PHYSICAL REVIEW FLUIDS 5, 084602 (2020)

Statistical properties of homogeneous and isotropic turbulence in He II
measured via particle tracking velocimetry

Yuan Tang,"? Shiran Bao,"? Toshiaki Kanai®,"? and Wei Guo®!2-*
I National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
2Mechanical Engineering Department, Florida State University, Tallahassee, Florida 32310, USA
3Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

® (Received 13 April 2020; accepted 20 July 2020; published 7 August 2020)

Despite being a quantum two-fluid system, superfluid helium-4 (He II) is observed
to behave similarly to classical fluids when a flow is generated by mechanical forcing.
This similarity has brought up the feasibility of utilizing He II for high Reynolds number
classical turbulence research, considering the small kinematic viscosity of He II. However,
it has been suggested that the nonclassical dissipation mechanism in He II at small scales
may alter its turbulent statistics and intermittency. In this work, we report our study
of a nearly homogeneous and isotropic turbulence (HIT) generated by a towed grid in
He II. We measure the velocity field using particle tracking velocimetry with solidified
deuterium particles as the tracers. By correlating the velocities measured simultaneously
on different particle trajectories or at different times along the same particle trajectory, we
are able to conduct both Eulerian and Lagrangian flow analyses. Spatial velocity structure
functions obtained through the Eulerian analysis show scaling behaviors in the inertial
subrange similar to that for classical HIT but with enhanced intermittency. The Lagrangian
analysis allows us to examine the flow statistics down to below the dissipation length scale.
Interestingly, abnormal deviations from the classical scaling behaviors are observed in this
regime. We discuss how these deviations may relate to the motion of quantized vortices in
the superfluid component in He II.

DOI: 10.1103/PhysRevFluids.5.084602

I. INTRODUCTION

Below about 2.17 K, liquid “He undergoes a second-order phase transition to the superfluid
phase (He II). Phenomenologically, He II can be described by Landau’s two-fluid model [1].
This mesoscopic model treats the system as consisting of two fully miscible fluid components:
an inviscid superfluid component (i.e., the condensate) and a viscous normal-fluid component
(i.e., the thermal excitations) [2]. The rotational motion in the superfluid can occur only with
the formation of topological defects in the form of quantized vortex lines [3]. These vortex lines
all have identical cores (thickness & =~ 1 A) and they each carry a single quantum of circulation
k >~ 1073 cm?/s. Turbulence in the superfluid takes the form of an irregular tangle of vortex lines
(quantum turbulence) [4]. The normal fluid behaves more like a classical fluid. But a force of mutual
friction between the two fluids [5], arising from the scattering of thermal excitations by the vortex
lines, can affect the flows in both fluids.

Despite being a quantum two-fluid system, He II has been observed to exhibit flow characteristics
similar to that in classical fluids when the flows are generated by mechanical forcing [6,7]. This
similarity has brought up the feasibility of utilizing the small kinematic viscosity of He II (i.e.,
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about three orders of magnitudes smaller than that of ambient air [8]) to generate turbulent flows
with extremely high Reynolds numbers for classical turbulence research and model testing [9,10].
The quasiclassical behavior of He II in mechanically driven flows is believed to be the result of
a strong coupling of the two fluids at large scales by mutual friction [11]. The turbulent eddies
in the normal fluid are matched by eddies in the superfluid induced by local polarization of the
vortex tangle [12]. However, at small scales, especially below the mean intervortex distance ¢, this
coupling must break down because the superfluid flow is then controlled by the circulation around
individual vortex lines and cannot match the classical normal-fluid flow. Therefore, a mutual friction
dissipation sets in at these small scales, in addition to the viscous dissipation in the normal fluid [4].
The extend of the coupling at large scales and the unique small-scale dissipation mechanism all
depend on the density ratio of the two fluids (and hence the temperature), which can give rise to
subtle differences between He II quasiclassical flows and flows in classical fluids. For instance, a
past theoretical work suggested a temperature-dependent enhancement of turbulence intermittency
in He II quasiclassical flows [13]. In order to explore these interesting similarities and differences,
quantitative velocity-field measurements in a simple and well-controlled He II quasiclassical flow
are needed.

A simple form of turbulence that has received extensive attention in classical fluids research is
the so-called homogeneous isotropic turbulence (HIT) [14—16], which can also be achieved in He II
in the wake of a towed grid [6]. In a recent work, we reported the study of grid turbulence in a He II
filled channel using a molecular tagging velocimetry (MTV) technique [17]. This technique is based
on the creation and tracking of thin lines of He; molecular tracers [18]. These tracers are completely
entrained by the viscous normal fluid above 1 K and therefore their motion provides unambiguous
information about the normal-fluid flow [19-25]. A striking nonmonotonic temperature-dependent
intermittency enhancement was observed [17]. Nevertheless, there are two major limitations in the
MTYV experiment: (1) the MTV method only allows the measurement of the velocity component
perpendicular to the tracer lines [26], and hence there lacks information about the isotropicity of the
flow; and (2) the spatial resolution is limited by the displacement of the tracer lines (i.e., 100-200
um), which is greater than the typical dissipation length scale (i.e., a few tens of microns).

To overcome these issues, we report in the present work the application of a particle tracking
velocimetry (PTV) technique for velocity-field measurements in a recently built He II grid
turbulence facility [27]. Micron-sized solidified deuterium particles are used as the tracers, whose
motion can be tracked with a spatial resolution of a few microns to render both the horizontal and
the vertical velocities within the imaging plane. These particles experience the drag force from the
viscous normal fluid. As we will discuss later, the corresponding Stokes number is about 0.16 in
our experiment, which means they do faithfully follow the normal fluid motion. These tracers have
no appreciable interaction with the superfluid, but they can get trapped on the vortices due to the
superfluid Bernoulli pressure [3]. This trapping may render their motion hard to interpret in He II
flows where the two fluids have different mean velocities (e.g., heat-induced thermal counterflow
[1]) [28-31]. However, this issue is not a concern in grid turbulence. At large scales where the two
fluids are nearly coupled, the motion of the particles can provide us quantitative information about
the coupled velocity field. At small scales, deviations from the classical turbulence statistics may be
unveiled due to the motion of the trapped particles.

In Sec. II, we briefly describe the experimental setup and the measurement methods. In Sec. III,
we first present evidence to show that a nearly HIT can emerge in the decay of the towed-grid
generated turbulence in He II. Then, by correlating the velocities measured simultaneously on
different particle trajectories or at different times along the same particle trajectory, we manage
to conduct both Eulerian and Lagrangian velocity statistical analyses. We show that the spatial
velocity structure functions obtained through the Eulerian analysis exhibit scaling behaviors in the
inertial subrange similar to that for classical HIT but with enhanced intermittency. The Lagrangian
analysis, on the other hand, allows us to examine the flow statistics down to below the dissipation
length scale. In this regime, abnormal deviations from the classical scaling behaviors are observed.
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FIG. 1. Schematic diagram of the experimental apparatus.

‘We discuss how these deviations may relate to the motion of the quantized vortices. A brief summary
is provided in Sec. IV.

II. EXPERIMENTAL METHOD

The experimental apparatus used in the current work was designed and built specifically for
PTV-based He II grid-turbulence research [27]. As shown schematically in Fig. 1, a transparent cast
acrylic flow channel with a square cross section (D?> = 1.6 x 1.6 cm?, length: 33 cm) is immersed
vertically in a He II bath, where the helium temperature can be controlled by regulating the vapor
pressure in the bath. A brass mesh grid is suspended by four stainless-steel thin wires at the four
corners inside the flow channel. These wires are connected to the drive shaft of a linear motor
system. A LabVIEW computer program is developed to control the motor system such that the grid
can be pulled at a constant speed between 0.1 and 60 cm/s. In this specific work, we use a fixed
grid speed at 30 cm/s. In order to minimize possible large-scale secondary flows around the moving
grid, we followed the guidelines from classical grid turbulence research [32,33] and designed our
grid to have a mesh spacing of 3 mm and an open area of 40% and with special treatments of its
boundary and the four corners [27].

To probe the flow, solidified deuterium particles are used as the tracers. These particles are
produced by slowly injecting a room-temperature mixture of 5% deuterium gas and 95% helium
gas through a leak valve into the flow channel [34]. The gas mass flow rate is restricted such that the
injection does not affect the bath temperature. Typically, the resulting particles have diameters in
the range 3 to 6 um with a mean d, 2~ 5 um, as determined from their settling velocity in quiescent
He II [27]. A continuous-wave laser sheet (thickness: 200 wm, height: 9 mm) passes through the
geometric center of the channel to illuminate the particles. We then pull the grid at the controlled
speed and use a high-speed camera (120 frame per second) to record the motion of the particles.
Due to the camera’s limited internal memory, we record the particle motion for a period of 0.28 s
(i.e., 34 frames) for every 2 s following the passage of the grid. Particle trajectories can be extracted
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FIG. 2. (a) Ensemble-averaged vertical velocity (v,) profile following the passage of the grid. (b) The
corresponding vertical velocity variance o,. The data were taken at 1.95 K with a grid velocity of 30 cm/s.

from the sequence of images based on the feature-point tracking routine developed by Sbalzarini
and Koumoutsakos [35].

Besides the PTV measurement, a standard second-sound attenuation method is also used to
measure the temporal evolution of the spatial-averaged vortex-line density L(¢) (i.e., total length
of the vortices per unit volume, L~!/? = £) [27]. The turbulence generated by the towed grid decays
with time. We take the instant when the grid passes through the center of the view port as the time
origin for both the visualization and the second-sound measurements. These measurements are made
in the temperature range of 1.65 to 2.12 K. At each temperature, we normally repeat the experiment
10 times so that an ensemble statistical analysis of the particle trajectories can be performed at
different decay times.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Temporal evolution of the grid turbulence

It is generally believed that a moving grid in He II first produces turbulent eddies with sizes
comparable to the mesh grid spacing. Then, after a short transient period, the energy-containing
eddies saturate at sizes comparable to the width of the channel, which leads to a nearly HIT that
decays with time [6]. However, the observation of large-scale flows right after the passage of the
grid in our previous MTV experiment casts doubt on this simple physical picture [17]. These
large-scale flows are likely due to the secondary flows caused by the imperfection of the grid
geometry, which is hard to completely avoid. To examine the evolution of the velocity profile in
our current experiment, we analyze the particle trajectories and calculate the vertical velocity v, as
a function of the horizontal position x across the width of the flow channel. Representative velocity
profiles (v,(x)) obtained at 1.95 K through an assemble average over many trajectories and over
10 experimental trials are shown in Fig. 2(a). It is obvious that large-scale nonuniform flows exist
at short decay times, despite the careful design of the grid. Nevertheless, these nonuniform flows
have evolved to a more uniform turbulence by ¢ = 4 s such that (v,(x)) becomes nearly zero across
the channel width. Fig. 2(b) shows the profile of the corresponding vertical-velocity variance oy,

defined as o, = ([v,(x) — iy]2)1/ It appears that oy is more spatially homogeneous and remains at
arelatively high level att = 4 s.

In Fig. 3, we show the calculated probability density functions (PDFs) of the particle horizontal
velocity v, and the vertical velocity v, obtained at 1.95 K. At small decay times, the vertical velocity
PDFs exhibit double-peak structures, which reflect the nonuniform large-scale eddies as revealed in
Fig. 2(a). After these large-scale eddies decay, the velocity PDFs can be fitted reasonably well by
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FIG. 3. Horizontal (a) and vertical (b) particle velocity PDFs at different decay times as indicated. The data
were taken at 1.95 K with a grid velocity of 30 cm/s.

Gaussian functions. Through such fits, the evolution of the velocity variances in both the horizontal
direction o, (¢) and the vertical direction o, (¢) can be obtained, which provides us information about
the decay of the turbulence kinetic energy density K, (t) = %ox () and K,(t) = %ay(t ).

In Fig. 4, we show the time-evolution of the obtained turbulence kinetic energy K(¢) together
with the measured vortex-line density L(¢). It turns out that K(¢) decays more or less accordingly
to K(¢) oc t 72, especially for t > 4 s. The contributions to K (¢) from the two velocity components
appear to have similar magnitudes, which suggests that the turbulence is relatively isotropic. The
decay of the vortex-line density exhibits a scaling behavior of L(t) o t=3/2 after the first a few
seconds. According to Refs. [6,11,37], both these scalings are considered as the characteristics
of decaying HIT in He II after the sizes of the energy-containing eddies are saturated by the
channel width. Based on these analyses, the turbulence at 4-s decay time appears to be reasonably
homogeneous and isotropic, and its turbulence kinetic energy density is relatively high such that
an inertial subrange may exist. In what follows, we shall focus on the data set taken at r = 4 s for
detailed statistical analysis.
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FIG. 4. (a) Time evolution of the turbulence kinetic energy K(¢) contribution from the horizontal and
the vertical velocity components. (b) Decay of the quantized vortex-line density L(z). The solid black curve
represents the scaling L(¢) o (¢ + t,)>/?, where t, = 0.27 s is the virtual time origin [36]. The data were taken
at 1.95 K.
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TABLE I. Characteristic parameters of the He II grid turbulence at 4-s decay time at 1.95 K.

Parameter Expression® Value

Energy dissipation rate € €= v(4(%)2+4(%’)2+3(%)2+3(%)2+4(% %)—{-6(% %)) 43.7
(mm?/s%) [38]

Taylor microscale A (mm) AR SI52(0) sy (V)ms = /[2(00)? + (6,)%1/3 0.14

Kolmogorov microscale 7 (um) n= (";)1/4 11.9
Taylor Reynolds number Re; Re; = m'f‘““k 34.5
Large scale Reynolds number Rep, Rep = U2 (v) = (2(v,)? + (v))?) 12 6.7 x 10°
Kolmogorov time scale 7, (ms) T, = (9?2 14.8
Stokes time 7, (ms) T, = ﬂl”g{? 0.20

*p and p denote the kinematic viscosity and the dynamics viscosity of He II [8], respectively.

To aid the discussion of the statistical analysis, we would like to provide information about
the characteristic time and length scales of the turbulence. For this purpose, the energy dissipation
rate € = —d (K, + K, + K;)/dt needs to be evaluated. In principle, one may determine € through
Fig. 4(a). However, due to the limited data points and their large scattering, only a rough order of
magnitude estimation of € &~ 10 mm? / s? can be made. We, therefore, adopt the method introduced
in Ref. [38] to calculate € based on velocity spatial derivatives. In this calculation, we select all the
velocity pairs measured simultaneously at two particles that are separated by less than 0.1 mm to
evaluate the ensemble averaged velocity spatial derivatives. € = 43.7 mm?/s’ is obtained for the
data at 4-s decay time at 1.95 K. Using this value, we are able to calculate the Taylor microscale
A, Taylor Reynolds number Re;, Kolmogorov length scale n and time scale t,,. The expressions of
these parameters and their values are listed in Table I.

‘We have also calculated the Stokes time of the tracers 7, and included it in Table I. The small
Stokes time gives a Stokes number (i.e., St = 7,(v)/d),) of about 0.16, suggesting excellent tracing
accuracy [39]. It is worthwhile noting that our sampling time (i.e., inverse of the camera frame rate)
is 8.3 ms, which is smaller than the Kolmogorov time and greater than the Stokes time. This is
desired for high fidelity PTV measurements.

B. Eulerian structure functions and intermittency

In the Eulerian description of fluid flow, spatial structure functions are known to be very useful
tools for characterizing the statistical properties of the turbulence [40]. For fully developed HIT,
the relevant forms of the structure functions are the nth order longitudinal and transverse structure
functions, defined as [41,42]:

Sl(ry = (18V(r) - #]") and Sy (r) = (|8V(r) x "), (1)

where §V(r) = V(r;) — V(r,) denotes the difference of the velocities measured simultaneously
at two locations that are separated by r = r; — r;, and the angle brackets represent the ensemble
average. For fully developed ideal HIT in an incompressible fluid, these structure functions exhibit
the well-known Kolmogorov-Obukhov scaling behaviors [43,44]. Specifically, the third-order
structure function should scale as |S3(r)| = ‘5—‘er. The range of r over which this scaling holds defines
the inertial subrange of the turbulence energy cascade. In this inertial subrange, the second-order
structure function is expected to scale as S, (r) o /3.

To check whether an inertial subrange develops in our grid turbulence, we have performed
Eulerian analysis of the velocity field by correlating the velocities measured simultaneously on
different particle trajectories (see the Appendix for more details). The range of r in this analysis is set
by our requirement that the sample number at a given particle separation » must be greater than 10°.

084602-6



STATISTICAL PROPERTIES OF HOMOGENEOUS AND ...

10° = - - 10— - -
Eulerian analysis T=195K Eulerian analysis T=195K
) = 4 S 1 t= 4 S
10" ¢ 3 10 ¢
@ . ., S/(er')/: 0.8 ’S) . . S/(er')/: 0.8
~ [} J =~ .. 4
\S 10 -———-"—;—.!.——M ————————— S 107 ----- !9‘—;M ——————————
o o
| s
10 10
1072 : : 1072 - -
10" 10° 10! 10° 10° 10!
(a1) r (mm) (a2) r (mm)
10° - - 10° - -
Eulerian analysis T=195K Eulerian analysis T=195K
~ t=4s t=4s
N: 10"} ‘% 10"}
£ £
—_~ ° ~
= 10° 210
- “ [
— S (r) oc 0672006 — 8, (7) oc p0-68£0.05
10" . : : 10" s s A
10" 10° 10" 10" 10° 10
(b1) r (mm) (b2) r (mm)

FIG. 5. (al) and (a2) show the compensated third-order transverse and longitudinal structure functions.
The dashed horizontal lines mark the constant value of 4/5. The shaded region indicates the inertial subrange.
(b1) and (b2) show the second-order structure functions. The solid lines are power-law fits to the data in the
shaded region.

To our knowledge, no prior PTV experiments with He II have ever reported the implementation of
the Eulerian analysis. In Figs. 5(al) and 5(a2), we show the calculated Sg (r)and S3l(r) compensated
by (er)~! for the data set obtained at ¢ = 4 s. Over the range 0.12 mm < r < 2 mm as highlighted
by the shaded region, both Sg(r) /er and S3l(r)/6r appear to be more or less flat and their values
are indeed close to 4/5, indicating the existence of a cascade inertial subrange. The lower end
of this subrange agrees well with the calculated Taylor microscale A=0.14 mm. We also plot the
second-order structure functions in Figs. 5(bl) and 5(b2). It is clear that in the inertial subrange,
both Sg(r) and Szl(r) can be well fitted by power-law scalings that are close to r23,

The Kolmogorov-Obukhov scalings of the higher-order structure functions in the inertial sub-
range in an ideal HIT are S,,(r) o r5 [45]. However, intermittency can occur spontaneously in real
turbulent flows, which manifests itself as extreme velocity excursions that appear more frequently
than one would expect on the basis of Gaussian statistics. Corrections to the scaling exponents of the
velocity structure functions are therefore expected, especially for higher-order structure functions
that are more sensitive to the occurrence of rare events. She and Leveque proposed a universal
scaling S, (r) o ré for HIT in classical fluids [46], where ¢, = % +2[1 — (3)"/*]. These predicted
scalings were confirmed experimentally by Benzi ef al. [47]. To examine the scaling behaviors
of the structure functions and the intermittency in He II grid turbulence, we adopt the extended
self-similarity (ESS) method by plotting S, (7) versus S3(r) (instead of r) in the inertial subrange
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FIG. 6. Extended self-similarity plots of (a) transverse and (b) longitudinal velocity structure functions for
n = 1 ~ 5 versus the third-order structure functions. The solid lines are power-law fits to the data in the inertial
subrange.

[47,48]. It is known that the ESS analysis can reveal scaling laws even for turbulent flows with
moderate Reynolds numbers [49], thereby allowing for more accurate determination of the scaling
exponents [50]. In Fig. 6, we show the calculated S,'!(r) and Snl(r) versus S3(r). Clear power-law
dependance of S,‘l(r) and Snl(r) on S3(r) that extends beyond the inertial subrange is observed. We
must emphasize that a reliable determination of the higher order statistics requires more samples.
Unfortunately, our current data sets are relatively limited due to various constrains such as the
helium boil off, the long waiting time between runs, and the high cost of liquid helium for repeating
the experiments.

In Fig. 7, we show the scaling exponents ¢, extracted through the power-law fits in the ESS
analysis. The large error bars are due to the relatively strong scattering of the data points in the
fits. Besides the data obtained at 1.95 K (48.2% normal fluid), the results of similar measurements
conducted at 1.65 K (19.3% normal fluid) and 2.12 K (78.8% normal fluid), together with the ¢,
values that She and Leveque proposed for classical fluids [46], are also collected in Fig. 7. The
differences between ¢, and the Kolmogorov-Obukhov scalings of n/3 are clearly seen in our data,
which confirms the existence of intermittency in He II grid turbulence. The observation that ¢,

0.4 ‘ " " 0.4
0.2 1 0.2:-
0 0 #* 1 = 0 #* - 1
T 02} T o02f -
4= e 165K == ® 165K
04 L sk 041 o qe5k
06+ ¢ 212K 06+ ¢ 212K
* She & Leveque * She & Leveque
-0.8 . . . 0.8 . . .
1 2 3 4 5 1 2 3 4 5
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FIG. 7. Intermittency corrections to the scaling exponents of the transverse (a) and longitudinal (b) struc-
ture functions for He II grid turbulence. The corrections for classical fluids are also included for comparison
[46].
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FIG. 8. Second-order (a) transverse and (b) longitudinal velocity structure functions obtained through both
the Lagrangian and the Eulerian analyses of the particle trajectories for the data set obtained at 1.95 K and
t=4s.

is universally smaller than % for n > 3 agrees well with the ¢, behavior in classical fluids [51].
Furthermore, it is clear that the intermittency in He II grid turbulence for n > 3 is enhanced
compared to that in classical fluids, which agrees with theoretical predictions [13]. However, due
to the large error bars associated with the extracted ¢,, we cannot draw any definite conclusion
regarding the temperature dependance of the intermittency in He II [17,48,52].

C. Lagrangian analysis at small length scales

We have also conducted Lagrangian analysis of the particle motion by correlating the velocities
measured along individual particle trajectories at different times. Conventionally, temporal structure
functions in the Lagrangian framework can be constructed as:

Sy(@) = (18V(r) - ") and Sy (v) = (I8V(2) x #I"), 2

where §V(t) = V(t + 7) — V(¢) denotes the difference of the velocities measured at ¢t + 7 and ¢
along a single particle trajectory, and r is the displacement of the particle over the time interval
7. In order to make more direct comparison with the Eulerian structure functions, in what follows,
we will calculate the Lagrangian structure functions and plot them as a function of the distance r
instead of t. This treatment allows us to examine the flow statistics down to scales as small as the
particle displacement in one frame time (i.e., 8.3 ms).

Figure 8 shows the calculated second-order Lagrangian structure functions for the representative
case of the He II grid turbulence at 1.95 K and at the decay time ¢t = 4 s. The range of r covered in
the Lagrangian analysis overlaps partly with that in the previous Eulerian analysis, while the lower
bound of » now extends down to about 15 xm, which is much smaller than the mean intervortex
distance ¢ [i.e., about 54 um based on Fig. 4(b)]. Interestingly, in the overlapping region of r, the
Lagrangian structure function data appear to agree quite well with that of the Eulerian analysis.
This suggests that despite the different physical bases for the calculations of the Lagrangian and
the Eulerian structure functions, they both exhibit similar scalings and magnitudes in the inertial
subrange.

The more striking feature as revealed in Fig. 8 is the deviation of the Lagrangian structure
functions from the inertial-subrange scaling at length scales below about 50 um, i.e., comparable to
the mean intervortex distance £. Similar deviations are also observed at other temperatures. Indeed,
the appearance of the deviation is not too surprising, because we know the energy dissipation must
set in at length scales comparable to £ [24], which terminates the inertial energy cascade. However,
in classical turbulence, it has been known that the viscous dissipation leads to an asymptotic scaling
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set obtained at 1.95 K and # = 4 s. The solid lines represent the power-law fits to the Eulerian data shown in
Fig 6.

of the second-order structure function as S,(r) o 2 at small scales [45,51]. This means that if the
grid turbulence in He II truly behaves classically, one would see the S,(r) value drop rapidly in
the dissipation subrange instead of rising above the inertial-subrange scaling curve. Therefore, an
outstanding question is what causes the observed abnormal behavior of S(r) at small scales.

To provide our thoughts on this question, let us consider what the tracer particles actually trace
in He II grid turbulence. Note that these micron-sized particles can either get trapped on quantized
vortices in the superfluid or entrained by the viscous normal fluid [31,53,54]. At length scales much
greater than ¢, the two fluids are coupled by the mutual friction. Therefore, regardless of whether
the particles are trapped or not, their motion at large scales simply provides information about
the coupled velocity field. At small scales where the normal-fluid motion is strongly damped by
viscosity and the mutual friction [24], the particles entrained by the normal fluid would make little
contributions to the ensemble-averaging calculation of S,(r). On the other hand, for those trapped
particles, their motions at small scales are controlled by the dynamics of individual quantized
vortices. Even at scales below £, the vortices still move randomly with a characteristic mean velocity

(v%)l/2 given by [4,24]
172
w2 _ k[T o (R
= —(=1 — , 3
(] 47T<R2 ! (Eo>> )

where R is the local curvature radius of the vortices. Therefore, the trapped particles can lead
to appreciable values of S»(r) at small scales. The exact behavior of S,(r) in the dissipation
subrange will then depend on the fraction of the particles that are trapped and the temporal
velocity correlations of the vortices. We would like to point out that moving vortices can generate
wake structures in the normal fluid due to the mutual friction [31,55,56]. If an untrapped particle
moves through such wake structures, it may experience velocity variations that also lead to a finite
contribution to S,(r) in the dissipation subrange. However, due to the small sizes of the wake
structures, the dominant contribution to S,(7) should still come from the trapped particles. To test
this physical picture, numerical simulations that can track the particles coupled to both the viscous
normal fluid and the quantized vortices are needed [57,58], which is beyond the scope of this work.

Finally, we perform the ESS analysis of the Lagrangian structure functions withn =1 ~ 5 and
plot them together with the Eulerian structure functions in Fig. 9. The Lagrangian structure functions
extend to regions with smaller values of S3(r). Interestingly, despite the fact that the Lagrangian
structure function data largely fall in the dissipation subrange, they appear to follow nicely the
power-law scalings of the Eulerian data in the inertial subrange. This observation confirms the

084602-10



STATISTICAL PROPERTIES OF HOMOGENEOUS AND ...

Image frame
at i+t "

Image frame

at ¢ Lagrangian analysis

FIG. 10. Schematics showing the concept of the Eulerian and the Lagrangian velocity analyses.

conclusion from classical turbulence research that the ESS scalings can encompass both the inertial
and the dissipation subranges [47,59]. But we must note that these scalings in the dissipation range
are not real scalings since the power-law relation between S3(r) and r is lost.

IV. SUMMARY

We have conducted PTV study of a nearly HIT in He II which emerges in the decay of
the turbulent flow produced by a towed grid in a flow channel. By correlating the velocities
measured simultaneously on different particle trajectories or at different times along the same
particle trajectory, we have conducted both Eulerian and Lagrangian analyses of the turbulent
velocity field. We find that the spatial velocity structure functions obtained through the Eulerian
analysis exhibit scaling behaviors in the inertial subrange similar to that for classical HIT but the
intermittency is obviously enhanced. The Lagrangian analysis allows us to obtain information about
the velocity field in both the inertial subrange and the dissipation subrange. In the inertial subrange,
the Lagrangian structure functions show similar magnitudes and scaling behaviors as the Eulerian
counterparts. However, they deviate strongly from the classical scalings in the dissipation subrange.
We propose that this abnormal behavior is related to the tracer particles which are trapped on
quantized vortices, the verification of which requires numerical simulations that account for the
coupling of the particles to both the normal fluid and the quantized vortices.
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APPENDIX: SAMPLE NUMBER DISTRIBUTION IN THE EULERIAN
AND LAGRANGIAN ANALYSES

As shown schematically in Fig. 10, the Eulerian velocity structure function analysis is conducted
by correlating the velocities measured simultaneously on different particle trajectories. The range
of r covered in this analysis is limited by the minimum and the maximum separation distances
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FIG. 11. Sample number as a function of r for (a) Eulerian and (b) Lagrangian velocity statistical analyses
of the particle trajectories for the data set obtained at 1.95 K and # = 4 s. The analyses are conducted only in
the shaded regions where the sample number is greater than 107.

between the particle pairs. The Lagrangian structure function analysis is based on correlating the
velocities measured along individual particle trajectories at different times. As discussed in the
text, the Lagrangian structure functions are plotted as a function of the particle displacement r
instead of the drift time t. The corresponding range of r is then limited by the minimum and the
maximum displacement of individual particles. In Fig. 11, we show the sample numbers extracted
from a representative data set (i.e., 10 trials with each having 34 frames lasting for 0.28 s) obtained
at 1.95 K and at a decay time + = 4 s as a function of r. In order for improved accuracy in the
ensemble-averaging calculations of the structure functions, we only analyze the data in the shaded
region of r where the sample number is greater than 102
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