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As an underlying mechanism, cross-chirality transfer of kinetic energy and helicity plays
an essential role in the turbulent dynamics, which is as important as cross-scale transfer
especially in broken mirror-symmetry turbulence. The effects of helicity on the properties
of turbulent flows in previous studies highlight the role of cross chirality, which may
be developed into an efficient method of turbulence control. We numerically study the
cross-chirality transfer of kinetic energy and helicity in this paper, particularly under the
influence of compressibility in stationary helical homogeneous and isotropic turbulence.
Through combining the Helmholtz decomposition and helical wave decomposition, a
general helical wave decomposition is proposed to provide three orthogonal bases for
velocity. Within the scope of chiral helicity, there also exists chiral kinetic energy based
on chiral velocity. They are defined as the left- and right-chirality kinetic energy, and
the remaining compressible component of velocity corresponds to free-chirality kinetic
energy. Although there exists no difference in the definition of helicity in incompressible
and compressible turbulence, its space-time evolution equation in compressible turbulence
involves the compressible component of velocity. The compressibility has a great influence
on the homochiral kinetic energy and helicity cascade, and it also plays an essential role
in the chirality transfer process like cross-chirality kinetic energy and helicity transfer. The
amplitude of cross-chirality kinetic energy transfer is comparable with cross-scale kinetic
energy transfer at relatively large scales, and also with viscous dissipation at relatively
small scales. The triple nonlinear interactions dominate the cross-chirality transfer relative
to pairwise interaction of chiral modes, and it is less sensitive to compressibility. Relative
to the compression, the expansion of fluid elements can lead to inverse chirality transfer
and strengthen the lack of mirror symmetry. The only discrepancy of cross-chirality helicity
transfer between incompressible and compressible turbulence lies in the medium role of the
compressible component of velocity. The helicity transfer via the compressible component
is weak, and even the kinetic energy of the compressible component relative to that of
the other two chiral modes is highest. In addition, the inverse helicity transfer is always
statistically associated with the compressible component of velocity via triple interaction
extracted from nonlinear interactions.

DOI: 10.1103/PhysRevFluids.5.084604

*lixl@imech.ac.cn
†cpyu@imech.ac.cn

2469-990X/2020/5(8)/084604(18) 084604-1 ©2020 American Physical Society

https://orcid.org/0000-0002-8813-3216
https://orcid.org/0000-0002-4264-9620
https://orcid.org/0000-0001-5101-7791
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.5.084604&domain=pdf&date_stamp=2020-08-10
https://doi.org/10.1103/PhysRevFluids.5.084604


YAN, LI, YU, AND WANG

I. INTRODUCTION

Compressible helical turbulence plays an important role in the areas of high-performance aircraft
engines, high-speed vehicles, and inertial confinement fusion. Considering the theoretical demands
of some extreme phenomena such as supernova explosions, the warm interstellar medium, and the
intracluster medium between galaxies [1,2], it is essential to explore the complex characters of
compressible turbulent dynamics under the influence of apparently broken mirror symmetry. The
broken mirror symmetry exists approximately in almost all of the turbulent flows. The local density
of helicity may be large enough to simultaneously affect the properties of compressible flows, with
production, diffusion, and dissipation [3,4].

The role of helicity in turbulent flows has been a controversial issue in the past few decades,
and the properties and behaviours of helicity itself are prerequisites for further exploring the effect
of helicity on turbulent flows. Helicity reflects the degree of broken mirror symmetry [5], and it is
defined as

H (t ) =
∫

u(x, t ) · ω(x, t ) dx, (1)

where u(x, t ) is the velocity and ω(x, t ) is the vorticity. The integrand h(t ) = u(x, t ) · ω(x, t )
is called the density of helicity [6]. Relative to kinetic energy, helicity measures the degree of
knottedness or linkage of vortex lines [7,8]. The conservation law of helicity was found by Moreau
[9] in 1961, and the hypotheses were the same as those of Helmholtz theorem. To date, the discovery
is regarded as the latest milestone of ideal fluid flows governed by Euler’s equations [10]. According
to the Noether theorem, the conservation law of physical variables determines the evolution of
the system [11]. Hence, it is essential to explore the properties of helicity, as we may be able
to theoretically prove that there do not exist any other inviscid invariants in three-dimensional
flows besides kinetic energy and helicity [12,13]. The properties of Euler equations reveal a joint
cascade of energy and helicity in three-dimensional turbulent flows [14,15]. Incompressible helical
turbulence has always been an important point when exploring the physical mechanism of a joint
turbulent cascade in homogeneous and isotropic turbulence (HIT), rotating turbulence, and the
boundary layer of atmospheric turbulence in the past few years [6,11,16,17]. There have been
a few studies to determine the spatial and time scales of turbulence based on helicity [18,19].
Some turbulence modelings are developed based on the evolution equation of helicity for large
eddy simulations (LESs). Li et al. [20] added several two-term helical modes based on rates of
energy and helicity cascade to the subgrid-scale (SGS) modeling in LESs, and coefficients were
determined dynamically. Yu et al. [21], Zhou et al. [22] proposed a novel SGS model based on
helicity dissipation balance theory for transition and turbulent flows. Recently, Yokoi and Yoshizawa
[23] put forward an SGS model with a structural effect incorporated through helicity analogous to
the Reynolds-averaged turbulence model. The role of helicity of this model is to suppress “too
dissipative” properties of Smagorinsky-type model.

In a compressible case, whether the fluid is barotropic determines the constancy of helicity
[13,24,25]. The barotropy means that the pressure is the only function of the density [24]. As for
compressible Euler equations, we can obtain the helicity governing equation

∂t (u · ω) + div

{
(u · ω)u +

[
p(ρ) − 1

2
|u|2

]
ω

}
= 0, (2)

where p(ρ) is the pressure in the case of barotropic fluid. However, when the shock wave is present,
the helicity is not conserved anymore. One paper insisted that the constancy of helicity even facing
the presence of shock wave also makes sense [13]. While the conservation characteristics of kinetic
energy and helicity in compressible baroclinic turbulence would be no longer satisfied, the presences
of nonzero ensemble averages of pressure terms are highlighted as the main reasons in contrast to
incompressible turbulence. In the past few years, many efforts have been devoted to generalizing
the kinetic energy cascade theory in incompressible turbulence to compressible turbulence [26–28],
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and the existence of conservative energy cascade was clarified in compressible flows. Pressure-work
defect and local cascade were regarded as the main reasons for anomalous dissipation of kinetic
energy in compressible turbulence [29]. Recently, we also established the helicity cascade theory in
compressible turbulence [30]. The main obstacle, the pressure term present in helicity governing
equation, was eliminated statistically out of conventional large scales. Hence, the conservative
helicity cascade exists statistically in the inertial subrange in compressible turbulence.

The characteristics of homochiral evolutions and chirality transfer were widely explored in the
area of magnetohydrodynamic turbulence [6], the production of chiral medicine and pesticides, a
single mirror isomer at supramolecular and material levels, the developments of chiral materials,
etc. Homochiral and cross-chirality evolutions of kinetic energy and helicity provide many new
perspectives to further explore the physical mechanism of turbulent cascade [16,31–33], and the
helical wave decomposition (HWD) is a common method to decompose velocity or a vorticity
field into different chiralities [31]. Alexakis and Biferale [17] made a comprehensive review, which
highlights the importance of chirality in turbulence. Waleffe [31] revealed that the backward energy
cascade occurs locally between the same helical signs of velocity and vorticity, and nonlocally
integrated with all length scales. Chen et al. [16] argued that the inertial subrange of the helicity
cascade is not shorter than a energy cascade through the analysis of net helicity flux. The
transfer of energy and helicity between two helical modes corresponds to advection and vortex
stretching, respectively. Biferale et al. [33] replaced nonlinear terms in Navier-Stokes equations
(NSEs) with the specified helical Fourier basis to carry out well-defined helical direct numerical
simulations (DNSs), and demonstrated that the inverse energy cascade is not necessarily related
to two-dimensionalization flows. The triadic interactions of the velocity of the same chirality
in three-dimensional flows are acceptable widely about the backward energy cascade [32–34].
In addition, the direction of the energy cascade is very sensitive to the presence of different
chiralities and could, therefore, change to an infinitesimal amplitude of opposite chirality [35].
The right-chirality helicity cascade in the logarithmic range of boundary layer has been verified
by theoretical and numerical investigations in the atmospheric Ekman layer [36,37]. In our previous
studies about compressible helical turbulence, we found that helicity can hinder the energy cascade
process [38], and it also affects the interchange procedure of kinetic energy and internal energy via
a pressure-dilatation term [30].

The effects of helicity on the energy cascade process discussed above highlight the role of helicity
transfer, and helicity transfer may be regarded as a controlling method to affect the properties of
energy transfer. Until now, few efforts have been devoted to studying the cross-chirality kinetic
energy and helicity transfer under the influence of compressibility. In this study, we numerically
analyze the influence of complex factors on the joint cross-chirality transfer of kinetic energy
and helicity in compressible helical turbulence. We attached emphasis to the local compressibility
and straining or rotating regions, and their influences on compressible turbulent dynamics are
numerically investigated by conditional averages [39,40]. The rest of paper is organized as follows.
First, we describe governing equations, our numerical method, and some characteristic parameters
of the steady flows. Next, we deduce the governing equations for the filtered kinetic energy
and helicity projected on different chiralities. Finally, we discuss the statistical analysis of the
cross-chirality kinetic energy and helicity transfer in detail.

II. GOVERNING EQUATIONS, NUMERICAL METHOD, AND SOME PARAMETERS

We selected a few reference variables to normalize the variables in the governing equations.
These variables included the reference density ρ f , velocity Uf , pressure p f = ρ f U 2

f , temperature
Tf , length L f , viscosity μ f , thermal conductivity κ f , and energy per unit volume ρ f U 2

f . In addition,
the three dimensionless parameters chosen are Reynolds number Re ≡ ρ f Uf L f /μ f , Mach number
M ≡ Uf /c f , and Prandtl number Pr ≡ μ f Cp/κ f , which is set to 0.7. c f ≡ √

γ RTf is the speed of
sound, where γ ≡ Cp/Cv is the heat capacity ratio, which is set to 1.4 in our numerical simulation,
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Cp is the specific heat at constant pressure, Cv is the specific heat at constant volume, and another
parameter α ≡ Pr Re(γ − 1)M2.

The dimensionless NSEs for three-dimensional compressible helical turbulence of ideal gas are

∂ρ

∂t
+ ∂ (ρu j )

∂x j
= 0, (3a)

∂ (ρui )

∂t
+ ∂ (ρuiu j )

∂x j
= − ∂ p

∂xi
+ 1

Re

∂σi j

∂x j
+ Fi, (3b)

∂E

∂t
+ ∂[(E + p)u j]

∂x j
= 1

α

∂

∂x j

(
κ

∂T

∂x j

)
+ 1

Re

∂ (σi jui )

∂x j
− � + Fju j, (3c)

p = ρT

γ M2
, (3d)

where ρ is the density, u is the velocity, p is the pressure, T is the temperature, � is a cooling-
function for sustaining a steady state statistically, and F is the large-scale force composed of multiple
parameters controlling kinetic energy and helicity. The multiple parameters include the energy
inputting rates of compressive and solenoidal components and the helicity inputting rate. Hence,
the specific external forcing can be constructed as

Fi = √
ρ × (

π1uC
i + π2uS

i + π3ωi
)
, (4)

where the superscripts C and S denote the compressible and solenoidal component of velocity,
respectively, and π1, π2, and π3 are three indeterminate dimensional parameters. In order to prevent
the flow field from the pollution of external forcing as far as possible, the external forcing is fixed
into the lowest two wave number shells, and their specific expressions are shown in the Appendix.
Due to the shell limitation of external forcing, the external forcing terms are neglected in the
following statistical analysis of kinetic energy and helicity in small scales. Similar external forcing
which involves the linear combination of velocity and vorticity field is widely adopted to obtain
helical turbulence in the area of incompressible flows [41].

In addition, total energy per unit volume E is

E = p

γ − 1
+ 1

2
ρuiui (5)

and the viscous stress is

σi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
μ

∂uk

∂xk
δi j . (6)

The viscosity coefficient μ and thermal conductivity coefficient κ are determined by the
Sutherland law [42] for simplicity:

μ = 1.4042T 1.5

T + 0.40417
, κ = 1.4042T 1.5

T + 0.40417
. (7)

We performed DNSs of compressible helical turbulence in a cubic box with a length of 2π . The
grid resolution is 10243, and the boundary conditions of the three directions are periodic. To obtain
high-order numerical results, we adopted a hybrid spatial numerical scheme [43] that adopts an
eighth-order compact finite difference scheme [44] in smooth regions and a seventh-order weighted
essential nonoscillatory scheme [45] in shock regions, and an explicit low storage second-order
Runge-Kutta technique as the time marching scheme [43]. In the lowest two wave number shells,
fixed injection rates of kinetic energy and helicity were applied to get a stationary flow field. The
thermal cooling function � was chosen with a uniform expression [46] of � = σI T 0, and we set the
value of σI to be one in our numerical simulations. Previous studies have confirmed that there is no
distinct difference with the different thermal cooling functions [43].
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TABLE I. Characteristic parameters of steady numerical simulations.

Resolution Reλ Mt E H kmaxη η/�x Lf /η λ/η

10243 232 0.71 2.56 −2.36 3.01 0.96 205 30

Some parameters in isotropic turbulence were employed to characterize the flow field [43,47].
There were some characteristic length scales: the integral length scale L f , the Taylor microscale λ,
and the Kolmogorov length scale η. The definitions of them are

L f = 3π

2(u′)2

∫ ∞

0

E (k)

k
dk, (8)

λ = u′〈[
(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2

]/
3
〉1/2 , (9)

and

η = [〈μ/Reρ〉3/ε]1/4. (10)

Here E (k) is the spectrum of kinetic energy per unit mass, k is the wave number shell, u′ is the

root-mean square (rms) of velocity vector u which is defined as u′ =
√

〈u2
1 + u2

2 + u2
3〉/3, and

ε is the ensemble-averaged viscous dissipation rate of kinetic energy per unit volume, which
is defined as ε = 〈σi jSi j/Re〉. Here the strain-rate tensor is Si j = (1/2)(∂ui/∂x j + ∂u j/∂xi ). The
Taylor microscale Reynolds number Reλ and the turbulent Mach number Mt are defined as

Reλ = u′λ〈ρ〉
〈μ〉 , Mt = M

√
3u′

〈√T 〉 . (11)

The above characteristic parameters in our steady numerical simulation are summarized in
Table I. The value of η/�x is approaching one, which reflects the fine grid resolution of our
numerical simulations, and �x is the grid spacing in each direction. The relative high Mt =
0.71 corresponds to strong compressibility, which paves the way for further investigations into
compressible turbulent flows contrary to incompressible turbulent flows. Here kmax is the half of
the total grid numbers in one direction, E is the mean kinetic energy, and H is the mean helicity. All
statistical results in this paper were averaged over 10 instantaneous flow fields across one large-eddy
turnover time.

The power-law solutions of kinetic energy and helicity, which ignore any intermittency correc-
tions, can be written as

E (k) ∼ CEε2/3k−5/3; H (k) ∼ CHδε−1/3k−5/3, (12)

ER(k) ∼ 1

2
ε2/3k−5/3

[
1 + β

2k

(
δ

ε

)]
; EL(k) ∼ 1

2
ε2/3k−5/3

[
1 − β

2k

(
δ

ε

)]
, (13)

HR(k) ∼ ε2/3k−2/3

[
1 + β

2k

(
δ

ε

)]
; HL(k) ∼ ε2/3k−2/3

[
1 − β

2k

(
δ

ε

)]
, (14)

where the superscripts R and L denote right and left chirality, respectively, CE and CH are the
Kolmogorov constants of kinetic and helicity spectra, β = CH/CE , and ε and δ are the ensemble-
averaged viscous dissipation rate of kinetic energy and helicity per unit volume. We show the
compensated spectra of all components of kinetic energy and helicity in Fig. 1. The plateaus of
left chirality and the total kinetic energy and helicity spectra illustrated in Fig. 1 reflect the full joint
turbulence cascade of our numerical simulations with the left-chirality dominance. The discrepancy
of the left- and right-chirality energy (helicity) spectra also reflects the characteristics of the broken
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HR(k)ε-2/3k2/3

HL(k)ε-2/3k2/3

H(k)δ-1ε1/3k5/3

Constant

2.0(b)

kη10-2 10-1 100
10-4
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10-2

10-1

100

ER(k)ε-2/3k5/3

EC(k)ε-2/3k2

EL(k)ε-2/3k5/3

E(k)ε-2/3k5/3

Constant

1.4(a)

FIG. 1. (a) Compensated spectra of left chirality (L), right chirality (R), free chirality (C), and total kinetic
energy. (b) Compensated spectra of left chirality (L), right chirality (R), and total helicity.

mirror symmetry, while the degree of this chirality discrepancy would decrease, with the decrease
of length scale. It means that small-scale structures would restore the mirror symmetry statistically.
The theory of three-dimensional Burgers turbulence reveals that shock waves lead to a k−2 spectrum
of the compressible component of velocity [48], and our numerical result in Fig. 1(a) confirms
this scaling exponent of the compressible component of velocity. Previous studies suggested
that CE = 1.58 in high-resolution numerical simulations of Reλ ≈ 1000 [49], and CE = 1.4 was
obtained by eddy-damped quasinormal Markovian (EDQNM) closure [14] and incompressible
helical turbulence [50]. Our numerical investigations in Fig. 1(a) revealed that CE = 1.4, which
is lower than our previous result with CE = 1.6 in highly compressible turbulence [51]. We suppose
that the lower value of Kolmogorov constant CE may be attributed to the helicity effect. To be
specific, helicity hinders the kinetic energy cascade from large scales to small scales [32,38,52]. The
reduced kinetic energy in the inertial subrange might also be reflected in the decreased Kolmogorov
constant. The other Kolmogorov constant for helicity CH in Fig. 1(b) is approximately 2.0, which is
close to the result of CH = 2.23 obtained by EDQNM closure [14]. It exhibits substantial deviation
from the previous conclusions with CH = 1.0 [50] and the Obukhov-Corrsin constant of a passive
scalar spectrum [53–55].

III. GOVERNING EQUATIONS FOR FILTERED KINETIC ENERGY AND HELICITY

The evolution equations of homochiral kinetic energy and helicity are prerequisites for further
numerically investigating the underlying physical mechanism of the cross-chirality kinetic energy
and helicity transfer. In this section, the filtered governing equations of homochiral kinetic energy
and helicity are derived, and they describe the evolution characteristics of homochiral kinetic energy
and helicity. In compressible turbulence, the filtering method was essentially employed for scale
interactions. A good filtering method must satisfy the inviscid criterion, which means that viscous
effects on the dynamics of large-scale momentum and kinetic energy could be negligible [28]. Any
filtered low-pass variable for primitive variable is defined as

al (x) =
∫

Gl (r)a(x + r) d3r, (15)

where Gl (r) is the normalized convolution kernel for various filter types like a top-hat filter,
Gaussian filter, and sharp spectral filter. Whichever filter type was chosen, it must be a sufficiently
smooth real-valued function and satisfy

∫
d3xG(x) = 1. A top-hat filter is employed to get the
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filtered flow field [56,57], which is homogeneous and defined in one dimension as

ai = 1

4n

(
ai−n + 2

i+n−1∑
j=i−n+1

a j + ai+n

)
, (16)

where the filter width l = 2n�x, and �x is the grid spacing. The three-dimensional filter is easily
obtained through employing the one-dimensional filter in three directions. According to the previous
conclusions, there is no distinct discrepancy for some statistical analysis of different filter types [58].
In addition, Favre filtering is a useful filtering method for scale decomposition often used in LES in
compressible turbulence. It contains the effect of nonconstant density, and it reads as

ãl = (ρa)l

ρ l
. (17)

One advantage of Favre filtering is that it provides similar filtered governing equations correspond-
ing to nonfiltered governing equations to explore turbulent cascade [28].

The following filtered governing equations can be easily derived from using the filter method:

∂ρ

∂t
+ ∂ (ρũ j )

∂x j
= 0, (18a)

∂ (ρũi )

∂t
+ ∂ (ρũiũ j )

∂x j
= − ∂ p

∂xi
+ 1

Re

∂σ i j

∂x j
− ∂ρτ̃i j

∂x j
, (18b)

where the SGS stress is defined as ρτ̃i j = ρ(ũiu j − ũiũ j ). This SGS stress represents the contri-
butions of residual components for the filtered flow field, and this interaction always works in
neighboring scales, which corresponds to locality of turbulence cascades [59].

To guarantee the positive definiteness of the kinetic energy spectrum, a density-weighted velocity
vector was introduced to study kinetic energy in compressible turbulence [60], and the filtered form
is defined as

ṽ =
√

ρũ. (19)

Hence, the large-scale kinetic energy in compressible turbulence can be written as half of the
density-weighted velocity squared |̃v|2/2. The governing equation for it reads as

∂ ṽi

∂t
+ ũ j

∂ ṽi

∂x j
+ ṽi

2

∂ ũ j

∂x j
= − 1√

ρ

∂ p

∂xi
− 1√

ρ

∂ρτ̃i j

∂x j
+ 1

Re

1√
ρ

∂σ i j

∂x j
. (20)

Helmholtz decomposition was used to divide a vector field in Fourier space into compressible and
solenoidal components. In addition, the flow field can further be decomposed into complex helical
waves, which provide a pair of orthogonal bases for the divergence-free flow field [31,61,62]. These
complex helical waves are eigenfunctions of the curl operator, which satisfy

∇ × ũR = |k|̃uR, ∇ × ũL = −|k|̃uL. (21)

Similar to Helmholtz decomposition, these eigenfunctions are orthogonal in the Fourier space and
functional orthogonal in physical space, which means that

ũR(k) · ũL∗(k) = 0, 〈uR(x), uL(x)〉 =
∫

uR(x) · uL∗(x) dx = 0, (22)

where ∗ denotes the complex conjugation. In summary, the solenoidal-free velocity field corre-
sponds to a 0 eigenvalue of the curl operation, and we can write the following uniform expression
which provides three orthogonal bases for flow field decomposition:

u(k) = ũR(k) + ũL(k) + ũC(k). (23)
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FIG. 2. Sketch of Helmholtz decomposition, helical wave decomposition, and general helical wave
decomposition. The superscript S denotes solenoidal component of velocity.

It means that Helmholtz decomposition is a special form of HWD. Hence, we combined the two
popular decomposition methods to propose a decomposition for compressible turbulence, named
general helical wave decomposition. Figure 2 shows a schematic sketch of velocity relations in
different modes of Helmholtz decomposition, HWD and general helical wave decomposition.

Basing on above flow field decomposition method, we can decompose filtered density-weighted
velocity ṽ as

ṽ = ṽL + ṽR + ṽC. (24)

Multiplying Eq. (20) by ṽX
i yields

ṽX
i

∂ ṽi

∂t
+ ṽX

i

(
ũ j

∂ ṽi

∂x j
+ ṽi

2

∂ ũ j

∂x j

)
= − ṽX

i√
ρ

∂ p

∂xi
− ṽX

i√
ρ

∂ρτ̃i j

∂x j
+ 1

Re

ṽX
i√
ρ

∂σ i j

∂x j
. (25)

where X = L, C, R correspond to left-chirality, free-chirality (compressible), and right-chirality
components of filtered density-weighted velocity ṽ. Making an ensemble average of the above
equation yields the following filtered governing equations for these three components:

∂

∂t

〈
1
2

(̃
vX

i

)2〉 = 〈
AEX

l

〉 − 〈
�EX

l

〉 − 〈
�EX

l

〉 − 〈
DEX

l

〉
, (26a)

where the nonlinear advection term AEX
l , the pressure-dilatation term �EX

l , the kinetic energy flux
�EX

l , and the viscous dissipation term DEX
l are defined as

AEX
l = −ṽX

i

(
ũ j

∂ ṽi

∂x j
+ ṽi

2

∂ ũ j

∂x j

)
, (26b)

�EX
l = −p

∂

∂xi

(
ṽX

i√
ρ

)
, (26c)

�EX
l = −ρτ̃i j

∂

∂x j

(
ṽX

i√
ρ

)
, (26d)

and

DEX
l = σ i j

Re

∂

∂x j

(
ṽX

i√
ρ

)
. (26e)

The above governing equations determine the space-time evolutions of homochiral kinetic en-
ergy. The nonlinear advection term AEX

l involves the spatial transport of homochiral kinetic energy,
and the couplings with other two homochiral modes of kinetic energy. The pressure-dilatation
term �EX

l involves the correlations of pressure field and velocity field, and the main differences
differing from incompressible flows are reflected on the variable density and non-divergence-free
velocity. The kinetic energy flux �EX

l denotes the cross-scale homochiral kinetic energy transfer
statistically. The last viscous dissipation term DEX

l describes the transfer of homochiral kinetic
energy to internal energy. The various statistical characteristics of the nonlinear advection term
involving the cross-chirality transfer will be discussed in detail in the next section.
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Next, we show the detail derivation of the governing equations of homochiral helicity in
compressible flows. Expanding and dividing Eq. (18b) by ρ yield

∂ ũi

∂t
+ ũ j

∂ ũi

∂x j
= − 1

ρ

∂ p

∂xi
+ 1

Re

1

ρ

∂σ i j

∂x j
− 1

ρ

∂ρτ̃i j

∂x j
. (27)

Making a curl operation of Eq. (27), and we can get the governing equation of filtered vorticity
vector ω as

∂ω̃i

∂t
+ ũ j

∂ω̃i

∂x j
− ω̃ j

∂ ũi

∂x j
+ ω̃i

∂ ũ j

∂x j
= 1

ρ2 (∇ρ × ∇p)i + 1

Re
∇ ×

(
1

ρ

∂σ i j

∂x j

)
− ∇ ×

(
1

ρ

∂ρτ̃i j

∂x j

)
.

(28)
Therefore, we get the following governing equation of filtered X-component helicity in com-

pressible turbulence,

∂ (̃uX
i ω̃X

i )

∂t
+ ω̃X

i ũ j
∂ ũi

∂x j
+ ũX

i

∂ (ωiu j − ω jui )

∂x j

= − ω̃X
i

ρ

∂ p

∂xi
+ ũX

i

ρ2 (∇ρ × ∇p)i + ω̃X
i

Re

1

ρ

∂σ i j

∂x j
+ ũX

i

Re
∇ ×

(
1

ρ

∂σ i j

∂x j

)

− ω̃X
i

ρ

∂ρτ̃i j

∂x j
− ũX

i ∇ ×
(

1

ρ

∂ρτ̃i j

∂x j

)
. (29)

Making an ensemble average of the above equation, we get the governing equation of filtered
ensemble-average X-component helicity as

∂H̃X
l

∂t
= 〈

AHX
l

〉 − 〈
�HX

l

〉 − 〈
�HX

l

〉 − 〈
DHX

l

〉
, (30a)

where the nonlinear advection term AHX
l , pressure term �HX

l , helicity flux �HX
l , and viscous

dissipation term DHX
l are defined as

AHX
l = −2ω̃X

i ũ j
∂ ũi

∂x j
, (30b)

�HX
l = 2p

∂

∂xi

(
ω̃X

i

ρ

)
, (30c)

�HX
l = 2ρτ̃i j

∂

∂x j

(
ω̃X

i

ρ

)
, (30d)

and

DHX
l = 2σ i j

Re

∂

∂x j

(
ω̃X

i

ρ

)
. (30e)

Similarly, the nonlinear advection term AHX
l not only describes the homochiral spatial transport

of helicity, but also involves the couplings of the other-mode helicity. Contrasted to the incom-
pressible issue, the complicated nonlinear term involves the effect of the compressive component of
velocity. Also, the pressure term �HX

l is at present obviously in the governing equation of helicity.
Nevertheless, this term would be equal to zero when the density is constant in incompressible flows.
Contrasted to the pressure-dilatation term in the governing equation of kinetic energy (26a), this
pressure term �HX

l gets rid of the effect of velocity divergence and is related to the variable density.
More details were explored in our previous work [30]. The homochiral helicity flux �HX

l denotes
the cross-scale helicity transfer, and it is related to the chirality of vorticity. Although the definition
of helicity in compressible flows is the same as that in incompressible flows, the compressive
component of velocity takes a part in the dynamical evolutions of total and homochiral helicity.
Hence, the effect of compressibility on the dynamical evolutions of helicity would result in a more
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FIG. 3. Sketch of kinetic energy transfer among left-, right-, and free-chirality modes.

complicated helicity transfer process. The further statistical characteristics of the above involved
terms will be investigated numerically in detail in the next section.

IV. STATISTICAL ANALYSIS OF THE CROSS-CHIRALITY KINETIC ENERGY
AND HELICITY TRANSFER

In this section, the cross-chirality kinetic energy and helicity transfer functions are further
decomposed, according to the involved chiral velocity and vorticity in their definitions. The
methodology refers to a previous valuable literature [34]. We select the dominant chiral mode (i.e.,
the free-chirality mode for kinetic energy and the left-chirality mode for helicity) to investigate the
regulations of cross-chirality transfer, especially under the influence of compressibility. The effects
of compression and expansion on the chirality transfers of kinetic energy and helicity reveal the
underlying mechanism of turbulent systems and provide some theoretical foundations to predict the
local characteristics of chirality transfer in general compressible turbulent flows.

A. The kinetic energy transfer among left, right, and free chirality

Besides the kinetic energy cascade procedure with scale interactions, there is another mechanism
for homochiral kinetic energy transfer. This mechanism originates from nonlinear interactions
among different chiralities in the same length scales, which appears in the filtered kinetic energy
governing equation. The two dominant chiral modes (i.e., free and left chirality) are selected
to investigate the cross-chirality kinetic energy transfer. The cross-chirality nonlinear term of
free-chirality kinetic energy governing equation reads as

ACMN
l = −ṽC

i

(
ũM

j

∂ ṽN
i

∂x j
+ ṽN

i

2

∂ ũM
j

∂x j

)
, M, N = L, R, C. (31)

The cross-chirality nonlinear term of the left-chirality kinetic energy governing equation reads as

ALMN
l = −ṽL

i

(
ũM

j

∂ ṽN
i

∂x j
+ ṽN

i

2

∂ ũM
j

∂x j

)
, M, N = L, R, C. (32)

Here the superscripts L, R, C denote the left-, right-, and free-chirality mode, respectively. From the
definition of nonlinear interactions, it can be divided into three categories, and the three categories
denote three kinetic energy transfer routes from other chiral modes. For the free-chirality kinetic
energy, it receives kinetic energy from the left-chirality mode, marked with ACL

l , from the right-
chirality mode ACR

l , and they can be denoted as the pairwise interaction. The third transfer routine
is from both the left- and right-chirality mode ACLR

l , and it can be denoted as the triple interaction
in the following. This classification method applies equally to the nonlinear interactions of left-
chirality kinetic energy, and it depends on the specific selections of symbols M and N. These three
categories are illustrated schematically in Fig. 3.

The ensemble averages of left- and free-chirality modes receiving from other chiral modes
are exhibited in Fig. 4. It is worthwhile reminding here that the strength orders of all-chirality
modes from high to low are free-, left-, and right-chirality modes. For free-chirality kinetic energy
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FIG. 4. (a) Ensemble averages of left-chirality kinetic energy receiving from free-chirality mode ALC
l ,

receiving from right-chirality mode ALR
l , and receiving from free- and right-chirality mode ALCR

l . (b) Ensemble
averages of free-chirality kinetic energy receiving from left-chirality mode ACL

l , receiving from right-chirality
mode ACR

l , and receiving from left- and right-chirality mode ACLR
l .

as the strongest chiral mode, it transfers kinetic energy to other chiral modes through nonlinear
interactions on the whole. The numerical consequences in Fig. 4(b) show that the amplitude of the
triple interaction is the largest, and its negative sign is consistent with the total transfer regulations.
Nevertheless, the pairwise interaction is secondary, and its positive sign corresponds to an inverse
transfer of kinetic energy relative to triple interaction. For left-chirality kinetic energy as a secondary
chiral mode, we infer that it should receive kinetic energy through nonlinear interactions on the
whole. The numerical results shown in Fig. 4(a) reveal that the triple interaction is also dominant,
relative to the pairwise interaction. The amplitude of the triple interaction is the largest, and its
sign is positive. It means that left chirality receives kinetic energy from the other two chiral
modes through triple interaction. However, the amplitude of the pairwise interaction is smaller,
and its negative sign means that it transfers kinetic energy to other chiral modes. Therefore,
we can conclude that the triple interaction involving all chiral modes dominates the chirality
transfer of kinetic energy totally, while the pairwise interaction is secondary and makes an inverse
contribution. The dominant status of triple interactions highlights the complexity of compressible
helical turbulence, in contrast to previous incompressible helical turbulence.

In addition, with the decrease of length scales, the amplitudes of all kinetic energy transfer
routes increase gradually, and they are comparable to homochiral kinetic energy flux at relatively
large scales. At small length scales, the chirality transfer of kinetic energy is stronger than cross-
scale kinetic energy transfer, and it serves as a complex physical mechanism along with viscous
dissipation. The local transfer of kinetic energy at small scales is very strong relative to transfer
on the whole [63], and our numerical results show that the chirality transfer of kinetic energy at
small scales is also strong. The above statistical regulations of kinetic energy transfer at small scales
reveal the complex characteristics of turbulent motions, besides the important viscous dissipation
traditionally.

To study the effects of compression and expansion on the chirality transfer of kinetic energy
between left and right chiralities, we made the conditional ensemble averages of the cross-chirality
transfer function ALR

l in compression and expansion regions in Fig. 5(a) and their ratios in Fig. 5(b).
The numerical results in compression regions are consistent with the regulations exhibited in
Fig. 4(a), while the expansion makes an opposite contribution for left-chirality transfer on the
whole. Although the amplitudes of the ensemble averages of ALR

l in expansion regions are smaller
than those in compression regions, the expansion of fluid elements can result in an inverse transfer
of kinetic energy and lead to a stronger lack of mirror symmetry via pairwise interaction ALR

l .
With the decrease of length scales, the ratio of the absolute values of the ensemble averages of
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FIG. 5. (a) Conditional ensemble averages of kinetic energy transfer function between left and right
chirality ALR

l in compression regions and in expansion regions. (b) The ratio of the absolute values of the
conditional ensemble averages of ALR

l in compression regions and in expansion regions.

ALR
l in compression and expansion regions gradually increases, which is related to the dominant

compression regions in small scales in our numerical simulations.
Similarly, we made the conditional ensemble averages of cross-chirality kinetic energy transfer

functions ACL
l , ACR

l , and ACLR
l in compression and expansion regions in Fig. 6(a) and their ratios

in compression and expansion regions in Fig. 6(b). For free-chirality kinetic energy, the numerical
results of all cross-chirality kinetic energy transfer functions in compression regions are consistent
with the results in Fig. 4(a), which reflects a dominant role of compressibility in our numerical
simulations. However, the numerical results of the transfer function in expansion regions are also
completely different from total trends. The ratio curves of the amplitudes of the ensemble averages
of ACL

l and ACR
l in compression and expansion regions almost overlap. It means that there exists a

negligible difference for left- and right-chirality statistical properties. Conversely, the leading triple
interaction is less sensitive to compressibility. Hence, we could conclude that expansion can lead to
a stronger lack of mirror symmetry.

B. The helicity transfer among left, right, and free chirality

There exists another mechanism for helicity transfer in the same length scales, besides the cross-
scale helicity cascade. We rewrite the Eqs. (30b) as follows and make an identical transformation:

FIG. 6. Conditional ensemble averages of kinetic energy transfer functions ACL
l , ACR

l , and ACLR
l in

compression regions (a) and in expansion regions (b). The inset is for their ratios in compression and expansion
regions. Ratio-CL corresponds to ACL

l , and Ratio-CR corresponds to ACR
l .
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FIG. 7. Sketch of helicity transfer between left- and right-chirality modes.

AHX
l = −2ω̃X

i ũ j
∂ ũi

∂x j
= −2ω̃X ·

[
ω̃ × ũ + ∇

(
1

2
ũ2

)]
. (33)

If we make an ensemble average of the above equation, the following reduced identity could be
deduced by homogeneity condition,〈

AHX
l

〉 = −2〈ω̃X · (ω̃ × ũ)〉. (34)

Surprisingly, the above expression for compressible turbulence is the same to that for incompress-
ible turbulence. However, the only discrepancy lies on the velocity, especially the compressible
component. Generally, the nonlinear advection term among different chiralities on the same length
scales can be rewritten as〈

HOMN
l

〉 = −2〈ω̃O · (
ω̃M × ũN)〉, O, M = L, R, N = L, C, R. (35)

The conservation condition (〈HOMN
l 〉 = 0) can be easily satisfied when the two vorticities are in the

same chirality, namely, O = M. So all components of interactions among different chiralities for the
left-chirality helicity can be expressed as〈

HLRX
l

〉 = −2[〈ω̃L · (ω̃R × ũL)〉 + 〈ω̃L · (ω̃R × ũR)〉 + 〈ω̃L · (ω̃R × ũC)〉]. (36)

The third term on the right-hand side of Eq. (36) is present only in compressible flows, and the
above three terms can be classified as〈

HLR
l

〉 = −2[〈ω̃L · (ω̃R × ũL)〉 + 〈ω̃L · (ω̃R × ũR)〉], (37a)

which reflects the contributions for left-chirality helicity from the interactions of left- and right-
chirality velocity and vorticity. Also,〈

HLRC
l

〉 = −2[〈ω̃L · (ω̃R × ũC)〉], (37b)

which reflects the contributions for the left-chirality helicity from the interactions of left-, right-,
and free-chirality velocity and vorticity. Hence, we can conclude that the compressible component
of velocity plays a role of medium for helicity transfer among different chiralities in compressible
turbulence, which is the only feature relative to incompressible turbulence. The helicity transfer
procedure is illustrated schematically in Fig. 7.

The ensemble average and RMS values of helicity transfer among chiral modes (HLR
l , HLRC

l ) are
exhibited in Fig. 8. The statistical results reveal that the helicity transfer at small scales is stronger
than that at large scales of either HLR

l or HLRC
l , which should not be ignored particularly at small

scales. In addition, as a medium, the compressible component of velocity leads to a weaker helicity
transfer, even though it is stronger than the solenoidal component of velocity in our numerical
simulations. The fluctuation of helicity transfer via HLRC

l is stronger because of the compressible
component, which can be attributed to the randomly distributed shocklets.

The statistical results of HLR
l and HLRC

l in compression, expansion, straining, and rotating regions
are shown in Fig. 9. The compression and expansion procedure of fluid elements correspond to two
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FIG. 8. Ensemble average (a) and root-mean-square (RMS) values (b) of HLR
l , HLRC

l .

opposite contributions for helicity transfer, via HLRC
l , and this is the only way for a statistical inverse

transfer of helicity among different chiral modes. Nevertheless, the absolute value of the ratio is
less than one, which means that as an underlying mechanism the inverse transfer of helicity in
compression regions is not dominant. The compression procedure is dominant via HLR

l , particularly
at small length scales. There is virtually no discrepancy of the influence of rotating and straining
procedure on the helicity transfer via HLRC

l . The rotating procedure is dominant for the helicity
transfer via HLR

l for nearly all the length scales. Hence, we can conclude that the rotating procedure
contributes mostly to helicity transfer among different chiral modes via HLR

l even in highly
compressible turbulence. The effect of compressibility reflected by HLRC

l usually works in high
compression or expansion regions. The compressibility leads to an inverse transformation of helicity
via HLRC

l , and it strengthens the lack of mirror symmetry. However, the effect of compressibility on
the dominant transfer routine is consistent with the total transfer regulation. Hence, we infer that
the local inverse transfer of helicity is associated with the compressible component of velocity in
compression regions via HLRC

l .

V. CONCLUSIONS

In this paper, we have investigated the cross-chirality kinetic energy and helicity transfer through
carrying out direct numerical simulations of compressible helical and isotropic turbulence at the
grid resolution of 10243. We focus on the cross-chirality kinetic energy and helicity transfer,

FIG. 9. Conditional ensemble average of HLR
l , HLRC

l in compression regions(θl < 0) and expansion
regions(θl > 0) (a), in straining regions (Ql < 0) and rotating regions(Ql > 0) (b). The ratios of the ensemble
averages of HLR

l , HLRC
l in compression and expansion regions are shown in the inset. Ratio-LR corresponds to

HLR
l , and Ratio-LRC corresponds to HLRC

l .
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particularly under the influence of the compression and expansion, and the straining and rotating
of fluid elements. We propose a decomposition method of compressible helical turbulence named
general helical wave decomposition to investigate the statistical properties of the cross-chirality
kinetic energy and helicity transfer in the same length scale.

We conclude that the triple interactions of the left, free, and right chirality dominate the cross-
chirality kinetic energy transfer, especially at small scales. It is regarded as a physical mechanism
for homochiral kinetic energy transfer, which is comparable with kinetic energy flux at relatively
large scales and with viscous dissipation at relatively small scales. However, pairwise interaction
is secondary, and it is very sensitive to compressibility. Under the influence of expansion, kinetic
energy transfers in reverse to stronger chiral modes via pairwise interaction, leading to a stronger
lack of mirror symmetry. Helicity transfer among different chiral modes in compressible flows is
very similar to that in incompressible flows, and the only discrepancy lies on the medium role of
the compressible component of velocity. Although the free-chirality kinetic energy is the strongest,
the helicity transfer via the compressible component is weak relative to the interactions of left- and
right-chirality velocity and vorticity. The only possibility of the inverse direction of helicity transfer
occurs in compression regions statistically, and the compressibility leads to a local stronger lack
of mirror symmetry via the compressible component of velocity. However, the compressibility also
has a drastic influence on the dominant helicity transfer routine, which promotes the total balance
of chirality. As an underlying mechanism of chirality transfer of helicity, the statistical results via
the compressible component of velocity do not conflict with the total effect of compressibility for
helicity transfer.

In summary, the expansion is highlighted to serve as an important role to promote the inverse
chirality transfer of kinetic energy statistically, and further strengthens the lack of mirror symmetry.
The compression is regarded as a local inverse helicity transfer routine via the compressible
component of velocity and further influences the properties of turbulent flows in compressible
helical turbulence. The physical mechanism may provide some theoretical suggestions for modeling
the compressible helical turbulence.
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APPENDIX: INDETERMINATE PARAMETERS OF EXTERNAL FORCING

In compressible flows, an alternative expression of external forcing can be constructed by a linear
combination of velocity and vorticity as

Fi = √
ρ × (

π1uc
i + π2us

i + π3ωi
)
, (A1)

where the superscripts c and s denote the compressible and solenoidal components of a physical
variable, respectively. The π1, π2, and π3 are three indeterminate dimensional parameters by the
inputting rate of the compressible kinetic energy εc, the inputting rate of the solenoidal kinetic
energy εs, and the inputting rate of helicity εh. The external forcing is fixed within the lowest two
wave number shells. The inputting rates can be computed through the external forcing as

εs = F s
i · vs

i = (
π1

√
ρuc

i + π2
√

ρus
i + π3

√
ρωi

)s · (
√

ρu)s
i

= π1
(√

ρuc
i

)s · (
√

ρu)s
i + π2

(√
ρus

i

)s · (
√

ρu)s
i + π3

(√
ρωi

)s · (
√

ρu)s
i , (A2)
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εc = F c
i · vc

i = (
π1

√
ρuc

i + π2
√

ρus
i + π3

√
ρωi

)c · (
√

ρu)c
i

= π1
(√

ρuc
i

)c · (
√

ρu)c
i + π2

(√
ρus

i

)c · (
√

ρu)c
i + π3(

√
ρωi )

c · (
√

ρu)c
i , (A3)

εh = 2 ∗ Fi/
√

ρ · ωi = (
π1

√
ρuc

i + π2
√

ρus
i + π3

√
ρωi

) · ωi = π1us
i · ωi + π3ωi · ωi. (A4)

If we define a11 = 〈(√ρuc
i )s · (

√
ρu)s

i 〉, a12 = 〈(√ρus
i )s · (

√
ρu)s

i 〉, a13 = 〈(√ρωi )s · (
√

ρu)s
i 〉,

a21 = 〈(√ρuc
i )c · (

√
ρu)c

i 〉, a22 = 〈(√ρus
i )c · (

√
ρu)c

i 〉, a23 = 〈(√ρωi )c · (
√

ρu)c
i 〉, a31 = 〈us

i · ωi〉,
a32 = 0, a33 = 〈ωi · ωi〉, where 〈·〉 denotes ensemble average within the lowest two shells, and the
above equations can be rewritten as the following form:⎡

⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

⎡
⎣π1

π2

π3

⎤
⎦ =

⎡
⎣εs

εc

εh

⎤
⎦. (A5)

Hence, the three indeterminate dimensional parameters can be obtained by solving the above
system of linear equations, and their final expression are

π1 = (a22a33εs − a12a33εc + (a12a23 − a13a22)εh) ∗ coeff, (A6)

π2 = −[(a21a33 − a23a31)εs − (a11a33 − a13a31)εc + (a11a23 − a13a21)εh] ∗ coeff, (A7)

π3 = −[a22a31εs − a12a22εc − (a11a22 − a12a21)εh] ∗ coeff, (A8)

where

coeff = 1

a11a22a33 − a12a21a33 + a12a23a31 − a13a22a31
. (A9)
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