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In this paper, the liquid sloshing problem in an upright circular tank undergoing an
oscillation in a single degree of freedom is considered. A fully nonlinear time-domain
harmonic polynomial cell (HPC) method based on overset mesh is developed to delve
into the flow physics, and the comparison is made with the weakly nonlinear multimodal
theory. Both time-harmonic (or periodic) and transient-type oscillations are considered.
For the time-harmonic oscillation, planar and swirling waves (including time-harmonic
and periodically modulated swirling waves) occur when the excitation frequency is close
to the lowest natural frequency. The swirling direction is dependent on initial conditions.
The periodically modulated swirling waves switch back and forth between swirling waves
and planar waves. The occurrence of swirling waves results in lateral hydrodynamic
force and roll moment on top of in-line force and pitch moment components acting on
the tank. The sloshing response in terms of surface elevations contains higher harmonic
components, while the hydrodynamic forces and moments on the tank are remarkably
linear. A NewWave type of excitation is imposed which represents on average the most
probable maximum excitation to be expected for a given sea state, and narrow-banded
sloshing responses are observed. This allows application of a designer-wave type of
excitation which would excite the most probable maximum response in sloshing. A
focused-wave-type excitation is also considered, and an impulselike feature is observed in
the in-line force and pitch moment components. The total in-line force and pitch moment
are further decomposed into inertial component, which is induced by the acceleration of
the external motion, and residual component, which is closely associated with the liquid
sloshing. It is found that under a focused-wave-type excitation the inertial component
contribution is more dominant, while under a designer-wave-type excitation the residual
component dominates instead.

DOI: 10.1103/PhysRevFluids.5.084801

I. INTRODUCTION

Liquid sloshing representing liquid motion in a storage tank with a free surface is a fundamental
problem. The sloshing in an upright circular tank is relevant for ship motions and floating storage
facilities due to water waves in marine hydrodynamics [1], closed fish tanks in aquaculture [2],
on-land storage tanks subjected to earthquake excitation in civil engineering [3], and rocket fuel
problems in aeronautic engineering [4]. The presence of sloshing flow has a strong influence on
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the motion and response behaviors of structures, and thus it is of both theoretical and practical
importance. The comprehensive theoretical basis of the sloshing as well as its related problems
have been presented in Refs. [5,6].

The study of liquid sloshing in an upright circular tank can be traced back to the 1960s by Hutton
[7]. In his experiments, the tank is undergoing a time-harmonic translational oscillation, and the
observation shows that both planar and nonplanar sloshing waves are existent. Miles [8,9] developed
weakly nonlinear four-dimensional modal equations in the steady state to quantitatively investigate
responses near the lowest natural frequency. Four kinds of responses, which are (1) planar harmonic,
(2) swirling harmonic, (3) periodically modulated sinusoid, and (4) chaotically modulated sinusoid,
are predicted. The experimental studies by Funakoshi and Inoue [10] and Royon-Lebeaud et al. [11]
lend strong support to Miles’ theoretical analysis and found that swirling waves have a hard-spring
behavior. Faltinsen and Timokha [6] developed a weakly nonlinear multimodal theory in the time
domain based on the Bateman-Luke variational formulation, which is more general compared to
Miles’ work [9], enabling the computation of hydrodynamic force and the incorporation of transient
effects. In the weakly nonlinear multimodal theory, the first five natural modes are nonlinearly cou-
pled. However, it is not limited to only five modes, as the higher modes can be included through lin-
ear modal equations. Besides the excitation of single degree of freedom, attention has also been paid
to the mean mass transport of liquid in the tank induced by a rotary oscillation off resonance [12–15].

In the present study, the focus is placed on the sloshing flow inside of an upright circular tank sub-
jected to surging motion. For the occurrence of swirling sloshing waves in the steady state, it takes
long time to build up, and nonlinearity must be accounted for. Therefore, a time efficient, fully non-
linear solver is required. This is important particularly since most of the existing studies focus on the
use of periodic excitation. However, transient-type excitation associated with an extreme event has
seldom been considered in the literature, and therefore little is known about the underlying physics.

In marine and offshore engineering, periodic excitation on the sloshing flow is used to represent
regular waves. For applications in deeper water, periodic waves are not representative of an extreme
wave and therefore compact transient wave groups are widely used instead to represent an extreme
wave event. For linear random waves with Gaussian surface elevation statistics, the average shape of
an extreme wave in time tends to a scaled autocorrelation of the underlying wave spectrum [16,17].
In marine and offshore engineering, such compact wave groups became known as a NewWave [18].
A comparison was made between the shape of the measured large linearized wave crests and the
shape predicted by the NewWave model for measured time series in the North Sea [19], in the Gulf
of Mexico [20], and recently in a shallower water [21]. The good agreement justifies the use of the
NewWave as a reasonable model for the linear part of large ocean wave crests. Apart from NewWave
excitation, an impulsive focused-wave-type excitation is also considered, representing an extreme
or freak wave type of event. Focused wave groups are widely used as an input excitation to analyze
the response of marine and offshore systems, e.g., see Refs. [22–25].

For these purposes, a fully nonlinear analysis of the near resonance liquid sloshing in an upright
circular tank subjected to surging motion is carried out. An overset-mesh-based, fully nonlinear
harmonic polynomial cell (HPC) method in the time domain is then developed to delve into the
underlying flow physics. Both periodic and transient (and/or impulsive) excitations are considered.
A comparative study is made with the weakly nonlinear multimodal theory by Faltinsen and
Timokha [6].

The HPC method proposed by Shao and Faltinsen [26] is extensively used to investigate nonlin-
ear water waves as well as wave-structure interactions. The application of high-order polynomials
and the resultant sparse coefficient matrix indicate that the HPC method is time efficient and of
high accuracy. Subsequent work and improvements were conducted in recent years [27–30] to
circumvent more challenging problems. In contrast to the boundary element method (BEM), which
is widely applied in potential flow computation, the HPC method is more time efficient and the
computational cost is roughly proportional to the number of unknowns. On the other hand, the
conventional BEM involves quadratic memory usage and operations even though an efficiently
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FIG. 1. Definition of dimension and coordinate system of an upright circular tank.

iterative solver is used [31]. Moreover, the numerical test in [26] indicates that the HPC method
requires much less computational time to achieve the same level of accuracy compared to the BEM.

Nevertheless, a two-dimensional study by Ma et al. [29] shows that the accuracy is drastically
reduced when the aspect ratio of the cell deviates from unity or the cell is significantly distorted.
In the case of liquid sloshing in an upright circular tank, however, stretching or distortion of cells
is inevitable when the boundary-fitted grid is used. Therefore, various strategies, such as use of
an immersed boundary, overset mesh, multigrid, etc., are suggested to be incorporated into the
HPC method [30]. In light of that, a fully nonlinear HPC method incorporating the overset-mesh
technique is developed herein.

The layout of the present paper is as follows. The basic equations together with the linear and
weakly nonlinear modal theories are set forth in Sec. II. In Sec. III, a fully nonlinear time-domain
HPC method incorporating the overset-mesh technique is developed, and the accuracy on the
Neumann-type boundaries is improved by introducing ghost nodes outside of the computational
domain. By using the developed numerical model, the flow physics of liquid sloshing in an upright
circular tank is investigated in Secs. IV and V. When the tank is undergoing time-harmonic
oscillation with a single degree of freedom near the lowest natural frequency, swirling waves
are observed, which include time-harmonic swirling waves and periodically modulated swirling
waves caused by mode interactions, resulting in lateral force and roll moment on the tank. The
swirling behavior is not dependent on initial conditions, but initial conditions can determine the
swirling direction. When an impulsive NewWave-type excitation is imposed, no swirling waves
were observed in both fully nonlinear HPC results and weakly nonlinear multimodal analysis. The
induced sloshing waves will last a long time in the tank because of the absence of radiation damping;
nevertheless, the concept of designer-wave-type excitation can be usefully applied to derive the
largest response. When a more impulsive focused-wave-type excitation is imposed, an impulselike
feature is observed in the hydrodynamic force and moment acting on the tank. Swirling waves are
not observed under the transient-type excitation. Finally, concluding remarks and future perspectives
are presented in Sec. VI.

II. ANALYTICAL ASPECTS OF LIQUID SLOSHING IN AN UPRIGHT CIRCULAR TANK

It is assumed that the fluid is incompressible and inviscid, and the flow is irrotational so
that there exists a velocity potential � with its gradient defined as velocity components ∇� =
(U,V,W ) = �U . Consider an upright circular tank with liquid inside. A noninertial tank-fixed
cylindrical coordinate system Orθz is defined with the Orθ plane on the undisturbed free surface
and the Oz axis coinciding with cylindrical axis and pointing positively upwards, as shown in Fig. 1.
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The radius of the tank is R, and the water depth is h. Here, only the surging motion is considered.
More general formulations are referred to Ref. [6].

A. Boundary-value problem

For the problem of liquid sloshing in an upright circular tank, the fluid domain � is bounded
by a tank surface S (consisting of a bottom and a sidewall) and a free surface F . The tank is in the
surging motion η1 in x direction. The boundary-value problem is defined as follows [6]:

∂2�

∂z2
+ 1

r

∂

∂r

(
r
∂�

∂r

)
+ 1

r2

∂2�

∂θ2
= 0 in �, (1a)

∂�

∂n
= η̇1nx on S, (1b)

∂�

∂t
+ μ� + 1

2
|∇�|2 − η̇1

∂�

∂x
+ gz = 0 on F, (1c)

∂�

∂n
= η̇1nx − ∂Z/∂t

|∇Z| on F, (1d)

where nx is the x component of the normal vector, Z (x, y, z, t ) = z − ζ (x, y, t ) = 0 is the free-
surface equation with ζ (x, y, t ) defined as the free-surface elevation, and μ is an artificial viscosity
coefficient. Here, the Rayleigh-type viscous damping coefficient μ is incorporated in the dynamic
free-surface boundary condition to damp out the transient effect. For a smooth tank without internal
structures which may dissipate energy, the damping for sloshing response is normally very small,
which is mainly contributed by the boundary layer on the tank surface and the fluid bulk [6]. To avoid
unphysical results at resonance frequencies, a damping coefficient as small as 0.5% of the critical
damping of the first natural modes will be applied, i.e., μ = ε × 2ω1,1 with ε = 0.5%. Similar
damping ratios have been applied in Faltinsen et al. [32].

B. Natural mode

Natural modes are nontrivial solutions to the linear boundary-value problem with zero tank
excitation, and they are the foundation of the modal theory which will be set forth later. Solving
the boundary-value problem (1) via the separation of variables gives rise to the following natural
modes [6]:

ϕm,n,1(r, θ, z) = cosh[km,n(z + h)]

cosh(km,nh)

Jm(km,nr)

Jm(km,nR)
cos(mθ ), (2a)

ϕm,n,2(r, θ, z) = cosh[km,n(z + h)]

cosh(km,nh)

Jm(km,nr)

Jm(km,nR)
sin(mθ ), (2b)

where m = 0, 1, 2, . . . , n = 1, 2, 3, . . . , and km,n satisfies

J ′
m(km,nR) = J ′

m(ιm,n) = 0, (3)

with Jm(·) defined as the Bessel function of the first kind and order m [33]. Given km,n, the
eigenvalues κm,n and natural frequencies ωm,n can be determined:

κm,n = ω2
m,n

g
= km,n tanh(km,nh). (4)

C. Linear modal theory

When the boundary-value problem is linearized, the linear modal theory can be applied. Here
we reformulate the linear modal equations accounting for viscous damping effects in the sense
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of Rayleigh. In the linear modal theory, the free-surface elevation ζ and velocity potential � are
expanded as [6]

ζ (r, θ, t ) =
∞∑

m=0

∞∑
n=0

2∑
j=1

βm,n, j (t )ϕm,n, j (r, θ, 0), (5a)

�(r, θ, z, t ) = η̇1x +
∞∑

m=0

∞∑
n=0

2∑
j=1

Rm,n, j (t )ϕm,n, j (r, θ, z), (5b)

with m + n > 0. By substituting expansions (5a) and (5b) into the kinematic and dynamic free-
surface boundary conditions (1d) and (1c) and omitting nonlinear terms, a set of linear ordinary
differential equations can be obtained:

β̈m,n, j + 2εωm,nβ̇m,n, j + ω2
m,nβm,n, j = Km,n, j, (6a)

where the forcing term is written as

Km,n, j = − λ1(m,n, j)

χm,n, j
(η̈1 + μη̇1), (6b)

with nonzero coefficients given by [6]

χ1,n,1 = χ1,n,2 = ρπR3
(
ι21,n − 1

)
2ι31,n tanh(ι1,nh/R)

, (6c)

λ1(1,n,1) = λ1(1,n,2) = ρπR3

ι21,n

. (6d)

D. Weakly nonlinear multimodal theory

In the weakly nonlinear single-dominant multimodal theory [6,32], the lowest five modes along
with their mutual interactions are considered. According to Moiseev ordering, five modal functions
with lowest natural frequencies are written as

p1 = β1,1,1 ∼ ε1/3,

r1 = β1,1,2 ∼ ε1/3,

p0 = β0,1,1 ∼ ε2/3,

p2 = β2,1,1 ∼ ε2/3,

r2 = β2,1,2 ∼ ε2/3,

(7)

where ε is a nondimensional parameter associated with the smallness of the excitation. Here,
higher than third-order modes are neglected. According to [6], the five-dimensional nonlinear modal
system coupling first- and second-order modes is written as

p̈1 + 2εω1,1 ṗ1 + ω2
1,1 p1

+ K1 p1
(
p1 p̈1 + ṗ2

1 + r1r̈1 + ṙ2
1

)
+ K2

(
r2

1 p̈1 + 2r1ṙ1 ṗ1 − r1 p1 p̈1 − 2p1ṙ2
1

)
+ K3(p2 p̈1 + r2r̈1 + ṙ1ṙ2 + ṗ1 ṗ2)

− K4(p1 p̈2 + r1r̈2)
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+ K5(p0 p̈1 + ṗ1 ṗ0) + K6 p1 p̈0

= − λ1(1,1,1)

χ1,1,1R
(η̈1 + μη̇1), (8a)

r̈1 + 2εω1,1ṙ1 + ω2
1,1r1

+ K1r1
(
r1r̈1 + ṙ2

1 + p1 p̈1 + ṗ2
1

)
+ K2

(
p2

1r̈1 + 2p1ṙ1 ṗ1 − r1 p1 p̈1 − 2r1 ṗ2
1

)
− K3(p2r̈1 − r2 p̈1 + ṙ1 ṗ2 − ṗ1ṙ2)

+ K4(p1 p̈2 − p1r̈2)

+ K5(p0r̈1 + ṙ1 ṗ0) + K6r1 p̈0 = 0, (8b)

p̈0 + 2εω0,1 ṗ0 + ω2
0,1 p0

+ K10(r1r̈1 + p1 p̈1) + K8
(
ṙ2

1 + ṗ2
1

) = 0, (8c)

p̈2 + 2εω2,1 ṗ2 + ω2
2,1 p2

+ K9(r1r̈1 − p1 p̈1) + K7
(
ṙ2

1 − ṗ2
1

) = 0, (8d)

r̈2 + 2εω2,1ṙ2 + ω2
2,1r2

− K9(r1 p̈1 + p1r̈1) − 2K7ṙ1 ṗ1 = 0, (8e)

where Kj with j = 1, 2, . . . , 10 are tabulated in [6]. It is possible to account for higher modes,
which can be incorporated in modal equations analogous to the linear modal theory in Sec. II C.

The applicability of the multimodal theory requires that the first natural mode is predominant
and the assumptions in Eq. (7) hold. If so, the multimodal theory is highly efficient and accurate.
Nevertheless, it is essentially a weakly nonlinear method based on the perturbation scheme.
When there is strong nonlinearity, the first mode is not necessarily predominant, and therefore a
higher-order model is required. Alternatively, a fully nonlinear numerical approach, which will be
introduced in the next section, can be used.

III. AN OVERSET-MESH-BASED HPC METHOD FOR LIQUID SLOSHING
IN AN UPRIGHT CIRCULAR TANK

The fully nonlinear time-domain HPC method based on the overset mesh is developed herein to
investigate the liquid sloshing problem in an upright circular tank.

A. Summary of the HPC method

A three-dimensional Cartesian coordinate system Oxyz is defined with the Oxy plane coinciding
with the undisturbed free-surface and Oz axis orienting positively upwards. The fluid domain is
discretized into overlapping hexahedral cells, and each stencil cell is defined as the combination
of neighboring hexahedral cells with 26 grid points as illustrated in Fig. 2. The velocity potential
within each cell is represented as a linear combination of N harmonic polynomials:

�(X,Y, Z ) =
N∑

j=1

b jPj (X,Y, Z ), (9)

where Pj (X,Y, Z ) with j = 1, 2, . . . , N mean harmonic polynomials associated with Legendre
polynomials in a spherical coordinate system [26]. Here, X , Y , and Z are local coordinates relative to
the stencil center. Due to the fact that harmonic polynomials satisfy the Laplace equation naturally,
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FIG. 2. A hexahedral cell with 27 nodes with the 27th node defined as the stencil center.

there is no need to impose the Laplace equation. By imposing (9) on the 26 stencil points, one can
obtain a linear equation system in the form of

[A] · {b} = {�}, (10)

with elements Ai, j given by

Ai, j = Pj (Xi,Yi, Zi ), i = 1, 2, . . . , 26. (11)

Here, N is not necessarily equal to 26. When N < 26, the least-squares fitting can be used. By
taking the inverse of (10), we can obtain the vector {b}:

b j =
26∑

i=1

c j,i�i with j = 1, . . . , N, (12)

where c j,i are elements of the matrix [A]−1 or [[A]T · [A]]−1 · [A]T . Substituting (12) into (9) gives
rise to

�(X,Y, Z ) =
N∑

j=1

[
26∑

i=1

c j,i�i

]
Pj (X,Y, Z )

=
26∑

i=1

⎡
⎣ N∑

j=1

c j,iPj (X,Y, Z )

⎤
⎦�i. (13)

Equation (13) indicates that the velocity potential at any point in the cell can be interpolated by
the velocity potential on the surrounding nodes of the cell. By rendering X = 0, Y = 0, and Z = 0,
one can obtain the continuity equation at the stencil center:

�27 =
26∑

i=1

Vi�i with Vi = c1,i. (14)
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FIG. 3. Interpolation of the node on the fringe of a circular grid system.

Due to the fact that the harmonic polynomial set adopted in the three-dimensional HPC method
includes all third-order terms as well as incomplete fourth-, fifth- and sixth-order terms, the HPC
method is higher than third-order accuracy.

On the solid boundaries, the Neumann-type boundary condition requiring the derivative of the
potential is implemented by directly taking the derivative of harmonic polynomials:

∇�(X,Y, Z ) =
26∑

i=1

Ui�i, (15)

with

Ui =
N∑

j=1

c j,i∇Pj (X,Y, Z ). (16)

In a polar coordinate system, an Euler rotation with respect to the azimuth angle of the stencil center
is performed.

B. Overset-mesh technique

Due to the fact that increasing the aspect ratio of a cell results in larger errors [29], an overset-
mesh-based HPC method is developed here. As shown in Fig. 3, the overset mesh consists of a
body-fitted mesh (referred to as foreground mesh) and a background mesh (represented by solid
lines) overlapping each other. At the point in the fluid domain and surrounded by other nodes, the
Laplace equation is imposed as usual. At the point at the fringe (plotted by a dashed line), however,
the information is determined via polynomial interpolation based on the physical quantities on the
other set of mesh.

As described in Fig. 3, when the node at the fringe of the foreground mesh (represented by a
diamond) is identified (receptor node), the nearest node in the background mesh is first searched.
Then the stencil nodes surrounding the searched node can be found, and these stencil nodes are also
referred to as donor nodes (denoted by squares). Finally, the velocity potential at the receptor node
is interpolated by the information at stencil nodes and is expressed as

�receptor =
26∑
j=1

c j�
stencil
j , (17)

where c j is the solution to the linear equation system

[A]{c} = {1, 0, . . . , 0}T , (18)
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FIG. 4. The overset mesh in the upright circular tank.

with

Ai, j = Pj (xi − x0, yi − y0, zi − z0), (19)

where (x0, y0, z0) is the coordinate of the receptor node, and (xi, yi, zi ) are the coordinates of stencil
nodes. In this manner, the relation between the receptor node in the foreground mesh and the stencil
(donor) nodes in the background mesh is set up, and the Laplace equation is also satisfied naturally
at the receptor node. On the free surface where the Dirichlet-type boundary condition is satisfied
in the time-domain simulation, the potential at the receptor node is interpolated by biquadratic
polynomials based on the donor nodes in the background mesh.

C. Liquid sloshing in an upright circular tank

The fully nonlinear time-domain analysis of the liquid sloshing problem in an upright circular
tank is carried out in a noninertial frame of reference fixed to the tank. The overset mesh is illustrated
in Fig. 4. To improve the accuracy on the vertical sidewall, the ghost node technique is adopted.
When the boundary-fitted grid is used, computational nodes are distributed along boundaries and
inside of the computational domain. The node at which the boundary condition is satisfied is
off-centered due to the fact that a centered stencil will reach beyond the computational domain.
When the fictitious ghost nodes are introduced outside of the computational domain as illustrated in
Fig. 5, the boundaries are immersed and thus the node on boundaries is centered. To make sure the
system is determinate, both the governing equation and tank-wall boundary condition are enforced
at the boundary nodes [34]. In this scenario, the boundary condition is satisfied at the stencil center,
leading to significant improvements in the accuracy on the boundaries.

On the intersection between the free surface and sidewall, the free-surface and tank-wall
boundary conditions are imposed. On the free surface F , the physical information is updated via
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FIG. 5. Schematic of ghost nodes outside of the computational domain.

the semi-Lagrangian description, which considers a point moving vertically, and the kinematic and
dynamic free-surface boundary conditions are written as

dsζ

dt
= ∂�

∂z
− ∂�

∂x

∂ζ

∂x
− ∂�

∂y

∂ζ

∂y
+ η̇1

∂ζ

∂x
, (20a)

ds�

dt
= −1

2
|∇�|2 + η̇1

∂�

∂x
+ gz + ∂�

∂z

dsζ

dt
− μ�, (20b)

on z = ζ (x, y, t ).
In order to invoke swirling waves, an initial disturbance of the free-surface elevation, written as

ζ (r, θ, t = 0) = 0.05
J1(k1,1r)

J1(k1,1R)
sin θ, (21)

is prescribed, where k1,1 is defined in Eq. (3). In the numerical examples considered in Secs. IV and
V, Eq. (21) is used as the initial condition.

In the numerical implementation, the explicit fourth-order Runge-Kutta scheme is used to
integrate the boundary conditions (20a) and (20b) to update the elevation ζ and velocity potential
� on the free surface at each time step. To ensure numerical stability, a hybrid numerical filter
combining a noncentered filter [35] and the centered 13-point, 10th-order Savitzky-Golay filter [36]
is used to remove possible sawtooth waves.

To compute the hydrodynamic force and moment experienced by the tank, Bernoulli’s equation
in the noninertial coordinate system fixed to the tank given in [6] is used, and the force and moment
acting on the tank are written as{ �F

�M
}

= −ρ

∫∫
S

(
∂�

∂t
+ 1

2
|∇�|2 − η̇1

∂�

∂x

){
�n

�s × �n
}

dS, (22)

where �F and �M denote the force and moment vectors, respectively, and �s is the vector from the
reference point to the point on the tank surface. In the present study, the reference point is defined
at the origin (0,0,0), and �n points positively outwards the fluid domain. In the following context, the
force �F and moment �M by the tank is nondimensionalized by �f = �F/(ρgR3) and �m = �M/(ρgR4),
respectively.

IV. PERIODIC EXCITATION

A periodic excitation is considered in this section. Here we consider a cylindrical tank with radius
R = 1 m and liquid depth h = 2 m as shown in Fig. 1. In this case, the lowest natural frequency
determined by formulation (4) is ω1,1 ≈ 4.2465 rad s−1. The tank undergoes the surge motion (in x
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FIG. 6. Time histories of the free-surface elevation ζ1 (top), in-line force fx (middle), and pitch moment my

(bottom) for three different grid resolutions at ω = ω1,1.

direction) in the form of

η1 = 0.0024R sin(ωt ), (23)

where ω is the angular frequency of the surge motion.

A. Convergence test

To test the convergence of the grid, time histories of the free-surface elevation ζ1, in-line force
fx, and pitch moment my at ω = ω1,1 are exhibited in the top, middle, and bottom subplots in Fig. 6.
Three different grid resolutions are considered, which correspond to 5049, 11 613, and 35 743 grid
points, and are identified as “Grid 1,” “Grid 2,” and “Grid 3,” respectively. It is observed that the
results associated with Grid 1 slightly deviates from the other two groups of results, whereas the
results with Grid 2 and Grid 3 are in good agreement, indicating that both Grid 2 and Grid 3
could yield converged results. In the numerical examples hereafter, Grid 2 as illustrated in Fig. 4 is
adopted.

B. Wave pattern, force, and moment

Figure 7 presents the time history of a periodic type of excitation (top row) for ω = 0.98ω1,1, as
well as the resulting responses in terms of the surface elevation at two probe locations (second row),
and the normalized hydrodynamic forces and moments on the tank (third and bottom rows) for the
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(a)

(b)

(c)

(d)

FIG. 7. Time history of a periodic type of excitation (a) and the resulting responses in terms of surface
elevation (b), normalized hydrodynamic force (c) and moment (d) on the tank determined by the fully nonlinear
HPC method for ω = 0.98ω1,1.

in-line ( fx) and lateral ( fy) force components as well as roll (mx) and pitch (my) moment components.
In this numerical example, ζ1, fx, and my exhibit a buildup of responses before reaching the steady
state at t > 50 s, while ζ2 gradually decays to zero after being perturbed at t = 0 s. It is worth noting
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FIG. 8. The top and middle panels show the time histories of the envelopes of ζ1 and ζ2, respectively. The
present fully nonlinear HPC results (red) are in comparison with the results obtained from the weakly nonlinear
multimodal theory (black) and the linear modal theory (blue). The bottom panel displays the phase plot defined
as the trajectory of ζ1 and ζ2 from t = 200 s to t = 400 s obtained from HPC (left) and the multimodal theory
(right). All results are for ω = 0.98ω1,1.

that the surface elevation is more weakly nonlinear (thus containing higher harmonic contribution),
while the hydrodynamic force and moment are remarkably linear.

We present results from five different excitation frequencies ranging between ω = 0.98ω1,1 and
ω = 1.02ω1,1. Figures 8–12 show the results in terms of the envelopes of ζ1 and ζ2 in the first two
subplots, while the bottom subplot shows the results in terms of phase plot, defined as the trajectory
of ζ1 and ζ2 in the time interval from t = 200 s to t = 400 s. The comparison is made with the
results determined by the linear modal theory, as well as the weakly nonlinear multimodal theory
elucidated in Sec. II.

For periodic excitations at ω = 0.98ω1,1, ω = 1.01ω1,1, and ω = 1.02ω1,1, ζ2 gradually decays
to zero while ζ1 reaches a steady state after t = 200 s. It can be observed that the fully nonlinear
HPC results are in good agreement with the results obtained from the weakly nonlinear multimodal
theory, whereas the difference from the results determined by the linear modal theory is observed.
In these three cases, sloshing waves propagate forth and back due to vanishing ζ2, thus exhibiting
planar wave behavior.

When the surging frequency is ω = 0.99ω1,1 as shown in Fig. 9, both ζ1 and ζ2 reach the steady
state after t = 200 s but exhibit periodically modulated swirling behaviors. In this scenario, ζ1 and ζ2
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FIG. 9. Same as Fig. 8 but for ω = 0.99ω1,1.

are not always π/2 apart. The phase plot is no longer a closed circle representing irregular behaviors.
Both the fully nonlinear HPC method and the weakly nonlinear multimodal theory are capable
of capturing the periodically modulated behaviors, whereas the results obtained from the linear
modal theory exhibit planar behavior, at odds with the other two groups of results. By observing
the envelopes of ζ1 and ζ2, the amplitude of ζ2 increases while that of ζ1 decreases, and vice versa.
Therefore, there is energy exchange between the longitudinal symmetric mode ϕ1,1,1 and transverse
symmetric mode ϕ1,1,2 defined in Eq. (2). However, an appreciable difference between the results
determined by the fully nonlinear HPC method and the weakly nonlinear multimodal theory is
observed. Further analysis of periodically modulated swirling waves is described in Sec. IV C.

When the surging frequency coincides with the lowest natural frequency, i.e., at ω = ω1,1 as
shown in Fig. 10, ζ1 and ζ2 reach the steady state after t = 200 s, indicating that the sloshing
waves in the tank propagate both longitudinally and transversely. Moreover, both ζ1 and ζ2 have a
phase difference of nearly π/2 as shown in Fig. 13, thus exhibiting swirling wave behavior. The
phase plot in the form of a closed circle corroborates the swirling behavior. Both envelope and
time history in Figs. 10 and 13 demonstrate that the fully nonlinear HPC results agree well with the
results determined by the weakly nonlinear multimodal theory in terms of both amplitude and phase,
while the results by the linear modal theory do not agree with the other two groups of results. The
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FIG. 10. Same as Fig. 8 but for ω = ω1,1.

linear modal theory predicts a larger amplitude of ζ1 and diminishing ζ2. More in-depth analysis of
time-harmonic swirling waves is presented in Sec. IV D.

Figures 14 and 15 present the time history of the normalized hydrodynamic forces and moments
due to sloshing for all ranges of excitation frequencies considered. Again, despite the observed
nonlinearity in ζ , the forces and moments are remarkably linear. When swirling waves occur as
shown in the second and third rows, there are lateral force and roll moment components acting on
the tank in the steady state. This is particularly important for the mooring line integrity assessment
in marine and aquaculture engineering.

C. Periodically modulated swirling waves

Periodically modulated swirling waves which occur at ω = 0.99ω1,1 are further investigated in
this section. The differences in both ζ1 and ζ2, as previously shown in Fig. 9, are further investigated
by looking at the harmonic structures. Figures 16 and 17 show the comparison of the harmonic
structures from the HPC results (top) and the weakly nonlinear multimodal theory (bottom), where
the total signal is plotted in gray, the first harmonic (linear component) in red, and the difference and
sum second harmonic in black for ζ1 and ζ2, respectively. It can be observed that the first harmonic
components of both ζ1 and ζ2 are very similar apart from the difference in modulating (or beating)
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FIG. 11. Same as Fig. 8 but for ω = 1.01ω1,1.

frequency, in that the weakly nonlinear multimodal theory predicts smaller beating frequency
(or longer period) than the HPC results. The second harmonic component of ζ1 is also very similar.
A more noticeable difference is observed in the second harmonic component of ζ2.

To investigate how the amplitude and phase change over time, we perform the short time Fourier
transform (STFT) to time histories of ζ1 and ζ2 obtained from the fully nonlinear HPC method.
From the variation of amplitudes in time, we observe that both the first and second harmonic
components are appreciable, consistent with Figs. 16 and 17. From the variation of the phases
in time, the individual phases of the first harmonic, denoted by ϕ

(ω)
1 and ϕ

(ω)
2 (top subplot),

together with the phase difference ϕ
(ω)
2 − ϕ

(ω)
1 (bottom subplot), are plotted in Fig. 18. Besides

the modulating amplitudes of ζ1 and ζ2, the individual phases are also modulating, and the phase
difference ϕ

(ω)
2 − ϕ

(ω)
1 is slowly varying between −π/2 and 0. The phase difference of 0 and −π/2

corresponds to planar waves and swirling waves, respectively, and indicates ζ2 as a phase lag.
Therefore the modulating phase difference between −π/2 and 0 indicates that the periodically
modulated swirling waves contain both planar and swirling waves, and the wave pattern switches
back and forth between oblique planar waves and anticlockwise swirling waves [37].

Comparing between Figs. 16 and 17, the second harmonic component of ζ1 takes up nearly 10%,
whereas that of ζ2 up to 20%, indicating that the second harmonic components are non-negligible.
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FIG. 12. Same as Fig. 8 but for ω = 1.02ω1,1.

Similar to the first harmonic component, the amplitudes of the second harmonic component are also
modulating with time. To reveal the behavior of the phase in time, the same STFT is performed
on the second harmonic component. The time histories of individual phase and phase differences
of the second harmonic components ϕ

(2ω)
1 and ϕ

(2ω)
2 are depicted in Fig. 19. It can be observed

that the phases of ζ1 and ζ2 are almost in unison, and the phase difference is almost zero, except
at several time instants where the amplitude of either ζ1 or ζ2 is approaching zero. Therefore the
second harmonic component of the wave pattern exhibits oblique planar behavior.

To examine the influence of initial conditions, we change the phase of the initial disturbance,
which is written as

ζ (r, θ, t = 0) = 0.05
J1(k1,1r)

J1(k1,1R)
sin(θ + π ). (24)

In the same manner, we perform the STFT to the time histories of ζ1 and ζ2. The time series of
individual phases of the first harmonic components ϕ

(ω)
1 and ϕ

(ω)
2 are depicted in the top subplot of

Fig. 20, and the phase difference ϕ
(ω)
2 − ϕ

(ω)
1 is shown in the bottom subplot. The amplitudes of ζ

(ω)
1

and ζ
(ω)
2 for different initial conditions are comparable to those in Figs. 9 and 18 at the steady state,

which demonstrate that the periodically modulated swirling behavior is robust. However, for initial
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FIG. 13. Time histories of ζ1 and ζ2 for ω = ω1,1 in the steady state. The present fully nonlinear HPC
results (red) are in comparison with the results determined by the weakly nonlinear multimodal theory (black).

condition (24), ζ2 is phase lead indicating the wave pattern exhibiting clockwise swirling behavior
instead [37]. Therefore, initial conditions only affect the swirling direction. It has been examined
by changing the phase of the surging motion that the resultant sloshing response at the steady state
is consistent.

D. Time-harmonic swirling waves

As a sequel to Sec. IV C, further investigation into the occurrence of time-harmonic swirling
waves which occurs at ω = ω1,1 is set forth in this section. Similarly, we perform the STFT
to the time series of ζ1 and ζ2 at ω = ω1,1, and observe that the first harmonic component is
predominant and higher harmonic components are negligible. Using STFT, the temporal behavior
of the amplitude and phase of the first harmonic component can be extracted. In the top subplot
of Fig. 21, the time series of individual phases of the first harmonic components of ζ1 and ζ2

denoted by ϕ
(ω)
1 and ϕ

(ω)
2 are depicted, and the phase difference between ζ

(ω)
1 and ζ

(ω)
2 , defined

as ϕ
(ω)
2 − ϕ

(ω)
1 , is shown in the bottom subplot. In the initial stage (t < 30 s), the phase difference

is π because of the initial condition (21). In this stage, ζ1 is excited by the forced surging motion,
whereas ζ2 is undergoing free oscillation with slight decay in the amplitude. During the transition
stage approximately between 30 and 100 s, ζ2 is being built up, resulting in an increasing amplitude,
which indicates that the transverse symmetric mode is being excited. The phases of ζ1 and ζ2 are
also varying in time, causing the phase difference to gradually shift from π to slightly larger than
π/2. In the steady state t > 200 s, the amplitudes of ζ

(ω)
1 and ζ

(ω)
2 are constant, and the wave pattern

exhibits clockwise swirling behavior because ζ2 is phase lead [37].
In the same manner we investigate the influence of initial conditions by changing the phase of

the initial disturbance according to condition (24). We perform the STFT to the time histories of
ζ1 and ζ2, and the individual phases of the first harmonic components and the phase difference
are depicted in Fig. 22. The amplitudes and phase plots of ζ

(ω)
1 and ζ

(ω)
2 for different initial

conditions are consistent with those in Fig. 21 at the steady state. This shows that initial conditions
do not affect the swirling behavior or wave pattern. However, for initial condition (24), ζ

(ω)
1
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FIG. 14. Time history of the normalized hydrodynamic forces due to sloshing ( fx = in-line force by gray
line; fy = lateral force by red line. (a) ω = 0.98ω1,1, (b) ω = 0.99ω1,1, (c) ω = 1.00ω1,1, (d) ω = 1.01ω1,1,
and (e) ω = 1.02ω1,1.
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FIG. 15. Time history of the normalized hydrodynamic moments due to sloshing (mx = roll moment by
gray line; my = pitch moment by red line). (a) ω = 0.98ω1,1, (b) ω = 0.99ω1,1, (c) ω = 1.00ω1,1, (d) ω =
1.01ω1,1, and (e) ω = 1.02ω1,1.
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FIG. 16. Comparison of ζ1 at ω = 0.99ω1,1 between HPC (top) and multimodal theory (bottom) in terms
of the harmonic structure: total signal (gray), first harmonic (red), and second harmonic (difference and sum
terms, black).

and ζ
(ω)
2 are in phase in the initial stage but gradually shift to a phase difference slightly lower

than π/2 in the steady state. Unlike Fig. 21, ζ2 is the phase lag, in this case indicating the
wave pattern exhibiting anticlockwise swirling behavior [37]. Therefore, we conclude that the
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FIG. 17. Comparison of ζ2 at ω = 0.99ω1,1 between HPC (top) and multimodal theory (bottom) in terms
of the harmonic structure: total signal (gray), first harmonic (red), and second harmonic (difference and sum
terms, black).
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FIG. 18. Individual phases of the first harmonic components of ζ1 and ζ2 (top) as well as the phase
difference (bottom) as a function of time at ω = 0.99ω1,1. ζ
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swirling behavior occurring in proximity to the lowest natural frequency is not dependent on
initial conditions. However, initial conditions will determine the swirling direction—clockwise or
anticlockwise.

We also noted that the energy exchange between the longitudinal and transverse modes leading
to the occurrence of swirling waves is somewhat characterized by changes in the phase of ζ1. For
other cases, such as ω = 1.01ω1,1, the phase of ζ1 remains constant after the initial transient, while
the amplitude of ζ2 is decreasing to zero (and therefore the phase of ζ2 is not meaningful), as shown
in Fig. 23. For this case, no swirling waves are observed.
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FIG. 20. Same as the bottom subplot of Fig. 18 but with the initial condition (24), respectively.

V. TRANSIENT EXCITATION

A. NewWave-type excitation

As a sequel to the time-harmonic oscillations, a transient compact NewWave-type excitation is
considered. The average shape of the largest excitation in incident random wave field, the NewWave
in surge excitation, is expressed as

ηNW = αη

∑
n Sη(ωn)�ωRe[exp(iωnt )]∑

n Sη(ωn)�ω
, (25)
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FIG. 21. Individual phases of the first harmonic components of ζ1 and ζ2 (top) as well as the phase
difference (bottom) as a function of time at ω = ω1,1. ζ
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FIG. 22. Same as the bottom subplot of Fig. 21 but with the initial condition (24).

where αη is the most probable extreme excitation in N samples. For large N , the following
approximation holds for a Gaussian process:

αη =
√

2m0 log N, (26)

where m0 is the total variance of the spectrum, Sη(ωn), which is given by m0 = ∑∞
n=0 Sη(ωn)�ω,

where �ω is the differential element of the wave frequency. This result is well known [38, p. 319].
Note the use of the power spectrum, S(ωn), in the above equation, which means that the amplitude

spectrum of the NewWave has the same shape as the power spectrum of the underlying sea state.
The NewWave temporal shape is different from that of a transient focused wave, generally used to
represent extreme (or freak) waves, which is based on the amplitude spectrum of the underlying sea
state (and hence the resulting temporal shape is more broadband).

Figure 24 presents the NewWave type of excitation ηNW (t ) and the resulting responses at two
probe locations (ζ1 and ζ2) in terms of surface elevation, and normalized horizontal hydrodynamic
forces ( fx, fy) and moments (mx, my) acting on the tank, based on the assumed JONSWAP (Joint
North Sea Wave Project) spectral shape with Hs = 0.0087 m, Tp = 2π/ω1,1 = 1.48 s, and γ = 3.3.
Note the NewWave is made to focus at t = 10 s. In terms of ζ1 in particular, it can be observed that
for t � 20 s the excitation is driving energy into the liquid in the tank, and after the excitation ends,
the liquid undergoes free oscillation, with a decay rate commensurate with the imposed artificial
damping. Similar behavior is observed for the hydrodynamic force and moment on the tank. Both
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FIG. 23. Same as the bottom subplot of Fig. 21 but for ω = 1.01ω1,1.

084801-24



LIQUID SLOSHING IN AN UPRIGHT CIRCULAR TANK …

0 20 40 60 80 100
t (s)

−0.02

0.00

0.02

η 1
(m

)

0 20 40 60 80 100
t (s)

−0.4

0.0

0.4

ζ
(m

)

ζ1 ζ2

0 20 40 60 80 100
t (s)

−0.5

0.0

0.5

f x
an

d
f y

fx fy

0 20 40 60 80 100
t (s)

−0.3

0.0

0.3

m
x

an
d

m
y mx my

(a)

(b)

(c)

(d)

FIG. 24. Time history of a NewWave type of excitation (a) and the resulting responses in terms of surface
elevation (b), hydrodynamic forces (c) and moments (d) on the tank.

responses are considered narrow band. Moreover, the amplitude of ζ2 is slightly increasing while
that of ζ1 is decreasing, indicating that there is energy transfer. However, it is worth noting that ζ2

is induced by the initial disturbance, and it is observed that swirling waves are not induced because
ζ1 and ζ2 are in phase as shown in the second subplot. Therefore, the energy transfer is not strong
enough to excite swirling waves in this problem. Besides, it indicates that the appearance of the
swirling waves requires a long time and continuous excitation. Comparing the harmonic structures
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FIG. 25. Comparison of RAO derived from the NewWave type of excitation (solid line) and the periodic
type of excitation (squares).

for ζ and f as well as m, it can be seen that ζ contains higher wave harmonic components in
particular for ζ1, and there is occurrence of secondary peaks for ζ2, while f and m are predominantly
linear without any obvious vertical asymmetry. Besides, fx and fy are in phase, whereas mx and my

have the phase difference of π . At the focal time instant, an impulse in the pitch moment is observed,
and the amplitude is slightly higher than the subsequent amplitudes during the free oscillation.

For problems such as liquid sloshing in a tank, the largest response may not necessarily be due
to the largest wave crest or excitation. Here we present a methodology to obtain the most probable
maximum response of the liquid sloshing in a realistic sea-state condition, assuming linear motion.
The method was previously applied to the M4 wave energy converter to derive the most probable
extreme hinge angle response for survivability assessment [39]. First, a transfer function akin to a
response amplitude operator (RAO), which describes the linear relationship on the sloshing response
for a given input excitation η, can be defined as

|Z| =
√

Sresponse

Sη

. (27)

For a sloshing response in ζ , for example, its power spectrum can be expressed as

Sζ (ωn) = Sη(ωn)|Z (ωn)|2. (28)

Figure 25 shows the computed RAO from the NewWave type of excitation (solid line). Also
shown are the individual RAOs derived from the periodic type of excitation for forcing frequencies
ranging between ω = 0.98ω1,1 and ω = 1.02ω1,1 (squares), where good agreement can be seen. The
RAO curve is linear within the most energetic frequency excitation range (from ω/ω1,1 = 0.7–1.3),
with some nonlinearity contaminating the curve to the left and right side of the peak.

From Eq. (25), the response in ζ for a given NewWave-type excitation in surge, now termed ζηNW ,
can be obtained from

ζηNW = αη

∑
n Sη(ωn)�ωRe[Z (ωn) exp(iωnt )]∑

n Sη(ωn)�ω
. (29)
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The largest response, termed NewWave in response, is therefore simply

ζNW = αζ

∑
n Sζ (ωn)�ωRe[exp(iωnt )]∑

n Sζ (ωn)�ω
, (30)

where αζ is the 1 in N linear crest elevation of sloshing in the random sea state. The designer wave
which would give rise to the NewWave in response is given as

ηζNW = αζ

∑
n Sζ (ωn)�ωRe[Z (ωn)−1 exp(iωnt )]∑

n Sζ (ωn)�ω
. (31)

The designer wave for in-line force fx and pitch moment my on the tank follow the same procedure.
Figure 26 presents the designer-wave type of excitation (ηζNW ) and the resulting extreme response

(ζNW ), as well as the associated force and moment ( f and m). Note the peak extreme response is
made to occur at t = 40 s. Note also that the peak response is chosen to be comparable to the
previous response due to NewWave-type excitation; however, the energy contained in the designer-
wave excitation is 30% of that contained in the NewWave-type excitation. If the same energy is
used, the resulting extreme response will be much larger. This illustrates the potential application
of a designer wave to analyze the extreme response of a floating system when survivability is in
question.

It can be seen from the figure that before the peak response, the designer-wave excitation causes
a buildup of ζ1. After the excitation ends, the sloshing liquid undergoes free vibration. Since
then, ζ1 gradually decreases whereas ζ2 increases, indicating that there is energy transfer from the
longitudinal symmetric mode to transverse symmetric mode. After around six periods, however,
both ζ1 and ζ2 decay due to the absence of the external excitation, and ζ1 and ζ2 are in phase,
indicating that the wave pattern exhibits oblique planar behavior rather than swirling waves. Similar
behavior is observed for fx and my. In fact, both ζ (ζ1 and ζ2) and f ( fx and fy) are in phase,
whereas mx and my are π apart, similar to Fig. 24. Furthermore, ζ1, fx, and my are slowly varying in
amplitude, and therefore the designer waves for the other types of responses are very similar. ζ2, on
the other hand, is due to mode interaction and not directly associated with the induced surge motion
or excitation; therefore the designer-wave excitation for ζ2 does not exist. Neither do fy and mx.

B. Focused-wave-type excitation

In addition to the time-harmonic and NewWave-type oscillations, an impulsive focused-wave-
type excitation is considered with the energetic frequency coinciding with the lowest natural
frequency, representing an extreme or freak wave type of event. To generate a localized focused
wave group, a set of N Fourier wave components is generated at an upstream location at the
beginning following an assumed wave spectrum (such as JONSWAP). At a predefined location
downstream at a later time, all the wave components are intended to combine into a typically
crest-focused wave group (defined as having a horizontal symmetry between the adjacent troughs
on either side of the largest crest in time).

For a given power spectrum of the excitation, Sη(ω), which is discretized over N + 1 wave
components, the following transformation into the amplitude spectrum is applied:

Aη(ω j ) = √
[Sη(ω j+1) + Sη(ω j )] · (ω j+1 − ω j ). (32)

The temporal shape of a crest-focused wave group made to focus at t f can be expressed as

ηCF (t ) =
N∑

j=1

Aη(ω j ) · Re[eiω j (t−t f )]�ω. (33)

An example of a crest-focused wave group type of excitation is shown in the top row of
Fig. 27, with assumed JONSWAP spectral shape with Hs = 0.0087 m, Tp = 1.48 s, and γ = 3.3.
The resulting responses in terms of free-surface elevation at two probed locations (ζ1 and ζ2) as
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FIG. 26. Time history of a designer-wave-type excitation (a) and the resulting responses in terms of surface
elevation (b), hydrodynamic force (c) and moment (d) on the tank.

well as the normalized hydrodynamic forces ( fx, fy) and moments (mx, my) are exhibited from
the second to the bottom rows of the same figure. The in-line force and pitch moment exhibits
a strong impulselike feature which was not observed in the previous subsection. Meanwhile, the
liquid sloshing response is similar to that induced by NewWave-type excitation, despite the larger
or more impulsive excitation in this case.
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FIG. 27. Time history of a crest-focused type of excitation (a) and the resulting responses in terms of
surface elevation (b), hydrodynamic force (c) and moment (d) on the tank.

To interpret the impulselike feature in the in-line force and pitch moment, we decompose the
total velocity potential � into [6]

�(�x, t ) = η̇1x + φ(�x, t ), (34)

where φ is the potential due to sloshing, and the first term is associated with the tank’s surging
motion. Then the linear term of the hydrodynamic force can be decomposed into two components
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FIG. 28. Time history of excitation and sloshing response in ζ1 (top) and decomposed hydrodynamic force
and moment into inertial and residual components (middle and bottom) for focused-wave-type excitation.

associated with the tank’s motion and sloshing. Then the in-line force Fx can be written as

Fx = −ρ

∫∫
S

∂�

∂t
nxdS + [nonlinear terms]

= −Mη̈1︸ ︷︷ ︸
inertial

−ρ

∫∫
S

∂φ

∂t
nxdS + [nonlinear terms]︸ ︷︷ ︸

residual

,
(35)

where M means the mass of the liquid inside of the tank, and the pitch moment My is written as

My = −ρ

∫∫
S

∂�

∂t
(znx − xnz )dS + [nonlinear terms]

= Mh

2
η̈1︸ ︷︷ ︸

inertial

−ρ

∫∫
S

∂φ

∂t
(znx − xnz )dS + [nonlinear terms]︸ ︷︷ ︸

residual

.
(36)

In the vicinity of the focal time instant t = t f = 10 s, the acceleration of the tank is increased
abruptly. This induces a sudden increase in the inertial force and the pitch moment, which results
in the peak observed in the normalized in-line force fx and pitch moment my. In order to confirm
this, we separate the inertial components f inertial

x and minertial
y from the total in-line force fx and pitch

moment my as depicted in Fig. 28. At the focal time instant t = t f = 10 s, the inertial component
dominates the total force and moment. If one is interested in the wave that causes the largest force in
this example, the designer wave will look very similar to the crest-focused-wave type of excitation.

084801-30



LIQUID SLOSHING IN AN UPRIGHT CIRCULAR TANK …

−0.4

−0.2

0.0

0.2

0.4

η 1
an

d
ζ 1

(m
) 10η1 ζ1

−0.4

−0.2

0.0

0.2

0.4

f x

f inertial
x f residual

x

5 10 15 20 25
t (s)

−0.4

−0.2

0.0

0.2

0.4

m
y

minertial
y mresidual

y

FIG. 29. Same as Fig. 28 but for NewWave-type excitation.

This is in contrast to the force and moment components due to the NewWave-type excitation,
which is shown in Fig. 29. Both the inertial and residual forces are of comparable magnitude, and
therefore the total hydrodynamic force and moment do not exhibit obvious impulselike feature. In
the absence of liquid sloshing in the circular tank, the designer wave will follow the same shape
as the NewWave-type excitation. However, due to the effect of liquid sloshing in the tank, which
produces an additional residual force and moment comparable to the inertial component induced by
the excitation, the NewWave-type excitation may not yield the largest force. The required excitation,
which is the designer-wave-type excitation, is as shown in the top subplot in Fig. 26, and the
decomposed force and moment are plotted in the middle and bottom subplots in Fig. 30. It can
be observed that the designer-wave-type excitation minimizes the induced inertial component and
maximizes the liquid sloshing in the tank, represented by ζ1, which in turn maximizes the residual
component in the total force and moment.

VI. CONCLUDING REMARKS AND FUTURE PERSPECTIVES

A fully nonlinear HPC method based on the overset mesh is developed to delve into the flow
physics associated with liquid sloshing in an upright circular base tank under the surging motion.
Both periodic and transient-type excitations are considered.

When the tank is under periodic excitation in proximity to the lowest resonant frequency,
planar and nonplanar wave patterns, including time-harmonic and periodically modulated swirling
waves, are excited after a long buildup time. For the occurrence of swirling waves, the phase
difference gradually shifts to nearly π/2. During the transition stage, the amplitude of ζ2 is
increasing under the effect of mode interactions. The occurrence of swirling waves does not
depend on initial conditions, but the initial condition determines the swirling direction: clockwise
or anticlockwise. The periodically modulated swirling waves switch back and forth between planar
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FIG. 30. Same as Fig. 28 but for designer-wave-type excitation.

waves and swirling waves. The sloshing response in terms of free-surface elevation as well as
hydrodynamic force and moment are examined. The surface elevation response time series exhibits
nonlinearities with a higher crest and lower trough, while the force and moment response time series
are remarkably linear without appreciable vertical asymmetry. The responses are compared with
analytical predictions from the linear modal theory and the weakly nonlinear multimodal theory.
In general, good agreement between the fully nonlinear HPC method and the weakly nonlinear
multimodal theory is observed. The disagreement with the linear modal theory indicates that the
occurrence of nonplanar wave patterns is due to mode interactions. When nonplanar waves occur,
the lateral force and roll moment components are experienced by the tank, which could be important
for mooring line integrity assessment in marine and aquaculture engineering.

Transient responses are examined using NewWave- and focused-wave-type excitations. For both
transient-type excitations, narrow-banded responses are observed. Despite the difference in the
focused amplitudes, the free-surface elevations induced by both excitations are very similar, and
only a planar wave pattern could be excited. However, the hydrodynamic forces can be quite
different. An impulselike feature is observed for the in-line force and pitch moment induced by
focused-wave-type excitation. Based on the results from NewWave-type excitation, the designer-
wave-type excitation is applied to the liquid sloshing problem to yield the largest sloshing responses,
both in free-surface elevation as well as in-line hydrodynamic force and moment acting on the tank.
Further investigation by force decomposition reveals that the inertial component is dominant under
focused-wave-type excitation, while the residual component is energized to be more dominant under
designer-wave-type excitation.

Having accounted for periodic and transient-type excitations in the present study, the sloshing
response under the influence of random waves and wave grouping phenomena that can occur in
a real ocean may be all different. In addition, since the present numerical model adopts the free-
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surface-fitted grid and a semi-Lagrangian scheme, the free-surface profile must be a single-valued
function, and therefore this study is limited to small-amplitude oscillations. For a relatively large-
amplitude motion, local wave breaking occurs [11], and techniques to cope with breaking waves
must be incorporated. All these will be investigated in future work.
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