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Rotating spiral patterns in Rayleigh-Bénard convection are known to induce azimuthal
flows, which raises the question of how different neighboring spirals interact with each
other in spiral chaos and the role of hydrodynamics in this regime. Far from the core,
we show that spiral rotations lead to an azimuthal body force that is irrotational and of
magnitude proportional to the topological index of the spiral and its angular frequency.
The force, although irrotational, cannot be included in the pressure field as it would
lead to a nonphysical multivalued pressure. We calculate the asymptotic dependence of
the resulting flow and show that it leads to a logarithmic dependence of the azimuthal
velocity on distance r away from the spiral core in the limit of negligible damping
coefficient. This solution dampens to approximately 1/r when accounting for no-slip
boundary conditions for the convection cell’s plate. This flow component can provide
additional hydrodynamic interactions among spirals including those observed in spiral
defect chaos. We show that the analytic prediction for the azimuthal velocity agrees with
numerical results obtained from both two-dimensional generalized Swift-Hohenberg and
three-dimensional Boussinesq models and find that the velocity field is affected by the
size and charges of neighboring spirals. Numerically, we identify a correlation between the
appearance of spiral defect chaos and the balancing between the mean-flow advection and
the diffusive dynamics related to roll unwinding.
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I. INTRODUCTION

An unexpected chaotic state near the onset of convection in a Rayleigh-Bénard configuration was
discovered in CO2 gas (a low-Prandtl-number fluid) by Morris et al. [1], in which rotating spirals are
continuously nucleated and eliminated, yielding a state with persistent dynamics (i.e., spiral defect
chaos). Experimental evidence also suggests that, as the fluid Prandtl number decreases or the aspect
ratio of the experimental cell increases, the chaotic state may emerge as the first bifurcation from the
quiescent conduction state [2], contrary to well-established theory [3–5]. Classical stability theory
is based on the Boussinesq model of thermal convection in a simple fluid [4], and motion near
the onset of Rayleigh-Bénard convection is predicted to be variational, which would preclude the
observed persistent dynamics. As was recognized early on, the chaotic state is enabled through the
coupling between the primary vertical velocity field mode that becomes unstable at threshold and
weakly damped, long-wavelength rotational flows on the horizontal plane. That such near-marginal
flows could be relevant in convection in large-aspect-ratio systems had been proposed earlier by
Siggia and Zippelius [6].

Following the discovery of spiral defect chaos, a class of theoretical and computational analyses
focused on two-dimensional (2D) models (the generalized Swift-Hohenberg models) that explicitly
include the coupling between the vertical vorticity and an order parameter field appropriate for the
convective instability (proportional to the vertical velocity or temperature deviation on the midplane
of the convection cell) [7–9]. Numerical analysis of these models confirmed the importance of the
coupling to vortical flows to model the transition to chaos [10–14], although it remains unclear
what its precise role actually is in sustaining the chaotic state. Extensive computational work also
included direct numerical solution of the governing equations for a Boussinesq fluid in a Bénard
configuration [11,14–16] and also of the related problem of a single rotating spiral pattern filling
the entire convection cell [10,17–19]. In particular, a detailed numerical investigation by Karimi
et al. [14] has shown that the flow structure around a spiral core in a fully 3D numerical solution of
the Boussinesq equations is qualitatively similar to that of the simpler generalized Swift-Hohenberg
models that incorporate 2D rotational flows. However, the main questions as to the mechanisms
underlying the appearance of the chaotic state and in particular the role of any hydrodynamic
interactions among rotating spirals in an extended system remain unanswered.

In this work we present results based on both a generalized Swift-Hohenberg model in terms of a
2D order parameter field ψ (x, t ), which represents the vertical velocity of the fluid at the convection
cell’s midplane, and a full 3D solution of the Boussinesq equations. We begin by examining
approximate solutions of the 2D model that correspond to a rotating spiral pattern, focusing on
the rotational horizontal flow induced by an effective body force f = −(∇2ψ )∇ψ (where ∇ is the
2D gradient operator on the horizontal plane) that plays the role of the driving force of the vortical
flow [10,12]. It is through this term that the curved convective rolls generate vertical vorticity, which
in turn advects convective rolls. From the form of the ψ field corresponding to a spiral pattern, we
show that there exists an irrotational contribution to f that leads to a long-range azimuthal velocity
field around the core of the spiral. For a laterally unbounded configuration, the azimuthal velocity
decays as vϕ ∼ 1/r away from the core. If instead the azimuthal velocity is required to vanish at
a finite distance rb from the core, we show that this asymptotic dependence is never attained for
typical spiral sizes. Furthermore, if damping at the bottom and top bounding walls is neglected, we
find vϕ ∼ r ln(r/rb), where rb is a cutoff distance at which the velocity vanishes. These results are
verified numerically for both a rigidly rotating spiral pattern and the spiral defect chaotic state that
are generated in the 2D generalized Swift-Hohenberg model and the 3D Boussinesq equations.

In Sec. II A we introduce the generalized Swift-Hohenberg model, which is the starting point of
our asymptotic analysis. We expand the order parameter ψ as a function of a small parameter in
Sec. II B, which allows us to express the force f in terms of gradients of the complex amplitude
A of the ψ field. Based on a dynamic equation for the amplitude, we obtain the asymptotic
form of f which exhibits both rotational and irrotational terms. We derive in Sec. II C different
components of the azimuthal velocity from the asymptotic form of f and show that they are
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dominated by the contribution from the irrotational force term. The numerical methods used for
both generalized Swift-Hohenberg and Boussinesq models are detailed in Secs. III A and III B,
respectively. In Sec. IV we confirm the analytic results for the dependence of the azimuthal velocity
vϕ on damping by computing it for a range of damping coefficients. While for relatively large
damping the azimuthal flows are largely confined near the core of each spiral, as damping decreases
a hydrodynamic interaction between neighboring spirals arises through the cutoff length rb. In
Sec. V B we discuss the role of advection versus spiral arm unwinding in the rotation of the spiral.
In Sec. V C we present a comparison of the azimuthal velocity computed from the generalized
Swift-Hohenberg model and the full Boussinesq equations.

II. AZIMUTHAL FLOW INDUCED BY A ROTATING SPIRAL

A. Generalized Swift-Hohenberg model

The Swift-Hohenberg model for Rayleigh-Bénard convection [7] follows from a 2D projection
of the governing fluid equations in the Boussinesq approximation that eliminates the dependence
of the temperature, pressure, and velocity fields on the vertical coordinate z near the onset of
convection. This results in a gradient model for an order parameter field ψ (x, t ) [with x = (x, y)]
that represents the vertical velocity on the midplane of the convection cell [8,20,21]. The model was
later generalized to account for the coupling between the unstable mode at the onset of convection
and 2D mean flows [8,9] and is associated with the equations

∂tψ + v · ∇ψ = εψ − (∇2 + q2
0

)2
ψ − ψ3, (1)

[∂t − σ (∇2 − c2)]∇2ζ = gm[∇(∇2ψ ) × ∇ψ] · ẑ, (2)

where ε is a bifurcation parameter that measures the dimensionless distance to the convection
threshold (in terms of the Rayleigh number), v(x, t ) is the 2D incompressible mean flow velocity,
and σ is a rescaled Prandtl number. The mean flow velocity is obtained from the vertical vorticity
potential ζ (x, t ) via v = ∇ × (ζ ẑ) such that the vertical vorticity �z = (∇ × v) · ẑ = −∇2ζ . A
momentum damping coefficient c2 is introduced to model viscous friction at the top and bottom
bounding walls and appears from averaging derivatives of the flow in the vertical direction over the
thickness of the convection cell. In the case of free-slip (i.e., stress-free) boundary conditions, one
would have c2 = 0, while c2 > 0 for no-slip boundary conditions. The coefficient gm controls the
magnitude of the flow coupling [9,20], which increases as the Prandtl number decreases and also
appears from the averaging process.

The right-hand side (RHS) of Eq. (2) can be written as −gm(∇ × f ) · ẑ, with f = −(∇2ψ )∇ψ .
This effective body force appears from projecting the advection nonlinearity in the Boussinesq
model onto the 2D order parameter model, so it does not originate from the divergence of a physical
stress [22]. This force has a functional analog in models of active matter in which an active stress
breaks equilibrium symmetry relations [23–25] and hence directly allows nonvariational flows.

B. Effective body force induced by a rotating spiral

Rotating spiral and target solutions are well known to emerge from Eq. (1) [26]. Away from the
core, the solution for the order parameter field in polar coordinates (r, ϕ) has the form ψ = Aeiq0r +
c.c., where A is a slowly varying complex amplitude that can be written as A(r, ϕ, t ) = ρ(r)eiθ ,
with phase θ = mϕ − ωt and a real amplitude ρ. Here ω is the angular frequency of the spiral and
the topological charge m is an integer representing the index of the singularity [27] (which is the
number of arms in the spiral in this case). While target patterns with m = 0 present a single-valued
θ , rotating spirals have a multivalued phase θ as m �= 0. This has implications for their topological
stability [27] as the circulation of θ around a contour γ enclosing the spiral core has a quantized
value that depends on the topological charge, i.e.,

∮
γ

∇θ · dl = 2πm, where l is the vector function
that defines the path. Velocity fields induced by rotating spirals have been argued to decay with
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distance as 1/r and to be negligible for spiral rotation as compared to motion induced by wave-
vector frustration [12]. This implies that direct hydrodynamic interactions among rotating spirals are
negligible, and therefore the role of mean flows in inducing and sustaining the chaotic state remains
to be understood. We reexamine this issue by investigating the azimuthal velocity generated by a
rotating spiral by both asymptotic and numeric analyses.

We derive the asymptotic form of the body force f that appears in the 2D momentum equation
(2). Near the convection threshold ε � 1, we expand the order parameter ψ into a periodic base
state in terms of a slowly varying amplitude of the form

ψ = ε[A(X, T )eik·x + c.c.], (3)

where (X, T ) denotes slow spatial and timescales upon which the amplitude A depends. Assuming
an isotropic expansion in which ∇ → ±ik + ε∇, |k| = k, and the gradient only acts on the slow X
scale, we find

∇2[εA(X, T )eik·x] = −εk2Aeik·x + 2iε2k · ∇Aeik·x + ε3∇2Aeik·x,

which leads to the following resonant terms in the amplitude expansion of the force f (those
originated from a combination of wave vectors whose result is zero):

∇2[εA(X, T )eik·x]∇[εA∗(X, T )e−ik·x]

= iε2k2|A|2k − ε3k2A∇A∗ + 2ε3(k · ∇A)A∗k + 2iε4(k · ∇A)∇A∗ − iε4A∗∇2Ak + ε5∇2A∇A∗.

Explicitly adding the complex conjugate terms, we find

(∇2ψ )∇ψ = −ε3k2∇|A|2 + 2ε3[(k · ∇A)A∗ + (k · ∇A∗)A]k

+ 2iε4[(k · ∇A)∇A∗ − (k · ∇A∗)∇A] + iε4(A∇2A∗ − A∗∇2A)k

+ ε5(∇2A∇A∗ + c.c.).

This expression can be further simplified by noting that in the radial direction the rigid rotating
spiral is approximately a solution of the governing equation for the order parameter. That is, we
adopt the solution k = kr̂ and A = ρ(r)eiθ , where θ = mϕ − ωt . This leads to A∇2A∗ − A∗∇2A =
∇ · (A∇A∗ − A∗∇A) = 0. By gathering terms up to order ε5 and rescaling all the quantities back to
the original scales (x, t ), we find that the force can be written as

f = −(∇2ψ )∇ψ

= k2∇(|A|2 − 2ρ2) − 4k
mρρ ′

r
ϕ̂ − (∇2A∇A∗ + c.c.). (4)

The first term on the RHS is of gradient form and does not contribute to Eq. (2). In a pressure-
velocity formulation, it can be absorbed into the pressure term. The other two terms contribute to
the mean flow.

We begin with the last term of Eq. (4), which can be written as a function of the angular frequency
of the spirals. From Eq. (1), the corresponding amplitude equation [21,28] can be written in polar
coordinates for curved rolls (targets or spirals) [29,30],

∂t A = εA + 4q2
0

(
∂2

r + r−1∂r
)
A − 2iq0r−2(2∂r + r−1)∂2

ϕA − r−4∂4
ϕA − 3|A|2A. (5)

This amplitude equation appears from a solvability condition at O(ε3/2) of the expansion, with ψ

expanded in power of ε similarly to Eq. (3). Rearranging terms, we obtain the expression for a
rigidly rotating spiral with ∂t A = −iωA,

(
∂2

r + r−1∂r
)
A = 1

4q2
0

[−(iω + ε)A + 2iq0r2(2∂r + r−1)∂2
ϕA + r−4∂4

ϕA + 3|A|2A]. (6)
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(a) (b) (c)

FIG. 1. Spatial pattern of (a) the order parameter field ψ comprising several one-armed spirals, (b) the
corresponding local phase θ , and (c) the pressure. The model parameters used are ε = 0.7, gm = 50, c2 = 2,
and σ = 1.

For the complex amplitude of a spiral given by A = ρ(r)eiθ , we have ∇A = (ρ ′r̂ + imr−1ρϕ̂)eiθ

and |∇θ | = m/r. Hence, from Eqs. (4) and (6) we obtain

f = − 1

2q2
0

[(
3ρ2 − ε + |∇θ |4 − 4q2

0|∇θ |2)ρρ ′r̂ +
(

−ρ2mω

r
+ 8kq2

0mρρ ′

r

)
ϕ̂

]
. (7)

This is the central result of this section. The radial component on the RHS of Eq. (7) is irrotational
and can be included in a redefinition of the pressure. The azimuthal component vanishes for targets
with m = 0 (i.e., no angular dependence). It also vanishes near the core (r → 0) since the real
amplitude ρ and the wave number k decay to zero linearly in r as the core is approached [26].
However, away from the core where ρ is approximately constant and k ≈ q0, the term −(ρ2mω/r)ϕ̂
can be written as −ρ2mω∇ϕ. This is an azimuthal body force induced by the rotating spiral that is
irrotational. This irrotational force term cannot be eliminated by subsuming it into the pressure as
the latter would become multivalued. That is, the observed pressure is continuous, without a direct
dependence on ϕ, which would lead to a jump of 2π (see Fig. 1). The curl of this irrotational force
corresponds to a vorticity point source at the origin. No true divergence exists in this term as both
ρ, k ∼ r for r � 1, vanishing at the core. We will retain this irrotational force and calculate its
contribution to the azimuthal velocity explicitly.

C. Azimuthal velocity field

In order to compute the velocity field that results from the force given in Eq. (7), we first obtain
an asymptotic expression for the amplitude ρ by substituting A = ρ(r)eiθ in the amplitude equation
(5); in the stationary limit we find

4q2
0

(
∂2

r + r−1∂r
)
ρ + (ε − |∇θ |4 − 3ρ2)ρ = 0. (8)

For r 
 1, using θ = mϕ − ωt we obtain

ρ2 = 1

3
ε − 1

3
|∇θ |4 = 4

3
ε − 4m4

3r4
, 2ρρ ′ = 4m4

3r5
. (9)

Substituting Eq. (9) into Eq. (7), with k = q0, yields

fϕ = 1

2q2
0

(
ρ2 mω

r
− 8q3

0mρρ ′

r

)
= 1

6q2
0

[
εmω

r
− m5ω

r5
− 16q3

0m5

r6

]
. (10)
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The radial component of f given in Eq. (7) can be written in a gradient form and absorbed into the
pressure term; thus we only need to consider f = fϕϕ̂. As shown in Eq. (10), this azimuthal force
consists of an irrotational contribution (the first term) and two rotational contributions.

The calculation of the azimuthal velocity is simplified by using a pressure-velocity representation
of Eq. (2) for Stokes flow,

−∇p + σ (∇2 − c2)v + gmf = 0. (11)

Since this equation is linear in v we solve separately for the three components of fϕ in Eq. (10),
which leads to the three velocity contributions v1, v2, and v3. The component v1 satisfies

−∇p + σ (∇2 − c2)v1 + εgmmω

6q2
0r

ϕ̂ = 0. (12)

This flow component is induced by the irrotational part of the azimuthal force. In the vorticity and
stream function formulation of Eq. (2), the corresponding term is zero except for a point source
of vorticity at the origin. In this configuration, the pressure changes only along the radial direction
[as observed in Fig. 1(c)], so the azimuthal component of the velocity satisfies an inhomogeneous
modified Bessel equation

∂2
r v1ϕ + 1

r
∂rv1ϕ −

(
c2 + 1

r2

)
v1ϕ = −εgmmω

6q2
0σ r

. (13)

Assuming Dirichlet boundary conditions so that the velocity approaches zero at the spiral’s core
r = 0 and vanishes at some distance rb, we find

v1ϕ = mωεgm

6q2
0σc2

[
1

r
+

(
cK1(rbc) − 1

rb

)
I1(cr)

I1(rbc)
− cK1(cr)

]
, (14)

where I1 and K1 are modified Bessel functions of the first and the second type, respectively. In the
limit of c2 → 0, for which damping at the top and bottom bounding walls is negligible (free-slip),
the solution for v1ϕ reduces to1

v1ϕ = −mωεgm

12q2
0σ

r ln(r/rb). (15)

For c2 > 0, in the limit rb → ∞ the contributions from the parts containing the modified Bessel
functions in Eq. (14) become negligible at long distance, so v1ϕ ∼ 1/r, in agreement with the result
in Ref. [12]. Recall that several approximations made here hold only away from the spiral core, and
therefore this solution must be regarded as an outer solution for the flow.

It is possible to obtain analytically a solution for the rotational component of the flow v2ϕ ,
although only when c2 = 0. The corresponding flow equation is given by

−∇p + σ (∇2 − c2)v2 − gmm5ω

6q2
0r5

ϕ̂ = 0. (16)

It can be rewritten in terms of ζ in polar coordinates, i.e.,

∂4
r ζ + 2

r
∂3

r ζ − 1

r2
∂2

r ζ + 1

r3
∂rζ + 1

r3
∂r∂

2
ϕζ + 1

r2
∂2

r ∂2
ϕζ − c2

(
1

r
∂rζ + ∂2

r ζ

)
= 2gmm5ω

3q2
0σ r6

, (17)

1Note that the flow itself is rotational, i.e., ∇ × v1 �= 0. While the force component f ϕ = −(ρ2mω/r)ϕ̂ is
irrotational, its curl is nonzero, since ∇ × ( f ϕ ) ∝ δ(0)ẑ. Hence, it leads to a nonzero vorticity and consequently
to the rotational v1.
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where ζ = ζ (r) due to v2 = v2ϕϕ̂. At large distances and c2 = 0, we find

ζ (r) = gmm5ω

96q2
0σ r2

. (18)

Therefore, since v2ϕ = −∂rζ we obtain

v2ϕ = gmm5ω

48q2
0σ r3

. (19)

Similar to v2ϕ , we are able to obtain a solution for the other rotational component v3ϕ generated
by the last term in Eq. (10), also for c2 = 0. Following the same steps, we obtain

v3ϕ = 8gmm5q0

45σ r4
. (20)

In summary, the azimuthal flow induced by a rotating spiral can be decomposed into two separate
contributions arising from irrotational and rotational force components, respectively. The former,
v1ϕ as given by Eq. (14), leads to a long-range logarithmic dependence of the azimuthal velocity
when c2 = 0 and to a 1/r decay at finite damping with c2 > 0 as rb → ∞. Rotational forces lead
to azimuthal velocities v2ϕ and v3ϕ that decay as power laws (1/r3 and 1/r4) for c2 = 0, as shown
in Eqs. (19) and (20), and therefore decay much faster than the flow v1ϕ created by the irrotational
component of the force. We will use these results to interpret the numerical calculations in the next
section.

III. NUMERICAL METHODS

A. Two-dimensional generalized Swift-Hohenberg model

Computations of the generalized Swift-Hohenberg model were based on the vorticity formu-
lation, Eqs. (1) and (2). We also conducted spot checks with an equivalent 2D pressure-velocity
formulation based on Eqs. (1) and (11) and computed the effective pressure field as shown in
Fig. 1(c). The results obtained for the velocity field are identical within numerical accuracy. For
all the results presented, the equations have been solved on an equally spaced square grid of
5122 nodes, with q0 = 1 and the grid spacing �x = 2π/16. We used a pseudospectral method,
where gradient terms are computed in Fourier space with a second-order implicit iteration scheme,
and nonlinearities are computed in real space through an explicit second-order Adams-Bashforth
scheme. The time step used is �t = 10−3. The algorithm was implemented by using the parallel
FFTW routine with associated MPI libraries. Periodic boundary conditions were used throughout.
In our calculations the parameters were chosen as gm = 50, σ = 1, and ε = 0.7. Further details
about the influence of the various parameters on the qualitative nature of the patterns obtained
have been given in Refs. [12,14]. From the pressure-velocity formulation, the pressure has been
computed through the pressure Poisson equation which follows from the longitudinal projection
of the underlying momentum conservation equation [by taking the divergence of Eq. (11) and
accounting for incompressibility ∇ · v = 0]. The same grid setup, model parameters, and boundary
conditions were used in this case.

Figure 1(a) shows a typical configuration of the ψ field inside the regime of spiral defect
chaos. It is obtained by time integration of the model equations from a random initial condition
of uniformly distributed ψ ∈ (−0.05, 0.05) and zero initial velocity. The figure shows multiple
one-armed spirals, obtained at time t = 105 for c2 = 2. Following the algorithm of Egolf et al. [31],
we show in Fig. 1(b) the corresponding spatial distribution of phase θ and observe the expected
discontinuity of 2π when enclosing a full circle around the core of each spiral. Although the phase
is multivalued, the body force is continuous and the resulting pressure [illustrated in Fig. 1(c)] is
also continuous. Note that the pressure is mostly radially symmetric, with its local maximum near
the core of every spiral.
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FIG. 2. (a) Two clockwise rotating spirals with cores located at approximately (104,56) and (156,81). The
blue line has a length of 58, which is roughly the distance between the cores. (b) Azimuthal component of the
force f = −∇2ψ∇ψ (solid line), with r = 0 at the (104,56) core. The dashed line is a guide to the eye showing
the approximate 0.44/r decay of the force amplitude.

From each spatial configuration, such as the one shown in Fig. 1(a), we extract the locations
of spiral cores by plotting the magnitude of the velocity v and searching for the location inside
the vortices where |v| = 0. The flow generated by each spiral has the form of a vortex [14]; hence
well-formed spirals are detectable through axially symmetric rings in |v| or smooth spikes in the
vorticity potential (for which the core is located at the maximum of ζ ).

Figure 2 shows two neighboring spirals rotating in the same direction, with cores located at
positions (104,56) and (156,81) of Fig. 1(a). By setting the origin r = 0 of a polar coordinate system
at the core of the left spiral at (104,56), the figure also shows the radial dependence of the azimuthal
component of the force f up to the edge of the spiral. The amplitude of the force decays slowly with
distance r and for r > 5 oscillates with periodic wavelength slightly larger than π/q0, half of the
approximate stripe or roll periodicity λ0 from the linear solution, as expected from f = −∇2ψ∇ψ .
The velocity generated by this rotating spiral will be investigated in Sec. II C.

B. Three-dimensional Boussinesq equations

Rayleigh-Bénard convection is the buoyancy driven convection that occurs when a shallow and
horizontal layer of fluid is heated from below. The fluid motion is described by the Boussinesq
equations [5], which represent the conservation of momentum, energy, and mass and are given as

Pr−1

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇2u + RaT ẑ, (21)

∂T

∂t
+ u · ∇T = ∇2T, (22)

∇ · u = 0. (23)

In these equations, u(x, y, z, t ) = (u, v,w) is the velocity vector with components (u, v,w) in
the (x, y, z) directions, respectively. The pressure is given by p(x, y, z, t ), the temperature field is
denoted by T (x, y, z, t ), and ẑ is a unit vector in the positive z direction which opposes the direction
of gravity. Equations (21)–(23) have been nondimensionalized using the depth of the convection
layer d as the length scale and the vertical heat diffusion time d2/κ as the timescale, where κ is
the thermal diffusivity. The vertical diffusion time represents the time required for heat to diffuse
from the bottom to the top of the convection layer. Additionally, the constant temperature difference
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(b)

(a)

FIG. 3. Schematics of the two domains used for the numerical simulations of the Boussinesq equations.
The Cartesian coordinates (x, y, z) are in the directions shown and gravity acts in the direction opposing z.
(a) Box domain with a square planform of side length L and depth d with an aspect ratio of � = L/d = 100.
The sidewall boundary conditions are periodic and the bottom and top walls are no-slip surfaces. This domain
was used to generate a state of spiral defect chaos, with a sample flow field shown in Fig. 4. (b) Cylindrical
domain of radius r0 and depth d with an aspect ratio of � = r0/d = 40. All material surfaces are no-slip
boundaries and the sidewalls are heated as part of the procedure to develop a giant rotating spiral as described
in the text. A sample flow field image is shown in Fig. 9(a). Both schematics are drawn to scale and are shown
slightly tilted with respect to the horizontal for perspective.

between the bottom and top boundaries �T is set as the temperature scale. Using this convention,
0 � T � 1 where T (z = 0) = 1 at the bottom boundary and T (z = 1) = 0 at the top boundary.
The Rayleigh number Ra = βgd3�T/νκ is often the control parameter used in experiments and
represents the ratio of buoyancy to thermal and viscous dissipation, where β is the thermal expansion
coefficient and ν is the kinematic viscosity. It is often convenient to use the reduced Rayleigh
number ε = (Ra − Rac)/Rac to describe the degree of driving beyond the convective threshold,
where Rac is the critical Rayleigh number. The way this number rescales to ε in Eq. (1) is detailed
in the Appendix. For an infinite layer of fluid with no-slip boundaries Rac = 1707.76 and the
nondimensional critical wave number of the convection rolls is qc = 3.1165 [5]. Therefore, the
width of a single convection roll will be approximately unity after the nondimensionalization.

The Prandtl number of the fluid Pr = ν/κ is the ratio of the momentum diffusivity to the thermal
diffusivity. The connection between Pr and the rescaled Prandtl number σ used in the generalized
Swift-Hohenberg equation is described in the Appendix. The Prandtl number is inversely related to
the magnitude of the mean flow [32,33], which has been shown to have a significant effect upon the
state of spiral defect chaos [16,34–36]. In the numerical simulations presented here, we use Pr = 1,
which is typical of the compressed gases often used in Rayleigh-Bénard convection experiments
[1,36]. The aspect ratio of the domain � is the ratio of the lateral extent of the convection layer to
its depth. We have used two different geometries in our exploration reported here: a periodic box
domain with � = 100 to study spiral defect chaos and a cylindrical domain with � = 40 to study a
single rotating giant spiral. Schematics of these two domains are shown in Figs. 3(a) and 3(b) for
the box and cylindrical domains, respectively. We note that the spatial scale in this figure is different
from the one used for Fig. 1 by a factor of 1/qc, as later detailed in the text and the Appendix.

For the box domain, we used periodic boundary conditions at all the sidewalls while the bottom
and top walls are no-slip surfaces. For the thermal driving we used ε = 0.7. In this case, our intention
was to study the state of spiral defect chaos in a domain where the effects of the sidewall boundary
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FIG. 4. (a) Temperature field at the midplane of the convection cell obtained by integrating the Boussinesq
fluid model in time with periodic boundary conditions. The convection cell is a box domain with � = 100,
ε = 0.7, and Pr = 1. The temperature field is shown at time t = 914.69. (b) Close-up view of a rotating spiral.

conditions were reduced. For a box geometry with a square platform it is typical to define the aspect
ratio as � = L/d , where L is the length of the side of square domain. Using this convention we have
� = 100 for the results presented here for the box domain. We used initial conditions composed
of small random thermal perturbations of magnitude δT = 0.01 to an otherwise quiescent layer of
fluid. We then evolved the dynamics forward in time for approximately 930 time units to allow
initial transients to decay.

We note that this duration of time is less than a nondimensional horizontal heat diffusion time
τh, which is often used as a rough benchmark for determining the length of time required for a
simulation to achieve a sufficient reduction of transients [32]; τh is the amount of time required
for heat to diffuse from the center of the domain to a sidewall. For the box domain this yields
τh = (L/2)2 = 2500. A simulation of this duration requires significant computational expense. We
found that a duration of 930 time units was sufficient to establish a steady state of spiral defect
chaos. We are interested in the instantaneous features of the patterns, in particular in the features
of the relatively short lived spiral structures, and not in the long time statistics of the global pattern
dynamics. As a result, we anticipate that a time of 930 time units is sufficient to study the mean flow
field and the azimuthal flows that are generated around the spiral structures. An example flow field
from a numerical simulation is shown in Fig. 4.

In order to study a single rotating spiral we used a cylindrical domain of aspect ratio � = r0/d =
40, where r0 is the radius of the domain. To generate a large spiral in this domain we follow the
approach used in the experiment of Plapp et al. [37]. We initialize the simulation by starting with
a quiescent layer of fluid where the lateral sidewalls are slightly heated while the thermal driving
of the layer is just above threshold at ε = 0.054. Specifically, the temperature at the sidewalls is set
to the constant value of T = 0.1 for all z, i.e., a hot sidewall boundary condition. The hot sidewall
creates an upflow at the wall which initializes the formation of a curved convection roll that aligns
with the sidewall boundary. We then evolve the system forward in time for approximately 500 time
units; during this time curved convection rolls grow inward towards the geometric center of the
domain, resulting in a stable and stationary target pattern. We next restart the simulation further
from threshold with ε = 0.405 and allow it to evolve for approximately 300 time units. During this
time, the center of the target pattern slowly drifts away from the geometric center of the domain
to yield a stationary and time-independent skewed targetlike pattern. We then restart the simulation
further from threshold with ε = 0.464 and let the system evolve for another 800 time units. This
causes the center of the targetlike pattern to drift further from the geometric center of the domain
where the pattern eventually undergoes a complex transition of instabilities that eventually yield the
giant one-armed spiral with a single dislocation as shown in Fig. 9. Both the giant spiral and the
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dislocation are rotating in the clockwise direction for these results. This procedure appears to be a
flexible and reliable way to generate giant spirals. However, the specific parameters and sequence
we used were determined by trial and error with the goal of generating a giant spiral and are by no
means meant to describe a unique procedure.

All of our numerical simulations of Eqs. (21)–(23) were conducted using the high-order, highly
parallelized, and open-source spectral element solver NEK5000 [38–40]. The code uses a semi-
implicit operator splitting approach that is third-order accurate in time and converges exponentially
in space. A hallmark of the approach is its geometric flexibility while also permitting explorations
of large spatially extended systems. The NEK5000 solver has been used to explore a broad range
of fluids problems [40]. More details regarding its use to study spatiotemporal chaos in Rayleigh-
Bénard convection can be found in Refs. [35,41–44].

IV. AZIMUTHAL FLOWS IN THE CHAOTIC REGIME

We address in this section the extent to which the asymptotic results of Sec. II C can shed some
light on the role of hydrodynamic flows on spiral defect chaos. There are a number of factors that
preclude a precise comparison between these analytic predictions and our numerical results. First,
the typical size of a spiral in the chaotic state is relatively small (a few rolls), making a determination
of the asymptotic decay of the azimuthal velocity questionable. Second, the results of Sec. II C have
been derived for the generalized Swift-Hohenberg model and they exhibit a strong dependence
on the damping parameter c2. This makes a comparison with results from the Boussinesq model
difficult as this parameter is largely phenomenological, although it has been estimated for the case
of no-slip boundary conditions (see Ref. [20] and the Appendix). Third, we have not explored the
dynamics using the Boussinesq model for the case of free-slip (stress-free) boundary conditions. In
this case c2 = 0 and the logarithmic dependence of Eq. (15) might be apparent, and with it strong
mean flows and interactions between spirals. Nevertheless, we will argue that the azimuthal velocity
field within a given spiral depends strongly on the cutoff radius rb for small values of c2, thereby
providing a mechanism for the hydrodynamic interaction of spirals.

We first use a chaotic configuration obtained from the solution of the generalized Swift-
Hohenberg model to analyze the r dependence of the azimuthal velocity vϕ as given in Eqs. (14)
and (15). We use the same spiral configuration of Fig. 1(a) obtained with the following values of
model parameters: ε = 0.7, gm = 50, c2 = 2, and σ = 1. We then compute the corresponding vϕ

from Eq. (2) from the instantaneous velocity field, for a range of values of c2. That is, by setting the
time derivative of Eq. (2) to zero [or equivalently from the curl of Eq. (11)], we obtain the velocity
field in the Stokes limit for various values of c2 from the same order parameter ψ configuration. This
way, we are able to follow the evolution of vϕ as a function of c2 only and evaluate if the transition
from the −r ln(r/rb) behavior based on Eq. (15) to the damped profiles of Eq. (14) is observed.
Note, however, that for these parameter values we do not observe spirals in the simulation transients
when c2 � 0.1; rather, we observe target defects (see also the discussion in Sec. V B).

Figure 5 shows the azimuthal velocity vϕ away from r = 0 at the core of the spiral located at
coordinate (104,56) in Fig. 2, up to the midpoint between this spiral and the other one at (156,81).
The figure shows the numerical solution for c2 = 0, 0.1, 0.4, and 2 (solid lines). In order to compare
the numerical solution with the analytic result of Eq. (14) with c2 > 0, we define

g(r) = 1

c2

[
1

r
+

(
cK1(rbc) − 1

rb

)
I1(cr)

I1(rbc)
− cK1(cr)

]
(24)

and fit the function vϕ = αg(r) + β, where α and β are two fitting coefficients. The function g(r)
depends on two parameters, the damping parameter c2 and a cutoff radius rb which is taken to be of
the order of the spiral size.

For c2 = 0 and the two rotating spirals of Fig. 2, we set rb = 30, the midpoint between the
two spirals (we see that vϕ changes sign approximately at r = 30). The asymptotic relation vϕ =
−1.3r ln(r/30) is shown in Figs. 5(a) and 5(b) (dashed lines), where the constant −1.3 is the single
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FIG. 5. Azimuthal velocity for the spiral located at (104,56) in Fig. 2 with r = 0 at its core, for gm = 50,
σ = 1, and ε = 0.7. The left column compares numerical results with our analytic predictions and the right
column is in logarithmic scale. (a) and (b) c2 = 0, using vϕ = −1.3r ln(r/30) for the analytic curve; (c) and
(d) c2 = 0.1, using α = 5/σ and β = −1.75; (e) and (f) c2 = 0.4, using α = 5/σ and β = −0.5; and (g) and
(h) c2 = 2, using α = 5/σ and β = −0.1. For all the cases of c2 > 0, rb = 35 is used.
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fitting parameter. There is good agreement away from the core. Figure 5 also shows our results
for c2 > 0. We have set rb = 35 in all these cases and fit the parameters α and β. From Eq. (14)
we note that α = mωεgm/6q2

0σ , where the only unknown is the angular frequency of rotation ω.
Using our current parameter values, we have α = 5.83ω, where ω is not known a priori. The order
of magnitude of the angular frequency will be further discussed in Sec. V B, where we find it to
be on the order of 10−1–1. We have assumed that the constant α is largely independent of c2 and
chosen α = 5/σ for all the values of c2 > 0 in Fig. 5, where the rescaled Prandtl number is σ = 1.
Therefore, the only fitting parameter used in Fig. 5 for c2 > 0 is the constant β. We note that Eq. (14)
is valid away from the core and is obtained with the boundary condition of vanishing velocity at
the core. Hence the constant β can be rationalized as being related to the velocity near the core
that should be used as a known boundary condition for the outer solution. The fitted β value also
contributes to the large radius at which vϕ vanishes. For finite damping, the azimuthal velocity does
not completely decay to zero, so we need a negative β to capture such an effect. For small values of
c2, the value of rb is relatively easy to determine and is closely related to β in order to obtain a good
fit. As c2 increases, the velocity field decays quickly and the fitting becomes less dependent on the
value of cutoff rb as long as rb remains greater than the size of the spiral.

By increasing the damping coefficient from c2 = 0 to c2 = 0.1, the magnitude of the azimuthal
velocity diminishes by a factor of 4 and its asymptotic decay changes from convex to concave, as
expected from Eq. (14). Figure 5 shows that our analytic prediction from Eq. (14) appropriately
describes the behavior of vϕ far enough from the spiral core for all the c2 > 0 cases. We also note
that in every case v1ϕ is sufficient to describe the form of the numerical curves, while v2ϕ and v3ϕ

do not provide any major contribution to the observed results.
As c2 increases, the flow field becomes increasingly localized within the vicinity of the spiral

cores, thereby reducing any interaction between velocity fields generated by different spirals. This
is illustrated in Fig. 5 when comparing the cases of c2 = 0.4 and c2 = 2. As the flow damping
increases, the velocity becomes more short ranged and the magnitude of the azimuthal velocity
decreases significantly: For c2 = 2, the flow magnitude is only 4% of the flow obtained for c2 = 0.
Note that while rb is of the order of the spiral’s size, the velocity for larger values of c2 reaches zero
well before r = 30 and that due to the small size of the spirals we do not observe a 1/r decay at
long distances. In this range of c2, the velocity field within each spiral is largely independent of the
existence of other spirals and does not depend on the value of rb [12].

In summary, we have observed the transition of the azimuthal velocity from a −r ln(r/rb) profile
to the damped convex profiles when the damping coefficient c2 increases, as suggested by our
predictions in Sec. II C. As c2 approaches zero, given the longer range of the flows, the cutoff
parameter rb has the same value as the spiral’s radius when there are spirals of the same topological
charge in the vicinity. By increasing c2, as long as rb is greater than this radius, varying the
cutoff makes little quantitative difference to the fits, since the azimuthal velocity decays quickly
to zero. In addition, the azimuthal velocity field within a spiral strongly depends on the existence
of neighboring spirals and their presence affects the fit parameters rb and β. The topological charge
of the spirals also plays a role in this observation, as will be discussed in Sec. V A for the case of
neighboring counterrotating spirals.

V. DISCUSSION

A. Azimuthal flow between two counterrotating spirals

In the spiral chaos regime the flow field within each spiral depends on the spiral size, which in
turns is determined by the presence of neighboring spirals and other defects through the cutoff
parameter rb. In particular, the decay of vϕ with distance r is faster than the asymptotic 1/r.
For stress-free boundary conditions c2 = 0 or small damping (e.g., c2 = 0.1) there is a strong
and long-range azimuthal velocity component spanning the entire spiral, which decays to zero
at a scale determined by neighboring spirals of the same topological charge. For low damping,
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FIG. 6. (a) Azimuthal velocity between two spirals of opposite topological charge using the generalized
Swift-Hohenberg equation. At r = 0 we find the core of the spiral located at (104,56) from Fig. 2, and at
r = 47 the core of the spiral is located at (139,25). Using this same order parameter configuration, we compute
the instantaneous velocity for (b) c2 = 0 and (c) c2 = 2 and plot the azimuthal velocity between the two spirals.

rb is approximately the spiral’s radius. We present here an analysis of the flow between two
counterrotating spirals (with opposite topological charge), as the flow would interact constructively
along a line connecting them. Figure 6 shows the azimuthal velocity between two neighboring
counterrotating spirals, centered at coordinates (104,56) and (139,25) in Fig. 1(a). We again use
the same ψ configuration shown in Fig. 1(a) to compute the azimuthal velocities in the absence of
inertia for two different values of the damping coefficient c2. In the absence of damping c2 = 0, the
azimuthal velocity is nonzero in the region between the two spirals, as the vorticity generated by
the two cores adds up constructively. For c2 = 2, the flow once again becomes concentrated at each
spiral, with small or no flow interaction between them.

B. Advection versus roll unwinding in spiral dynamics

We address here the possible relevance of the mean flows discussed to the chaotic state itself,
based on the generalized Swift-Hohenberg model. It has been established that spiral defect chaos is
only observed for a specific range of c2 and scaled Prandtl number σ . For the parameter set used
here, gm = 50, ε = 0.7, and σ = 1–2, spiral defect chaos has been found in the range 0.1 < c2 < 5
[10,12,14]. For c2 > 4, the leading-order Lyapunov exponent of the flow approaches zero [14].
In the opposite range of small damping c2 � 0.1, spiral defects are no longer observed while the
system dynamics is chaotic. In our calculations, if c2 = 0 the magnitude and range of the mean flow
increase significantly and we are only able to achieve spiral defect chaos for this free-slip condition
by reducing gm significantly to gm ∼ 5 (or similarly by increasing σ ).

We examine here the relative contribution to the overall time variation rate ∂tψ from the mean
flow advection v · ∇ψ and the diffusive pattern dynamics given by the RHS of Eq. (1), leading to
roll unwinding [12,32]. The magnitude of the latter depends on the value of the local wave number
when it is maintained away from the critical value (i.e., wave-vector frustration) [12,13] and also
from the curvature of the rolls [29]. Both contributions have been estimated theoretically [12,45].

We use the same configuration of the order parameter field shown in Fig. 2 and analyze the
flow field around the spiral with core located at (104,56). We obtain the velocity field by solving
Eq. (2) with the time derivative set to zero and for a range of values of c2 and σ . The overall
time variation ∂tψ , advection v · ∇ψ , and relaxational part [i.e., the RHS of Eq. (1) yielding
diffusive dynamics] oscillate nonuniformly as a function of the radial coordinate r. We extract the
characteristic magnitude of each quantity by finding its maximum absolute value between r = 5
(away from the core) and r = 28 (the approximate radius of the spiral). Other measures, such as
choosing the values from the first peak of these functions, lead to similar results. Our results are
shown in Fig. 7 for a range of values of c2 for fixed σ = 2 and also as a function of σ for fixed
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(a) (b)

FIG. 7. Ratios of advection and roll unwinding [the RHS of Eq. (1)] to the overall time variation ∂tψ , as a
function of the damping coefficient c2 and the rescaled Prandtl number σ . Values are computed based on the
spiral located at (104,56) in Fig. 1(a), with ε = 0.7 and gm = 50. The blue line with circles shows the ratio for
the spiral’s characteristic advection contribution (v · ∇ψ) and the red line with squares shows the ratio for its
characteristic roll unwinding contribution (RHS). (a) Ratios are plotted as a function of c2 for σ = 2. (b) Ratios
are plotted as a function of σ for c2 = 1.

c2 = 1. As described in the Appendix, the value of σ = 2 corresponds to a Prandtl number of
Pr = 1 (consistent with the CO2 experiments of Ref. [1]). We have conducted calculations across the
range 0 � c2 � 100 and find that advection and diffusion contributions are of similar value around
c2 = 1. When rescaling the critical wave number to q0 = 1, the value c2 = 1 is the one estimated
for no-slip boundary conditions on the cell’s plates, as detailed in Ref. [20] and the Appendix.
Next we fix c2 = 1 and compute the same ratios for a range of 0.125 � σ � 64. Interestingly, both
advection and diffusion contributions have approximately the same magnitude at σ = 2 (i.e., at the
experimentally used Prandtl number Pr = 1).

These results indicate three distinct regimes which can be correlated with the qualitative nature
of the system dynamics obtained from the generalized Swift-Hohenberg model. (i) For very small c2

(�0.1) at σ = 2, the observed defect patterns are chaotic but without any observable spirals, other
than some transient target defects (similarly for σ � 0.25 at c2 = 1). As seen in Fig. 7(a), when
c2 � 0.1 the dynamics are mainly driven by advection and the diffusive dynamics contribution from
the RHS of Eq. (1) to ∂tψ becomes very small. At c2 = 0 we still observe a few transient targets. (ii)
At the other extreme with large c2, the calculations in Ref. [14] showed that the leading-order (and
positive) Lyapunov exponent of the flow approaches zero, indicating very weak or even nonchaotic
state. The patterns are dominated by slowly coarsening large target and spiral defects, mixing with
small spirals or targets. Similar results can be obtained for large enough σ at c2 = 1 in Fig. 7(b). In
this regime, diffusive roll unwinding mainly determine spiral rotation, as can be seen in Fig. 7. (iii) In
the intermediate parameter range (e.g., around 0.1 < c2 < 5 for σ = 1–2 or in the midrange values
of the σ dependence at c2 = 1) spiral defect chaos is observed in the numerical solutions. In this
range the contributions from advection and diffusive relaxation are comparable. In particular, both
contributions are nearly the same around c2 = 1 and σ = 2, the parameter values that correspond to
the experiment of Ref. [1] and to the previous study of the Boussinesq equations [14–16,41]. These
results also help explain why spiral defect chaos was not observed when c2 = 0 and gm = 50, but
did appear by reducing the latter to gm = 5, as shown in Fig. 8. That is, reducing gm would roughly
translate into moving the curves shown in Fig. 7 to the left. In summary, the results suggest a
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FIG. 8. Patterns of order parameter field ψ obtained from the generalized Swift-Hohenberg model for
ε = 0.7, σ = 2, c2 = 0, at time t = 2 × 103, and (a) gm = 50, showing a chaotic state without the emergence
of spirals, and (b) gm = 5, showing spiral defect chaos.

correlation between the existence of spiral defect chaos and the relative balance between advection
and order parameter diffusion.

Characteristic values of the spiral rotation rate ω can be obtained from the numerical solutions.
We estimate ω ∼ O(10−1) in dimensionless units, with its maximum value close to 1. This is
consistent with the values of α used in the fits of Fig. 5.

C. Comparison with spirals obtained from the Boussinesq equations

We have explored spiral defect chaos in the Boussinesq model only for no-slip boundary
conditions. From the numerical results, as in Fig. 4, we observed that the size of the spirals in
the range of parameters where chaos exists is fairly small, as is the case in experiments. Therefore,
we cannot examine the asymptotic decay of vϕ ∼ 1/r as has been predicted for large r, nor can we
conclusively obtain the spatial dependence of long-range flows at small damping as argued above.
We do present, however, results for a large, single rotating spiral (see Sec. III B) and evidence that
the azimuthal velocity field obtained agrees, without any adjustable parameters, with vϕ obtained
from direct integration of the generalized Swift-Hohenberg equation and in the regime of spiral
defect chaos. We therefore expect that the asymptotic behavior of Fig. 5 at small damping would
carry over to the full Boussinesq model.

A configuration comprising a single rotating spiral as given by the Boussinesq model with Prandtl
number Pr = 1 is shown in Fig. 9. It has been obtained by adding a lateral forcing thermal boundary
term in a cylindrical cell (a hot sidewall) while setting no-slip boundary conditions at all material
surfaces, as described in Sec. III B. The temperature field at midcell of a slowly rotating spiral and an
accompanying dislocation is shown in Fig. 9. Lengths are made dimensionless by the cell thickness,
so the critical wave number is qc = 3.1165, which can be obtained from the marginal stability
problem at the critical Rayleigh number. The size of the spiral in Fig. 9 is 14 wavelengths, before
reaching the dislocation. According to the derivation by Manneville [20], given no-slip boundary
conditions and a cell with dimensionless thickness h = 1, a Galerkin expansion of the flow indicates
that the mean flow becomes Poiseuille-like at lowest order. By averaging the governing equations
over the height, a vorticity equation analogous to Eq. (2) can be obtained, with a damping coefficient
c2 = 10 corresponding to qc = 3.1165. More details are given in the Appendix, including how the
length, time, and various parameters are mapped from the Boussinesq model with no-slip conditions
and qc = 3.1165 to the generalized Swift-Hohenberg model (1) and (2) with q0 = 1. The value of c2

is further rescaled by 1/q2
c , so c2 ≈ 1. Since the length scales as 1/qc and for Pr = 1 the timescale

is 2.05/q2
c , the Boussinesq velocity is rescaled by 2.05/qc to agree with our dimensionless units.
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FIG. 9. (a) Temperature field at the midplane for a cylindrical convection cell obtained by time integra-
tion of the Boussinesq (BSQ) equations where qc = 3.1165, � = 40, ε = 0.4637, and Pr = 1. (b) Rescaled
azimuthal velocity vϕ from the Boussinesq model with r = 0 at the spiral core (solid line). The straight dashed
line illustrates the power law fit vϕ ∼ r−2. The red dashed line is the result of Eq. (14), using c2 = 1, σ = 2,
α = 1.4383, β = −0.043 28, and rb = 35qc. (c) Rescaled azimuthal velocity vϕ as a function of qcr obtained
from the generalized Swift-Hohenberg model (SH) with c2 = 1, σ = 2, ε = 0.7, and gm = 50 for the spiral
located at (104,56) in Fig. 2, as compared to that of the Boussinesq equations. The x axis is scaled with
qc = 3.1165 for the Boussinesq result and qc = q0 for the Swift-Hohenberg model. No adjustable parameters
have been used.

Finally, based on the Prandtl and Rayleigh numbers of the Boussinesq solution, we have σ = 2,
ε = 0.7, and gm = 50, with scaling also given in the Appendix.

Figure 9(b) shows the rescaled azimuthal velocity vϕ computed at the midplane of the cell as a
function of qcr, so we can compare it directly with the result from the generalized Swift-Hohenberg
model. The coordinate origin has been placed at the spiral’s core. Following an initial rise from
zero at the core, the velocity appears to decay with distance as r−2 between qcr = 3 and qcr = 20,
until it quickly decays to zero at about qcr = 46. This decay is faster than the expected asymptotic
behavior of 1/r, although we must note that for the time shown, there still is a difference between
the rotation velocities of the core and the dislocation given in the simulation.

Figure 9(c) compares the azimuthal velocity of the large spiral obtained from the Boussinesq
model with that of a rotating spiral in the fully chaotic regime given by the generalized Swift-
Hohenberg model. We have mapped the physical values of the parameters in the Boussinesq model
to the parameters of the generalized Swift-Hohenberg model, as explained in the Appendix. There-
fore, there are no adjustable parameters. The Swift-Hohenberg result was obtained by computing
the adiabatic flow [by eliminating the time derivative in Eq. (2)] associated with ψ in Fig. 1(a),
for c2 = 1, σ = 2, ε = 0.7, and gm = 50, and the spiral located at the coordinate (104,56). The
azimuthal velocity obtained from the Boussinesq model agrees quantitatively with the result of
the generalized Swift-Hohenberg model, even when comparing an isolated spiral in the former to
one in the chaotic regime in the latter. This lends credence to the observation that the asymptotic
calculation of Sec. II C, which is based on a rigidly rotating spiral, is a good approximation to
the flow induced by a spiral in the chaotic state, albeit in the range of moderate to large values of
the damping parameter c2. For the value of c2 = 1 used in the comparison, the azimuthal velocity
within a rotating spiral depends only weakly on whether the spiral is isolated or surrounded by other
spirals.

We finally analyze the azimuthal velocity in the chaotic regime of the Boussinesq model, with
results presented in Fig. 10. We show the azimuthal velocity of the spiral of Fig. 4, with r = 0
centered at the core of the spiral. This result is compared with our analytic prediction of Eq. (14),
with c2 = 1, gm = 50, σ = 2, and ε = 0.7. Instead of fitting both α and β as previously discussed
in Sec. III A, we set α = 5/σ (the same value used in Fig. 5). Since α = mωεgm/6q2

0σ , all the
parameters used in Sec. III A are the appropriate ones for the Boussinesq model with no-slip
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FIG. 10. Rescaled azimuthal velocity for the enlarged spiral in Fig. 4 obtained from the Boussinesq
model (BSQ) with r = 0 at its core. The corresponding rescaled parameters are σ = 2, c2 = 1, and ε = 0.7.
(a) Comparison of numerical results with analytic predictions. (b) Same results as in (a) using a logarithmic
scale. The parameters c2 = 1, α = 5/σ , β = −0.1, and rb = 4.5 are used for the analytic curve.

boundary conditions as described in Sec. III B. In both cases we obtain one-armed spirals (m = ±1).
Here we use rb = 4.5 (the approximate size of the spiral) and β = −0.1. Note that due to the
small size of the spiral, vϕ does not reach zero at the edge of the spiral, as this is a small defect
constrained by other features of the disordered pattern. Even under these circumstances, there is
good agreement between the result of the Boussinesq model and the analytic solution, when using
the same parameters estimated from the data fit with the generalized Swift-Hohenberg model.

VI. CONCLUSION

An irrotational azimuthal body force proportional to ϕ̂/r in the generalized Swift-Hohenberg
model induces an azimuthal velocity vϕ for a configuration of rigidly rotating spirals. At zero
damping (free-slip), this force leads to long-range flows proportional to −r ln(r/rb), where rb needs
to be determined independently. For the more realistic case of no-slip boundary conditions, the
azimuthal velocity would be expected to decay as 1/r instead at a scale r 
 1 when rb → ∞. For
realistic spiral sizes in the regime of spiral defect chaos, q0rb is of order one, and this asymptotic
regime is never reached. Instead, the velocity flow depends strongly on the value of rb, which in turn
depends on the characteristic separation between neighboring spirals.

This dependence of the azimuthal velocity has been compared with direct numerical solution in
a chaotic state both for the 3D Boussinesq equations and for the 2D generalized Swift-Hohenberg
equations. For free-slip boundary conditions in the latter, the velocity behaves as −r ln(r/rb), which
is long ranged and necessarily crosses zero between neighboring spirals of the same topological
charge, while for neighboring spirals of opposite charge the velocity interacts constructively. When
no-slip conditions are considered (with a finite damping parameter), the velocity profile qualitatively
changes. This agrees with our predictions that the velocity decay is governed by a combination of
modified Bessel functions. When damping is sufficiently high, we confirm the earlier suggestions
that the flow within a spiral is largely independent of the background in which it is immersed. For
moderate damping the flow within a spiral is a function of the spiral’s size and hence of the distance
to neighboring spirals and their topological charges. This observation is consistent with an earlier
suggestion of spiral defect chaos as a form of invasive chaos [12], except that hydrodynamic flows
also play a role.
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For the 2D generalized Swift-Hohenberg model, we identify two contributions to the spiral
rotating dynamics: mean flow advection and diffusive dynamics with wave-vector frustration and
roll unwinding. We have performed a series of calculations by varying the damping coefficient
and the Prandtl number to identify three distinct regimes: chaos without spiral patterns, diffusive
pattern dynamics with extremely weak or no chaos, and spiral defect chaos. The latter appears in
the range in which order parameter advection and diffusive relaxation are of similar magnitude. In
particular, we find that both contributions are approximately the same at a damping coefficient about
c2 = 1 and a rescaled Prandtl number of σ = 2 (with Pr = 1), which correspond to the experimental
conditions for convection in CO2 gas.

The 3D Boussinesq equations have been integrated in a rectangular geometry with periodic
sidewalls and no-slip conditions at top and bottom surfaces. By analyzing the flow field around
a small spiral in the chaotic state, we found that the analytic result based on a rigidly rotating spiral
agrees reasonably well with the Boussinesq azimuthal velocity and that the remaining fit coefficients
are consistent with those used with the generalized Swift-Hohenberg results under corresponding
values of the physical parameters. Finally, we obtained a large spiral using the Boussinesq model
in a cylindrical configuration and analyzed the azimuthal flow around the core of the spiral. The
azimuthal velocity agrees with the generalized Swift-Hohenberg result without any adjustable
parameters. We conclude that for large values of the damping parameter, the flow field induced by a
rotating spiral is the same regardless of whether it is isolated or surrounded by other spirals. When
the damping parameter is reduced, the flow field depends on the distance to neighboring spirals and
the relative sign of their topological charge, therefore providing a means for their interaction.
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APPENDIX: PARAMETER VALUES OF THE GENERALIZED SWIFT-HOHENBERG MODEL

A generalized Swift-Hohenberg model that includes advection by the solenoidal mean flow
velocity v has been derived by Manneville [8,20] from the Boussinesq equations, which has the
form

τ0(∂ψ/∂t + v · ∇ψ ) =
[
ε − ξ 2

0

4q2
c

(∇2 + q2
0

)2
]
ψ − g(Pr)N[ψ], (A1)

[∂/∂t − Pr(∇2 − c2)]∇2ζ = gqc [∇(∇2ψ ) × ∇ψ] · ẑ, (A2)

where

v = ∇ × (ζ ẑ) = (∂yζ ,−∂xζ ). (A3)

In Manneville’s model, the nonlinearity N[ψ] has the form N[ψ] = |∇ψ |2ψ + q2
cψ

3. However, the
threshold expansion of the Boussinesq equations leads to the cubic sum of Fourier modes, with
no counterpart in real space [47]. Therefore, there is no systematic way for which N[ψ] can be
derived for a real-space expression, and its form depends on boundary conditions and arbitrariness
of expansions [9]. In this work we use the simplest form N[ψ] = q2

cψ
3. The model parameters

depend on boundary conditions for the top and bottom of the convection cell. In the case of no-slip
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(rigid) boundary conditions, where c2 > 0 accounting for hard-mode oscillatory instabilities, these
parameters are given by [20]

ε = (Ra − Rac)/Rac, Rac = 1750 (exact value: 1708), c2 = 10,

qc = 3.1165 (∼exact value), ξ 2
0 = 0.1497 (exact value: 0.148),

τ0 = (1.9425 + Pr−1)/38.2927 [exact value: (1.9544 + Pr−1)/38.4429],

gqc = 2/21qc, g(Pr) = α0 + β0/Pr + γ0/Pr2, (A4)

where α0, β0, and γ are some unknown expansion coefficients. Note that the above parameters such
as Rac, qc, ξ0, and τ0 were derived from the Galerkin expansion by Manneville [8,20] and agree
well with the known exact values; also the length scale used above should be the vertical thickness
d , and hence the dimensional qc → qcd and c2 → c2d2 after rescaling.

In our simulations (and most other research), the dimensionless model equations are used.
Setting a length scale 1/qc, a timescale 4τ0/ξ

2
0 q2

c , the rescaled variables ψ ′ = ψ
√

4g(Pr)/ξ 2
0 and

ζ ′ = ζ (4τ0/ξ
2
0 ), as well as

ε′ = ε
4

ξ 2
0 q2

c

= Ra − Rac

Rac

(
4

ξ 2
0 q2

c

)
, c′2 = c2/q2

c , (A5)

and omitting all the primes, the generalized Swift-Hohenberg model equations (A1) and (A2) can
be rescaled as

∂ψ/∂t + v · ∇ψ = [
ε − (∇2 + q2

0

)2]
ψ − N[ψ], (A6)

[∂/∂t − σ (∇2 − c2)]∇2ζ = gm[∇(∇2ψ ) × ∇ψ] · ẑ, (A7)

as used in our study. Here

q2
0 = 1, σ = 4τ0

ξ 2
0

Pr, gm = 4τ 2
0

g(Pr)ξ 2
0

gqc . (A8)

From the values given in Eq. (A4), the parameters in Eqs. (A6) and (A7) can be estimated as

ε = 2.7511(Ra − Rac)/Rac, c2 = 10/q2
c = 1.03,

σ = 0.6978(1 + 1.9425Pr), gm = 1.7868 × 10−4(1.9425 + Pr−1)2/g(Pr). (A9)

If the Prandtl number Pr = 1 as set in experiments and the simulations of the Boussinesq model, we
have σ � 2. Also, if choosing g(Pr) = 3.0941 × 10−5, we get gm = 50, as used in our calculations.
In many calculations ε is set as 0.7, which corresponds to (Ra − Rac)/Rac = 0.2544. This choice
started from the first theoretical paper of spiral defect chaos [10], based on the experimental results
showing the onset of spiral chaos at (Ra − Rac)/Rac � 0.25 for Pr = 1 and in systems of large
enough aspect ratio [1,2]. The value of c2 [=10 (unscaled) or equivalently �1 after rescaling]
comes from the approximation process based on no-slip boundary condition [20]; after rescaling it is
independent of the Prandtl number or the length scale chosen. Values of g(Pr), gqc , and hence gm also
depend on the approximation of expansion (or the averaging over vertical thickness). As pointed out
by Manneville [20], their values would be different if using a different averaging procedure (e.g.,
the unscaled c2 would change from 10 to 12 and gqc from 2/21qc to 4/35qc).

We note that in most of the previous studies using the generalized Swift-Hohenberg equations,
usually σ is set as 1, which actually corresponds to Pr � 0.22; also c2 = 2 was first chosen in
Ref. [10] and then followed in almost all the later work except for Ref. [14], which explored a range
of possible c2 values.
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