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We study the effect of inhomogeneous environments on the swimming direction of the
microalgae Chlamydomonas reinhardtii (CR) in the presence of a light stimulus. Positive or
negative phototaxis describe the ability of microorganisms to bias their swimming toward
or away from a light source. Here we consider microswimmers with negative phototaxis
in a microfluidic device with a microfabricated square lattice of pillars as obstacles.
We measured a mean deflection of microswimmers that shows an interesting nonlinear
dependence on the direction of the guiding light beam with respect to the symmetry axes
of the pillar lattice. By simulating a model swimmer in a pillar lattice and analyzing its
scattering behavior, we identified the width of the reorientation distribution of swimmers to
be also crucial for the nonlinear behavior of the swimmer deflection. On the basis of these
results we suggest in addition an analytical model for microswimmers, where the pillar
lattice is replaced by an anisotropic scattering medium, that depends only on a scattering
rate and the width of the reorientation distribution of swimmers. This flexible and handy
model fits the experimental results as well. The presented analysis of the deflection of
light guided swimmers through pillar lattice may be used for separating swimmers having
different reorientation distributions.
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I. INTRODUCTION

Far from any walls, planktonic microorganisms swim freely, while in a complex environment
they often adhere or attach on surfaces [1], for example, when bacterial colonies are embedded in
biosynthesized extracellular polymeric substances [2,3]. This can lead to the so-called biofouling
[4]. In microfluidic devices [5], the same process can occur and leads to a destruction of the device.
The way microorganisms move inside and colonize a porous medium such as a membrane or a
filter is a subject of current research [6–8]. The statistics of transport of microswimmers through a
crowded environment have been explored in recent works [9,10]. Collective patterns like vortices
have also been reported for swimming bacteria in arrays of pillars [11].

Can microswimmers be guided through complex environments? Deformable particles such
as (red blood) cells or even simple dumbbells driven by a fluid flow through inhomogeneous
landscapes show interesting deflection scenarios [12–14]. For instance, particle loaded flows
through arrays of pillars are a very important microfluidic technique that enables a continuous
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size- or deformability dependent particle sorting with exceptional resolution, depending on the
relative orientation between the flow direction and a symmetry axis of obstacle arrays [12,14].
In the case of the phototactic microswimmer Chlamydomonas reinhardtii (CR), the position of a
light source defines instead of the flow a preferred direction [15]. This light orientation of the algae
CR is rather effective and leads for instance to self-focusing of microswimmers in Poiseuille flow
[16] including interesting jet instabilities [17,18]. Investigations of the interaction of self-propelled
particles with a complex environment in general is a challenging current research topic with various
applications [19–25].

Here, we investigate negative phototactic motile algae CR moving away from a light source
through a microfluidic device with a transparent and regular lattice of microfabricated pillars as
described in Sec. II. These motile algae experience by the pillar lattice a deviation between their
average swim directions and the light beam, cf. Sec. III. To understand the origin of such deviations,
we perform simulations taking only into account collisions between swimmers and pillars and
statistical reorientations. By comparing these results with Lattice Boltzmann (LB) simulations
that include hydrodynamic interactions (HI), we can extract the role of different key features, as
described in Sec. IV.

The numerical simulations can account for our experimental results whereby the intrinsic
orientational noise of the swimmers is crucial for a broadening of the distribution of the swim
orientation around the light beam. In Sec. V a simple analytical model is developed, which is
also closely connected to the numerical analysis. Both approaches cover the essential experimental
observations. A discussion of several results and conclusions is given in Sec. VI.

II. EXPERIMENTAL SET-UP

We use as a microswimmer model the green microalga CR, a biflagellate photosynthetic and
phototactic cell of 10 μm diameter [26]. The wild type strain CC-124 from the Chlamydomonas
Resource Center collection and that is described as negatively phototactic is used. The microalgae
are grown under a 14h/10h light/dark cycle at 22 ◦C and are harvested in the middle of the
exponential growth phase. CR’s front flagella beat in a breast stroke manner and propel the
microswimmer in the fluid [27]. The swimming motion is characterized by a persistent random walk
in the absence of a bias [28,29]. However, in the presence of a light stimulus (green wavelength, i.e.,
around 510 nm), microalgae tend to swim away from the light source [15]. Suspensions are used
at an initial volume fraction of about 0.05%, so that the HI among microswimmers is negligible.
The cells, homogeneously distributed, are introduced within a chamber containing a square lattice
of 200 μm-diameter pillars regularly spaced by a minimal surface-to-surface distance d = 30 μm.
The pillar lattice has been designed such that the length of a unit cell of pillars is comparable to the
persistence length of swimmers, to allow for the reorientation of swimmers while passing through
it. Pillars are made of transparent PDMS by means of soft lithography processes [30]. Both the
diameter and inter-pillar distance are kept constant. The height of pillars is 70 μm corresponding
to about 7 cell diameters. Bovine Serum Albumine is used to coat the pillars to limit adsorption of
cells. The space surrounding the complex environment is free of pillars.

We observe the cells under a bright field microscope. We use an inverted microscope (Olympus
IX71) coupled with a CCD camera (AVT GX3300) used at a frame rate of 15 fps. Using a low
magnification objective (×2) allows us to get a wide field of view (3614 × 2885 μm2) to be able to
acquire both the pillar-free region and complex medium at the same time. The sample is enclosed in
a covering box with two red filtered windows for visualization. This prevents the microscope light
from triggering phototaxis.

At the beginning microswimmers are homogeneously distributed in the chamber. A white LED
light is switched on with a tunable orientation angle θ� with respect to the horizontal axis of the
square lattice of pillars, as shown in Fig. 1. Due to negative phototaxis, microswimmers move away
from the light source and go through the lattice of pillars as depicted in Fig. 1.

093302-2



DEFLECTION OF PHOTOTACTIC MICROSWIMMERS …

FIG. 1. Trajectories of phototactic microalgae CR through a microfluidic device. A LED light-beam source
is used with a tunable incidence angle θ� with respect to the horizontal x axis of the square lattice of pillars.
CR respond to the light stimulus through negative phototaxis and flee from the light source. In the pillar-free
region, their swimming direction θi is on average directed along the light, i.e., θ̄i ∼ θ�. After entering the pillar
lattice, successive reorientations of swimmers cause a distribution of swimmer trajectories with orientations θf

and an average swim orientation θ̄f .

III. EXPERIMENTAL RESULTS

Particle tracking is performed with the library Trackpy [31,32]. Orientations of microswimmers
can then be extracted as the mean orientation of a trajectory over 0.5 s.

Figure 2 shows the distribution of the orientation of microswimmer trajectories in a pillar-free
medium, as well as examples of swimmer trajectories in the inset. In the pillar-free region, the
average swimming direction θ̄i corresponds to the orientation θ� of the light beam. The maximum
of the orientational distribution around the direction of the light beam is found to be close to a

FIG. 2. The distribution of CR swimming directions in a pillar-free medium in the presence of a light
source positioned at the left side with an incidence angle θ� = 0. The inset shows swimmer trajectories. The
solid line is the distribution given by Eq. (1).
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truncated Lorentzian distribution as previously shown in Ref. [33],

�(θ ) = �

2π

1
�2

4 + θ2
, (1)

where we obtain � = 0.436 rad = 25◦ for the full width at half maximum.
As shown in Fig. 3 the distribution of the swimmer-orientation angles θf within the pillar lattice

and therefore the mean swimming-direction θ̄f depend on the angle θ� of the light beam. We show
for four different values of θ� ∼ θ̄i = 10◦, 27◦, 56◦, 87◦ in Fig. 3(a) examples of trajectories of
the CR swimmer. In Fig. 3(b) we show for these four angles simultaneously the distribution of θf

within the pillar lattice and θi in the pillar free range. The distributions of θf are found to be slightly
narrower when the incident beam of light is oriented toward the lattice axes θ� ≈ 0◦ (or θ� ≈ 90◦).
In these cases the trajectories through the pillar lattice follow the directions of corridors aligned
with the light direction. For other values of θ� the angular distribution of θf is broader since CR
are scattered by the pillar lattice. Therefore, we find in the pillar region θ̄f ≈ θ� when θ� ≈ 0◦ or
θ� ≈ 90◦. On the contrary, for other angular values, the mean orientation θ̄f deviates from θ̄i since
CR are scattered by the pillars away from the light direction. The maximum deviation occurs around
θ� ≈ 30◦ where we find the deflection θ̄f − θ̄i ≈ 10◦, as can be seen in Fig. 4. Note that the curve is
symmetric with respect to θ� = 45◦, where we find θ̄f ≈ θ�. By comparing our experimental results
with numerical simulations we would like to understand on the one hand the role—if any—of HI
and on the other hand the role of the intrinsic noise on the reorientations of the cells away from the
light direction, i.e., the full width � of the distribution �(θ ) in Fig. 2.

IV. NUMERICAL SWIMMER MODEL

To further understand the observed deflection behavior shown in Fig. 4 we complement in this
section our experimental results by a numerical analysis of a swimmer model of CR introduced
in Sec. IV A and described in the Appendix. An analysis of the swimmer trajectories and their
orientational distributions provides a basic picture of swimmer deflection and a thorough foundation
of the analytical model given in Sec. V.

A. Swimmer model

For our numerical analysis we introduce a force dipole model for CR algae as illustrated in
Fig. 5. The spherical body of radius a is impenetrable for the fluid and experiences a drag during its
motion through the fluid. The flagella are located in a region of radius 4

3 a with a distance 5
3 a to the

body-center. This region—unlike the body—is permeable for the fluid but is taken into account for
hard core interactions with other swimmers or obstacles and mimics the excluded volume shape for
the region covered by the flagella motion [34–37]. A doublet of forces is applied to the fluid both
by flagella and the body (Fig. 5). The resulting flow-profile is shown in Fig. 12 in the Appendix
and resembles the experimentally observed averaged flow profile of a CR algae [38] moving at a
velocity V0.

For the equations of motion described in Appendix A we use a 3D-Lattice Boltzmann (LB)
solver [39] that covers the full hydrodynamics between swimmers and obstacles or walls. We also
use a dissipative collision model to test the effect of pure collisional interactions between motile
particles and the pillar wall without the influence of HI. In both cases, the phototaxis is modeled
as a preferential direction of motion: each swimmer is, after an exponentially distributed time
of mean τph, reoriented toward a direction θ randomly drawn from a Lorentzian distribution of
mean θ� (restricted to −π < θ < π , with θ = 0 corresponding to the x axis), that reproduces the
truncated Lorentzian distribution shown in Fig. 2. The average time τph is chosen as ≈ 70a

V0
, close

to the experimental value (2s). α is then defined as the probability per unit of time of reorientation
events α = 1/τph.
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FIG. 3. The left column (part a) shows, for four examples of different incident angles θ� ∼ θ̄I, experimen-
tally tracked trajectories of CR swimmers through the pillar lattice. For the same four angles, the right column
(part b) shows the distributions of the CR-trajectory orientations through the pillar lattice, described by θf , and
they are compared with the distribution of CR-trajectory orientation θi in the pillar free range.

The model swimmer is immersed in a simulation cuboid domain with in-plane periodic boundary
conditions and with a single cylindrical pillar placed in the middle of the domain, which reproduces
the exact proportions of the experiment.
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FIG. 4. The difference θ̄f − θ̄i between the mean swimming direction θ̄f through the pillar lattice is shown
as a function of the mean orientation θ̄i through the pillar free range. The experimental data are given by
black circles. The numerical results from Sec. IV without hydrodynamic interactions (HI) are given by the blue
symbols and with HI by the red symbols (for � = 25◦). The green solid curve shows the result for the analytical
model from Sec. V for A3 = 0.174 from Eq. (8) with DR = 0.37 s−1, α = 0.33 s−1, and λ0 = 2.09 s−1.

B. Numerical deflection of trajectories

For the numerical deflection data, we place a swimmer with random initial position and direction
in the simulation region. We simulate the trajectories for different initial conditions for each value of
θ�. From the averaged swimming direction, we extract the deflection angle θ̄f − θ�. This is repeated
for different light beam angles 0 < θ� < π/4. For the data in the range of π/4 < θ� < π/2 we

FIG. 5. Sketch of a model of the swimmer CR as used in simulations. The swimmer, described in more
detail in Appendix A 1, consists of a hard impenetrable sphere of radius a (green). It is complemented by a
sphere of radius f = 4

3 a at a distance 5
3 a from the body center, that covers the range of flagella motion: It is

permeable for the fluid but hardcore repulsive for objects like other swimmers. A doublet of forces is exerted
by the swimmer on the fluid.
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FIG. 6. Sketch of the swimmer scattering by pillars. A swimmer starts at the position r0 with initial angle
θ0, corresponding to an initial direction ei. Here we have sketched 12 different directions ei at the same r0.
The swimmer trajectories (gray dashed lines) are then determined via DCM and swimmers (sketched as green
circles) may be deflected by the pillars. We track the trajectories until a swimmer leaves the unit cell at one of
the exits. The exit directions are es(r0, θ0 ) = {(±1, 0), (0,±1)} (cyan, red, violet, green arrows). A statistics
on the exit vectors is obtained by repeating the simulation for many different r0 and θ0.

generated the data from simulations in the range 0 < θ� < π/4 by using the point symmetry of the
system.

The swimmer trajectories are simulated either with the LB method, which takes the hydrody-
namic interactions between the swimmer and the pillar walls into account or by the dissipative
collision model (DCM), also described in Appendix A. The dependence of the deflection angle,
i.e., deviation θ̄f − θ̄i from the light beam orientation θ� ∼ θ̄i is shown in Fig. 4 together with the
experimental data. Surprisingly, the results of both simulation approaches fit the characteristics of
the experimental data quite well. Therefore, HI is not crucial on a qualitative level for the deflection
process. It turns out that the occurrence of the deflection is mainly influenced by geometric
properties and the statistical distribution of the reorientation. To get a better understanding of the
underlying processes, we perform in the next section a statistical analysis of the scattering of a
swimmer on a single pillar lattice without hydrodynamics and without a light beam. Later we extend
the results on the scattering mechanism to full trajectories in the presence of light.

C. Deterministic scattering without light

To reach a basic understanding of the swimmer scattering leading to deflections as in Fig. 4 and
to provide a foundation of the anisotropic analytical model in Sec. V, we analyze the deterministic
trajectories of a model swimmer during a single scattering process (through a single pillar unit cell)
in the absence of light. With this aim in mind, we place the model swimmer at different initial
positions r0 and with different initial directions ei within a unit of the pillar free space. The initial
angle enclosed by ei and the x axis is θ0. We then determine the swimmer trajectory with the DCM.
On their path the swimmers are scattered at the pillars due to the excluded volume effects. They
leave a pillar unit cell through one of the four exits between the pillars, as shown in Fig. 6. This
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FIG. 7. Angle θ̄s after scattering in a single pillar cell, averaged over all initial positions r0 shown as a
function of the initial swimmer orientation θ0. For initial angles θ0 around 0◦, ±90◦, 180◦ the swimmers are
deflected by pillars such that they are channeled along the symmetry axes of the pillar-lattice, which is the
origin of the plateaus of θ̄s. For initial angles θ0 ∼ ±45◦, ±135◦ swimmers are equally likely deflected into
neighboring exits, which results in θ̄s ∼ ±45◦, ±135◦.

procedure is repeated many times for different, uniformly distributed initial positions r0 and angles
θ0 to obtain the directions es(r0, θ0) at the exit as a function of the initial position and orientation.
The four exit directions are es(r0, θ0) = {(±1, 0), (0,±1)}, and the angle of the exit vector toward
the positive x-axis is defined as θs (θs = {0◦, 180◦, 90◦,−90◦}). Figure 7 shows the scattering (or
exit) angle θ̄s averaged over the equally distributed initial positions r0 as a function of the initial
orientation θ0. Swimmers with r0 near the center between the four pillars and an initial orientation
θ0 ∼ 0 are very likely to leave the unit cell via the right exit es = (1, 0). With our simulations
we find for initial angles in the range 0◦ < θ0 � 30◦ that swimmers are channeled by collisions
with the pillars to the right exit es = (1, 0) as well. In this range of θ0 the mean scattering angle
θ̄s(θ0) ∼ 0 is nearly constant as indicated by the dark area in Fig. 7. The same holds for initial angles
θ0 around ±90◦, 180◦ and plateaus are recovered. With an initial orientation θ0 = 45◦ or ±135◦
swimmers starting at different initial positions r0 are deflected in average equally likely either to the
exit es = (1, 0) or to the exit es = (0, 1), which results in an average exit angle θ̄s ∼ 45◦, cf. Fig. 7.
With θ0 ∈ [60◦, 120◦] we find θ̄s ∼ 90◦.

Swimmers scattered by crossing a unit cell can be described by the following scattering function
averaged over all initial positions in a unit cell: 〈1 − ei · es〉r0

. The averaged function is shown in
Fig. 8 as a function of the initial orientation θ0. The scattering function almost vanishes with initial
swimmer orientations close to one of the pillar-free axis and it has maxima along the ’diagonal’
directions θ0 ≈ ±45◦,±135◦. The scattering function has a period of four in the range [−π < θ0 <

π ], which reflects the symmetry axes of the pillar lattice. In addition, these numerical results for
the scattering of a single swimmer provide a “microscopic” foundation for the assumption of a
scattering rate λ0[1 − cos(4θ0)] made in Eq. (3) of our phenomenological anisotropic scattering
model, see Sec. V below. This form of the scattering rate reflects both the four-fold symmetry of
the pillar lattice and the fact that swimmers are not scattered with their mean swim direction along
pillar symmetry axes.

D. Deflection in the presence of light

The trajectory of CR can be described by a run-and-tumble walk with a preferred direction in
the presence of light. That means a swimmer reorients after a certain time toward a new direction,
loosing all information about the previous direction and path. Swimmers reorient on average every
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FIG. 8. The dots show the scattering function 〈1 − ei · es〉r0
from simulations of the scattering on a single

pillar cell, averaged over the initial positions r0 as a function of initial direction ei resp. the initial angle θ0.
Along the pillar free symmetry axes the scattering function vanishes and takes its maxima along the directions
in between the symmetry axes. The full line is a fit by an expression that is proportional to [1 − cos(4θ0 )].

∼2 s toward the light orientation. With a speed of 100 μm/s and a length of the unit cell of L =
200 μm, a swimmer reorients on average about once when crossing a pillar unit cell. Because it
looses information about the past after this reorientation, the swimmer trajectories through several
pillars can be described by repeated single scattering processes in a single pillar unit cell, provided
one uses periodic boundary conditions. In the previous section we determined the function that
gives the swimmers direction θ̄s(θ0) after a single scattering as a function of the initial direction
θ0. The initial direction of a scattering process is the direction after the tumbling. Since we know
the probability distribution of swimmer reorientations given by Eq. (1), we can extract the mean
swimming angle θ̄f of a swimmer’s full trajectory by using the scattering function in a single unit
cell. For this we need to weight the occurrence of the directions after scattering es(θ0) according to
the tumbling probability distribution ψ (θ0 − θ�) and get the mean swimming direction

ēf = 〈ēs(θ0)ψ (θ0 − θ�)〉θ0
, (2)

with ēs = 〈es〉r0
and θf as the angle between ēf and the x axes. Note that the norms of ēs and ēf are

not necessarily equal to one. For very narrow distributions (i.e., small �) ψ is approximately a δ

distribution. That means for the mean swimming direction ēf ≈ 〈ēs(θ0)δ(θ0 − θ�)〉θ0
= ēs(θ�), so the

angle θ̄f approaches the scattering function from the previous section. This case is shown in Fig. 9

FIG. 9. The average deflection angle θ̄f extracted from the single scattering function is shown as a function
of the light orientation θ� for three values of � corresponding to three different width of the Lorentz distribution,
see Eq. (1).
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(a) PDCM (b) PLB

FIG. 10. Probability distribution P (x, y) of the position of a single swimmer in a unit cell for � = 1◦,
τph ≈ 8a/V0 and θ� = 0. (a) Without hydrodynamic interactions (DCM simulations), the interaction between
swimmers and pillars is collision based, leading to a high probability to find particles at the contact positions
near the pillars. (b) For simulations with HI (LB simulations), we find pronounced focusing between the pillars.
This indicates that hydrodynamics helps the swimmers to avoid collisions with the obstacles.

(blue curve). For this small value of �, the mean swimming as a function of the light angle θ� has a
rather steep behavior around θ� ∼ 45◦ and with a channeled regime θ̄f for θ� � 30◦ similar to Fig. 8
in the range 0 < θ0 < 90◦. If we increase the distribution width �, then we see in Fig. 9 that the
mean swimming direction θ̄f changes from the steplike, channeled function toward the first bisector.
This behavior is caused by the distribution ψ . If � is small, then the initial directions es nearly
always point toward the light direction. Therefore, if the light is along a symmetry axis, then the
scattering of the swimmers is with a high probability such that they are channeled through the pillar
lattice along a symmetry axis. If we choose a broad reorientation distribution width �, then even for
a light orientation and the initial orientations ei close to a symmetry axis it becomes with increasing
� more and more probable that swimmers are scattered away from the respective symmetry axis.
Thus, the mean swimming direction tends toward the first bisector for large �.

This is a crucial insight: the width of the Lorentz distribution determines the steepness of the
shape of θ̄f (θ�). This is rather independent of whether the width of the distribution is just an intrinsic
property of swimmers or possibly caused by other effects, such as hydrodynamic interactions
between several swimmers as discussed in Sec. IV E. Furthermore we obtain a profound insight on
the swimming statistics from the single-scattering function θs(θ0). This technique could probably
be adapted to other problems, without necessity of simulating the swimmer trajectories but using
information of absolute value of ēs, adapted weighting of the scattering function (e.g., position
dependent), multiple folding for temporal correlation etc., to investigate the effect of depletion zones
(e.g., caused by an imposed fluid flow), temporal correlation or different geometries of obstacle
placement and many more.

E. Effect of the hydrodynamic interaction

To identify the influence of HI, we reduce the noise due to the tumbling in this section. This is
achieved by simulations with a small distribution width of � = 1◦ and a reduced tumbling time of
τph ≈ 8a/V0.

The effects of HI becomes important for the interaction between swimmers and pillars. We
show in Fig. 10 the probability distribution P (x, y) of the position of a guided single swimmer for
θ� = 0. In Fig. 10(a) the probability distribution P (x, y) is shown for the case without HI between
a swimmer and the pillars. This distribution is considerably broader than in Fig. 10(b) where in LB
simulations the HI between pillars and swimmers is taken into account.

The effect of an enhanced swimmer channeling via HI is also confirmed by the deflection curves
θ̄f (θ�) for single swimmers in Fig. 11. The simulation of a single swimmer with HI (green curve)
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FIG. 11. Deflection curves for simulations with different numbers (N = 1, 7) of swimmers in a unit cell of
the pillar lattice for � = 1 and τph ≈ 8a/V0. For the simulations without HI, there is no difference for one or
seven swimmers in a unit cell. In the case with HI in LB simulations the deflection curve is far less step for
seven swimmers than for one swimmer (see text).

shows up to an angle θ̄� ∼ 30◦ a channeling behavior while swimmers without HI (blue curve)
escape channeling already at about θ̄f ≈ 20◦.

The influence of hydrodynamic interactions becomes also significant in the case with several
swimmers in a unit cell. In Fig. 11 we compare the mean deflection θ̄f obtained by simulations for
a single swimmer without HI (blue curve), with the deflection of a single swimmer out of seven
swimmers (orange) without HI. There is no significant difference.

When HI are taken into account the situation for a single swimmer and seven swimmers in a unit
cell is rather different. As mentioned, the channeling of a swimmer is stronger in the case with than
without HI. However, the deflection curve θ̄f (θ�) of a single swimmer out of seven swimmers is in
the case with HI less steep than for a single swimmer with HI. Moreover, it is also less steep than
for swimmers without HI.

This can be explained as follows: The hydrodynamic interaction between different swimmers is
of nonlinear nature. It is well known that nonlinear interactions between several particles cause
a more complex dynamics than one obtains for a single particle. Hence, the HI between the
swimmers act like an additional external noise source on a single swimmer. This additional noise
does not depend on the orientation of the light nor on the intrinsic random reorientations swimmers.
However, the hydrodynamic interactions between the swimmers cause additional reorientations of
the single swimmer. The HI driven additional reorientations have a similar effect as a broader
Lorentz distribution on a single swimmer. Therefore a broader reorientation Lorentz distribution has
on a single swimmer a similar effect as the hydrodynamic interactions between swimmers having
a narrower distribution. In both cases the deflection curve θ̄f (θ�) is less steep as confirmed by the
red curve in Fig. 11 and the green curve in Fig. 9. Therefore the strength of noise on the swimmer
reorientations flattens the curve θ̄f (θ�) independently of the nature of the reorientations.

V. ANALYTICAL MODELING

A. A swimmer model in an anisotropic scattering medium

We consider a simple theoretical model consisting of a self-propelled particle immersed in an
effective anisotropic scattering medium [40]. The self-propelled particle is characterized by its 2D
position r and an angle θ defining its direction of motion. The particle moves at a constant speed
v0. In the spirit of the numerical model studied in Sec. IV, we first neglect angular diffusion, and
retain only the two main physical ingredients which are the scattering by the pillars and the random
reorientations toward the direction of light. To make the problem tractable, the lattice of pillars
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is modeled as an effective anisotropic scattering medium by following Ref. [40]. Guided by the
numerical simulations of Sec. IV C (see Fig. 8), we choose a scattering rate

λ(θ ) = λ0[1 − cos(4θ )] , (3)

that depends on the orientation θ of the self-propelled particle. Note that the scattering rate
λ(θ ) is not identical, but rather proportional to the scattering function defined in Sec. IV C. The
proportionality factor is expected to be of the order of v0 divided by the unit pillar cell size. After a
scattering event, the new angle θ ′ is randomly chosen from a uniform distribution over the interval
(−π, π ]. The effective medium is homogeneous (though anisotropic), meaning that there are no
explicit pillars, and scattering takes place with a probability rate λ(θ ). It can thus occur at any place,
and time intervals between stochastic scattering are exponentially distributed, with a mean value
1/λ(θ ). The form Eq. (3) of the scattering rate implies that particles can travel freely, without being
scattered, when their direction of motion is aligned either with the x or y axis.

In addition, we assume that the particle tends to reorient stochastically during its motion to a
direction, defined by an angle θ� with the x-axis, opposite to the direction of the light source. For
convenience, we call it below the direction of the light source, even though the swimmer actually
moves away from the light source. To be more specific, reorientation events occur with a probability
α = 1/τph per unit time, and the new orientation θ ′ is chosen here exactly as the direction θ� of the
light source. Using periodic boundary conditions, we also assume that the system reaches a spatially
homogeneous state. In this minimal model, the average direction of motion of the self-propelled
particles can be computed exactly (see Appendix B), and it is found that the average angle θ̄f

within the scattering medium is equal to the angle θ� defining the direction of the light source.
Hence, there is on average no deflection by the scattering medium. This means that the present
minimal model is not able to reproduce, even qualitatively, the deflection phenomenon observed
in the experiment and in the numerics. The physical ingredients that have been neglected here
are notably the angular diffusion of the orientation of the self-propelled particle, and the angular
fluctuations in the reorientation along the light direction. We will see below that taking into account
these sources of noise is key to reproduce the phenomenology observed in the experiment and
numerical simulations.

B. Swimmer model in an anisotropic scattering medium with random reorientations

We now slightly generalize the above model, by introducing angular diffusion in the motion
of the swimmer, as well as some randomness in the angle chosen when reorienting in the light
direction. We thus start by considering an active Brownian particle [41] such that in the absence of
scattering medium, the angle θ has a purely diffusive dynamics

ṙ = v0e(θ ) , θ̇ = ξ (t ), (4)

where ξ (t ) is a white noise satisfying 〈ξ (t )〉 = 0 and

〈ξ (t )ξ (t ′)〉 = 2DR δ(t − t ′) . (5)

The angular diffusion coefficient is related to the persistence time τ by τ = 1/DR. In the presence
of scattering medium, the angle θ is subjected as in the previous model to a random scattering
with a rate λ(θ ) = λ0 − λ0 cos(4θ ), the angle θ ′ after scattering being uniformly distributed. In
addition, the reorientation process is also assumed to be noisy, in the sense that the angle θ ′ after
reorientation is randomly chosen from a distribution ψ (θ ′ − θ�) centered around the direction θ� of
the light source, similarly to the model used in Ref. [33] that reproduces the angular distribution of
Fig. 2. For simplicity, we assume that the distribution ψ is symmetric, i.e., ψ (−θ ) = ψ (θ ).

In this model, the deflection angle can no longer be computed exactly. However, it can be
evaluated using an approximation scheme, valid in a regime where the angular diffusion is not
too small (i.e., 9DR � λ0 + α). Under this approximation, we can evaluate the deflection angle φ
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defined as

θ̄f = θ� + φ (6)

through the relation

tan φ = − λ0A3ψ3 sin(4θ�)

2ψ1 + λ0A3ψ3 cos(4θ�)
. (7)

Here, the notation A3 denotes

A3 = 1

9DR + λ0 + α
, (8)

and ψk is the Fourier coefficient of the distribution ψ (θ ) in Fig. 2 obtained experimentally:

ψk =
∫ π

−π

dθ ψ (θ ) cos(kθ ). (9)

The derivation of these results is reported in Appendix B. Consistently with the experimental results,
the deviation φ vanishes when the angle θ� of the light source is a multiple of π

2 . Before focusing on
matching this theoretical model with the experimental results, let us briefly discuss the behavior of
the deflection φ with the parameters of the model. We note that the angular diffusion as well as the
width of the angular distribution ψ (θ ) after reorientation, play a key role in determining the overall
amplitude of the deflection. This result is consistent with the observation that the noise also plays
an important role in determining the deflection in the numerical simulations reported in Sec. IV. As
mentioned above, the approximate expression of φ in Eq. (7) has been derived under the assumption
9DR � λ0 + α. Under this hypothesis, we see that the deflection φ decreases when increasing
the angular diffusion coefficient DR. Similarly, increasing the width of the distribution ψ (θ ) of
the swimming angle θ after reorientation leads to a decrease of the deflection φ, in qualitative
agreement with the results of numerical simulations displayed on Fig. 9. Hence we again observe
that increasing the noise in the dynamics reduces the amplitude of the deflection (although, as noted
above, at zero angular noise the deflection also vanishes). In other words, a finite amount of noise
in the angular dynamics is needed to observe a deflection. This deflection disappears both for small
(see Sec. V A) and large noise. This can be understood intuitively as follows. Angular diffusion
actually allows the particle to explore orientations that are close to the direction θ� of light. Through
this local angular exploration, the particle can “feel” the anisotropy of the scattering rate λ(θ ). If the
particle has an angle θ slightly larger than θ� (0 < θ� < π/4), then it may for instance be scattered
more than if it has an angle θ slightly smaller than θ�. In this case, this results in a slight deflection
toward angles smaller than θ�.

We now turn to a comparison of the model with the experiment. We provide in Fig. 4 the
mean deflected angle θ̄f as a function of θ� and compare it to our experimental results, where θ�

is evaluated as the mean incidence angle θ̄i. We fixed the parameters of the analytical fit of the
experimental data using previously determined parameters: we fixed λ0 = 2.09 s−1 associated with
a medium where d = 30 μm, the rotational diffusion coefficient DR = 0.37 s−1 (both referenced
in Ref. [40]), and the tumbling rate toward the light beam α = 0.33 s−1 [33]. The distribution of
orientations in Fig. 2 is shown to be well described by a truncated Lorentzian, providing a full
width at half maximum of � = 0.436 rad = 25◦. Then Eq. (9) yields the values ψ1 = 0.809 and
ψ3 = 0.521 for the Fourier coefficients of the distributions ψ (θ ). We obtain a quite good quantitative
agreement with the experiments and the numerical simulations, demonstrating that we can explain
this deflected phototactic swimming by means of a simple stochastic model.

Note that in the numerical model studied in Sec. IV, no angular diffusion has been explicitly
introduced. However, one may interpret the angular diffusion as an effective one emerging from
the collisions with the pillars. In the analytical model, collisions with the pillar are modeled with
a scattering rule where the angle after collision is randomly chosen in an isotropic way. Yet, in
the numerical simulations, the angle after collision with a pillar is correlated with the angle before
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collision. A minimal way to account for this correlation is to introduce an effective angular diffusion
that comes on top of the scattering rate.

VI. DISCUSSION AND CONCLUSION

We investigated in the presence of a light stimulus the mean swimming direction of a phototactic
microalga Chlamydomonas reinhardtii, described by the angle θ̄f , through a square lattice of pillars
with two symmetry axes along the x and y axes. We designed the experimental set up so that the
distance between pillar centers is comparable to the persistence length of the swimmers, to allow
for an interplay between the natural angular diffusion of swimmer motion and the scattering by the
pillars. We used in experiments a CR species that swims away from a light source. Their swimming
direction is on the one hand guided by the direction of light, described by θ�, and on the other hand
by the pillar symmetry axes. We found an interesting nonlinear θ�-dependence of the difference
θ̄f − θ�. It vanishes for the light beam parallel to one of the symmetry axes (including the diagonal
one) and this angle difference shows maxima with the light beam making an angle θ� ∼ 30◦ with
the x axis.

To further understand the origin of the nonlinear θ�-dependence of θ̄f -θ�, we complemented our
experiments by simulations of a swimmer model and by an analytical modeling that contains the
key ingredients leading to swimmer deflection in a square pillar lattice.

In our simulations we either neglected or took into account the HI between pillars and swimmers.
We found for single swimmers (diluted limit), that there is no qualitative difference with and without
HI. In simulations it is also possible to vary systematically the random reorientation distribution of
swimmers, which is an intrinsic property of CR. We found that this reorientation distribution has
a strong impact on the θ�-dependence of θ̄f -θ�. For a narrow reorientation distribution we found
a strong channeling effect, i.e., with deviations of θ� up to about 30◦ from the x or the y axes the
swimmers moved essentially along the x or the y axes. This channeling effect is reduced by choosing
wider swimmer reorientation distributions. Thus, a narrow reorientation distribution of swimmers,
which is associated with a strong channeling effect, is the origin of a strong nonlinear θ�-dependence
of the difference θ̄f -θ�.

The reorientation distribution of single swimmers is specific to the chosen species. However, as
we have shown by numerical simulations, it also depends on the hydrodynamic interaction between
several swimmers. If there are several swimmers in a pillar unit cell, they mutually influence via the
nonlinear hydrodynamic interactions their individual dynamics and these HI act like a broadening of
their specific reorientation distribution. This broadening effect leads to a less pronounced nonlinear
θ� dependence of the deflection θ̄f -θ�. Therefore, the width of the reorientation distribution is a
central parameter that needs to be included in the models.

We also performed a numerical scattering statistics of a single model swimmer in the pillar
lattice. The resulting scattering function in Fig. 7 is fitted by a phenomenological scattering rate
given by Eq. (3), that was introduced earlier with an analytical model of swimmer scattering in
an anisotropic medium [40], also described in Sec. V A. Hence, with our numerical scattering
statistics for single swimmers in the pillar lattice we found a “microscopic” foundation for the
phenomenological scattering rate used in the analytical model.

Along this reasoning we identified the two essential parameters for the deflection of light guided
swimmers through a square pillar lattice. This is one phenomenological scattering rate and a
parameter for the width of the random reorientation of swimmers, independent of its origin, which
can be purely intrinsic or a combination of intrinsic noise with HI effects. This basic understanding
of the swimmer deflection in a pillar lattice is condensed in our analytical model. Taking the
two parameters of the basic model as fit parameters we obtain a very good agreement with the
experimental results. A great advantage of our analytical model is its simple handling and is also
appropriate for different pillar sizes and distances through an associated effective scattering medium.
It can also be adapted to different geometries (triangular, hexagonal, etc.) by taking into account the
appropriate angular dependence of λ(θ ).
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FIG. 12. Numerical representation of a CR at position r and swimming direction ê. The driving force fd

acting on the swimmer body is balanced by applying a negative force −fd at the center of the flagella moving
range onto the fluid (purple circle). The blue arrows show the resulting flow-field for simulations with the LB
method, which resembles the time-averaged field of a Chlamydomonas [38].

The identified dependence of the swimmer deflection on the reorientation distribution of
swimmers in a pillar lattice may be also used for separating swimmers with a different reorientation
distribution by guiding them via a light source through a pillar lattice.
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APPENDIX A: NUMERICAL METHOD

1. Swimmer model

The swimmer is modeled as a force-dipole swimmer (Fig. 12) with the orientation ê. For the
force calculation, we consider excluded volume forces fe(r) for both, the flagella and the body.
Here, fe(r) is the short-range repulsive part of the Weeks-Chandler-Anderson potential [42] for a
separation distance r. The driving force fd = fd ê acting on the body is balanced by applying a
negative force −fd on the fluid at the position of the flagella (see Fig. 12). We assume that the
flagella have negligible mass and the center of mass is located at the center of the body, resulting in
a torque due to the excluded volume force with center at rf . The total, nonhydrodynamic forces fb

and torques tb acting on the swimmer body are given by

fb = fd +
∑

i

[fe(ei − rb) + fe(ei − rf )], (A1)

tb =
∑

i

(rf − rb) × fe(ei − rf ), (A2)
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where we sum over all other objects i at positions ei to be considered for excluded volume
interactions (i.e., other swimmers and obstacles).

2. Equations of motion

As fluid solver we use two different models, the dissipative collision model (DCM) and the
Lattice-Boltzmann (LB) method. Both require as input the positions, forces and torques rb, fb, tb of
the body and the positions rf and forces ff = −fd at the flagella position at time t . As output, they
provide the velocities vb and angular velocities wb for the new time t + �t . The new positions and
swimming-directions are then updated via an Euler’s integration:

rb(t + �t ) = rb(t ) + �t vb(t ), (A3)

ê(t + �t ) = R(wb(t ) �t ) ê, (A4)

where R(α) is the rotation defined by the vector α.
a. Dissipative collision model (DCM): For the dissipative collision model, we only consider the

driving force and collisions through excluded volume interactions while neglecting HI. We use the
Stokes-drag of the particles to calculate the new angular and translational velocities as

vb(t + �t ) = fb

6πηa
, (A5)

wb(t + �t ) = tb

8πηa3
. (A6)

For the simulations, we use as parameters η = 1/6 and a radius of a = 3.
b. Lattice Boltzmann (LB) method: For the simulations including HI, we utilize the LB method

with the Bhatnagar-Gross-Krook (BGK) collision step which reproduces the full Navier-Stokes
equation in the incompressible limit [43]. We calculate the phase-density fi(x, t ) of the fluid
elements on a three-dimensional grid of positions x = (x, y, z) along the discrete directions ci(i =
0, . . . , 18) (D3Q19 model) with a spatial discretization of �x = 1 and �t = 1 for the temporal
discretization. The evolution equation is given by [43,44]

fi(x + ci �t, t + �t ) = fi(x, t ) + C, (A7)

where

C = 1

τ

[
fi(x, t ) − f eq

i (x, t )
]

(A8)

is the BGK collision operator with the equilibrium distribution

f eq
i (x, t ) = ρwi

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u2

2c2
s

]
. (A9)

The time constant τ is linked to the fluid viscosity via ν = c2
s �t (τ − 1/2). The weighting factors

wi and the parameter cs are constants with specific values for the chosen simulation model [43].
Walls are implemented with the standard bounce-back (bbk) scheme [45], which alters the evolution
Eq. (A7), such as

fi′ (x, t + �t ) = fi(x, t ) + C + W, (A10)

if fi points into a wall, where i′ is the antiparallel direction to i and W = 2wiρ
ci·uw

c2
s

accounts for the
momentum exchange of a moving wall with velocity uw.

External volume forces linked to the out-of-lattice position of the swimmers are coupled to the
fluid grid via the immersed boundary method using the four-point stencil [46], which provides
the volume-forces Fv(x) at the fluid grid positions. For nodes with Fv 
= 0, the collision operator
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[Eq. (A7)] is extended by adding the Guo force-coupling term [47]

F = �t

(
1 − 1

2τ

)
wi

[
ci − u

c2
s

+ (ci · u)

c4
s

ci

]
· Fv. (A11)

The fluid-density ρ and fluid-velocity u are obtained by

ρ =
∑

i

fi, (A12)

ρu =
∑

cifi + �t

2
Fv. (A13)

The swimmers body is implemented by setting links crossing the particle surface as moving-
wall [48,49]. The wall velocity for those links is set to uw(x) = vb + w × (x + 1

2 ci − rb). The
hydrodynamic force fh and torque th exerted from the fluid on the particle can then be calculated
by summing all contributions of the momentum exchange between the fluid and wall-links over the
surface of the body and eventual covered/uncovered forces (see Ref. [49] for more details). The
new swimmer velocity is then given by Newton’s law according to

vb(t + �t ) = vb(t ) + �t

M
[fh + fb], (A14)

wb(t + �t ) = wb(t ) + �t

I
[th + tb], (A15)

where M is the mass of the swimmer body and I its moment of inertia while fh and th are the forces
and torques averaged over two intermediate time-steps as described in Ref. [49].

For the swimmer, we use the radius a = 3, the density ρ = 1 and a relaxation parameter τ = 1.
For the dipole-force, we choose fd = 0.25 by using the technique described in Ref. [50] to find
a reasonable swimming velocity which ensures low Reynolds dynamics while keeping simulation
time short. This parameter results in a Reynolds-number of 0.39 and an error of less than two percent
in a distance of one radius away from the Chlamydomonas.

APPENDIX B: ANALYTICAL MODEL

We provide in this Appendix a detailed analysis of the effective medium model defined in Sec. V
of the main text, to evaluate analytically the deflection angle.

Assuming for simplicity spatial homogeneity, the dynamical distribution P(θ ) of the swimmer
angle θ satisfies the evolution equation

∂t P(θ ) = DR∂2
θ P(θ ) − (λ(θ ) + α)P(θ ) + 1

2π

∫ π

−π

dθ ′ λ(θ ′)P(θ ′) + αρψ (θ − θ�). (B1)

Equation (B1) takes into account three dynamical mechanisms: angular diffusion with diffusion
coefficient DR, anisotropic tumbling mechanism with rate λ(θ ) (modeling the lattice of pillars as
an effective scattering medium), and the reorientation against the direction of light with rate α and
distribution ψ (θ − θ�) of the angle θ after reorientation. Angular diffusion contributes as a single
term (the second derivative with respect to θ ) in Eq. (B1). The anisotropic tumbling and reorientation
against light mechanisms are jump processes, and thus each of them contributes with two terms, a
positive gain term and a negative loss term, to the evolution equation.

We assume in the following that P(θ ) is normalized as
∫ π

−π
dθ P(θ ) = ρ, where ρ is the uniform

density of swimmers. It is convenient to define the angular Fourier mode fk of the distribution P(θ ),
as

fk =
∫ π

−π

dθ P(θ ) eikθ . (B2)
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Note that f−k = f ∗
k , where the star indicates the complex conjugate. Expanding Eq. (B1) in Fourier

modes, one gets for k 
= 0 (the equation for k = 0 is trivially valid in a spatially homogeneous state),

∂t fk = −(DRk2 + λ0 + α) fk + αρψkeikθ� + λ0

2
( fk+4 + fk−4), (B3)

where ψk is the Fourier coefficient of the distribution ψ (θ ) of the angle θ after random reorientation
to the light source [see Eq. (9) of the main text], and θ� is the average direction toward which the
particle reorients. We wish to determine the average velocity v of particles in the presence of the
light source. The velocity v is related to the Fourier mode f1 through

v = v0

ρ
(Re f1, Im f1) . (B4)

The average angle of motion of the microswimmers in the effective medium, corresponding to the
direction of the velocity v is thus given by

θ̄f = Arg( f1), (B5)

where the function Arg(z) is the argument of the complex number z. We thus need to determine f1

in the stationary homogeneous state. Dropping the time derivative term in Eq. (B3), one has to solve
the infinite hierarchy of equations

fk = Ak

[
αρψkeikθ� + λ0

2
( fk+4 + fk−4)

]
, (B6)

where the parameter Ak is defined as

Ak = 1

k2DR + λ0 + α
. (B7)

In general, the hierarchy of Eqs. (B6) cannot be solved exactly, at least not in a simple way. However,
in the specific case DR = 0 (absence of angular diffusion) and ψk = 1 for all k, corresponding to
a Dirac distribution ψ (θ ), an exact solution can be found because Eq. (B6) becomes in this limit a
simple recursion relation for the Fourier modes f4n+1 (other modes do not need to be considered).
Solving this recursion relation to determine f4n+1 for all n, one eventually finds for f1,

f1 = ραeiθ�

λ0 + α − λ0 cos(4θ̄i )
, (B8)

which implies θ̄f = θ�. Hence in the absence of angular noise and with an infinitely sharp
distribution ψ (θ ), there is no deflection in the effective medium model.

In other cases, a simple solution cannot be found, and one has to resort to an approximation
scheme. We discuss below a simple approximation scheme, together with its range of validity. We
first note that if DR is not too small as compared to λ0 + α, the coefficient Ak decays relatively
rapidly when k is increased. A simple approximation scheme is thus to approximate Ak by zero
beyond some order k. Using the previously reported values of DR, λ0 and α [33,40] (see also Sec. V),
we find that for k > 4 the term k2DR starts to be dominant over λ0 + α, thus making Ak decay faster
for higher values of k. We thus make the crude approximation Ak ≈ 0 for k > 4. From Eq. (B6),
this implies that one can neglect Fourier modes fk with |k| > 4, leading to the following equations
for f1 and f3,

f1 = A1

[
αρψ1eiθ� + λ0

2
f ∗
3

]
, (B9)

f3 = A3

[
αρψ3e3iθ� + λ0

2
f ∗
1

]
. (B10)
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Combining Eqs. (B9) and (B10), one obtains

f1 = αA1ρ

1 − λ2
0

4 A1A3

[
ψ1 + λ0

2
A3ψ3e−4iθ�

]
eiθ� . (B11)

The prefactor in front of the bracket is always positive, and taking the argument of Eq. (B11) to
evaluate θ̄f according to Eq. (B5), one finds

θ̄f = θ� + φ, (B12)

where the deflection angle φ is determined by

tan φ = − λ0A3ψ3 sin(4θ�)

2ψ1 + λ0A3ψ3 cos(4θ�)
. (B13)

Note that the deflection φ = 0 when θ� is a multiple of π
2 . According to the approximations made,

the expression Eq. (B13) of the deflection angle is expected to be approximately valid for not too
small angular diffusion coefficient DR, that is, as long as 9DR � λ0 + α, which is the case with
the experimental values. For smaller DR, the simple truncation procedure used above is no longer
valid, and a larger number of Fourier modes should be retained in the approximation. Finding in
an analytical way the approximate solution of the hierarchy of Eqs. (B6) is thus more difficult, and
one would then need to resort to a numerical procedure to solve Eq. (B6). The above results are
summarized in Sec. V of the main text.
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