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Formulating turbulence closures using sparse regression
with embedded form invariance
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A data-driven framework for formulation of closures of the Reynolds-average Navier-
Stokes (RANS) equations is presented. In recent years, the scientific community has
turned to machine learning techniques to translate data into improved RANS closures.
While the body of work in this area has primarily leveraged neural networks (NNs), we
alternately leverage a sparse regression framework. This methodology has two important
properties: (1) The resultant model is in a closed, algebraic form, allowing for direct
physical inferences to be drawn and naive integration into existing computational fluid
dynamics solvers, and (2) Galilean invariance can be guaranteed by thoughtful tailoring of
the feature space. Our approach is demonstrated for two classes of flows: homogeneous
free shear turbulence and turbulent flow over a wavy wall. The model learned based upon
the wavy wall configuration is then validated against flow over a backward-facing step.
This work demonstrates similar performance to that of modern NNs but with the added
benefits of interpretability, increased ease of use and dissemination, and robustness to
sparse and noisy training data sets.
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I. INTRODUCTION

Simulation frameworks based on the Reynolds-averaged Navier-Stokes (RANS) equations [1–4]
have been the most widely-used tool in industrial and large-scale applications of turbulent flows for
the last several decades [5] and will remain a central tool for guiding design decisions well into the
coming decades [6,7]. This is primarily driven by the wide range of length scales and timescales
associated with turbulent flows of interest. Because of this, direct numerical simulations (DNS) that
fully resolve all relevant scales are prohibitively costly. Instead, the RANS equations solve for mean
flow quantities that are then used to assess global flow features of interest. A principal challenge
associated with RANS is accurate modeling of the unresolved terms, which are denoted “unclosed”
because they are not completely specified in terms of the unknowns (e.g., mean velocity, pressure,
etc.).

With the rise of computational power and the accessibility of large, highly resolved data sets,
the community has turned to machine learning techniques in recent years to distill this wealth of
information into improved RANS models. As a consequence of the interest and prevalence of the
use of machine learning in the turbulence modeling community, several thoughtful and thorough
reviews have been published and the authors refer the interested reader to several of these works,
including Brenner et al. [8], Duraisamy et al. [9], Holland et al. [10], and Duraisamy et al. [11].

Numerous studies in recent years have approached the RANS closure problem by leveraging a
neural network (NN)-based framework. Ling et al. [12] used an invariant tensor basis integrated
into a NN to model the Reynolds stress anisotropy tensor for turbulent duct flow as well as
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flow over a wavy wall. Galilean invariance, a critical model property, was ensured by nature of
the invariant tensor basis as the inputs to the NN and demonstrated excellent agreement with
DNS data as compared to traditional (linear and quadratic eddy viscosity) models. Following this
work, many others have implemented similar strategies and employed a similar basis technique
for ensuring invariance. Of these works, many have used flow through a periodically constricted
channel or backward facing step as challenging tests of new modeling methodologies as these flows
exhibit massive separation. This is notoriously difficult to accurately capture with traditional RANS
closures [13]. A large body of works using NNs as the data-driven methodology to formulate closure
models have demonstrated promising success [12,14–18].

Despite the demonstration of improved model performance, models based upon NNs have an
important drawback. Due to the nature of the algorithm at the heart of NNs, the resultant model
acts as a “black box” and cannot be expressed in a compact, algebraic form. This compromises
interpretability, introduces difficulty in disseminating the learned model with end users and
industries, and increases computational cost of the model in the context of a RANS solver (as
compared with traditional algebraic closures). Further, a large number of NN approaches attempt
to augment or correct existing models. However, this approach breaks down for more complex
turbulent flows, such as disperse two-phase flows [19–23] or turbulent combustion [24,25], in which
the fundamental assumption of an energy cascade breaks down due to production at the smallest
scales. In these cases, existing closures adopted from single-phase flows are not appropriate, which
precludes an augmentation modeling approach. For these reasons, the present study proposes an
alternate method that allows for the development of physics-based, compact algebraic closures,
thus affording interpretability, transportability, and efficiency.

Several studies have taken alternate approaches to NNs using symbolic methods in order to
arrive at closed form, algebraic models. Gene expression programming [26–30] and random forest
regression [31,32] have become increasingly popular methodologies. The early success of these
works serves as motivation for the present work in which we present a methodology based upon
sparse regression as an alternative to NNs for developing new RANS closures, with emphasis on the
following key benefits:

Interpretability: Sparse regression produces an algebraic model with a limited number of terms,
resulting in improved interpretability of underlying physics and better prediction of model behavior
and stability outside the scope of training.

Galilean invariance: By careful construction of the feature space and structuring of the
optimization cost functional, Galilean invariance of the resultant model is ensured.

Efficiency: Models developed using sparse regression are built using physics-based, functional
terms and identify a subset of these terms that are most important for capturing physics. This is
fundamentally different from a naive curve fit in which all possible terms are included in the model.
Thus, forward computations are necessarily fewer compared to other techniques, such as NNs,
which postulate a full rank model. Despite determining a simpler model form, we demonstrate
comparable performance to NNs which were trained on larger data sets. Further, the resultant
model is both simple and algebraic, making for a lighter and more efficient integration with existing
solvers.

Beyond developing the methodology, its utility is demonstrated on two canonical cases: homo-
geneous free shear turbulence and turbulence through a periodically constricted channel. Within the
context of homogeneous free shear turbulence, the sparse regression methodology is validated using
a “toy” problem in which the training data set is synthetically generated using an existing model.
Then sparse regression is used to recover this existing model. Subsequent cases are based upon
DNS data and seek to uncover improved models in comparison with existing closures. Finally, the
algorithm is given experimental data for training and this result is compared with those determined
using full-field DNS data.
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II. METHODOLOGY

The sparse regression approach expands upon the data-driven technique presented in Brunton
et al. [33] for using temporally evolving data to “discover” nonlinear, dynamical systems. Rather
than uncovering governing equations, this method is employed to identify robust, data-driven
closure models. In this section, the sparse identification of nonlinear dynamics framework [33] is
built upon by adapting it for the RANS closure problem and embedding invariance–a key property
of any candidate RANS model.

It is first postulated that a tensor quantity of interest, D, can be characterized by the linear
combination of an invariant tensor basis, represented as T , premultiplied by optimal coefficients,
represented as β̂,

D = T β̂. (1)

Using this postulated form of the model, the following objective function is minimized in order to
determine the optimal coefficient vector, according to

β̂ = min
β

||D − Tβ||22 + λ||β||1, (2)

where β represents intermediary realizations of the coefficient vector which may not necessarily
be the optimal coefficient vector, β̂. Here the L-2 and the L-1 norms are denoted by || · ||22 and
|| · ||1, respectively. The first term in the objective function is ordinary least squares, which regresses
the coefficient vector to the trusted data, and the second term is a sparsity-inducing penalty on
the coefficients. By choice of the L-1 penalty, the minimization of the objective function performs
model selection by inducing sparsity (e.g., several of the terms of β̂ are identically zero, indicating
that the associated term in the invariant basis, T , is not important. The interested reader can refer
to Refs. [34–36] for further information.) Minimization of the cost function is performed using the
open source iterative algorithm presented in Brunton et al. [33].

In order to obtain a model that is both compact and frame-invariant, consideration must be given
to the construction of the trusted data vector, D, and the invariant basis, T . For compactness, D,
and as a consequence β, are restricted to column vectors. This ensures that the coefficients for each
term in the model is a scalar, which guarantees the same model form regardless of orientation (e.g.,
if the coefficients were vectors or tensors, this would embed directionality into the coefficients and
thereby enslave the model to the orientation in which it was learned).

In this work, D is assembled by first assessing the symmetry of the problem. All nonzero, unique
entries in the trusted data tensor are concatenated into a column vector. For example, as seen in
Fig. 1, if D is symmetric in the y and z directions and the only anisotropic contribution is in the x-y
direction, then the full tensor is represented as [D11,D12,D22]T. For each realization (e.g., in time)
and for each configuration under consideration, these column vectors are vertically concatenated.

Finally, form (Galilean) invariance in the resultant model is guaranteed by assembling T from an
invariant tensor basis. The basis is crafted by using dimensional analysis to determine the relevant
known tensor quantities that fully describe the physics under study. These tensors are then used to
assemble a minimal integrity basis (see, e.g., Pope [37], Speziale et al. [38], or Ling et al. [12]),
using the following arguments:

(1) Any tensor can be represented by an infinite tensor sum of the form:

Di j =
∞∑

n=1

G(n)T (n)
i j ,

where G are coefficients that in the general sense may be functions of the invariants of the tensor
basis T (n)

i j .
(2) In some cases, the Cayley-Hamilton theorem can be leveraged to reduce the infinite tensor

sum to a finite sum that still exactly represents the infinite sum. In cases where this is not possible,
the basis is truncated once model improvement stagnates.
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FIG. 1. The postulated model takes the form Di = Ti jβ j , where D contains the observed data spanning over
c cases, each with s realizations in time. Further, T spans an invariant tensor basis of dimension g evaluated at
each of the samples s for each case c.

Once the invariant basis is determined, the matrix T is assembled using the same convention
as for D. Then the sparsity parameter λ is adjusted until acceptable model error and sparsity are
reached, noting that λ = 0 is ordinary least squares, and increasing λ results in an increasingly
sparse coefficient vector, β̂.

In the following sections, the sparse regression methodology is applied to two canonical cases
of increasing complexity. First, homogeneous free shear turbulence is considered. As an initial
proof-of-concept, a synthetic data set is generated using a known model and the sparse regression
methodology is used to recover that model. Next, DNS is used to generate the trusted data sets for
the same physical configuration and sparse regression is used to uncover alternate models to those
traditionally used. Last, turbulence through a periodically constricted channel is considered. This
test case has the additional complexities of being a statistically two-dimensional flow (as compared
to homogeneous free shear turbulence being statistically one-dimensional in time) as well as giving
rise to flow separation. The model learned by sparse regression is compared with the standard
linear eddy viscosity model (LEVM) and is then evaluated outside the scope of its training for the
periodically constricted channel at a higher Reynolds number as well as for flow over a backward
facing step. Finally, sparse regression is employed to train a model using experimental data for
the periodically constricted channel. This learned model is then compared and contrasted with the
model learned using the full-field DNS data.

III. CASE STUDIES

Herein Reynolds decomposition is denoted by angled brackets, 〈·〉, given for the velocity vector
by ui(xi, t ) = 〈ui(xi, t )〉 + ui

′(xi, t ), where ui(xi, t ) is the field quantity for velocity written in
Einstein notation, xi is the location, and t is time with 〈ui(xi, t )〉 and u′

i(xi, t ) denoting the mean
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(which may be spatial, temporal or both) and the fluctuating portions of the velocity, respectively.
Applying Reynolds averaging to the incompressible Navier-Stokes equations yields the RANS
equations:

∂〈ui〉
∂xi

= 0, (3)

∂〈ui〉
∂t

+ 〈uk〉∂〈ui〉
∂xk

= − 1

ρ

∂〈p〉
∂xi

+ ∂

∂x j

[
ν

(
∂〈ui〉
∂x j

+ ∂〈u j〉
∂xi

)
− 〈u′

iu
′
j〉
]
. (4)

It is notable that the Reynolds averaging process yields a Reynolds stress term, 〈u′
iu

′
j〉, which

requires closure.
The strategy for closure of the Reynolds stress term generally falls into two categories: (1) an

algebraic closure or (2) the inclusion of a transport equation for the Reynolds stresses. In this work,
two flows serve as case studies for the implementation of the methodology described in Sec. II. The
first case study (homogeneous free shear turbulence) will develop closures in the form of transport of
the Reynolds stresses and the second (turbulence in a periodically constricted channel) will consider
algebraic closure.

A. Homogeneous free shear turbulence

1. Problem statement

The flow configuration under consideration in this section is homogeneous free shear turbulence,
in which an unbounded, three-dimensional fluid volume is subjected to a mean-velocity gradient that
generates and sustains turbulence. After sufficient time, the Reynolds stresses reach a “self-similar”
state, characterized by the anisotropy of the Reynolds stresses reaching stationarity in time [e.g.,
d
dt (〈u′

iu
′
j〉/k) = 0 with k = 〈u′

ku′
k〉 the turbulent kinetic energy (TKE)]. Consequently, Reynolds-

averaged quantities are statistically one-dimensional (i.e., they depend only on time). It is this “self-
similar” behavior that is of specific interest in formulating an improved RANS closure.

As previously described, the Reynolds stresses in the RANS equations [Eq. (4)] require closure.
In this example, we consider the transport of the Reynolds stresses, which are given exactly as

D〈u′
iu

′
j〉

Dt
= −

[
〈u′

ju
′
k〉

∂〈ui〉
∂xk

+ 〈u′
iu

′
k〉

∂〈u j〉
∂xk

]
︸ ︷︷ ︸

production, Pi j

− 2ν

〈
∂u′

i

∂xk

∂u′
j

∂xk

〉
︸ ︷︷ ︸

dissipation, εi j

+
〈

p

ρ

(
∂u′

i

∂x j
+ ∂u′

j

∂xi

)〉
︸ ︷︷ ︸

redistribution, Ri j

− ∂

∂xk
〈u′

iu
′
ju

′
k〉︸ ︷︷ ︸

turbulent convection

+ ν
∂2〈u′

iu
′
j〉

∂x2
k︸ ︷︷ ︸

viscous diffusion

− ∂

∂xk

( 〈u′
i p

′〉
ρ

δ jk + 〈u′
j p′〉
ρ

δik

)
︸ ︷︷ ︸

pressure transport

, (5)

where D/Dt denotes the material derivative, ν is the kinematic viscosity, and ρ and p denote fluid
density and pressure, respectively. In the case of homogeneous free shear turbulence, the domain
is spatially homogeneous and consequently, spatial gradients of mean quantities are null. Thus, the
transport of Reynolds stresses is reduced to

d〈u′
iu

′
j〉

dt
= −[〈u′

ju
′
k〉	ik + 〈u′

iu
′
k〉	 jk]︸ ︷︷ ︸

production, Pi j

− 2ν

〈
∂u′

i

∂xk

∂u′
j

∂xk

〉
︸ ︷︷ ︸

dissipation, εi j

+
〈

p

ρ

(
∂u′

i

∂x j
+ ∂u′

j

∂xi

)〉
︸ ︷︷ ︸

redistribution, Ri j

, (6)

where the shear rate tensor is given as 	i j = ∂〈ui〉/∂x j , Here the production term is closed, however
the dissipation and redistribution tensors both require closure. In this work, new modeling efforts
are directed toward the redistribution tensor and the dissipation tensor is closed using the standard
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transport equation proposed by Hanjalic and Launder [39],

∂ε

∂t
= Cε1

Pε

k
− Cε2

ε2

k
, (7)

where P = tr(Pi j )/2 and model constants are given by [Cε1,Cε2] = [1.44, 1.92] [40].

2. Proof-of-concept: A synthetic data set

As an initial proof-of-concept for the sparse regression methodology described in Sec. II, a set
of data is generated using a well-established closure for the redistribution tensor with the goal of
recovering the known model. The closure utilized to generate the synthetic data set was proposed
by Launder et al. [41] and is known as the LRR-IP model,

Ri j = −CR
ε

k

(
〈u′

iu
′
j〉 − 2

3
kδi j

)
− C2

(
Pi j − 2

3
Pδi j

)
, (8)

where the constants are given as [CR,C2] = [1.8, 0.6] [41]. This closure, embedded in the transport
equation for the Reynolds stresses in Eq. (6) and the transport equation for dissipation given
in Eq. (7) are solved for three shear rates (	 = 	12 = [2.25, 11.24, 20.23]). This results in one-
dimensional (time-dependent) data for the Reynolds stresses for each shear rate.

Given the simple flow configuration, the redistribution tensor can be normalized by the viscous
dissipation rate, ε, and characterized by a linear combination of the the following nondimensional-
ized, mean flow quantities:

(1) Anisotropic stress tensor bi j = 〈u′
iu

′
j 〉

2k − 1
3δi j

(2) Mean rotation rate tensor R̂i j = 1
2

k
ε
( ∂〈ui〉

∂x j
− ∂〈u j 〉

∂xi
)

(2) Mean shear rate tensor Ŝi j = 1
2

k
ε
( ∂〈ui〉

∂x j
+ ∂〈u j 〉

∂xi
)

such that

Ri j = ε f (bi j, R̂i j, Ŝi j ), (9)

where f is a form invariant tensor-valued function, which, due to the linearity in bi j, R̂i j, and Ŝi j

automatically satisfies

Q f (bi j, R̂i j, Ŝi j )QT = f (Qbi jQT, QR̂i jQT, QŜi jQT). (10)

Here Q is a Galilean rotation matrix, e.g., QQT = QTQ = I (where I is the identity tensor) and
det Q = ±1.

These bases have been extensively used in the literature (see, e.g., Refs. [38,42] for their
derivation) and their usage is restricted to modeling equilibrium regimes (rather than the transient
period). To briefly summarize, because the redistribution tensor, Ri j , is symmetric and deviatoric,
and its dependence on each of the bases is linear, each basis tensor must also satisfy these same
properties. Further, the constraint of form invariance under coordinate transformation stipulates that
f must be an isotropic function of its arguments (i.e., bi j , R̂i j , and Ŝi j). Using these constraints guides
the formulation of the minimal integrity basis [38] as shown in the leftmost column of Table I.

Using the data generated by solving Eqs. (6)–(14), the basis tensors are computed and the
redistribution tensor is populated by taking the time derivative of the Reynolds stresses (using a
sixth-order central difference scheme) and solving Eq. (6) for the redistribution tensor. Then these
quantities are assembled into D and T as described in Sec. II. Note that since we are interested in
modeling the self-similar regime, only data from this region are used for training and for assessing
model error. After D and T are assembled, the cost functional defined by Eq. (2) is optimized for
decreasing values of λ until reduction in model error is no longer achieved.

As shown in Table I, the methodology exactly returns the LRR-IP model used to generate the
data set. In order to systematically challenge the robustness of the algorithm, a posteriori, artificial
noise was added to the synthetic data set. The synthetic noise was normally distributed about the
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TABLE I. Summary of model forms and associated error in the self-similar region of homogeneous free
shear turbulence, with increasing amounts of artificial noise added to the synthetic data set.

Sparse regression

Order λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.5
in bi j T (n) LRR-IP N = 0 N (μ, 0.1μ) N (μ, 0.2μ) N (μ, 0.3μ)

0 Si j 0.8 0.8 0.8010 0.8020 0.803
bi j −3.6 −3.6 −3.5761 −3.5522 −3.5282

1 Ril bl j + Rjl bli 1.2 1.2 1.2003 1.2007 1.2010
Sil bl j + Sjl bli − 2

3 Slmbmlδi j 1.2 1.2 1.2018 1.2036 1.2054
b2

i j − 1
3 b2

llδi j 0 0 0 0 0
2 Sil b2

l j + Sjl b2
li − 2

3 Slmb2
mlδi j 0 0 0 0 0

Ril b2
l j + Rjl b2

li 0 0 0 0 0
3 b2

ikRkpbpj − bil Rlkb2
k j 0 0 0 0 0

εbi j – 0.0 0.0076 0.015 0.023

mean of the synthetic data, denoted as N (μ, σ ), where σ is the standard deviation that is prescribed
in terms of percentage of the mean value, μ. We consider σ = 0.1, 0.2, and 0.3μ. In each case,
λ was reduced until the model error plateaued. Even in the case of the noisiest data provided, the
learned model deviated from the expected LRR-IP model by only 2.3%, where error is defined by
the L-2 norm

ε = ||D − Tβ||2
||D||2 . (11)

This level of performance indicates the sparse regression methodology is robust to substantial
noise in the training data without compromising the accuracy in learning the underlying physics.
This is further demonstrated in Figs. 2(a)–2(c) where the models learned from the noisy data are
shown against the LRR-IP model and the artificially noisy data. In all three cases, the learned
model accurately describes the behavior of the LRR-IP model despite small amounts of error in
the coefficients.

3. DNS-generated data: Can sparse regression improve upon existing models?

Here the same physical configuration is considered, albeit with the trusted data generated using
DNS (see Fig. 3). The goal of using DNS-generated training data is to understand how the learned
models differ from classically used models.

To generate the DNS data sets, NGA [43], a fully conservative, low-Mach number finite
volume solver is used. A pressure Poisson equation is solved to enforce continuity via fast Fourier

FIG. 2. Comparison between prescribed LRR-IP model ( ) with the learned models ( ) and artifi-
cially noisy data ( ), for 	 = 2.25. (a) N (μ, 0.1μ), (b) N (μ, 0.2μ), and (c) N (μ, 0.3μ).

084611-7



S. BEETHAM AND J. CAPECELATRO

FIG. 3. Snapshot of the instantaneous velocity field in DNS homogeneous free shear turbulence at S =
11.2.

transforms in all three periodic directions. The Navier-Stokes equations are solved on a staggered
grid with second order spatial accuracy and time is advanced with second-order accuracy using
the semi-implicit Crank-Nicolson scheme of Pierce [44]. Shear periodic boundary conditions are
enforced using the recently developed algorithm of Kasbaoui et al. [45]. Turbulence in the domain
is initialized using spectral methods in order to ensure consistency with Kolmogorov’s “−5/3”
spectrum [46,47].

Five cases are simulated for nondimensional shear rates S = 2	k0/ε0 =
(2.3, 6.6, 11.2, 13.2, 20.2) on a grid of size 1024 × 512 × 512, corresponding to a domain
size of 2π × π × π . Here k0 and ε0 denote the initial values of TKE and dissipation, respectively.
The grid resolution ensures that the flow captures the dissipative scales. Each case is simulated to a
nondimensional time of 	t ≈ 25–30 to ensure sufficient data in the self-similar region is captured.
Of the five data sets, three are selected as training sets (S = 2.3, 11.2, 20.2) from which a new
model is learned. The remaining two data sets (S = 6.6, 13.2) serve as validation sets in order to
determine the optimal value of λ and therefore the optimal learned model.

In the same fashion as was described for the synthetic data set, the DNS data are organized into
D and the T , and the cost functional is optimized for decreasing values of the sparsity parameter
λ until all terms are populated in the learned model. The resulting models from this procedure are
shown in Table II. As λ is decreased, additional terms are included in the learned model and the
coefficients adjust accordingly. The four learned models are compared against existing models, the

TABLE II. Summary of learned and existing models and associated error in the self-similar region for
homogeneous free shear turbulence.

Order Sparse regression

in bi j T (n) Rotta LRR-IP LRR-QI λ = 0.75 λ = 0.6 λ = 0.5 λ = 0

0 Si j 0 0.8 0.8 1.01 1.01 0.98 0.98
bi j −3.6 −3.6 −3.0 1.27 1.31 1.45 1.46

1 Ril bl j + Rjl bli 0 1.2 1.31 1.53 1.56 1.49 1.48
Sil bl j + Sjl bli − 2

3 Slmbmlδi j 0 1.2 1.74 1.73 1.71 1.79 1.78
b2

i j − 1
3 b2

llδi j 0 0 0 5.22 4.64 7.02 6.71
2 Sil b2

l j + Sjl b2
li − 2

3 Slmb2
mlδi j 0 0 0 0 0 0.57 0.56

Ril b2
l j + Rjl b2

li 0 0 0 0 0 0 0.13
b2

ikRkpbpj − bil Rlkb2
k j 0 0 0 0 −0.65 2.08 2.45

3 Training error, εb
train 0.68 0.26 0.26 0.090 0.092 0.078 0.073

Testing error, εb
test 0.086 0.089 0.070 0.078
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FIG. 4. As the number of terms in the model increases (by decreasing λ), terms that are most important
for capturing key redistribution physics arise in the sparsest models and persist with prominent coefficients as
terms are added. (a) Up to first order terms, (b) Up to second order terms, and (c) Up to third order terms.

Rotta [48] and LRR-IP and LRR-QI models [41] [Eqs. (12)–(15)], written in terms of the basis
tensors as

RRotta
i j = −2CRbi j, (12)

RLRR-IP
i j = −2CRbi j + 4

3C2Si j + 2C2(Rilbl j + Rjl bli ) + 2C2
(
Sil bl j + S jlbli − 2

3 Slmbmlδi j
)
, (13)

RLRR-QI
i j = −2C′

Rbi j + 4
5 Si j + 2

11 (10 − 7C′
2)(Ril bl j + Rjlbli )

+ 6
11 (2 + 3C′

2)
(
Sil bl j + S jl bli − 2

3 Slmbmlδi j
)
. (14)

Here the coefficients are given as [CR,C2] = [1.8, 0.6] and [C′
R,C′

2] = [1.5, 0.4]. The Rotta model
assumes a linear relationship with the anisotropy tensor and thus models a linear return to isotropy.
In contrast, the LRR-IP model includes nonlinear terms that are important for characterizing
homogeneous anisotropic turbulence. In comparing these three models with four learned models
of increasing complexity, it is observed that the least complex learned model, corresponding to
λ = 0.75, already shows marked improvement over the highest performing existing models and
reduces error in the anisotropic stress tensor from 26% to 9%.

Shown in Fig. 4, as λ is decreased and terms are added to the learned model, the normalized
coefficients, β̃i = βi/(max βi ), change to accommodate contributions from additional terms. In
Fig. 4(a), the sparse regression methodology is employed on a basis that is restricted to up to first
order in bi j . The basis is then expanded to second- and third-order terms in bi j in Figs. 4(b) and
4(c), respectively. In each instance, the most prominent coefficient remains the largest contribution
to the learned model, though its contribution decreases as subsequent terms are added. The order of
prominence of the lesser contributing terms does not remained fixed once the number of terms in the
model grows. This behavior has an insignificant effect on model performance and sensitivity and
serves to demonstrate the relative lesser importance of these terms to the overall model performance
as compared with the terms with larger contributions. Finally, it is observed in Figs. 4(b) and 4(c)
that the dominant coefficient stagnates beyond a five-term model. This mirrors the reduction in
overall model error as shown in Table II. The ability to identify which basis tensors are most
important for modeling the flow and their relative sensitivity therein, is a unique benefit of the
sparse regression methodology which allows for interpretability of the relationship between model
form and flow physics.

A comparison of the training and validation errors give the clearest indication of when a learned
model begins to exhibit symptoms of overfitting (see Fig. 5). While the learned closure predicts the
redistribution tensor, Ri j , the ultimate goal is to improve performance in predicting anisotropy in
the Reynolds stresses, bi j , making both measures of error relevant to assessing learned models. As
shown in Fig. 5, the error in Ri j decreases monotonically beyond a two-term model, however, we

084611-9



S. BEETHAM AND J. CAPECELATRO

FIG. 5. Error in Ri j and bi j are shown for models of increasing complexity for homogeneous free shear
turbulence. The inset figure delineates validation (test) and training error.

observe that five terms are required for stability in the transport equation for the Reynolds stresses.
It is notable that while the LRR-IP and LRR-QI model are stable with four terms, the four-term
model learned by sparse regression is not. This is likely due to a lack of a stability penalty in the
cost function. Adding additional penalties to the cost function in order to enforce model stability
is an area of active research. Testing and training errors are also compared in Fig. 5. As might be
expected, the training error generally decreases as terms are added, but beyond seven terms in the
learned model, an increase in testing error is observed. This is indicative of overfitting, thus making
the seven-term model the ideal model that minimizes model error while maximizing accuracy of
the model across different shear rates. As seen in Table II, the ideal learned model reduces error in
predicting self-similar behavior by more than half as compared with the LRR-IP or LRR-QI models
and more than eightfold as compared with the Rotta model.

In Fig. 6 the ideal seven-term model is compared with the highest performing existing model,
the LRR-QI model. Both are plotted against the DNS values used for training [Figs. 6(a)–6(c)]
and for validation [Figs. 6(d)–6(e)]. As previously discussed, it is observed that the learned model
accurately captures the self-similar behavior (shown in gray shaded regions) of the normalized
Reynolds stresses even in the testing cases which were not seen by the sparse regression method
during training.

4. A note on noninertial frames of reference

If a noninertial frame is to be considered [42,49,50], one would need to modify the normalized,
mean rotation rate tensor to include the rotation rate of the frame with respect to an inertial frame
(�), i.e., R̂i j = R̂i j + εm jim, where εm ji denotes the permutation tensor. Additionally, Coriolis
terms, (〈uiuk〉εmk jm + 〈u juk〉εmkim), must be included in Eqs. (4) and (6).

5. A note on constant coefficients

The analysis presented above considers the simple case in which model coefficients are constants.
As previously discussed, the coefficients are permitted to theoretically depend nonlinearly on
the principal invariants of the basis tensors. In the case of homogeneous free shear turbulence,
model performance using constant coefficients performs well without the additional complexity
of dependency on principal invariants. However, in situations in which this is not the case, this
dependency can be added into T by postulating functional forms of coefficients and appending
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FIG. 6. Sparse regression ( ) produces a more accurate model as compared with the most accurate
traditional closure available (LRR-QI, ). DNS data are denoted by open circles, and the four lines
correspond to the unique components of the normalized Reynolds stresses: 〈u′u′〉: , 〈u′v′〉: , 〈v′v′〉: ,
and 〈w′w′〉: . The shaded portion denotes the self-similar region of the flow. (a) S = 3.2, (b) S = 16.1,
(c) S = 30.7, (d) S = 10.0, and (e) S = 20.1.

them to each of the basis tensors. If there is a physics-based rational for the functional dependency,
this process can be prescribed by hand, or if the functional dependence is not in any way constrained,
an algorithm such as gene expression programming [26–30] can be used to analytically determine
complex coefficient dependencies on the principal invariants. This strategy is reserved for future
work.

B. Turbulent flow through a periodically constricted channel

1. Problem statement

In this section, we consider the classical case of turbulent flow through a periodically constricted
channel as shown in Fig. 7 and described in Breuer et al. [51]. As discussed in Sec. III, two main
approaches are typically taken when developing closures for the Reynolds stresses. In Sec. III A
the transport of the Reynolds stresses was addressed, and in this section algebraic closure of the
Reynolds stresses will be developed.

In this strategy, the algebraic closure for the Reynolds stresses depends upon a model for the
anisotropic stress tensor, such that 〈u′

iu
′
j〉 = 2k(bi j + 1

3δi j ). Further it has been well established that
the model for bi j depends upon Ŝi j and R̂i j . Recalling from Sec. III A that these quantities are
normalized by TKE, k, and dissipation of TKE, ε, this method requires the transport of both k and
ε, which are given by

∂k

∂t
+ ∂ (kui )

∂xi
= ∂

∂x j

[(
ν + νt

σk

)
∂k

∂x j

]
+ P − ε, (15)

∂ε

∂t
+ ∂ (εui )

∂xi
= ∂

∂x j

[(
ν + νt

σε

)
∂ε

∂x j

]
+ C1ε

ε

k
P − C2ε

ε2

k
, (16)
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FIG. 7. Instantaneous streamwise velocity (color), with streamlines originating from = Lz/2 (white lines).

where [Cμ, σk, σε,C1ε,C2ε] = [0.09, 1.00, 1.30, 1.44, 1.92]. The turbulent viscosity, νt , is given as
νt = Cμk2/ε where Cμ = 0.09 [52].

Using these equations along with a model for the anisotropic stress tensor, the RANS equations
[Eqs. (3) and (4)] are closed. The aim of this study is to use sparse regression to develop an improved
algebraic closure for the anisotropic stress tensor. As is commonly used in the literature, the
configuration under consideration here is turbulent flow through a periodically constricted channel
(see Fig. 7). This flow configuration is particularly challenging because the quantities of interest are
statistically two-dimensional (with dependence on the streamwise and cross-stream directions) and
the presence of the constriction generates massive separation in the flow.

The data set used for training was simulated using NGA, described in Sec. III A. The top and
bottom walls apply a no-slip boundary condition and the bottom, constricted wall is enforced
using a cut-cell immersed boundary method [53]. The geometry for the configuration under study
matches the configuration described in Breuer et al. [51] with uniform grid spacing discretized by
[Nx, Ny, Nz] = [512, 380, 380]. A Reynolds number of 2800 is considered, where Re = ubulkh/ν.
The bulk velocity ubulk is given by the mean velocity at the hill crest, and h is the hill height. After
reaching a statistically stationary point, the DNS data were averaged in the cross-stream (z direction)
and temporally for 44 flow-through times.

A linear eddy viscosity model (LEVM) is frequently used to close the Reynolds stresses that
appear in the RANS equations [52]. This closure takes the form

bi j = −CμŜi j, (17)

which will serve for comparison purposes as the “existing” model.
As outlined in Sec. II, the basis on which to train the model must first be identified. As previously

derived [37], a minimal integrity basis for the anisotropy tensor can be formulated using the
normalized mean rotation and shear rate tensors, R̂i j and Ŝi j , respectively. Since the anisotropy stress
tensor is symmetric and deviatoric, each of T (n)

i j must also have these properties. After formulating

combinations of Ŝi j and R̂i j with these properties, and owing to the Cayley-Hamilton theory, all
symmetric and deviatoric tensors that are combinations of Ŝi j and R̂i j can be formed as a linear
combination of the 10 basis tensors shown in Table III [37].

Using this basis, the anisotropic stress tensor can be represented exactly as

bi j =
10∑

n=1

G(n)T (n)
i j (R̂i j, Ŝi j ). (18)

In the case of statistically two-dimensional flows, as is the case here, the basis simplifies to
only three tensors and the coefficients depend on at most only two invariants as shown in Table IV
[37,42].
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TABLE III. The 10 tensor bases that exactly describe the anisotropic stress tensor.

T (1)
i j = Ŝi j T (6)

i j = R̂ikR̂kl Ŝl j + Ŝik R̂kl R̂l j − 2
3 ŜpkR̂kl R̂l pδi j

T (2)
i j = Ŝik R̂k j − R̂ik Ŝk j T (7)

i j = R̂ik Ŝkl R̂l pR̂p j − R̂ik R̂kl Ŝl pR̂p j

T (3)
i j = Ŝik Ŝk j − 1

3 Ŝlk Ŝklδi j T (8)
i j = Ŝik R̂kl Ŝl pŜp j − Ŝik Ŝkl R̂l pŜp j

T (4)
i j = R̂ik R̂k j − 1

3 R̂lkR̂klδi j T (9)
i j = R̂ikR̂kl Ŝl pŜp j + Ŝik Ŝkl R̂l pR̂p j − 2

3 Ŝqk Ŝkl R̂l pR̂pq

T (5)
i j = R̂ik Ŝkl Ŝl j − Ŝik Ŝkl R̂l j T (10)

i j = R̂ik Ŝkl Ŝl pR̂pqR̂q j − R̂ik R̂kl Ŝl pŜpqR̂q j

Following the sparse regression methodology described in Sec. II, the DNS data set is formulated
into D and T . However, instead of modeling bi j directly, the anisotropic stress tensor is split into
linear and nonlinear portions, denoted by b‖

i j and b⊥
i j , respectively. The linear portion will be taken

as the standard LEVM and the nonlinear portion will be the subject of modeling efforts:

bi j = b⊥
i j + b‖

i j (19)

= b⊥
i j (k, ε, Ŝi j, R̂i j ) − CμŜi j, (20)

Di j = b⊥
i j = bi j + CμŜi j . (21)

This strategy is employed based upon the recommendation of several works that have pointed
out the ill-conditioning of the RANS equations [54]. These works suggest that separating the model
into a linear portion (solved implicitly with the viscous terms in the RANS solver) and a nonlinear
portion (solved explicitly) improves stability of the integrated RANS solver [17,28]. Further, since
the standard LEVM model is used as the starting point for modeling, the basis is formulated using
data from a forward solution in OpenFOAM [55] using the LEVM closure. Because the k − ε

equations contain models and are thereby a source of error in the “trusted” training data, these data
must be used as a starting point for modeling.

Using this formulation, sparse regression is employed to discover an improved model. This effort
results in both an a priori and an a posteriori analysis of the model. In the former analysis, the
training data are used to evaluate the accuracy of the learned model within the context of predicting
the anisotropy tensor. In the latter analysis, the learned model is implemented in OpenFOAM and the
forward solution is compared against the trusted DNS data and the existing LEVM. Additionally,
as an “upper end” metric, a look-up table was provided to the OpenFOAM RANS solver for the
Reynolds stress terms that appear in both momentum and production in the k − ε equations. This
data set serves as the performance of an ideal model that exactly captures the behavior of the
Reynolds stresses while highlighting the model errors associated with the k − ε model equations
themselves.

Two learned models are discovered using sparse regression, one with three terms (λ = 0, denoted
Learned 1) and the second with two terms (λ = 15, denoted Learned 2). Both learned models take

TABLE IV. The reduced basis set
for statistically two-dimensional flows.

T (1)
i j Ŝi j

T (2)
i j Ŝik R̂k j − R̂i j Ŝk j

T (3)
i j Ŝik Ŝk j − 1

3 Ŝlk Ŝklδi j

λ1 Ŝlk Ŝkl

λ2 R̂lkR̂kl
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TABLE V. Summary of learned model coefficients and a priori errors compared with the standard LEVM.

Model C1 C2 C3 εb RMSE

LEVM – – – 1.02 0.16
Learned 1 63.12 51.42 10.98 0.64 0.10
Learned 2 63.14 51.42 0 0.64 0.10

the form

b⊥
i j =

[
1

1000 + λ3
1

]
(C1T (1) + C2T (2) + C3T (3) ) (22)

and are detailed in Table V. In this expression, the strain damping factor [1/(1000 + λ3
1)] was

selected following the formulation of Shih et al. [56]. While a detailed discussion and derivation
can be found therein, this factor is resultant of constraining model coefficients to ensure realizability
conditions.

The a posteriori analysis for the learned models includes an assessment of recirculation
(Table VI) and velocity predictions for the training case (Fig. 9) and a test case at a higher Reynolds
number [Fig. 11(a)]. These results are discussed in detail in Sec. III B 3.

TABLE VI. Summary of separation and reattachment locations for all models compared with DNS.
Relative error with respect to the DNS values are shown in parentheses. Dashes indicate the data are either
not reported or not observed. Note that models “Learned 3” and “Learned 4” are discussed in Sec. IV.

Primary Secondary

Configuration Re Model Separation Reattachment Separation Reattachment

LEVM 0.43 (1.62) 3.64 (0.32) – –
Learned 1 0.40 (1.53) 5.38 (0.005) 7.14 (0.04) 7.31 (0.008)

2800 Learned 2 0.40 (1.48) 5.38 (0.005) 7.14 (0.04) 7.31 (0.01)
Learned 3 0.34 (1.14) 5.54 (0.04) – –
Learned 4 0.71 (3.43) 4.98 (0.07) 7.15 (0.04) 7.50 (0.03)

DNS 0.16 5.35 6.87 7.25
LEVM 0.40 (1.35) 3.01 (0.40) – –

Learned 1 0.40 (1.38) 5.38 (0.05) 7.14 (0.01) 7.30 (0.001)
Learned 3 0.34 (0.98) 5.41 (0.07) – –

Periodic hills 5600 Learned 4 0.41 (1.41) 4.55 (0.09) – –
DNS [51] 0.18 5.41 – –
DNS [57] 0.17 5.04 ± 0.09 7.04 7.31

Experiment [58] – 4.83 – –
LEVM 0.41 (1.30) 3.78 (0.26) – –

Learned 1 0.40 (1.24) 5.10 (0.002) – –
Learned 3 0.33 (0.85) 5.59 (0.10) – –

10 600 Learned 4 0.40 (1.24) 4.60 (0.10) – –
LES [51] 0.19 5.09 – –

Experiment [58] – 4.21 – –
LEVM 0.49 4.52 (0.28) – –

Backward-facing 5000 Learned 1 0.90 6.17 (0.02) – –
step DNS [59] – 6.28 – –

Experiment [60] – 6 ± 0.15 – –
Experiment [61] 6.51 – –
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FIG. 8. Comparisons of the components of the Reynolds stress tensor computed using DNS, LEVM, and
the two learned models.

2. A priori analysis

Each model developed can be assessed using the data with which it was trained. This represents
an a priori assessment of the model, but has limitations as it does not take into account issues of
stability or sensitivity that may be encountered within the context of a RANS solver. Further, since
the forward solution is not computed here, all assessments of model accuracy are computed with
respect to the anisotropic stress tensor.

Shown in Fig. 8, the standard LEVM does a reasonable job predicting the b12 component of the
anisotropy tensor, but it struggles for the diagonal components. In all three cases, both the sign and
magnitude are incorrect. The learned models, in contrast, capture the correct sign for the diagonal
components and improve the magnitude inaccuracies present in the standard LEVM for the b12

component. However, for Learned 2, with the elimination of the third basis term, the prediction for
b33 is also lost.

Using the L-2 norm as a metric for error, the learned models reduce model error in the anisotropic
stress tensor by 41% with respect to LEVM.

3. A posteriori analysis

The true test of any model is its performance in the context of a forward solver. It is in this sense
that model shortcomings become apparent, e.g., sensitivity or stability issues. Further, while the aim
of Reynolds stress modeling is to improve accuracy in describing the stresses, the ultimate goal is
that these models will improve predictions in the velocity field.

In order to assess the improvement of the learned model over the LEVM, the learned models
were integrated into OpenFOAM, solved in conjunction with the k − ε equations, and compared
with the LEVM model and the k − ε equations with a look-up table containing the DNS values
for the anisotropy tensor. In each case, the RANS equations were solved on a two-dimensional
grid of resolution (Nx, Ny ) = (200, 160) with the same physical dimensions as described in Breuer
et al. [51] (and used for the DNS computations). Periodic conditions were imposed at the left and
right faces, and “patch” conditions were imposed on the front and back faces to enforce a two-
dimensional solution. The bottom and top walls were treated as no-slip and a forcing term was
added such that the velocity at the top of the hill crest enforced the desired Reynolds number.

084611-15



S. BEETHAM AND J. CAPECELATRO

FIG. 9. Forward solutions of the mean, normalized velocity, 〈u〉/ubulk, for the standard LEVM model, the
two learned models, the lookup table for DNS values of bi j and the DNS results. The solid line represents
the region of recirculation, and the dashed line overlays where this region exists in the DNS data. (a) DNS,
(b) LEVM, (c) Lookup table for bi j , (d) Learned 1, and (e) Learned 2.

The mean velocity normalized by the bulk velocity, ubulk, is shown in Fig. 9 and the detached
regions are delineated by a black line. It is observed that LEVM underpredicts recirculation com-
pared with the DNS results [Fig. 9(b)], while both learned models demonstrate marked qualitative
improvement in velocity prediction. Quantitative measurements of separation and reattachment
locations for both the primary and secondary recirculation regions are detailed in Table VI. The
learned models predict both primary and secondary reattachment points within 1% of the DNS
values, with exception of the primary separation point. In comparison, LEVM underpredicts the
primary reattachment point by 32% compared with DNS and fails to predict existence of the
secondary recirculation.

Examination of the momentum RANS equation [Eq. (4)] makes clear that 〈u′u′〉 and 〈u′v′〉
are the only Reynolds stress components that contribute to 〈u〉 and therefore to the prediction
of recirculation. By examining b11 and b12 in Fig. 10, it can be seen that both components of
anisotropy contribute to the prediction of the separation location, however the b12 component is
most important for the prediction of reattachment. This can be seen by considering the areas of high
gradients (since the contribution to the velocity field is in the form of the divergence of the Reynolds
stresses), specifically the streamwise gradient for the 11-component and the vertical gradient for the
12-component of the model are important. As shown in Fig. 10, the second basis tensor, T (2)

i j , is
the most important contribution for accurately describing b11 and b22 and the first basis tensor,
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FIG. 10. Contributions to each component of the anisotropy tensor from each of the bases for the model
Learned 1, compared with the DNS field.

T (1)
i j , is the most dominant contribution for modeling b12. Thus ∂T 2

11/∂x and ∂T (1)
12 /∂y are the

most important for accurately predicting the recirculation region. Finally, the third basis is critical
for accurately describing the b33 component, though for this particular configuration (since z is a
homogeneous direction), accuracy in this component is not required for predicting the statistically
two-dimensional mean flow field.

4. Application outside the scope of training

To assess the range of application of the learned model (Learned 1), a forward RANS simulation
was conducted in OpenFOAM for two configurations and Reynolds numbers outside the scope of
its training: (1) the wavy wall configuration but at a higher Reynolds number and (2) flow over a
backward facing step, where massive separation is also observed. In both of these configurations,
DNS and/or experimental data are available to assess model performance. As in the previous
section, the learned model’s performance is compared against the LEVM.

Since full-field data are not available for these additional cases, model performance is determined
based on prediction of the reattachment point in the flow. These results are summarized in Table VI.

The first out-of-scope configuration considered is the periodically constricted channel configura-
tion as described in the previous section, but at a higher Reynolds number. More exhaustive details
on the Reynolds number dependencies for this configuration can be found in Breuer et al. [51], but
to briefly summarize, increasing the Reynolds number for this configuration results in differences in
recirculation size as well as in separation and reattachment locations. The selection of Re = 5600
was chosen due to the existence of available DNS data. Here the learned model (Learned 1) was
again implemented in OpenFOAM and compared against the openly available data set provided
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FIG. 11. Velocity profiles for flow through a periodically constricted channel at Re = 5600 (a) and flow
over a backward-facing step at Re = 5000 (b). Learned 1 ( ), LEVM ( ), DNS of Ref. [51] ( ), DNS

of Ref. [59] ( ), and experiments of Ref. [60] ( ).

by Breuer et al. [51], in which only a primary recirculation region is observed. Improvement over
LEVM is observed in this case, as shown in Fig. 11(a) and Table VI. The LEVM solution again
underpredicts recirculation, while the learned model predicts the reattachment location within 5%
of the DNS value reported in Breuer et al. [51] and within 5%–9% of the DNS value reported
in Krank et al. [57]. The primary separation location is marginally over two times further in the
streamwise direction as compared to both DNS results [51,57]. The learned model also predicts the
small secondary recirculation region that is reported in Krank et al. [57]. Breuer et al. [51] does
not observe this secondary recirculation, however this appears to be due to differences in numerical
schemes and order of accuracy as compared with Krank et al. [57]. In this secondary region, the
learned model predicts the separation and reattachment points within 1% and 0.1%, respectively, as
compared with the DNS reported in Krank et al. [57].

The second configuration considered to assess model performance outside the scope of its
training is turbulent flow over a backward-facing step for Re = 5000. For this configuration, model
performance is assessed by comparison with reported DNS values [59] and experimental values
[60,61] as shown in Fig. 11 and quantified in Table VI. The same configuration is used as described
in these works, and the Reynolds number is defined using the step height (h = 9.6 mm). No-slip
boundary conditions were enforced at the top and bottom walls in the RANS simulations, and a
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TABLE VII. Summary of learned coefficients using sparse data, i.e., only the y-dependent data at the
specified x/h location. Model error is reported for the a posteriori velocity, and separation and reattachment
points are compared with DNS, LEVM, and the “Learned 1” model for Re = 2800.

Training Learned coefficients Error Primary Secondary

(x/h) C1 C2 C3 ε〈u〉 Separation Reattachment Separation Reattachment

1 32.35 45.42 19.69 0.17 0.36 (1.24) 4.15 (0.22) – –
2 36.72 46.85 36.43 0.16 0.35 (1.23) 4.27 (0.20) – –
3 51.81 48.75 37.59 0.15 0.34 (1.17) 4.78 (0.11) – –
4 51.38 53.05 40.99 0.12 0.40 (1.52) 5.32 (0.01) 7.22 (0.05) 7.35 (0.01)
5 48.63 55.83 35.85 0.13 0.41 (1.56) 5.10 (0.04) 7.17 (0.04) 7.18 (0.01)
6 49.85 55.77 23.34 0.13 0.41 (1.56) 5.11 (0.04) – –
7 58.34 54.19 −4.04 0.13 0.41 (1.56) 5.14 (0.04) – –
8 112.56 51.42 −50.00 0.12 0.37 (1.31) 4.35 (0.18) 7.10 (0.03) 7.27 (0.002)

Learned 1 0.12 0.40 (1.53) 5.38 (0.005) 7.14 (0.04) 7.31 (0.008)
LEVM 0.17 0.43 (1.61) 3.64 (0.32) – –
DNS – 0.16 (–) 5.35 (–) 6.87 (–) 7.25 (–)

fixed velocity condition is enforced at the inlet and a zero gradient condition for the outflow. “Patch”
conditions are implemented on the front and back surfaces to enforce a two-dimensional flow.

LEVM is found to underpredict the reattachment point between 23% and 32%, while the model
trained on the periodic hill data in previous sections predicts reattachment within 5% as compared
to the DNS and experimental values.

It is notable that the level of performance of the learned model outside the scope of its training,
particularly in the case of the backward-facing step, is comparable to the out-of-scope performance
of the Tensor Basis Neural Network developed by Ling et al. [12]. It is also relevant to point out that
Ling et al. [12] trained on six cases to achieve this level of performance, while the present model
was trained on only flow through a periodically constricted channel at Re = 2800.

5. Modeling with sparse data

Because the sparse regression methodology uses a physics-based constraint of the basis set
and the L-1 penalty acts to regularize the model, far less data are required to achieve reasonable
learned models as compared to approaches that evaluate a higher dimensional space of potential
parameters, such as NNs. This is demonstrated in two contexts. First, a model is learned using only
the y-dependent data along eight streamwise locations (see Table VII). Due to the grid spacing of
the RANS simulation, only 160 data points were used for training of each case (compared with
32 000 when using the full data set in the previous section). As seen in Table VII, similar model
performance is observed for models trained using data located at x/h = (4–8) when compared with
the model learned using the full data set. Secondary recirculation is predicted in three of these
training sets. Interestingly, the model trained at x/h = 8, where recirculation is not present, is able
to predict recirculation in both regions of flow separation. Additionally, it is notable that the model
is insensitive to variation in coefficients, especially for the first and third terms.

To further asses the performance of sparse regression in using sparse data, subsets of data are
randomly chosen throughout the domain and used as training data (see Fig. 12 for an exemplary
subset of training data). Data sets ranging from 30 000 to 50 training points were assessed (see
Table VIII). While the learned coefficients change as the data set is reduced, the a priori model
error in the anisotropic stress tensor increases by only 8%. This suggests that sparse regression
would make an excellent modeling construct for extremely sparse data sets, such as those available
from experiments where obtaining a high level of resolution is challenging.
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FIG. 12. Example of the random points used for training set corresponding to ntrain = 200. Location of
points used for training (◦), 〈u〉 from DNS.

It is notable that the ability of the sparse regression methodology to produce reasonable models
using sparse data sets stems primarily from the construction of the optimization itself as well as the
number of degrees of freedom associated with the basis chosen. Specifically, since the L-1 penalty
regularizes the model, this reduces the data requirement of the algorithm and the physics-based
determination of the basis set tends to also reduce the degrees of freedom present in T . This is
particularly reduced in the case of constant coefficients, resulting in the ability to handle sparse sets.
In the event that more complex dependencies are required of the coefficients, we find that the amount
of data required to learn accurate models increases as O(1) with the number of “trial” functional
forms included in T .

IV. TRAINING THE MODEL WITH EXPERIMENTAL DATA

For many practical systems, procuring highly resolved computational data (i.e., DNS or highly
resolved LES) is not feasible. Thus, in these cases modeling efforts are directed toward experimental
data, which are inherently both sparse and noisy. To this end, we demonstrate the ability of the sparse
regression methodology to successfully model both sparse and noisy data by using the particle image
velocimetry (PIV) data available from the Rapp and Manhart [58] experiments for turbulent flow
through a periodically constricted channel. This work is the experimental analogy to Breuer et al.
[51] and uses the same configuration described in Sec. III B.

We consider two cases (Re = 5600 and 10 600) for which highly resolved computational data
(either DNS or LES) are available [51] in addition to the experimental data [58]. The reason for this
is twofold. First, because the PIV measurements do not report 〈w′w′〉 or k, either of which is required

TABLE VIII. Summary of the learned coefficients for sparse, randomly sampled data using ntrain training
points. The error reported is the a priori error in the anisotropic stress tensor.

Coefficients

ntrain C1 C2 C3 εb

nx × ny 63.12 51.42 10.98 0.64
30 000 62.50 51.52 11.24 0.64
20 000 52.50 45.77 12.19 0.65
10 000 42.03 38.84 16.92 0.67
5000 37.35 36.37 19.69 0.69
1000 33.32 35.41 21.76 0.69
500 33.91 35.07 20.33 0.69
100 33.00 32.5 23.34 0.71
50 31.14 38.28 20.66 0.68
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TABLE IX. Summary of the learned model coefficients trained using the three training data sets: full-field
DNS at Re = 2800, sparse DNS/LES data at Re = 5600 and 10 600, and experimental data.

Learned coefficients

Model name Training set C1 C2 C3

Learned 1 DNS (full field), Re = 2800 63.12 51.42 10.98
Learned 3 DNS/LES (sparse), Re = 5600, 10 600 [51] 61.72 44.07 12.58
Learned 4 Experiment, Re = 5600, 10 600 [58] 58.56 55.51 118.89

for determining the anisotropy tensor, we rely on using the k value from the computational data to
estimate 〈w′w′〉 and complete the experimental data set. More exactly, we employ the relation,
〈w′w′〉 = 2k − 〈u′u′〉 − 〈v′v′〉, where k is taken from the computational data sets and 〈u′u′〉 and
〈v′v′〉 are supplied by the PIV measurements. This allows for the noise of the PIV measurements to
be incorporated into the estimate for 〈w′w′〉. In the event that no highly resolved (e.g., DNS/LES)
data are available to reconstruct the full tensor components, then approximations based on known
configuration properties, such as symmetry or continuity, could be employed in order to supply
missing information. Alternately, sparse regression could be employed on the incomplete Reynolds

FIG. 13. Velocity profiles for flow through a periodically constricted channel at Re = 5600 (left column)
and Re = 10 600 (right column). Each plot shows the learned model denoted in the caption ( ), LEVM
( ), DNS/LES of Ref. [51] ( ), experimental values from Ref. [58] ( ). (a) Learned 1, (b) Learned 3, and
(c) Learned 4.
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stress, though this would place constraints on the applicability of the resultant model depending on
the importance of the missing data to flow physics.

In addition to completing the experimental data set, the computational data also allow for the
more systematic isolation of the effect of noise on modeling. To this end, we first train the model
using the computational data (which is reported at 10 streamwise locations), interpolated to the
same physical locations as the experimental data to ensure equivalent sparsity in the data set.

Following a similar procedure as was performed in Sec. III B 5, we find that a subset of the
data (taken from all 10 streamwise locations and vertical locations corresponding to y/h � 2
and resulting in a data set of 591 points for Re = 5600 and 593 for Re = 10 600) results in the
most accurate model with respect to the a priori L-2 training error in bi j . This model is termed
“Learned 3” and shown in Table IX. The coefficients are within 15% of the “Learned 1” model,
despite using a training set containing only 4% of the points as used in the full-field DNS training.
The resulting recirculation predictions for Re = (2800, 5600, 10 600) are shown in Table VI and
compared against the LEVM and Learned 1 models as well as the available computational and
experimental results from the literature.

Next, the experimental data set [58] is used for training (using the same reduced sample locations
as in training with the DNS/LES data set). This results in a model with differing coefficients,
especially in the case of C3, though as reported previously, we observe that the resulting flow field
is the least sensitive to T (3) and thus this difference does not have large implications for the model’s
ability to predict recirculation (see Table VI). The resultant mean velocity profiles for all three
learned models describe in Table IX are compared against LEVM as well as the experimental and
DNS values in Fig. 13. It is evident from these plots that the learned models improve prediction
of the reattachment location over LEVM as well as the free flow in the remainder of the domain
overall. In some regions, the LEVM outperforms the learned model, however, this is primarily a
consequence of using the reattachment location to assess goodness of the learned model, rather
than an L-2 norm of the full-field error (since it is not available for the sparse or experimental
data). In summary, the sparse regression methodology is capable of providing algebraic closure of
the terms appearing in the RANS equations with marked improvement over existing models, even
when trained on sparse experimental measurements.

V. CONCLUSION

In this work, a turbulence closure modeling methodology has been proposed as an alternative
to other machine learning techniques, such as NNs. This method is based upon sparse regression
which uses an L-2 norm with an L-1 norm penalty cost functional to produce a compact, algebraic
model. Further, the inputs to the optimization algorithm are specifically tailored in order to ensure
form invariance. This is specifically accomplished by arranging the trusted and basis tensorial data
into column vectors, thereby constraining coefficients to be invariant with respect to direction. By
generating a model in this form, several important modeling properties can be achieved: form (or
Galilean) invariance, interpretability, and ease of dissemination. Using two canonical cases, it was
demonstrated that this technique produces results with model accuracies similar to that of modern
NN methodologies, even when using a drastically reduced training data set.

Using homogeneous free shear turbulence as a preliminary example, sparse regression was able
to return the LRR-IP model used to generate a synthetic data set, even when large amounts of
noise were applied. Next, using DNS data for homogeneous free shear turbulence, sparse regression
learned a model that reduces model error by 70% as compared to the existing LRR-IP and LRR-QI
models.

In the case of turbulent flow through a periodically constricted channel, sparse regression
uncovered a model that has comparable performance to a modern NN, however this performance
can be achieved using a drastically minimal data set and the resultant model form is available in a
compact, algebraic form. Interestingly, the resultant model takes on a simple form, with constant
coefficients, suggesting that less complexity than is typically postulated in other methodologies
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such as NNs is required for the accurate description of flow physics. Additionally, the learned
model demonstrated significant improvements in performance as compared with LEVM for a much
higher Reynolds number, and outside the scope of its training. Further, due to the ability of sparse
regression to learn predictive models using minimal data sets and noisy data (as demonstrated in
Sec. III A), it is an ideal candidate for translating experimental data, which may be both noisy and
sparse, into accurate models.

Finally, sparse regression assumes complete generality and thus does not strictly require an
existing model upon which to augment. This is an important property for other open areas of
research, e.g., modeling multiphase turbulence [19–23], for which existing models are either
unavailable or too inaccurate to reliably use as a baseline model upon which to build. Such an
approach can also be applied to turbulent combustion, in which heat release due to chemical
reactions give rise to “back scatter” and existing models based on an energy cascade fail to be
predictive [24,25].

In future work, integration of gene expression programming (GEP) with sparse regression may be
beneficial for cases in which complex algebraic dependencies upon the principal invariants become
necessary (i.e., coefficients that are either constant or have simple dependencies on the invariants
do not reduce model error sufficiently). In this event, sparse regression would be employed to
determine the most important basis tensors, and then GEP could be used to determine the functional
dependence of coefficients on the principal invariants.
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