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Physical modeling of the dam-break flow of sedimenting suspensions
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We develop a physical model of the dam-break flow of fine noncohesive particles
initially fluidized by a gas. By revisiting previous experiments, we show that the dynamics
of such flows involves two uncoupled phenomena. On the one hand, the settling of the
particles is the same as that of a nonflowing suspension, so that the mass flux of particles
that deposit can be related solely to the properties of the suspension. On the other hand,
the flow of the gas-particle mixture is similar to that of an equivalent fluid of constant
density and negligible viscosity. The momentum lost by the flowing mixture is equal to the
product of the deposited mass flux and the longitudinal velocity. These properties allow us
to model the time duration of the flow as the time taken by the particles to settle and the
slope of the final deposit as the ratio between the growth rate of the deposit height and the
velocity of the front of the dam-break flow. Finally, these findings lead to the formulation
of consistent shallow-water equations involving specific terms of mass and momentum
transfer at the bottom wall, which can be used to compute the dense lower layer of ash
flows generated by a volcanic eruption. They also provide tools for the interpretation of
field measurements by geologists.

DOI: 10.1103/PhysRevFluids.5.084306

I. INTRODUCTION

The fluidization of fine noncohesive powders by a gas can lead to the formation of a dense,
homogeneously expanded suspension that deflates and settles progressively once the gas supply is
vanished. The mobility of such fluidized mixtures can be considerable, especially when they travel
large distances down gentle slopes, as usually observed in some catastrophic episodes of explosive
volcanic eruptions. They represent thereby one of the most important natural hazards encountered
in geophysics [1–3]. The physical description of these flows has become a major issue for the
prediction of both the eruption time and the surface affected by the deposits, which may depend on
the initial conditions at the vent. This step requires therefore the determination of relevant scaling
laws that may be achieved first through an experimental analysis, performed in a well-controlled
geometry, such as a rectangular dam-break channel, which enables us to both generate a dense
homogeneous suspension in the locked reservoir as well as a gravitational sedimenting current that
travels down the channel [4–12].

Previous studies, conducted in this way, have revealed important features of these flows. Once
released down the channel, the suspension collapses from a height h0 to form a quasi-inviscid
current, the front of which travels at a quasiconstant speed UF that scales with the gravitational
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velocity
√

gh0 [8–12]. As the mixture is flowing, the particles sediment at a velocity Used and form a
deposit at the bottom of the channel that grows at a velocity Uagg. Surprisingly, the values of Used and
Uagg measured during the mixture is flowing are found to be approximately constant both in time
and all along the channel [12–15]. Moreover, they are also equal to those determined in the same
sedimenting mixture while confined, without flowing, within the locked reservoir. This remarkable
result suggests that ash particles within dense natural pyroclastic flows settle at a rate that could
be predicted independently of the flow dynamics. Altogether, these results suggest that the flow of
the mixture through the channel, hereafter referred to as dam-break flow, and the settling of the
particles, hereafter referred to as particle sedimentation, are very weakly coupled.

The objective of the present study is to propose a physical analysis of these results in order to
reveal the underlying mechanisms. By assuming that dam-break flow and particle sedimentation are
independent, we derive mathematical expressions that relate together the global characteristics of
the phenomenon: front velocity UF , sedimenting velocity Used, overall flow duration T , height hd∞ ,
and length L of the final deposit. These relations are validated by revisiting previous laboratory
experiments conducted with volcanic ash by one of the authors [12–15]. They can be used by
volcanologists to infer the flow characteristics from the properties of a deposit. In addition, they
can also provide a model for the mass and momentum transfers between the flowing mixture and
the bottom wall, which enables the way to shallow-water numerical simulations of pyroclastic flows
that travel down variable slopes.

The paper is organized as follows. Section II presents the flow configuration and known results.
Section III develops the physical model and compare its predictions to experimental results.
Consequences upon the modeling of the flow mixture are drawn in Sec. IV. Final discussion and
conclusions are set out in Sec. V.

II. REFERENCE FLOW CONFIGURATION AND KNOWN RESULTS

Despite the multiplication of sophisticated models able to reasonably compute the behavior of
turbulent dilute surges [16–21], simulations of dense pyroclastic flows still fail to reliably predict
the flow duration, in particular because of a lack of relevant models for the term of bottom friction
employed to capture the deceleration and arrest of the suspension during its final course [22–25].
Such a scientific lock needs to be addressed first experimentally in order to capture the main features
of these flows and to relate the initial suspension geometry and properties to those of the final
deposit. Dam-break flow configurations, commonly used in this purpose [9,12], turn out to be the
more consistent tool able to provide a local description of the flow and particle trajectories, and thus
to infer the key parameters that govern such sedimenting suspensions. Specifically, they can help to
understand how the mixture properties can control the pyroclastic flow dynamics.

Figure 1 describes the successive steps of a typical experiment of the dam-break flow of a
fluidized suspension. First, the particles are poured into a locked reservoir in order to form a
packed bed of height hd0 [Fig. 1(a)]. Then a gas is supplied from the bottom at a given velocity
Uf such as the suspension expands to a height h0 at a solid volume fraction �s [Fig. 1(b)]. From
that point, two kinds of experiments can be carried out: a first nonflowing defluidization process
is performed by stopping the gas injection while the reservoir remains locked [Fig. 1(c)]; a second
flowing and defluidization process is obtained by opening the channel gate simultaneously to the
stop of fluidization [Fig. 1(d)].

The sedimentation velocity in the nonflowing case [Fig. 1(c)] has been recently analyzed [26]
for fine heated particles including volcanic ash of random shape and almost spherical synthetic
particles Fluid catalytic cracking (FCC) [26]. In any case, it is well described by the semiempirical
expression

Used = Uref

8.6

(
1 − �s

�pack

)0.45

with Uref = gρs(1 − �s)d2

18 μ f
, (1)
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FIG. 1. Schemes of the various experimental configurations: (a) packed state, (b) homogeneously fluidized
and expanded suspension, (c) nonflowing defluidization process, (d) simultaneous flow and defluidization
process performed through the dam-break flow, and (e) final packed deposit after flow has ceased.

where g is the gravity acceleration, ρs the density of solid particle material, μ f the gas viscosity, and
d the average diameter of the particles. Here �pack is the volume fraction of the deposit formed after
settling of the fluidized suspension. In contrast with the nonreproducible value obtained by pouring
the particles into the reservoir, this parameter �pack is found to remain approximately constant after
successive cycles of fluidization and sedimentation for a given initial heap. Remarkably, it turns out
to be sufficient to encapsulate all the geometric properties of the volcanic ash.

Note that Eq. (1) is valid under specific conditions. First, it requires a high density ratio ρs/ρ f

between the two components of the mixture and a small particle Reynolds number, defined as Rep =
ρ f Usedd/μ f . Then the suspension has to be fully fluidized and homogeneous, which reduces to the
case where the solid volume fraction �s lies between the two boundaries, �up and �low, which
respectively represent the limit of fluidization and the limit of stability of the mixture. Above �up,
particles form arches and a part of their weight is supported by the reservoir walls. Below �low,
gas bubbles form and the suspension becomes heterogeneous. Between �up and �low, the particles’
weight is thus fully supported by the gas, whose pressure is hydrostatic. Then the gas velocity
Uf (�s) necessary to fluidize the suspension [Fig. 1(c)], and measured by means of flow meters, is
equal to the sedimentation velocity Used(�s), determined from the settling of the top surface. Fully
fluidized homogeneous gas-particles suspensions are solely obtained with noncohesive materials
belonging to the group A of the Geldart’s classification [27] but can expand significantly only with
finer or lighter group C powders provided that they are heated at a temperature sufficient (>100 ◦C)
to remove the effects of moisture, similarly to the volcanic ash investigated in Ref. [12] which
joined the group A, while exhibiting lower values of both �low/�pack and �up/�pack reported in
Table I, with Rep < 0.025 (0.1 � Used � 1 cm/s). Since �low/�pack remains quite large for solid
gas-particles mixtures, the hydrodynamic interactions between particles play an important role in
the regime under consideration. It is therefore not relevant to extrapolate relation (1) to values of �s

much lower than �low in the expectation of finding the value of an isolated particle.
When the gate is opened, the particle sedimentation is initiated simultaneously to the dam-break

flow [Figs. 1(d) and 2]. The fluidization technique, which enables significant variation of �s within
the mixture [26], allows us to distinguish the dynamics of dry granular materials governed by
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TABLE I. Properties of the materials used in the experiments.

Experimental parameters Ash1 Ash2 FCC

Solid particle density ρs (kg m−3) 1600 1490 1420
Mean particle equivalent diameter d (μm) 80 65 71
Range of concentration: �low/�pack − �up/�pack 0.66−0.94 0.66−0.95 0.78−0.91

frictional interactions (�s > �up) [9,28] from that of fully fluidized suspensions (�s < �up) [8,12].
This paper focuses on the second case, which is the subject of the present study. Regarding the
sedimentation, Used is found to be the same as in the nonflowing case [12–15] and can therefore
still be described by Eq. (1). Regarding the dam-break flow, it involves three phases that can
be distinguished by considering the velocity UF of the front [8,12]: a brief initial acceleration
associated with the column collapse, a second phase where the front velocity remains constant
(UF = UF2 ), and a final deceleration that lasts until the flow ceases. As noted in Ref. [29], similar
phases are observed in the case of a water flow, but the final deceleration involves different
mechanisms. The second phase is largely dominant and involves a velocity that is determined by
gravity: UF2 = k

√
gh0. The specific value of k, which depends in a complex way on the initial

column collapse, has not been modeled so far. It is observed to vary approximately between the
value k = √

2 corresponding to a vertical free fall and the value k = 2 associated with a dam break
under a shallow-water condition [7,30].

At the end of the process, the particles form a deposit characterized by a maximal height hd∞ and
a total length L + x0 [Fig. 1(e)].

In the next section, we shall formulate physical hypotheses based on the known features
previously noted and that will allow us to derive expressions able to relate the initial conditions
of the mixture (hd0 ,�s,�pack,Uref ) to the global properties of the flow (Used, T ) and of the final
deposit (hd∞ , L). The validity of this model will be assessed by revisiting the experiments conducted
by Girolami [13], which consisted in releasing highly expanded suspensions made with hot volcanic
ash and gas from a reservoir down to an impermeable channel [Figs. 1(d) and 1(e)]. These
experiments were presented in detail in a series of articles [12,14,15], where extensive information
was provided on the local flow dynamics. These data have been reprocessed here such as extracting
the bulk flow features required for evaluating the present model. The particles and the range of
volume fractions investigated are the same as those studied in our recent work devoted to the
sedimentation in a nonflowing condition [26]. The considered cases involved two samples of natural
volcanic ash, Ash1 and Ash2, each made with particles of different shapes and sizes characterized by

flowing layer 

deposit

particles

FIG. 2. Picture of the dam-break flow of an expanded suspension of volcanic ash heated at 180 ◦C. Note
that the picture is not a pure side view, but taken from a point above the surface. The whitish zone corresponds
to the surface the suspension seen in perspective. The two inserts are pictures of volcanic ash (on the left) and
FCC particles (on the right).
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a specific size distribution, as well as a sample of almost spherical synthetic FCC particles (Table I).
The materials were fully fluidized, then released down the channel until motion ceased (Fig. 2). In a
first set of experiments (Set 1), performed with all different materials, �s was varied by increasing
the fluidization velocity, and so the height h0 of the suspension, while the mass of particles was kept
constant. In a second set of experiments (Set 2), performed with Ash1, �s was varied by changing the
mass of particles whereas the initial height h0 was fixed. The reservoir dimension (x0 = 300 mm)
and the channel width (w0 = 150 mm) are much larger than the particle size (<250 μm). The
front velocity was found to range between 0.75 and 2 m/s. The Reynolds number Redb of the
dam-break flow can be estimated by considering that the mixture can be described as an equivalent
fluid of density ρm and viscosity μm. According to Ref. [26], the kinematic viscosity μm/ρm at large
concentrations (�s/�pack � 0.95) hardly reaches that of water. The Reynolds number Redb, based
either on the channel width w0 or on the initial height h0, is thus larger than 105.

To sum up, the experiments are characterized by the following physical ranges of parameters:
Rep � 1, ρs/ρ f � 1, �low < �s < �up, and Redb � 1, which are expected to be representative of
the dense basal ash flows generated by volcanic eruptions.

III. PHYSICAL MODEL AND VALIDATION

In this section, we develop a physical description, from previous experimental observations
described in Sec. II, in the aim of formulating the model hypotheses that will allow us to derive
mathematical relations between the main flow features and the final deposit. Then we shall validate
these predictions by comparison with experiments.

A. Hypotheses and predictions

Our flow model is based on the three following hypotheses:
H1: The front velocity UF remains constant during the whole flow duration.
H2: During propagation, the suspension forms two distinct homogeneous and overlying layers,

as illustrated in Fig. 1(d): (1) at the bottom, a deposit of volume fraction �pack equal to both that of
the initial random loosely packed bed [Fig. 1(a)] and that of the deposit obtained after defluidization
in the nonflowing case [Fig. 1(c)]; (2) above, a suspension, in which the volume fraction �s remains
constant during the flow and equal to that of the initial fluidized state [Fig. 1(b)].

H3: Within the moving layer [Fig. 1(d)], the particles settle at a velocity Used that is the same as
in a nonflowing suspension [Fig. 1(c)].

Hypothesis H1 amounts to neglecting the existence of the short acceleration and deceleration
phases of the dam-break flow. The front velocity is thus equal to its average value, which is the ratio
between the total length L traveled by the flow and its total duration T :

UF = L

T
. (2)

Hypotheses H2 and H3 imply together that the particle sedimentation velocity within the moving
layer is given by Eq. (1) and depends only on the initial particle volume fraction �s, the particles
properties involved in Uref and �pack, and gravity acceleration. By considering the mass conservation
of particles between a homogeneous suspension at concentration �s and a deposit at concentration
�pack, these two hypotheses also lead to the following relation between the sedimentation velocity
Used and the aggradation velocity Uagg of the deposit:

�sUsed = (�pack − �s)Uagg. (3)

Note that even if the sedimentation velocity is oriented downward while the aggradation velocity
is oriented upward, Used and Uagg are chosen here to be positive. Since the growth velocity of the
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deposit is constant, its height hd (x, t ) can be obtained as the product of Uagg by the time td of
deposition. In the reservoir (x � x0), td is simply the time t elapsed since the stop of the gas supply.
In the channel (x > x0), it is the time taken between the gate opening and the considered distance
reached by the mixture, td = t − (x − x0)/UF . The deposit height is hence given by

hd (x, t ) = Uagg t for x � x0, (4)

hd (x, t ) = Uagg

(
t − x − x0

UF

)
for x > x0. (5)

According to Eqs. (4) and (5), the shape of the deposit is represented by the dark gray zone in
Figs. 1(d) and 1(e). Within the reservoir, its top forms a horizontal line located at a height that
increases with time according to Eq. (4). Within the channel, it is a straight line with a negative
slope s that does not vary in time,

s = ∂hd (x, t )

∂x
= −Uagg

UF
= −T Used

L

(
1

�pack

�s
− 1

)
. (6)

At the end of the process [Fig. 1(e)], the shape of the final deposit is hence described by the
juxtaposition of a rectangle of length x0 and height hd∞ = UaggT with a triangle of height x0

and length L. Since, according to hypothesis H2, their concentrations are the same, the mass
conservation implies that the volume of final deposit is equal to that of the initial bed [Fig. 1(a)].
This allows us to relate the final deposit height, hd∞ , to that of the initial packed bed, hd0 :

hd∞ = βhd0 with β = x0

x0 + L
2

. (7)

Using Eqs. (4), (3), and (7), the total flow duration can be written as

T = hd∞

Uagg
= β hd0

Uagg
= β hd0

Used

(
�pack

�s
− 1

)
. (8)

This result helps us to understand how the particle sedimentation and the dam-break flow combine
to determine T . The dam-break flow stretches the gas-particle mixture by a factor 1/β > 1 in the
longitudinal direction and squeezes it by a factor β < 1 in the vertical direction. This deformation
does not change the particle concentration that remains homogeneous, neither does it alter the
particles’ settling that occurs at a constant velocity. However, the time taken by the particles to
settle is reduced by a factor β compared with the nonflowing case because the travel to the bottom
wall is reduced by the same amount. Since the flow lasts until all the particles have deposited, T is
thus also reduced by a factor β.

It is worth mentioning that a constant particle concentration also implies that a rapid deformation
of the suspension due to the dam-break flow does not generate any pressure gradient within the
interstitial gas, which therefore remains hydrostatic, as in the nonflowing sedimentation case.
Therefore, no pore-pressure effect is expected to occur provided that the gas is assumed to be
incompressible. This condition is fulfilled when the pressure at the bottom of the suspension is
small compared to atmospheric pressure, which is the case for a moving layer of less than 1 or 2 m
thick. The present results are thus applicable without correction to small-volume pyroclastic flows.

B. Experimental validation

Now we compare our model predictions with experimental results.
Figure 3 shows the experimental ratio L/(TUF2 ) as a function of the normalized initial

particle concentration �s/�pack. Whereas the front velocity significantly varies with the particle
concentration, this ratio is remarkably constant and reasonably close to unity in all cases. We
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FIG. 3. Experimental ratio between the average front velocity, L/T , and the constant velocity of the second
phase of the dam-break-flow, UF2 , as a function of �s/�pack, for all experiments.

can therefore conclude that hypothesis H1 is reasonable. In the rest of this section, we consider
a constant front velocity given by Eq. (2).

Black curves in Fig. 4 show various experimental profiles of the final deposit in the channel
(x0 � x � L). In agreement with our model, the experimental deposits have almost a triangle shape.
The blue curves are straight lines that connect the points of coordinates (0,βhd0 ) and (L,0), where
the values of hd0 and L are taken from the experiments. They fit the experimental profiles quite well,
which confirms the validity of Eq. (7).

Figure 5 compares the experimental slopes of the final deposit, hd∞/L, to values calculated by
means of Eq. (6), where Used is taken from nonflowing experiments at the same �s/�pack. Both
these quantities, plotted on Fig. 5(a) as a function of �s/�pack for all experiments, strongly vary
with the concentration. However, their ratio, plotted on Fig. 5(b), is almost constant. It is slightly
larger than unity because the average velocity L/T slightly underestimates the front velocity UF2 of
the second flow phase during which the velocity is truly constant (Fig. 3). This result confirms that
Eq. (6) gives a good approximation of the relation between the deposit slope and the ratio between
the front and sedimentation velocities.

 

0 0.5 1 1.5 2 2.5

Ash1: set 1

Ash1: set 2

Ash2

FCC

(b)

0
0 0.5 1 1.5 2

0.05

0.05

0.05

0.05

h d
 (m

)

Experiment
Prediction

Experiment
Prediction

Ash1: set 1 = 0.92s kcap

= 0.86s kcap

= 0.77s kcap

= 0.66s kcap

pack = 0.92s

(a)

x - x  (m)0 x - x  (m)0

FIG. 4. Profiles of the final deposit within the channel (x0 � x � L). Black curves, experimental data; blue
lines, model prediction. (a) Ash2 deposits obtained for different values of �s/�pack; (b) 1, Ash2, and FCC
deposits obtained at a given value of �s/ �pack.
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FIG. 5. Assessment of the model regarding the deposit slopes. (a) Measured deposit slopes |hd∞/L| (black
symbols) and values predicted by Eq. (6) (blue symbols) as a function of �s/�pack, for all experimental cases.
(b) Ratio between measured and predicted slopes.

Finally, we examine the total flow duration. Figure 6(a) shows the experimental values of T as a
function of �s/�pack. We observe that T strongly depends on the particle concentration and varies
between the various cases involving different materials or test conditions. Figure 6(b) shows the
ratio between the experimental values of T and those calculated by means of Eq. (8), where again
the values of Used are taken from nonflowing experiments. This ratio remarkably gather the results
around unity whatever the experimental conditions, confirming the relevance of Eq. (8).

Despite the rather crude nature of hypotheses H1–3, the relations they allow us to derive between
the initial conditions before release, the global characteristics of the flow of the mixture, and the
geometry of the final deposit are in good agreement with experimental results. These hypotheses
therefore draw a correct first approximation of the dam-break flow of sedimenting suspensions. The
proposed relations thus constitute a reliable guide for the analysis of laboratory flows as well as
natural ones.

(a) (b)

FIG. 6. Assessment of the model regarding the total duration T . (a) Measured values of T as a function of
�s/�pack, for all experiments. (b) Ratio between measured values of T and values predicted by Eq. (8).
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IV. CONSEQUENCES ON THE MODELING OF THE FLOW MIXTURE

We have analyzed the flow deposit left by a highly expanded noncohesive gas-particle suspension
which has flowed at high Reynolds number in a horizontal straight channel. We showed that all the
features of the final deposit, as well as the overall time duration of the flow, can be explained by
assuming that the particle sedimentation is the same as that observed in a nonflowing homogeneous
suspension which settles in a tank. That means that the sedimentation process is not influenced
by the complex flow of the mixture through both the fluidization tank and the channel. It occurs
at a constant velocity Used (hypothesis H3) while maintaining a constant particle volume fraction
(hypothesis H2). This conclusion has been obtained by taking advantage that the front velocity
UF of the dam-break flow in the investigated configuration remains constant during almost the
entire process (hypothesis H1). However, in contrast with the sedimentation velocity which can be
determined from the sole knowledge of the initial properties of the suspension [26], the dam-break
flow does depend on the geometry of the channel. In particular, UF is not expected to be constant in
general and, for example, will change if the channel slope varies. The prediction of the profiles of the
suspension height, h(x, t ), and of the average horizontal velocity of the mixture, ũ(x, t ), as well as
the prediction of UF (t ) in any geometry, requires us to solve the equations of mass and momentum
conservation. Although the flow within the fluidization reservoir involves both significant horizontal
and vertical velocities, the flow of the mixture within the channel is almost parallel and can be
described under the shallow-water approximation.

Shallow-water equations are commonly used to describe the flow of a heavy fluid into a lighter
one [7], as well as that of a fluid laden by solid particles into the same fluid [31]. The reader
is referred to Ref. [32] for a comprehensive exposition of these equations in various possible
configurations. Here we consider a suspension of particles in a gas of negligible density flowing at
high Reynolds number. The top of the suspension (z = h) is a free surface at atmospheric pressure
through which there is no exchange of mass or momentum. At the bottom (z = hd ), the suspension
flows above a rigid deposit with which it exchanges mass at rate ṁ and where it undergoes a friction
τp. Under these conditions, the one-dimensional equations write

∂ (ρmδh)

∂t
+ ∂ (ρmδhũ)

∂x
= ṁ, (9)

∂ (ρmδhũ)

∂t
+ ∂ (ρmδhξ ũ2)

∂x
+

∫ z=h

z=hd

∂ p

∂x
dz = τp, (10)

where p is a local pressure, ρm = �sρs is the mixture density, ũ = 1
δh

∫ z=h
z=hd

u dz is the velocity u of

the mixture averaged over the thickness δh = h − hd , and ξ = 1
ũ2δh

∫ z=h
z=hd

u2 dz is a correction factor
accounting for the shape of the velocity profile, which is unity when u is independent of z.

In general, an additional equation is required to account for the evolution of the particle
concentration [31]. However, for the type of flows under consideration, the concentration �s remains
constant throughout the flowing layer and equal to �pack within the deposit. It is worth mentioning
that the consistency of our model with a constant particle concentration is ensured by the particular
relation, given by Eq. (3), that exists between the sedimentation velocity and the aggradation
velocity. Note that shallow-water equations are often formulated in terms of the whole height h(x, t )
of the gas-particle mixture, which is the sum of the height hd (x, t ) of the growing deposit and the
thickness δh(x, t ) of the flowing mixture. Here we have preferred to express them in terms of δh(x, t )
because it is better suited to describe transfers between the deposit and the flowing layer. Moreover,
the fact that the aggradation velocity is constant leads to a simple expression for the deposit height,

hd (x, t ) = 0 for 0 � t � tx,

hd (x, t ) = (t − tx )Uagg for t > tx,
(11)
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where tx is the time taken for the front to reach the location x, which is equal to (x − x0)/UF in case
the front velocity is constant.

Numerical simulations of the dam-break flow of such a suspension in a channel, based on
shallow-water equations, are presented in Ref. [25]. The solved equations are similar to Eqs. (9)
and (10) but written in terms of whole thickness h(x, t ) instead of the thickness δh(x, t ) of the sole
moving layer and ṁ is thus taken equal to zero. By modeling τp as a viscous friction, the authors
could found a correct front velocity for phase 2 but largely overestimated the total time duration
T of the flow. Finally, they introduced an additional solid friction to force the flow to stop in a
reasonable time. Such a combination of solid and viscous frictions is often considered to interpret
such flows [22,33–36]. However, we have shown that T is not determined by the friction on the
channel bottom but is controlled by the time taken by the particles to settle. The present results
actually lead to simple expressions for ṁ and τp when Eqs. (9) and (10) are written in terms of δh.

The mass transfer from the moving layer to the deposited layer is given by the product of the
aggradation velocity and the ratio between the volume fractions of these two layers:

ṁ = −�pack

�s
ρmUagg = − �pack

(�pack − �s)
ρmUsed. (12)

The Reynolds number Redb of the flow mixture is larger than 105 in laboratory experiments and
much larger in natural flows, which implies a very thin boundary layer. Considering that the mixture
moves as a plug flow above a fixed deposit is therefore a reasonable assumption, substantiated by
a constant front velocity observed in experiments and by the velocity profiles determined with an
optical flow method [14]. In the absence of any significant vertical shear within the moving layer,
ξ = 1 and as the pressure is hydrostatic, this leads to∫ z=h

z=hd

∂ p

∂x
dz =

∫ z=h

z=hd

∂

∂x
[ρm g (h − z)] dz = ρm g

[
1

2

∂
(
δ2

h

)
∂x

+ δh
∂hd

∂x

]
. (13)

Furthermore, the momentum lost by the moving layer is due only to the momentum lost by the
particles that deposit, passing from a velocity u to rest, so that

τp = ṁ u, (14)

which is identical to the friction term of the model L defined in Ref. [32]. Under these conditions
and accounting for the fact that ρm is constant within the moving layer, shallow-water equations
write

∂δh

∂t
+ ∂ (δhũ)

∂x
= − �pack

(�pack − �s)
Used, (15)

∂ (δhũ)

∂t
+ ∂ (δhũ2)

∂x
+ g

2

∂
(
δ2

h

)
∂x

+ g δh
∂ (hd )

∂x
= − �pack

(�pack − �s)
Used ũ. (16)

Thus, combining Eqs. (15) and (16) with a model for the sedimentation velocity [26] should
constitute the first-order approximation of a dense layer of pyroclastic flows along the major part
of its course, excluding the initial formation which is fully three-dimensional and the very last
stage, when the thickness of the boundary layer in which the particles velocity drops from ũ to
rest (probably of the order of a few particle diameters) becomes comparable with that of the moving
layer. Solving these equations is beyond the scope of this paper. However, it is interesting to estimate
τp from experimental data by making some approximations about the flow in order to discuss the
role it plays in the whole process.

The magnitude of τp can be evaluated by inserting the front velocity UF in Eq. (17). Then
normalizing by ρsgd , we can build a Shields number,

Sh = τp

ρsgd
, (17)
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(a) (b)

(c) (d)

FIG. 7. Analysis of the wall friction τp and of its contribution to the dissipation from experimental data.
(a) Shields number comparing wall friction to particle weight; (b) potential energy Ep released during the total
flow duration; (c) energy Dsed dissipated by the sedimentation flow; (d) energy Ddb lost by dam-break flow due
to τp, calculated under the assumption of a linear longitudinal velocity profile, Eq. (22).

which compares the friction that forces a particle to stop when depositing with its weight. Figure 7(a)
shows the experimental values of Sh. In all experimental configurations, Sh is mainly sensitive to
the particle concentration, becoming four times larger when �s/�pack increases from 0.65 to 0.95.
In any case, it is larger than 20, which means that the cohesion of the deposit is not due to gravity
but necessarily results from the solid friction between the particles.

Another way to assess the role of τp is to analyze the respective contributions of the dam-break
flow and of the sedimentation process to the total dissipation of mechanical energy. The total energy
that is dissipated during each experimental test is equal to the potential energy of gravity that is
released between the beginning and the end of the flow: Ep = Mg(hg0 − hgd ), where M is the total
mass of particles, hg0 the elevation of the center of mass of the fluidized mixture before its release
in the channel [Fig. 1(b)], and hgd that of the final deposit [Fig. 1(e)]. The value of Ep, which can
easily be calculated from experimental data, is plotted in Fig. 7(b). Note that it varies significantly
according to experimental conditions.

Then, we consider the sedimentation process. The dissipation rate per unit volume εsed during
fluidization experiments within the initial reservoir—with the gate to the channel closed—can be
obtained as the product of the fluidization velocity, Uf , and the pressure gradient within the bed of
particles, �sρsg. Since fluidization and sedimentation processes were shown to be equivalent for
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a homogeneous suspension [26], the dissipation during the sedimentation process is given by the
same expression with taking Used in place of Uf ,

εsed = �sρsgUsed. (18)

Because the sedimentation is independent of the dam-break flow, the value of εsed given by Eq. (18)
is still relevant for the flowing suspension. The energy dissipated by the sedimentation process is
therefore

Dsed = εsed

∫ T

0
ϑ (t ) dt, (19)

where the volume ϑ (t ) of the suspension at time t represents its initial volume ϑ0 minus the
deposited volume,

ϑ (t ) = ϑ0 +
∫ T

0

ṁ

ρm
w0 xF (t ) dt, (20)

where xF (t ) = (x0 + UF t ) is the position of the front and w0 the width of the channel. Values of
Dsed, computed by applying Eqs. (18)–(20) to experimental data and normalized by Ep, are plotted
in Fig. 7(c). It is interesting to note that the results of the four cases are similar despite significant
differences in the total dissipated energy. Dsed strongly decreases with �s/�pack, which indicates
that it is mainly controlled by the particle concentration. However, in any case, the sedimentation
contributes less than 10% of the total dissipation.

Now let us consider the energy Ddb that is dissipated by the dam-break flow. We start by
considering the mechanical energy Edb which is lost by the moving layer. Because we assume a
plug flow, no dissipation occurs within the moving layer, and Edb reduces to the work of τp. After
summation along the channel (x0 < x < L) and over the time interval during which the flowing
mixture is present ((x − x0)/UF < t < T ), we have

Edb = −
∫ L

x0

∫ T

x−x0
UF

w0 τp u(x, t ) dt dx. (21)

Since we do not know the velocity profile in the experiments, we propose to estimate Edb by
assuming a linear evolution between the reservoir wall at x = 0 and the front position xF (t ) which
moves at constant velocity UF ,

u(x, t ) = [x/xF (t )]UF . (22)

This represents a crude assumption, which is, however, probably a reasonable first-order approxi-
mation since the mixture surface h(x) is observed to be rather smooth and regular (Fig. 2). One part
of Edb corresponds to the energy Ddb that has been dissipated in heat within the boundary layer,
while a second part is associated to the potential energy of gravity that has been transferred to the
deposit, so that

Ddb = Edb − Mghgd . (23)

Values of Ddb, computed from experimental data by means of Eqs. (21) and (22), are plotted in
Fig. 7(d). Despite the assumption made regarding the velocity profile and the fact that our model
is not expected to be valid during the first and the last stages of the flow, Ddb/Ep is found to be of
the order of unity and does not show any well-defined trend to evolve with �s/�pack. We can thus
conclude that the present model of τp is consistent with the experimental data.

V. CONCLUDING REMARKS

The lower layer of pyroclastic flows is made of a gas laden with fine noncohesive ash particles. Its
properties can be investigated by means of laboratory experiments. By revisiting the characteristics
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of the final deposit and the total time duration measured in such experiments, distinctive properties
of these flows have been revealed, which shed light on their dynamics and draw guidelines for the
modeling of natural flows of ash generated by a volcanic eruption.

The most striking feature of such flows is the absence of a significant coupling between
the sedimentation process and the overall flow of the mixture. Both the volume fraction and
the sedimentation velocity of the particles are found not to be influenced by the rapid flow in the
channel, which, however, involves a strong elongation of the mixture in the longitudinal direction.
This means that the particles concentration �s of the flowing mixture can be considered to be
constant in space and time. Also, it implies that the sedimentation velocity Used is the same than
that measured in a nonflowing mixture confined within a reservoir, which has been modeled in a
previous work as a function of the ratio �s/�pack between the particle volume fraction and its value
at packing [26]. Because �s is constant, the mass flux, ṁ, of particles that settle down and the growth
velocity Uagg of the deposit are directly related to Used and can be determined from �s/�pack.

Furthermore, the mixture can be described as an equivalent fluid of constant density ρm and
viscosity μm. The Reynolds number of the flow mixture is larger than 105 in laboratory experiments
and much larger in natural flows. In addition, the contribution of the sedimentation process to the
dissipation of mechanical energy turns out to be small. Therefore, the mixture can be reasonably
approximated as inviscid and moving as a plug flow at velocity u. The momentum flux that leaves
the flowing mixture is thus determined by the momentum lost by the particles as they deposit,
τp = ṁu.

During the longest part of their run, such flows are quasiparallel and the evolution of both the
thickness and the velocity of the moving mixture can be described by shallow-water equations
including ṁ and τp as sink terms of mass and momentum, respectively. The present analysis of
experiments performed in a horizontal channel indicates that this should lead to a good prediction
of the total flow duration and of the deposit shape, provided that the front velocity is correct. In
addition, numerical solving of shallow-water equations for an inviscid fluid in a similar geometry
leads to a constant front velocity in agreement with experiments [25]. We are therefore confident
that shallow-water equations with the sink terms proposed here constitute a good tool to predict
natural flows of hot dense volcanic ash in any geometry with smooth slope variations, as is the case
when such flows travel down valleys.

Beyond the fact that these equations allow one to compute the complete longitudinal evolution of
the horizontal velocity and that of the mixture height, the findings of this study can provide valuable
hints for the interpretation of the geologist’s field measurements. As an illustration, let us consider
that the following quantities can be estimated from the analysis of sediments: the total run-out
distance L, the thickness of the deposit hd∞ , and the slope of the deposit s. Then, if the properties of
the ash particles (size, density, packing fraction �pack) can be determined from the analysis of the
sediments, the relation between the aggradation velocity, Uagg, and the particle volume fraction,
�s, of the flowing mixture can be estimated. Combining the results of this study, we have the
four following relations, Uagg = f (�s/�pack ), s = Uagg/UF , hd∞ = TUagg, and UF = L/T , from
which the four unknowns �s, Uagg, UF , and T can be evaluated. Of course, if the flow dynamics
is computed from shallow-water equations, variations of the topography of the valley can be taken
into account to interpret variations of the flow deposit along the flow path.
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