of the tip in the short- and long-time limits for the two configurations
discussed in the previous sections. The early-stage retraction theory of Savva and Bush [14] is in
reasonable agreement with the numerical results [Figs. 8(a) and 8(c)]. A comparison of the retraction
velocity of the sheet predicted by Eqs. (20) and (23) with the results obtained from the Basilisk
simulations are shown in Figs. 8(b) and 8(d), respectively. The models can predict the retraction
speed with good accuracy. Even for the retraction in a pool, the theory is matching very well. This
is because the self-similar solution is valid and the velocity at the end of the sheet is approximately
equal to the assumed value (ue ≈ γ /μ) for the entire period considered here. Therefore we may
conclude that even though the inertia and the viscous term are of the same order form a dimensional
analysis point of view, it is apparent that the flow is dominated by the viscous effect.
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FIG. 9. Interface profiles at different time instants for the retraction of a symmetric film (a) and a bursting
bubble at the liquid-air interface (b). The profiles are plotted at time interval �t/tv = 1 for Oh = 20 and
L0/h0 = 80. A comparison of the retraction speed of the liquid sheet obtained from numerical simulations
(solid lines) with the theoretical prediction (dashed lines) given by Eqs. (20) and (23) are shown in (c) and (d),
respectively. The purple dashed line is the theoretical prediction of Savva and Bush [14] for the early stage of
retraction.

C. Oh � L0/h0

As the aspect ratio of the sheet increases, for a fixed Ohnesorge number, the inertia of the
retracting sheet becomes nonnegligible. Under such a condition, the sheet retracts with the formation
of a bulbous end. Brenner and Gueyffier [17] proposed a criterion for the formation of the bulbous
rim at the end in terms of Reynolds number (based on the length of the sheet and the Taylor-Culick
speed) and Ohnesorge number. If we use the dimensionless parameters defined in the present article,
then their criterion for large Oh reads as Oh > 1 and Oh < L0/h0. Their criterion of viscous to
inertial crossover is in agreement with the scaling analysis presented in Sec. II A. The Stokes flow
assumptions are no longer valid for Oh � L0/h0. Under this condition, the liquid sheet retracts with
the formation of a bulbous rim.

Figure 9 shows the interface profiles of a retracting soap film in Fig. 9(a) and a bursting bubble
at the liquid-air interface in Fig. 9(b) along with the retraction speed in Figs. 9(c) and 9(d),
respectively. The dimensionless parameters considered here are Oh = 20 and L0/h0 = 80. The
self-similar solution becomes invalid in this regime and the sheet retracts with the formation of
a small bulbous tip [see Fig. 9(a) and 9(b)]. In this limit, the retraction speed of the liquid sheet is
not well predicted by the theory presented in Secs. III A 1 and III A 2 because the inertia effects are
nonnegligible. It can be observed in Figs. 9(c) and 9(d) that the maximum speed reached by the rim
in these particular cases (Oh = 20 and L0/h0 = 80) is approximatively 11Uv = 0.55UTC. We thus
expect a value closer to the Taylor-Culick speed as the inertia effect increases.

IV. DISCUSSION AND CONCLUDING REMARKS

In the present work, we have studied the retraction of a liquid sheet of finite length in the large-Oh
limit where the viscous effect is dominant. Using the long-wavelength model we have derived the
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scaling laws as well as the similarity solution for the sheet profile in capillary-viscous-dominated
flow (Oh � L0/h0) where the sheet thickness increases uniformly across the whole domain.
According to the self-similar solution, the sheet thickness grows linearly with time. Using the
similarity solution we have derived the expression for the temporal variation of the retraction speed
of the tip of the sheet. We have considered two configurations: the retraction of a soap film with a
symmetric boundary condition at the extremity away from the tip and the retraction of the film of a
bursting bubble at a liquid-air interface. The radius of curvature of the liquid films is considered to
be large enough to have negligible effects on the retraction dynamics. We have shown that in both
configurations, the retraction speed of the sheet decreases as the inverse square of time, which is in
agreement with the numerical results when the inertia effect is not significant, i.e., for Oh � L0/h0

and Oh ∼ L0/h0.
Sünderhauf et al. [6] and Savva and Bush [14] have shown that even when the viscous effect

is important, the tip of a retracting sheet always reaches the Taylor-Culick speed. However, why
is the speed reached in the present study in the high-Oh limit so different from the Taylor-Culick
speed? The major difference between the present study and the studies of Refs. [6] and [14] is
that they considered a pseudoinfinite sheet by writing the equations in a frame moving with the
tip. The scaling analysis performed here shows that the inertia effect cannot be neglected even
for high Ohnesorge number if the aspect ratio is sufficiently high (Oh � L0/h0). In the present
investigation, the sheet has a finite aspect ratio. The reduction of the rim speed of a finite sheet may
be attributed to viscous effects. In the long-time limit, the two opposing ends of the sheet retract
toward each other to form a stationary liquid cylinder (soap film configuration) or the liquid film
retracts toward a stationary pool to completely coalesce into it (bursting bubble configuration). The
capillary pressure difference near the tip created by the change in curvature drives the flow which
is resisted by the viscosity of the liquid. The capillary pressure difference decreases with time as
the sheet thickness increases (uniformly), resulting in a decrease in the driving force, while the
viscous resistance acts continuously. In contrast, for a semi-infinite sheet and finite Oh, the film
thickness increases near the tip and gradually decreases further away from the tip. The region of
influence of the tip motion is proportional to Oh [14] and a uniform increase in the whole film
thickness is not a valid assumption for Oh � L0/h0. For an infinite sheet, the maximum thickness
of the sheet increases linearly with time (as observed by Savva and Bush [14] for high Oh), not
the thickness in the far field. Because of this, a decreasing speed is not witnessed in Refs. [6] and
[14] in the long-time limit. Moreover, due to the absence of edge effects, the retraction speed of
the sheet continues increasing until there is a balance between the capillary force and the inertia
and hence reaches the Taylor-Culick speed. However, this does not imply that viscous dissipation
does not play any role in the retraction process of a semi-infinite sheet. Indeed, half of the surface
energy is dissipated through viscous dissipation and the other half is converted to kinetic energy as
demonstrated numerically and theoretically in Ref. [6] and Ref. [14], respectively. Here the viscous
effect merely affect how momentum is distributed in the sheet but does not affect the final retraction
speed in the long-time limit. This explains why Taylor-Culick speed is achieved even for high Oh
in Refs. [6] and [14].

Next, it is a natural intuition to know about the evidence of the decrease in the retraction speed in
the experiments. Considering the bubble bursting at the free surface of water (tap water or seawater),
as reported in Lhuissier and Villermaux [29], the typical value of the Ohnesorge number is less
than 1 while the aspect ratio is approximatively 10 000. Thus inertia plays an important role in the
retraction of the film and, as a result, the Taylor-Culick velocity is reached. The retraction dynamics
in those configurations are different from the present study, which is focused on the high-Oh limit.
The present analysis applies to the bubble bursting at the free surface of a highly viscous liquid, for
instance, in glass furnaces or during volcanic eruptions. Debrégeas et al. [30] studied experimentally
the bursting kinetics of an air bubble rising at the free surface of a highly viscous (and viscoelastic)
liquid. The typical dimensionless parameters in their experiments were as follows: Oh ≈ 105 and
L0/h0 ≈ 10 000, a range of value in agreement with the present theory. In Fig. 2(b) of their paper,
they evidenced the decrease of the retraction speed in the later stage of the retraction process. The
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authors explained this singular behavior by the fact that the rim was meeting progressively thicker
film, i.e., the film thickness was nonuniform. It is rather questionable whether the decrease of the
rim velocity can be explained by the present theory or by the argument provided by Debrégeas et al.
[30] and a detailed study is needed to disentangle both effects. Also in the present study, we have
assumed that the liquid surface is clean and the system is isothermal. This is far from being the case
in many experiments where surfactant can be present. For instance, in the experiments of Lhuissier
and Villermaux [29] surfactants are naturally present since tap water is used for the liquid phase.
However, no effect of the surfactants on the retraction velocity was seen since the rim reached the
Taylor-Culick velocity. On the other hand, the recent investigation of Constante-Amores et al. [31]
on the retraction of liquid ligaments suggests that the presence of surfactants and the reduction in
surface tension lead to a reduction of the retraction velocity. Their analysis was performed in the
inertia-dominated regime (low Oh) and for a liquid ligament. De Malmazet et al. [32] studied the
coalescence of drop at liquid-liquid interface in presence of microparticles. They observed that the
retracting sheet bend due to the difference of interfacial tension on both sides of the sheet. Hence,
the presence of the surfactants or presence of temperature gradient may change the present results,
which need further investigation.
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