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We have used high-speed video and interferometry to investigate the impact, spreading,
and eventual contraction of superfluid 4He drops on a sapphire substrate in a saturated
atmosphere of helium vapor. We find that the short-term kinetic spreading of superfluid
drops (time t < 10 ms) is qualitatively similar to both normal helium and conventional flu-
ids at room temperature. In contrast, the contraction phase of the superfluid drops is highly
unusual. Superfluid drops survive for only a few seconds on the substrate due to superflow
out of the drop into the surrounding helium film. The drop lifetime is strongly dependent
on temperature and diverges at the superfluid transition temperature Tλ ∼ 2.17 K. The
contracting drops undergo a geometry-dependent two-phase contraction, which includes a
toroidal phase where the radius decreases linearly in time and subsequently a spherical cap
phase where the radius decreases with the square root of time. The receding contact angle
is temperature dependent and becomes small near Tλ. We also observe that the superfluid
outflow causes surprising edge effects, including the emergence of satellite droplets on
the perimeter of the expanding drop, as well as ragged and frayed drop edges at lower
temperatures.

DOI: 10.1103/PhysRevFluids.5.093602

I. INTRODUCTION

Liquid drop impact and spreading are ubiquitous phenomena with diverse applications. They
have been investigated using classical fluids under a wide variety of conditions, including drop
impact on a solid dry surface [1–6], on a thin liquid film [7–9], in a deep liquid pool [10], in an
atmosphere of ordinary air, and in an atmosphere of air mixed with the fluid’s own vapor [11].
Most of these studies have focused on either short-term (inertia-driven) spreading, driven by the
kinetic energy of impact; or on long-term spreading, driven by either surface tension or gravity.
The experiments typically record the height H (or thickness) of the impacting/spreading drop and
the radius of the drop footprint r as it spreads as a function of time t . For the short-time regime of
kinetic impact, the drop radius as a function of time scales as r(t ) ∼ t a, with a = 1/2 for nearly all
fluids regardless of wettability due to the balance between interfacial tension and inertia [12,13].
For nonvolatile fluids that completely wet a substrate, a spreading drop will eventually evolve into a
pancake shape with a large radius and a microscopic thickness [14]. The approach to this state can
be described by power laws r(t ) ∼ tα , with the exponent α being determined by a balance between
the driving forces and dissipation in the drop. For surface-tension-driven spreading of spherical
cap drops, α = 1/10, which is known as Tanner’s law. Other geometries and driving forces yield
values of α in the range 0.1–0.15 [3,15,16]. In the hydrodynamic lubrication approximation limit,
the prefactor for the power law is inversely proportional to the fluid’s dynamic viscosity η; for the
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case of gravity-driven spreading [15], the drop radius is given by

r(t ) ∼ V 3/8

(
ρgt

η

)1/8

, (1)

where ρ is the fluid density, V is the drop volume, and g is the acceleration due to gravity.
Equation (1) shows that, in a classical fluid, the dynamics of spreading are related to viscous

dissipation. Superfluids can flow without any dissipation, and even if there is dissipation, the
mechanism involves nucleation and generation of vorticity [17], which is quite different from
conventional viscous dissipation. For these reasons, theorists have suggested [14,18] that superfluid
spreading kinetics might be distinctly different from the classical case. Another assumption that
underlies asymptotic predictions such as Eq. (1) is that the fluid completely wets the substrate
and that the equilibrium contact angle is zero. Liquid 4He in both the normal and the superfluid
states is thought to completely wet all substrates except cesium [19–22]. There nevertheless are
intriguing experimental results which show a finite contact angle in the superfluid state [23–25]
on conventional substrates. These observations of a static superfluid meniscus with a finite contact
angle are presumably due to thermal inhomogeneities or pinned vorticity.

Our experiment monitors the dynamic contact line of a superfluid drop impinging with an
initial velocity of approximately 0.4 m/s onto a sapphire substrate covered by an equilibrium thin
adsorbed film of superfluid (de Gennes’ “moist” case [14]). Despite the extremely low viscosity,
the initial inertia-driven phase of spreading of the superfluid is remarkably similar to the case of
classical fluids, and the kinetic energy of impact is essentially dissipated within 20 ms, resulting in
a pancake-shaped drop with a footprint radius roughly 5 times the radius of the initial drop. Rather
than continuing to spread like a classical fluid, the superfluid drop contracts with a finite receding
contact angle and disappears within a few seconds. The dynamics are qualitatively consistent with a
model developed by Herminghaus [25,26] which balances the Bernoulli pressure of a superflow at
the critical velocity from the drop into the surrounding film against the Laplace pressure due to the
curvature of the drop and the pressure due to van der Waals forces. Although we were initially
interested in the dynamics of zero-viscosity spreading, it soon became apparent that superfluid
effects were more important for the dynamics.

II. EXPERIMENTAL SETUP

The experimental cell shown in Fig. 1 was contained inside an optical cryostat consisting of
a vacuum vessel and two concentric gold-plated copper heat shields held at a temperature of 40
and 4 K, respectively, using a closed-cycle refrigerator, also used in a recent related study on jet
breakup [27]. The windows in the shields which provided optical access were constructed using
a sandwich structure of KG1 glass (to absorb IR radiation) and sapphire (to provide a thermal
link to the shield). The cell itself was equipped with a separately pumped 4He pot which could
maintain the temperature between 1.2 and 5.2 K. The helium drops were formed by applying a
small overpressure of 2–50 Torr above the saturated vapor pressure to a flow impedance nozzle
made from a glass capillary with an inner diameter of 10 μm and an outer diameter of 365 μm. By
adjusting the overpressure, drops with a radius of 0.5 mm would fall from the dropper at predictable
intervals of approximately 30 s.

The drops fell ∼1 cm and impacted onto a cylindrical piece of sapphire 31.7 mm in diameter
and 19 mm thick. A small ohmic heater with superconducting leads was glued onto the side of the
sapphire to provide heat for clearing the surface of extant liquid helium; the system was allowed to
return to equilibrium before measurements were taken. An LED light of wavelength 632 nm was
used to illuminate the impact surface. The illumination system and the high-speed camera used for
imaging from the side were mounted at a downward angle of 6.4◦. A fill line, separate from the
dropper line, was used to add or remove helium from the cell; during operation, there was always a
reservoir of bulk liquid at the bottom of the cell. For the bottom-view imaging, an aluminum mirror
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FIG. 1. Schematic diagram of the experimental cell and imaging setup. The cell was mounted inside a
cryostat capable of reaching and maintaining temperatures of 1.2–5.2 K. The gravity-fed dropper released the
drops onto the sapphire impact surface. A light-emitting diode (LED) and collimating lenses were used to
illuminate the drops and the impact surface. Two camera positions were used, one for side viewing and one
for bottom viewing. A mirror was used for the bottom viewing, and a hole was drilled in the center of the top
mirror, allowing the nanopipe dropper nozzle to pass through.

was used to reflect the light, and an angled hole was drilled in the center of the mirror to allow the
capillary nozzle to pass through.

To collect data, the dropper line was pressurized as described above, and the high-speed camera
was used to take video of the impacting drops at 100–25,000 frames per second. The individual
frames were then extracted from the video and the drop radii measured. In a saturated helium vapor
environment, even a nominally “dry” surface is covered with a microscopically thin layer of helium
which is stabilized by van der Waals forces. A quartz crystal microbalance (QCM) was occasionally
used in place of the sapphire substrate to measure the thickness of this film, but was not used
for drop impact and lifecycle measurements. The QCM showed that the equilibrium helium film
thickness, presumably limited by the gravitational potential difference between the substrate and
the bulk liquid reservoir at the bottom of the cell, was in the range of 20–40 nm thick. The drops
were highly mobile on this adsorbed film, and it was important to precisely level the cryostat to
prevent the drops from drifting off the edge of the substrate.

Side view images of drops show dark and light fringes due to interference between the liquid-
vapor interface at the top of the drop and the liquid-sapphire interface at the bottom of the drop. The
change in liquid film thickness per fringe δh (light to light or dark to dark) is

δh = λ

2
√

n2
film − sin2 θinc

, (2)

with light wavelength λ, helium film index of refraction nfilm = 1.03, and incident angle θinc.
Interference lines were only visible in the side view; in the bottom view, the low index of refraction
of liquid helium and the near-normal incidence dictates that the reflected waves from the top drop
surface are very weak and are not visible to the camera. These interference lines can be used to
determine the drop topography and dynamic contact angle, as discussed in the next section. For
images taken with a red LED light with a wavelength of 632 nm and illuminated at an angle
θinc = 83.6◦, each bright fringe corresponds to a change in film thickness of 1167 nm.
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III. RESULTS AND DISCUSSION

A. Short-term (inertia-driven) spreading

The physics of inviscid drop impact is governed by a balance between inertia and surface tension
and is characterized by the Weber number We = ρRU 2/γ , where R is the drop radius, U is the
impact velocity, and γ is the liquid-vapor surface tension. The Weber number in our experiments
is ∼33 for drops impacting at U = 0.45 m/s and ∼145 for drops impacting at U = 0.94 m/s.
(The experimental results of the drops impacting at U = 0.94 are shown only in Fig. 5; all other
data presented in this paper is for drops impacting at 0.45 m/s.) During the first few microseconds
after impact, the drop shape can be approximated as a truncated sphere, and the spreading radius
of the contact line follows the power law r(t ) ∼ t1/2 for geometric reasons [2,7]. The subsequent
spreading dynamics can be modeled as a shock [5] or using self-similarity [28,29] at high We or
as a singular flow similar to drop coalescence [30,31] for low We. All of these models predict
a power-law dependence of the drop footprint radius as a function of time after impact, with an
exponent near 1/2; fluid properties affect the prefactor of the power law, but not the exponent. In
particular, the inviscid coalescence model predicts

r = c

(
4γ A

ρ

)1/4

	t1/2, (3)

for constant c of order unity (determined to be 2–4 in our experiments), initial radius A, and time
	t = t − t0 for time t and initial contact time t0. The inertia-driven spreading of fluids with dynamic
viscosities in the range of 10−3–100 Pa/s obey a similar power law with the prefactor c determined
by the dynamic viscosity [2,13,31]. The inertia-driven shock model of Ref. [5] also predicts a
weak dependence of the prefactor on fluid viscosity. In classical fluids, the inertia-driven regime
describes the dynamics until the drop footprint has reached approximately three times the original
drop diameter, after which the spreading rate slows down and is described by a power law of the
form of Eq. (3). A time 	tcross which characterizes the crossover from the inertia-driven regime to
capillary-viscous spreading regime is [30]

	tcross = R13/8ρ5/8

η1/4γ 3/8
. (4)

The crossover time has a typical magnitude of a few milliseconds for our impact velocity and
temperature range.

The inertia-driven regime in superfluid impact was monitored using high-speed video from both
the side view and the bottom view. A few frames of a side-view video are shown in Fig. 2. Despite
the low refractive index, the advancing contact line is clearly visible. A plot of the drop footprint
diameter as a function of time for 4He is shown in Fig. 3 for temperatures which span the range
from above Tλ to T = 1.386 K, where the superfluid fraction is 0.93. After ∼10 ms, the drops
transition to a different regime where the contact line essentially stops moving. Using values for
normal 4He, Eq. (4) gives a value of 3 ms for the crossover time which is in qualitative agreement
with the data. The initial kinetic energy of the drop (approximately 5 nJ) is dissipated within a
few milliseconds. In conventional fluids, the dissipation is attributed to complex processes at the
moving contact line which are proportional to the viscosity. It is remarkable that a wide variation
of the superfluid fraction does not seem to affect the maximum size or the rate of expansion of the
drops.

Another interesting feature of the spreading drops is an instability in the advancing contact line
that is associated with superfluidity. In contrast to normal 4He fluid drops, which display smooth
edge behavior similar to conventional fluids in air at room temperature, superfluid droplets exhibit
spatial structure at the edges that becomes increasingly pronounced at lower temperatures and higher
superfluid fractions. In our experiment we used two drop impact velocities corresponding to two
drop heights. At the lower impact velocity U = 0.45 m/s, the superfluid droplets formed rings of

093602-4



IMPACT AND LIFECYCLE OF SUPERFLUID HELIUM …

FIG. 2. Short-term spreading of a drop at temperature T = 1.518 K impacting on the sapphire substrate
shown at time t after impact. Panel (a) shows the drop at the moment of impact, and panel (c) shows the drop
near the maximum spreading radius Rmax. The concentric bands of light and dark are due to interference from
regions of different thicknesses. The image of the drop is reflected in the sapphire surface in panels (a) and (b).
Because of the very low viscous dissipation, initial shape perturbations are not damped out in superfluid drops,
so they are often remarkably asymmetric, as in panel (a).

FIG. 3. Drop footprint diameter as a function of time after impact at a velocity of U = 0.45 m/s for several
values of the ambient temperature indicated by colors ranging from violet(the coldest) to red (the warmest). The
dashed blue line shows a growth rate characterized by an exponent of 1/2, which is typical of many classical
fluids. Although the superfluid fraction varies from zero to 0.93, this does not significantly affect the short-term
dynamics of spreading. There is a rather abrupt transition to a much slower growth rate near t ∼ 6 ms.
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FIG. 4. Bottom view of a spreading superfluid drop at T = 1.564 K, with arrows pointing to the ring of
exodroplets. Most of the drop is in the lower-left quadrant; the contact line is clearly visible, and the dark spot
in the lower left of the photo is the dropper nozzle.

transient satellite droplets around the edges of the spreading drop, shown in a bottom view in Fig. 4.
These droplets may be a manifestation of the high-velocity superflow in the thin film surrounding
the drop that we discuss in the next section. At the greater impact velocity of U = 0.94 m/s, in
addition to the appearance of satellite droplets, the drop contact line became ragged and frayed, as
shown in Fig. 5.

FIG. 5. Side view images of the advancing edge of a drop at four temperatures with the superfluid fraction
varying from 0.28 to 0.95. At an impact velocity of U = 0.94 m/s, the edges of the drop become progressively
more frayed, ragged, and angular at lower temperatures.
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FIG. 6. Side view of a 4He drop at temperature T = 1.626 K contracting on the sapphire substrate at
time t after impact. The concentric bands of light and dark are due to interference from regions of different
thicknesses; the profile of the drop determined from these interference lines is discussed below. The drop
disappears after approximately 1.48 s.

B. Droplet contraction and lifetime

Although superfluidity has only subtle effects on spreading in the first few milliseconds after
impact, it has dramatic effects on the subsequent behavior of the drops. After dissipating the
initial kinetic energy, conventional liquids on a wettable substrate will continue to slowly spread,
with dynamics described by some version of Eq. (1). For volatile drops such as ours, which are
surrounded by saturated vapor, the spreading process is eventually truncated by the competing
process of evaporation which is driven by the Laplace pressure and the gravitational variation in
the vapor pressure in the cell. Above Tλ, helium drops follow this scenario and can be observed to
spread for many minutes; the details of this process will be discussed in a subsequent publication.
Below Tλ, helium drops begin to contract immediately after the inertia-driven regime and have a
lifetime of only a few seconds. Video frames which illustrate the evolution of the drop footprint at
T = 1.626 K are shown in Fig. 6. The lifetime of the drop is less than 2 s at low temperature, but
rapidly diverges near Tλ, as shown in Fig. 7. Figure 8 shows a radius vs time plot for the lifetime of
a typical colder drop.

C. Superflow through the surface film

The rapid contraction of the drops cannot be explained by evaporation, which would require
pressure differences of the order of 1 Pa or temperature differences of the order of 10−4 K, both of
which are difficult to justify in our experimental cell. We verified that injecting 5 mW of power into
the substrate using the electrical heater had no effect on the drop lifetime. The strong temperature
dependence of the drop lifetime near Tλ and the much longer lifetimes in the normal state suggest
that the mass transfer mechanism out of the drop is superfluid flow. The basic plausibility of this
idea is supported by the rough estimate that flow at a critical velocity of ∼1 m/s in the surrounding
film of thickness 30 nm can drain the 10−7 kg mass of the drop in a few seconds. One meter per
second is well below the Feynman critical velocity of vF ∼ 10 m/s.

A more quantitative understanding of the superflow out of the drop can be obtained by using
interferometry to map out the drop topography. The inteference lines are like contour lines on
a topographical map, connecting regions of equal height above the impact surface. Using the
assumptions that the drop thickness is effectively zero at the nominal contact line, the contrast
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FIG. 7. Superfluid drop lifetime τ on the substrate as a function of temperature. The drops last up to 15 min
above the λ line.

in the interference image can be integrated to find the drop thickness at any point in the interior.
The ambiguity about the sign of the thickness change corresponding to an intensity change can be
reconciled by using the fact that the volume of the drop changes slowly on the timescale of a few
milliseconds. In particular, we verify that the volume in the initial falling drop shown in Fig. 2(a) is
the same as the volume of the drop after the inertia-driven spreading phase shown in Fig. 2(c).

FIG. 8. Total drop lifetime (radius vs time) created by combining two drops filmed at different frame rates,
with a drop at T = 1.648 K plotted here for the short-term spreading and a drop at T = 1.626 K plotted to
show the two-phase contraction. The linear phase of the two-phase contraction appears curved here because
this is a log-log plot.
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FIG. 9. Images of a drop at T = 1.626 K with plots of the cross-sectional profile computed from
interference lines, with each data point in the plots corresponding to a dark fringe in the image. Panel (a) shows
the drop during the toroidal phase, and panel (b) shows the drop during the spherical cap phase. The red line
in panel (b) is a fit to a circle. Note that the horizontal scale in both panels (a) and (b) is orders of magnitude
larger than the vertical scale, so the drops are actually very flat. The drop has lost about 60% of its original
volume by the time it reaches the spherical cap phase.

Figure 9 shows the drop profile constructed in this way for a drop at the beginning of the
contraction process. In the toroidal phase shown in Fig. 9(a), the maximum thickness regions
(typical scale ∼10 μm) of the drop are near the contact line, and the center of the drop is thinner.
Figure 9(b) shows the profile near the end of the drop lifetime, where the drop has evolved into a
spherical cap shape with a peak height approximately twice that of the toroidal rim.

More details of the drop profiles as a function of time and temperature are shown in Fig. 10.
These data show that in the toroidal phase the receding contact angle is quite constant in time

FIG. 10. Evolution in time of drop profiles at time t after impact for temperatures (a) T = 1.7991 K and
(b) 2.1495 K; note the longer timescale in panel (b). Contraction for colder drops was characterized by a
constant contact angle (as can been seen by the parallel drop profiles in time), a radius that contracts linearly
with time (shown by the equal linear distance in time between profiles), a constant height, a very short lifetime,
and a “donut hole” that forms in the middle of the drop as it drains. By contrast, drops near Tλ (which contain
a very small fraction of superfluid) underwent a “deflation” where the drops appear to collapse on themselves
as the fluid drains more slowly than with the colder drops.
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FIG. 11. Radius vs time for a contracting superfluid drop at T = 1.626 K. The linear behavior from 0 to
0.6 s corresponds to the contraction of the toroidal drops with constant contact line velocity. The change in
behavior at t = 0.6 s (marked by the blue vertical line) is the transition to a spherical cap shape. The orange
line is a fit for the data.

as the drop footprint shrinks. As the drop shrinks, the radius of the central region decreases and
it becomes thinner until an instability occurs and the drop makes a rapid and somewhat violent
transition to a spherical cap drop, as shown in Fig. 9(b). This transition between two is also apparent
in plots of the drop footprint radius as a function of time, as shown in Fig. 11. The plot shows that
the radius initially decreases linearly with time and then makes an abrupt transition to a different
regime in which the shrinking rate slows down but then accelerates again near t = τ , the lifetime
of the drop. Both of these behaviors are qualitatively consistent with simple geometrical models
and the assumption that the superflow is carried by a surface film of constant thickness h moving
at a critical velocity, vcrit . To explain the linear phase, we make a dimensional argument. The drop
shape on the surface is not quite cylindrical, but we make the approximation that the drop footprint
is circular and that the profile of the drop near the contact line is relatively constant in time and has a
constant average height, H [a good assumption for colder superfluid drops, as shown in Fig. 10(a)].
The drop volume V and the radius r in time is V (t ) ∼ r(t )2H , and the change in volume per unit
time is dV/dt ∼ rṙH , or dV/dt ∼ vcritr(t )H , with ṙ = dr/dt . It follows that ṙ ∼ vcrit , so the radius
contracts linearly in time.

During the second half of the contraction, we empirically observe that the drops contract
approximately as

r(t ) = CT
√

τ − t, (5)

with drop radius r(t ), time t , constant CT that depends on the temperature (and thus the superfluid
fraction), and total droplet lifetime τ . We again begin with our two assumptions that the fluid again
flows out of the drop at vcrit and that θc remains constant. However, in the spherical cap phase, the
drop will contract differently from the the toroidal phase because of the different geometry. The
volume Vsc of a spherical cap is given by

Vsc(t ) = 1
6 hπ [hsc(t )2 + 3r(t )2], (6)
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with spherical cap height hsc, which is the drop height for spherical cap drops. The slope at the edge
of the drop (which for small slopes is the contact angle θc) is

θc = − r(t )√
Rc(t )2 − r(t )2

, (7)

where Rc(t ) is the radius of curvature of the drop. If the contact angle remains constant, then Rc(t )
must change in time. To find Rc(t ), we substitute it into the equation for the contact angle and set
the time derivative equal to zero. The result is that Rc(t ) must be proportional to r(t ) and both
∼√

τ − t . Experimentally, we find that Rc(t ) decreases with time and is roughly consistent with this
prediction, although precise comparison is difficult because of the lack of resolution as the drops
become very small.

Understanding the dynamics of the transition from the toroidal phase to the spherical cap
phase is a complicated problem that presumably would require a numerical inviscid solver as,
e.g., in Ref. [32]. A qualitative understanding of the receding contact angle can, however, be
obtained using a simplified one-dimensional model developed by Herminghaus [26] and Poujade
et al. [25]. The model is based on several assumptions. First, they assume that the superfluid
will respond to a gradient in the chemical potential by generating a flow at a critical velocity
which is essentially independent of the magnitude of the gradient. The direction of the flow will
be toward lower pressure and/or higher temperature. Assuming a strictly isothermal environment,
the chemical potential inside the drop will typically be higher than the bulk fluid in the cell by
an amount 	μ (with 	μ representing the difference in chemical potential) due to the higher
gravitational potential energy and the increased capillary pressure due to curvature, so we expect
a flow out of the drop into the microscopically thin adsorbed film which coats the substrate. Only
the superfluid moves in the thin film because the normal component is viscously clamped to the
substrate. Another basic assumption is that in quasi steady state the pressure in the vapor at the
liquid-vapor interface is constant and can be taken to be zero. The pressure inside the drop is mainly
determined by three effects: the Laplace curvature, the van der Waals interaction potential of the
fluid with the substrate, and the Bernoulli pressure term which is proportional to −v2, i.e., a high
flow velocity corresponds to a low pressure. The flow velocity v is not directly observable, but
the superfluid flux j = ρs

ρ
v(x) h(x) is observable, where x is the coordinate along the substrate

normal to the thin film-drop contact line, ρs/ρ is the fraction of fluid that is superfluid in the
two-fluid model, and h(x) is the height of the liquid-vapor interface. In steady state, j is constant,
so v is inversely proportional to the liquid thickness, with v(x) = j ρ

h(x) ρs
. A Lagrangian which

describes the difference between the kinetic energy of flow and the potential energy of the fluid
is L = (ρs/2)h(x)(ρ/ρs)2 j2/h(x)2 − [	μh(x) + γ

√
1 + h′(x)2 + Cd/3h(x)3]. The Euler equation

for this Lagrangian is

	μ = γ h′′(x) + C d

h(x)4
− ρ2

ρs

j2

2h(x)2
, (8)

where the constants C ∼ 4.9 × 10−22 J and d ∼ 14 nm characterize the retarded van der Waals
interaction, and h′(x) is assumed to be small. The constant j can be determined from the rate of
change of the drop volume. Assuming the drops are axially symmetric, integrating the drop profiles
as shown in Fig. 10 yields the drop volume V as a function of time, and then dV/dt = 2πr j can be
used to calculate j. The results are shown as a function of temperature in Fig. 12, and a schematic
of the drop on the surface is shown in Fig. 13.

Equation (8) describes the transition from a nanometer-thick film to a drop of bulk liquid,
as illustrated in Fig. 13. Introducing a reduced height, hr , with h = hr

√
2C d ρs ( j ρ)−1 and a

reduced transverse distance, xr , with x = xr (2ρs)5/4(C d )3/4γ 1/2( j ρ)−5/2, yields the following
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FIG. 12. Flow current j as a function of temperature, calculated from drop lifetime.

nondimensional equation,

h′′
r + 1

h4
r

− 1

h2
r

= A, (9)

where A = 4Cdδμρ2
s / j4 ρ4, which for typical drops has a value of ∼0.01. This equation has a first

integral,

1

3h3
r

− 1

hr
+ Ahr − 1

2
(h′

r )2 = const, (10)

where the constant is determined by evaluating the expression in the flat thin film regime where hr =
1 and h′

r = 0. If we make the approximation that A = 0, const = −2/3, and for large hr Eq. (10)

FIG. 13. Cross-sectional schematic of a drop on the substrate showing superfluid flow out of the drop
through the thin film at vcrit , film thickness h(x), and contact angle θc. The pressure at the liquid-vapor interface
is zero. The pressure in the thin film region is raised by the van der Waals force, but is lowered overall by the
faster-moving flow.
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FIG. 14. Comparison of interferometric measurements of θc as a function of temperature (in red) with the
theoretical prediction of Eq. (11) (in blue). θc was measured during the toroidal phase of the drops by fitting the
first six dark fringes to a circle and taking the derivative (height vs horizontal distance) at the apparent contact
line.

yields h′
r ∼ 2/

√
3 + O(1/hr ), this slope defines the contact angle of the bulk liquid drop as it merges

into the flat adsorbed film. For small values of the slope, the contact angle θc in terms of dimensional
parameters [25] is

θc = 21/4( j ρ)3/2

(3γ )1/2(C d )1/4ρ
3/4
s

. (11)

If A is nonzero, the shape of the profile is not asymptotically linear as shown illustrated in Fig. 13,
but rather grows as

√
hr until the profile is eventually flattened by gravity, so a unique asymptotic

slope cannot be defined; Eq. (10) is strictly valid only near the contact line. Numerical solutions
of Eq. (10) with 0 < A < 0.1 show that the profile has a linear regime near the contact line which
is qualitatively similar to the A = 0 case shown in Fig. 13, but with a slope that varies by less
than 10%.

The temperature dependence of j is measured in our experiment, and the temperature dependen-
cies of ρs and γ are tabulated [33]. A comparison of the predictions of Eq. (11) and the values of θc

measured from the interferometrically determined profiles is shown in Fig. 14. Our measured values
of θc agree very well with those of Poujade et al. [25], even though their measurements involved a
static contact line formed by a plate immersed in the superfluid, while our contact line is dynamic. In
both cases, the contact angle within a few millikelvin below Tλ is remarkably high (∼2◦). Poujade
et al. [25] assumed that j had the same temperature dependence as the superfluid fraction. Our
measurements show that the temperature dependence of j is more rapid than the superfluid fraction.
For example, at T = 1.9 K, j has reached its asymptotic maximum low-temperature value (which
roughly agrees with the value assumed by Poujade et al. [25]), but the superfluid fraction is less than
0.6. The model which generates the contact angle formula given by Eq. (11) yields the right order
of magnitude, but it does not seem to explain the temperature dependence correctly.
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IV. CONCLUSION

We have investigated the impact and spreading of superfluid helium drops on a sapphire
substrate using video imaging and interferometry. The spreading rate of classical liquids is inversely
proportional to the viscosity, so one of our initial goals was to see if the zero-viscosity superfluid
spreads differently than the finite-viscosity normal fluid. We observed that the short-term (inertia-
driven) spreading of the superfluid is not remarkably fast, but is in fact very similar to the normal
fluid because this portion of the spreading is dominated by the balance between the fluid’s inertia
and surface tension rather than by viscosity. The kinetic energy of the impact is dissipated in
about 10 ms even at temperatures where the superfluid fraction is greater than 0.95. Even though
helium completely wets all conventional substrates, superfluid drops do not continue to spread with
power-law dynamics as most other fluids do. After the inertia-driven phase, superfluid drops do not
spread at all, but rather contract and disappear. The lifetime is strongly temperature dependent and
ranges from a few seconds at low temperatures to tens of seconds near Tλ. This lifetime is consistent
with a model in which the superfluid flows out of the drop through the preexisting nanometer-scale
adsorbed film on the substrate. The flow velocity in the film required to explain the drop lifetime
is of the order of 1 m/s, which is similar to the critical velocity observed in other nanometer-scale
superflows. The contracting superfluid drops have a receding contact angle of several degrees. The
existence of a finite contact angle as well as its approximate magnitude is explained by a model
which balances surface tension, van der Waals forces, and the Bernoulli pressure in the high-velocity
flow in the thin film.
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