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We study the bifurcations of the large-scale jets in the turbulent regime of a forced shear
flow using direct numerical simulations of the Navier-Stokes equations. The bifurcations
are seen in the probability density function (PDF) of the largest-scale mode with the
control parameter being the Reynolds number based on the friction coefficient denoted
by Rh. As one increases Rh in the turbulent regime, the PDF of the large-scale mode first
bifurcates from a Gaussian to a bimodal behavior, signifying the emergence of reversals
of the large-scale flow where the flow fluctuates between two distinct turbulent states. A
further increase in Rh leads to a bifurcation from a bimodal to a unimodal PDF, which
indicates the disappearance of the reversals of the largest-scale mode. We attribute the
latter transition to the long-time memory that the large-scale flow exhibits related to a
low-frequency 1/ f α type of noise with 0 < α < 2. We also demonstrate that a minimal
model with 15 modes, obtained from the truncated Euler equation, is able to capture the
bifurcations of the large-scale jets exhibited by the Navier-Stokes equations.
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I. INTRODUCTION

Low-frequency variability in climate exhibits recurrent patterns that are directly linked to
dynamical processes of the governing dissipative system [1,2]. The study of the persistence of
these large-scale patterns and the transitions between them plays a crucial role in understanding
climate change [3]. Climate variability is often associated with dynamic transitions between
different regimes, each represented by local attractors. Examples of climate phenomena where such
transitions have been investigated experimentally as well as numerically are the transitions between
different mean flow patterns of the Kuroshio Current in the North Pacific [4,5], the transitions
between blocked and zonal flows in the midlatitude atmosphere [6], and the transition to oscillatory
behavior in models of quasibiennial oscillations [7,8].

Understanding naturally occurring bifurcations in climate systems through observational studies
is challenging due to the lack of control over the different physical processes involved. Numerical
and experimental studies that model such systems can overcome such difficulties to study these
bifurcations, where the parameters can be systematically controlled. They can provide important
insights for our understanding of the behavior observed in the natural counterparts. Models varying
from idealized systems to the global climate models succeed in reproducing some of the observed
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FIG. 1. Sketch of the domain under study. The red line represents the spatial form of the Kolmogorov
forcing. Note that the f0k f cos(k f y) profile corresponds to the force that acts on u, the x component of the
velocity field, obtained from taking the y derivative of Eq. (1).

phenomena. Such complex transitions and bifurcations have also been observed in many idealized
fluid mechanical systems. Bifurcations on turbulent flows have been observed in a range of exper-
imental and numerical studies for flow past bluff bodies [9,10], Rayleigh-Bénard convection with
and without rotation [11–14], von Kármán flow [15–17], reversals in a dynamo experiment [18],
and experiments of two-dimensional turbulence [19]. The two-dimensional turbulence experiments
showed the formation of a large-scale condensate which displays a series of bifurcations. These
were also seen in numerical simulations that mimic the experimental setup [20].

Large-scale zonal flows are found in planetary atmospheres and oceans. Their existence moti-
vates the study of jet formation in a turbulent flow driven at smaller scales. Anisotropy helps in the
formation of these jet structures, which are usually introduced by a β plane that models the variation
of the rotation with latitude [21], by a domain of nonunity aspect ratio [22], or due to confinement
and boundary conditions (see [23] and references therein). These large-scale jets are known to be
quite stable, evolving over longer timescales than the underlying turbulence. Such seemingly stable
states undergo transitions at times [24], and modeling such phenomena remains an open question.

While much of the progress in fluid dynamics has been on hydrodynamic instabilities, only
limited progress exists on transitions or instabilities that occur when a control parameter is varied
within the turbulent regime, which is the focus of this paper. The difficulty in studying such
transitions arises from the underlying turbulent fluctuations which make any analytical progress
cumbersome. These types of transitions resemble more closely phase transitions in statistical
mechanics because the instability occurs on a fluctuating background [25]. A recent successful
attempt [26] to model such transitions of the large-scale circulation observed in experiments [19]
involved a statistical mechanical theory at thermal equilibrium based on the truncated Euler equation
(TEE) [27,28].

In this paper we study the bifurcations of large-scale jets in a two-dimensional shear flow
confined in the latitudinal direction. Using direct numerical simulations of the Navier-Stokes
equations, we quantify the behavior of the large-scale mode and the bifurcations that occur in the
turbulent regime. Finally, we systematically develop a minimal model using the truncated Euler
equation to capture the large-scale behavior of the Navier-Stokes equations.

II. PROBLEM SETUP

We consider the two-dimensional Navier-Stokes equations for an incompressible velocity field
u = ∇ × ψ ẑ forced by a Kolmogorov-type forcing in an anisotropic domain (x, y) ∈ [0, 2πLx] ×
[0, πLy] as illustrated in Fig. 1. The governing equation written in terms of the stream function
ψ (x, y, t ) is given by

∂tψ + ∇−2{∇2ψ,ψ} = ν∇2ψ − μψ + f0 sin(k f y), (1)
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where { f , g} = fxgy − gx fy is the standard Poisson bracket (subscripts here denote differentiation),
ν is the kinematic viscosity, μ is the friction coefficient, f0 is the amplitude of the Kolmogorov
forcing, and k f is the number of half wavelengths in the forcing. Note that the profile shown
in Fig. 1 represents the form of the forcing as it appears in the x component of the momentum
equation. Since u = ∂yψ , it implies that the forcing written in Eq. (1) becomes f0k f cos(k f y) in
the governing equation for u(x, y, t ). The forcing shown in Fig. 1 corresponds to k f Ly = 4. The
boundary conditions are taken to be periodic in the x direction and free slip in the y direction,
i.e., ψyy = ψx = 0 at y = 0, πLy. We are interested in the effect of the friction coefficient μ on
the dynamics of large-scale jets. Thus, we vary μ by keeping fixed the ratio ν/ f 1/2

0 Lx = 10−3, the
number of half wavelengths with respect to the height which gives k f Ly = 4, and the aspect ratio
of the domain 2πLx/πLy = 2. For the rest of the article, all quantities are nondimensionalized with
the rms velocity urms = 〈|u|2〉1/2, the length scale Lx, and the timescale Lx/urms. Here the angular
brackets denote integration over the domain and time. Then the Reynolds number can be defined as
Re = urmsLx/ν and the friction Reynolds number as

Rh = urms/μLx, (2)

which is the ratio of the inertial term to the friction term in Eq. (1).
We perform direct numerical simulations (DNSs) by integrating Eq. (1) using the pseudospectral

method [29]. We decompose the stream function into basis functions with Fourier modes in the x
direction and sine modes in the y direction that satisfy the boundary conditions

ψ (x, y, t ) =
Nx/2∑

kx=−Nx/2

Ny∑
ky=1

ψ̂kx,ky (t )eikxx sin(kyy), (3)

with ψ̂kx,ky the amplitude of the mode (kx, ky) and (Nx, Ny ) denoting the number of grid points
in the x and y coordinates, respectively. A third-order Runge-Kutta scheme is used for time
advancement and the aliasing errors are removed with the two-thirds dealiasing rule which implies
that the maximum wave numbers are kmax

x = Nx/3 and kmax
y = 2Ny/3. The resolution was fixed to

(Nx, Ny) = (512, 128) for all the simulations done in this study. Note that our resolution is limited in
this study to be able to integrate for very long times that are required to accumulate reliable statistics
for the large-scale flow transitions. We also verified the statistics at higher resolutions for certain
parameter values of Rh.

III. LARGE-SCALE FLOW TRANSITIONS

We are interested in quantifying the transitions of the large-scale flow as a function of the control
parameter Rh. The large-scale mean flow is defined using the amplitude of the largest mode ψ̂0,1(t )
as

U (y, t ) = ψ̂0,1(t ) cos(y)êx, (4)

where

ψ̂0,1(t ) = 1

2π2

∫ 2π

0

∫ π

0
ψ (x, y, t ) sin(y)dy dx. (5)

This large-scale flow is a shear flow along the x direction with zero-mean value. Figure 1 shows
that the forcing and the boundary conditions are symmetric with respect to the centerline y = π/2.
The mean flow, on the other hand, breaks the centerline symmetry whenever ψ̂0,1 is nonzero. For
Rh � 1, the forcing drives a laminar flow (see the red profile shown in Fig. 1), which essentially
consists of two westward and two eastward jets, with a zero projection onto the largest mode in the
system (ψ̂0,1 = 0). This laminar flow becomes unstable [30] above a critical value of Rh = Rhc

1 ≈
0.697, leading to a degenerate Hopf bifurcation which we report in detail in [31]. This saturated state
above Rhc

1 still has zero projection onto the largest mode. As Rh increases even further the system
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FIG. 2. (a) Time series of the large-scale mode ψ̂0,1 from the DNS and their corresponding (b) PDFs for
different values of Rh.

undergoes another Hopf bifurcation at Rh = Rhc
2 ≈ 1.165 with the largest mode directly forced

due to the nonlinearity [31]. Then, for Rh > Rhc
2 the system undergoes a sequence of bifurcations,

similar to [32], until it reaches a two-dimensional (2D) turbulent state. In this study we focus on the
turbulent regime where we show that there are bifurcations in the behavior of the large-scale flow
on top of a turbulent background.

In the turbulent regime Rh still plays the role of the bifurcation parameter but in this case the
relevant observables are statistical quantities. In Fig. 2(a) we show the time series of ψ̂0,1 and in
Fig. 2(b) their corresponding probability density functions (PDFs) for different values of Rh. At
Rh = 3.13, the time series is turbulent with the amplitude of ψ̂0,1 fluctuating randomly around the
zero mean, implying that the symmetry with respect to the centerline is restored for the mode in a
statistical sense. The PDF of this time series is close to Gaussian. For Rh = 42.95 we start to see a
longer duration of time where ψ̂0,1 has a nonzero amplitude; the corresponding PDF is bimodal with
two distinct peaks. This represents the first bifurcation where the system transitions from a Gaussian
distribution to a bimodal distribution with two symmetric maxima. This behavior is related to the
emergence of two symmetric states where the time series is characterized by abrupt and random
reversals between these two states. One state is when ψ̂0,1 > 0 and the other symmetric state is when
ψ̂0,1 < 0 for long duration. For Rh = 59.45 we get random reversals of the large-scale flow with a
PDF which is bimodal with more distinct peaks. As we keep increasing Rh the reversals become
rarer until we get to a state where there are no more large-scale flow reversals observed indicating
another bifurcation. This is seen in the case with Rh = 89.36 where the system was never observed
to reverse and the corresponding PDF is unimodal with a nonzero mean. The PDF for the largest
Rh = 89.36 can choose either a positive or negative value of ψ̂0,1 depending on the initial condition.
The unimodal distribution indicates that ensemble averaging is not equivalent to the time-averaged
system. For each value of Rh examined we have also calculated the corresponding value of kc which
is defined by

kc = (�/E )1/2, (6)

where the kinetic energy and the enstrophy are defined, respectively,

E = 〈|∇ψ |2〉A, � = 〈|∇2ψ |2〉A, (7)

with 〈·〉A denoting integration over x and y. The value of kc is later used to compare with the
truncated Euler system, where kc acts as the control parameter of the system instead of Rh.

A similar sequence of bifurcations of the large-scale circulation has been observed in laboratory
experiments of quasi-2D flow [19] and also in numerical simulations of 2D turbulence [26]. In those
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FIG. 3. (a) Conditionally time-averaged mean flow profiles when ψ̂0,1 > 0 (blue) and ψ̂0,1 < 0 (red) for
Rh = 59.45. Gray curves represent the instantaneous mean flow profiles. The inset shows the projection of
the conditionally time-averaged mean flow profiles onto the large-scale mode. (b) Time-averaged mean flow
profiles 〈U (y, t )〉t for four different values of Rh as noted in the legend.

studies the boundary conditions were no-slip or free-slip at both x and y boundaries. The energy
spectra from our DNS (not shown here) are found to have a peak at an intermediate wave number
k = 2 when the system displays a bimodal behavior of ψ̂0,1. Here k =

√
k2

x + k2
y is the amplitude of

the wave vector. The 2D turbulent flow is not in the condensate regime where the large-scale mode
is much larger in amplitude when compared to the rest of the modes. This is in contrast to the study
[26] where those DNS spectra peaked at the lowest wave number kmin = 1 in the bimodal regime.

To understand the flow structure in the different regimes we analyze the mean flow profile U (y, t )
defined as

U (y, t ) = 1

2π

∫ 2π

0
u(x, y, t )dx. (8)

Figure 3(a) illustrates the mean velocity profile for the flow with Rh = 59.45. The blue and red
curves represent the mean flow profiles which have been time averaged over the time intervals
conditional on ψ̂0,1 > 0 and ψ̂0,1 < 0, respectively. A part of these intervals is shown in the time
series for Rh = 59.45 in Fig. 2(a). The gray curves indicate the instantaneous realizations of the
mean flow profile at different times. The conditionally time-averaged mean flow profiles [blue and
red curves in Fig. 3(a)] are then projected onto the largest mode, which are shown in the inset of
Fig. 3(a). When ψ̂0,1 > 0 the conditionally time-averaged profile [blue curve in Fig. 3(a)] shows a
stronger westward jet in the upper half of the domain (π/2 < y < π ) than in the lower half (0 < y <

π/2). The reverse happens for ψ̂0,1 < 0 as seen from the red curve in Fig. 3(a). The transition from
the ψ̂0,1 > 0 to the ψ̂0,1 < 0 state captures the meandering of the jets from the upper to the bottom
half of the domain. Thus, reversal of the large-scale mode leads to modulation or meandering of the
jets which occurs on a timescale much longer than the eddy turnover time.

Figure 3(b) shows the time-averaged mean flow profile 〈U (y, t )〉t for four different values of Rh.
The lowest value of Rh = 3.13 where the PDF of the large-scale mode ψ̂0,1 is Gaussian shows a
mean flow profile which resembles the forcing. This time-averaged profile is symmetric about the
centerline y = π/2 while instantaneous profiles break the centerline symmetry. As we increase Rh
in the regime where the PDF of ψ̂0,1 is bimodal, we see that the mean flow profile deviates from
the form of the forcing and two westward jets develop at the center. The centerline symmetry is still
respected by the time-averaged mean flow profile. For the largest value of Rh shown in Fig. 3(b)
which corresponds to a unimodal PDF of ψ̂0,1, the time-averaged mean profile breaks the centerline
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symmetry. Note that the bifurcations of the large-scale mode ψ̂0,1 are related to changes in the form
of the time-averaged mean flow 〈U (y, t )〉t .

IV. MINIMAL MODEL: TRUNCATED EULER EQUATION

Now we seek a minimal model to capture the dynamics of the random transitions of the large-
scale flow. To do this we consider the incompressible Euler equation truncated at a maximum wave
number kmax using a Galerkin truncation, which in the Fourier-sine basis takes the form

dt ψ̂k =
∑
p,q

Ak,p,qψ̂pψ̂q, (9)

with the interaction coefficients given by

Ak,p,q = i

2
(q2 − p2)k−2δkx,px+qx [(pxqy − pyqx )δky,py+qy + (pxqy + pyqx )(δky,py−qy − δky,qy−py )],

(10)

where δi, j stands for the Kronecker delta. To derive Eqs. (9) and (10) one has to substitute Eq. (3), the
Fourier-sine decomposition of ψ (x, y, t ), into the governing equation (1). Taking the inverse Fourier
transform of the resulting equation, we end up with Eq. (9) and the expression for the interaction
coefficients in Eq. (10). This truncated system of ordinary differential equations (ODEs) conserves
exactly the two quadratic invariants of the Euler equation [i.e., Eq. (1) with the right-hand side equal
to zero], the kinetic energy E and the enstrophy � [see definitions in Eq. (7)].

The fundamental idea of equilibrium statistical mechanics is to construct a probability density
on the phase space of a dynamical system based only on the invariants of the dynamics. It is well
known [27,28,33] that the probability density P (ψ̂k, t ) of all the amplitudes of the modes ψ̂k in the
N-dimensional phase space of the Euler equation obeys Liouville’s equation

∂tP +
∑

k

˙̂ψk∂ψ̂k
P = 0, (11)

where the sum here is over all N modes ψ̂k. Here the volume in phase space is conserved by the
dynamics according to Eq. (9) and therefore the microcanonical formalism can be used. In the
microcanonical formalism [34], P (ψ̂k, t ) is uniform on all the states with a given set of values for
the invariants and vanishes for any other set of values. In our case, if one takes into account only the
quadratic invariants of the Euler equation, the microcanonical density is defined as

P = Z (E ,�)−1δ(Ê − E )δ(�̂ − �), (12)

where Ê and �̂ are, respectively, the energy and enstrophy values at absolute equilibrium [28] and
the normalization factor Z (E ,�), known as the partition function of the system [34], measures the
surface of constant energy and enstrophy over the phase space volume elements d
 = ∏

k dψ̂k. This
distribution is appropriate for describing an isolated system of initial energy E and initial enstrophy
�, with no exchange with its surroundings, under the assumption that the system exhibits suitable
ergodic properties [34].

For the truncated Euler equation the control parameter depends only on the initial conditions.
The wave number kc, which is the square root of the ratio of initial enstrophy to initial energy [see
Eq. (6)], is taken as the control parameter for the TEE system. In the full Navier-Stokes equations
the equivalent wave number is controlled by the friction coefficient (i.e., the value of Rh) when the
viscosity is fixed. In Fig. 4(b) we show the dependence of kc on Rh for the Navier-Stokes equations
and we see that as Rh increases the wave number kc decreases like

kc ∝ Rh−1/10. (13)
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FIG. 4. (a) Time series of the large-scale mode ψ̂0,1 for the TEE system. (b) Plot of kc = (�/E )1/2 as a
function of Rh from the DNS. The dashed line is the fit from Eq. (13). The inset shows the PDFs of the time
series of ψ̂0,1 for the TEE system.

This fit comes from the observation that the energy scales like E ∝ Rh4/5 and the enstrophy scales
like � ∝ Rh3/5 for the values of Rh in a bigger range than the bimodal regime. So far, we do not
have a theoretical explanation for these scalings.

The initial conditions for the TEE are chosen such that kc is as close as possible to the DNS
results. We then integrate Eqs. (9) and (10) using a numerical scheme similar to the one used for
the Navier-Stokes equations (see Sec. II). The Fourier amplitudes for the TEE satisfy ψ̂k = 0 for
|kx| > kmax

x and |ky| > kmax
y . Note that kmax

x and kmax
y are our free parameters for the truncation of

the Euler equation. The starting point to obtain a minimal model from the TEE was first to set
kmax

x = kmax
y = 4, which corresponds to the value of the forcing wave number k f we chose for the

Navier-Stokes equations. The basic principle behind this choice is that the dynamics of the large
scales, i.e., k < k f , is not affected by viscosity and hence they are governed by the dynamics of the
Euler equation as it has been demonstrated in previous studies [26,35–37]. We then removed one by
one the high-wave-number modes and tried to reproduce the bifurcations as we varied the control
parameter kc. Using this procedure, we ended up with a minimal model of 15 complex amplitude
modes that captures qualitatively the different bifurcations of ψ̂0,1 similar to ones observed in
the Navier-Stokes equations. The 15-mode minimal model is composed of the complex amplitude
modes ψ̂0,1, ψ̂0,2, ψ̂0,3, ψ̂0,4, ψ̂1,1, ψ̂1,2, ψ̂1,3, ψ̂1,4, ψ̂2,1, ψ̂2,2, ψ̂2,3, ψ̂2,4, ψ̂3,1, ψ̂3,2, and ψ̂3,3. Only
the positive kx modes are used in the counting of 15 modes; the negative kx modes are directly
related by ψ̂−kx,ky = ψ̂∗

kx,ky
. A further truncated model of 11 modes could reproduce large-scale flow

reversals, but the solution starts to depend on the initial conditions. So we use the 15-mode model
to study the bifurcations of the large-scale mode ψ̂0,1.

In Fig. 4(a) we show the time series of the amplitude of the large-scale mode ψ̂0,1 for different
values of kc for the 15-mode minimal model and the inset of Fig. 4(b) shows the corresponding PDF
distributions of the time series. For kc = 3.5 the TEE system exhibits a turbulent time series with a
Gaussian PDF. At kc = 2.375 the system shows abrupt and random reversals of the large-scale flow
with a bimodal PDF. Thus, when the system transitions from a Gaussian to a bimodal distribution,
we observe the first bifurcation over a turbulent background between these two values of kc. As kc

decreases, the bimodality in the distribution becomes more pronounced and the reversals become
less frequent. Finally, for kc = 1.55 there is no longer any reversal for the duration of the simulation
that lasted tens of thousands of turnover times. Here the large-scale mode bifurcates to a one-sided
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FIG. 5. A log-linear plot of the mean waiting time τ between successive reversals as a function of Rh in
the bimodal regime of the Navier-Stokes equations. The inset shows a plot of the mean waiting frequency τ−1

between successive reversals as a function of kc in the bimodal regime of the TEE.

unimodal PDF. Clearly this minimal set of ODEs captures the bifurcations between the different
turbulent regimes observed in the full Navier-Stokes equations.

In the simulations we observe two different scenarios of emergence and disappearance of large-
scale flow reversals. At high values of kc (or low-Rh values for Navier-Stokes equations), large-scale
flow reversals are absent because the time series are very fluctuating and one can no longer identify
the two states. At low kc (or high Rh for Navier-Stokes equations), mean flow reversals become less
and less probable and eventually are no longer observed in the duration of the simulation. These two
scenarios of emergence and disappearance of reversals have also been observed in other contexts
[26,32,38,39] and hence we believe that they are generic.

V. LONG-TIME MEMORY AND 1/ f α NOISE

A quantity of interest is the mean waiting time τ between successive reversals of ψ̂0,1 for both
the Navier-Stokes equations and the minimal model of the TEE in the bimodal regime. Here the bar
denotes the average over all waiting times. Figure 5 shows τ as a function of Rh for the Navier-
Stokes equations and the inset shows how 1/τ varies as a function of kc for the TEE. Figure 5 shows
an exponential behavior, i.e.,

log(τ ) ∝ Rh, (14)

for the Navier-Stokes equations and a power-law behavior

τ ∝ (
kc − kcrit

c

)−1
(15)

with a critical wave number kcrit
c � 1.55 for the minimal model (see the inset of Fig. 5).

For kc < kcrit
c = √

2 large-scale flow reversals are not possible in the TEE minimal model.
This can be obtained by expanding the energy and enstrophy as sums of the Fourier modes,
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(a) (b)

FIG. 6. Power spectra of the large-scale mode ψ̂0,1 for different values of (a) Rh for the Navier-Stokes
equations and (b) kc for the TEE.

viz.,

E = 〈|∇ψ |2〉 =
Nx/2∑

kx=−Nx/2

Ny∑
ky=1

(
k2

x + k2
y

)∣∣ψ̂kx,ky

∣∣2
, (16)

� = 〈|∇2ψ |2〉 =
Nx/2∑

kx=−Nx/2

Ny∑
ky=1

(
k2

x + k2
y

)2∣∣ψ̂kx,ky

∣∣2
, (17)

which briefly can be written as E = (|ψ̂0,1|2 + 2|ψ̂1,1|2 + · · · ) and � = (|ψ̂0,1|2 + 4|ψ̂1,1|2 + · · · ).
Due to conservation of both energy and enstrophy, kc is always fixed to its initial value. Starting
with k2

c < 2 with a nonzero initial value of ψ̂0,1, if ψ̂0,1(t ) = 0 at some instant t > 0, then Eqs. (16)
and (17) imply k2

c = �/E � 2, which can only occur if the conservation of energy and enstrophy
is broken. This cannot happen in the TEE model; thus for k2

c < 2 the large-scale mode satisfies
the condition ψ̂0,1(t ) �= 0 at all times, implying no reversal of ψ̂0,1. In contrast, the Navier-Stokes
equations do not involve conserved quantities that prevent reversals, even for Rh  1. In addition,
all the wave numbers k > k f that are suppressed in the truncated Euler model can act as an additional
source of noise for the Navier-Stokes equations and trigger reversals. We believe that these are the
reasons why we observe a different behavior between the Navier-Stokes equations and the TEE.
Note that when we plot τ as a function of kc for the Navier-Stokes equations we observe τ ∝
exp(k−10

c ) (not shown here), which is in agreement with kc ∝ Rh−1/10 observed in Fig. 4(b). Both
the exponential and the power-law behavior suggest long-term dynamical memory effects of the
large-scale flow as the bifurcation parameters are varied within the bimodal regimes of the two
systems.

To further support our argument about long-time memory we analyze the spectral properties
of the large-scale mode ψ̂0,1. In Fig. 6(a) we plot the power spectra S( f ) for different values of
Rh. These spectra were computed from the time series of the Navier-Stokes equations presented
in Fig. 2(a). In the Gaussian regime with Rh = 3.13, the spectrum is flat across a large range of
frequencies and after a crossover frequency fc [where S( f ) peaks] it decays. In the bimodal regime
with Rh = 42.93 and 59.46 the largest parts of the frequencies display a power-law spectrum S( f ) ∝
1/ f α . As Rh increases within the bimodal regime, the crossover frequency fc between f 0 and 1/ f α

moves toward lower frequencies. In other words, the 1/ f α range extends to lower frequencies while
the f 0 range decreases. It is interesting to observe that the level of the power spectrum decays with
the observation time similar to studies of other systems that display 1/ f α-type noise [40]. Finally,
in the unimodal regime with Rh = 89.36 the crossover frequency fc between f 0 and 1/ f α moves to
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higher frequencies and the amplitude of the f 0 part of the spectrum becomes of the same order as
the spectrum for Rh = 3.13 from the Gaussian regime.

Figure 6(b), on the other hand, shows the power spectra from the time series of Fig. 4(a), which
correspond to different values of kc for the TEE minimal model with 15 modes. The behavior we
just described for the spectra as Rh increased is reproduced by the TEE minimal model as kc varies
from the Gaussian to the bimodal and then to the unimodal regime [see Fig. 6(b)].

Understanding such low-frequency noise is of great importance because power spectra of the
type

S( f ) ∝ 1/ f α (18)

with 0 < α < 2 have been observed in many systems ranging from voltage and current fluctuations
in vacuum tubes [41], atmosphere and oceans [42,43], astrophysical magnetic fields [44], and
turbulent flows [38,39,45,46]. These systems often display either fluctuations between symmetric
states occurring after random waiting times τ or an intermittent regime with random asymmetric
bursts. For this kind of process, it has been shown that the 1/ f α spectrum is related to a power-law
distribution of the waiting time τ of the form

P (τ ) ∝ 1/τβ, (19)

with the exponents α and β satisfying the relation α + β = 3 [47]. This relation is valid for random
transitions between symmetric states when 0 < α < 2 (and 3 > β > 1) and it also holds for random
asymmetric bursts when 0 < α < 1 (and 3 > β > 2) [38]. We see that the large-scale mode ψ̂0,1

transitions randomly between two symmetric states with the time average of ψ̂0,1 being zero in
the Gaussian and bimodal regimes. We will thus focus on the case α + β = 3 with 0 < α < 2
(and 3 > β > 1).

Now we present a simple argument to show how this relation between the exponents of the
distribution and the spectrum emerges. We refer to the following studies where detailed derivations
are given [38,47,48]. We mention that even though we consider waiting time distributions P(τ ) ∼
τ−β with β > 1, the mean waiting time τ̄ is defined as long as there is an exponential cutoff
timescale (see [47,48]). A typical signal of such a process is shown in Fig. 4(a) for kc = 2. From the
signal of ψ̂0,1(t ) we can obtain the autocorrelation

C(t ) = 1

T σ (ψ̂0,1)2

∫ T

0
ψ̂0,1(s)ψ̂0,1(s − t )ds, (20)

where T is the total duration of the signal and σ (ψ̂0,1) is the standard deviation of the signal.
Looking at the signal of ψ̂0,1(t ) [see Fig. 4(a)], we observe abrupt fluctuations between the states
ψ̂0,1(t ) > 0 and ψ̂0,1(t ) < 0 and phases of long durations τ of ψ̂0,1(t ) with the same sign. Here we
assume that the average contributions of short phases do not contribute to the autocorrelation, which
allows us to use a moving average in order to have cleaner signals. The quantity ψ̂0,1(s)ψ̂0,1(s − t )
integrated during the long phases contributes a value proportional to τ − t over a length τ for τ > t
and almost zero for τ < t . The time interval s ∈ (0, T ) is then replaced by the variable τ ∈ (t, T )
and the autocorrelation function can be approximated as

C(t ) ≈ 1

T

∫ T

t
(τ − t )n(τ )dτ for τ � t � T, (21)

where n(τ ) is the number of phases of duration τ . This approximation of the autocorrelation C(t )
can be written in terms of the PDF of the waiting times P(τ ) between transitions as

C(t ) ≈ 1

τ

∫ T

t
(τ − t )P (τ )dτ (22)
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(a) (b)

FIG. 7. Power spectrum of the large-scale mode ψ̂0,1 from (a) Navier-Stokes equations for Rh = 59.45
and (b) TEE for kc = 2. The insets show the probability density function of the mean waiting time P(τ ) of
successive reversals. The dashed lines show power laws of f −1.5 and τ−1.5 (insets) for comparison.

because n(τ ) = P (τ )T/τ , with T/τ the total number of events. For P (τ ) ∝ 1/τβ we have

C(t ) ∝ t−β+2, (23)

with β > 2. Then, using the Wiener-Khinchin theorem, we can get the power spectrum S( f ) of ψ̂0,1

by taking the Fourier transform of C(t ) as T → ∞, which is

S( f ) ∝ 1

f 3−β

∫ ∞

0
ω−β+2 cos(ω)dω, (24)

with ω = f t . Thus, the relation between the exponent of the spectrum and the exponent of the
PDF of waiting times of transitions between the symmetric states ψ̂0,1(t ) > 0 and ψ̂0,1(t ) < 0 is
α = 3 − β.

Figure 7(a) shows the power spectrum S( f ) of the large-scale mode ψ̂0,1 in the DNS of the
Navier-Stokes equations for the case Rh = 59.45 and Fig. 7(b) the power spectrum for the TEE
system for kc = 2. The power spectrum from the DNS shows a range of frequencies where S( f )
has a scaling of f −1.5. We then compare this scaling with the TEE model and we find here that
the scaling is also close to f −1.5. The 1/ f 1.5 noise is between the well understood white noise
with f 0 power spectrum and the random walk (Brownian motion) noise with 1/ f 2 power spectrum.
However, direct differentiation or integration of such convenient signals does not give the required
1/ f 1.5 spectrum.

The process for generating 1/ f α noise here differs strongly from low-dimensional dissipative
dynamical systems because it involves a large number of degrees of freedom with a large network
of triads interacting nonlinearly. In addition, 1/ f α noise subsists in the TEE model, which represents
a system at thermal equilibrium. Our results indicate that the large-scale coherent structures of our
turbulent flows are responsible for the long-term dynamical memory of the large-scale jets and hence
the emergence of the 1/ f 1.5 noise.

The corresponding PDFs of the waiting times P (τ ) are shown as insets in Fig. 7(a) for the Navier-
Stokes equations and in Fig. 7(b) for the TEE model. Both PDFs show a range of timescales in
which a power-law distribution of P (τ ) ∝ τ−1.5 compares well with the data. These waiting times,
distributed as a power law, reflect the scale-invariant nature of the statistics and they are associated
with the durations spent by the system in the two states. Such heavy-tailed PDFs indicate that long
durations have a high probability of occurrence. The scaling of the spectra and of the distribution of
the waiting times are in agreement with the relation α + β = 3 for both the Navier-Stokes equations
and the minimal TEE model.
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VI. CONCLUSION

We have studied in detail the bifurcations of the large-scale flow for a turbulent shear flow driven
by a Kolmogorov forcing. The domain studied here is anisotropic with an aspect ratio of 2, and so
are the boundary conditions that were taken to be free slip in the spanwise direction and periodic
in the streamwise direction. The geometry and the forcing leads to the formation of jets, with the
largest mode in the system ψ̂0,1 corresponding to two counterpropagating jets. The mode ψ̂0,1 is
not directly excited by the forcing but the energy injected into the forcing scale is transferred to the
largest mode ψ̂0,1 by an inverse nonlinear transfer. A nonzero value of ψ̂0,1 does not respect the
centerline symmetry y = πLy/2.

With the friction Reynolds number Rh as the control parameter in the system, we see that the
mode ψ̂0,1 first displays a Gaussian behavior in the turbulent regime. Then, as we increase Rh, the
large-scale mode transitions to a bimodal behavior, indicating the first bifurcation. For larger Rh, we
get to another bifurcation with a unimodal distribution where the ψ̂0,1 mode no longer reverses for
the whole duration of the simulation. These bifurcations of the large-scale mode ψ̂0,1 are related to
changes in the form of the time-averaged mean flow 〈U (y, t )〉t . Similar phenomena in the mean flow
profile are also observed in the drag crisis that is a well known example of the transition of a fully
turbulent flow [49]. Using the truncated Euler equation, we are able to construct a minimal model,
which consists of 15 modes, that effectively captures these bifurcations which occur on top of the
turbulent background flow. The control parameter in the TEE model is the ratio of the enstrophy
and energy at time t = 0 defined as k2

c = �/E . The role of Rh as the control parameter for the
Navier-Stokes equations is now replaced by kc for the TEE model.

We also compared the power spectra from the time series of ψ̂0,1 and the PDF of the mean
waiting times τ between the two symmetric turbulent states for both the Navier-Stokes and the
TEE systems. From the Navier-Stokes equations we found the power spectra to scale as S( f ) ∝
1/ f 1.5 and the PDFs of the mean waiting times to obey a power law P (τ ) ∝ 1/τ 1.5 in the bimodal
regime. Moreover, we showed numerically that a minimal TEE model, which is a system at thermal
equilibrium, can qualitatively reproduce these scaling laws for the 1/ f α noise and the PDF of the
mean waiting time. This is an interesting result since it has been sometimes believed that 1/ f α noise
only occurs in systems out of thermal equilibrium [50]. Although analytical results on the TEE exist
on both the canonical and microcanonical ensembles, they are limited so far to spatial spectra.
It would be of interest to find similar results on temporal spectra or equivalently on correlation
functions at different times and to compare them with DNS.

In this paper we have provided an example where the truncated Euler equations capture the
bifurcations of the large-scale flow between turbulent states. In this case, the TEE model can
capture the bifurcations of the large-scale mode even if it is not orders of magnitude above the
rest of the modes like in previous studies, a regime where the mean-field approach or asymptotics
might not be applicable. Future studies should aim at understanding whether the TEE model can
reproduce transitions of the large-scale dynamics in turbulent flows from more realistic models
for the dynamics of planetary atmospheres and the ocean, such as advanced quasigeostrophic and
shallow water models.
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