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The emergence of particle accumulation structures (PAS) in noncylindrical liquid
bridges (LBs) is studied numerically for a high Prandtl number liquid considering
microgravity conditions. Simulations are conducted in the framework of a finite-volume
(Eulerian) approach with nonisodense particles tracked using a Lagrangian, one-way
coupling scheme. First, the threshold of the Marangoni-flow instability is determined as
a function of the aspect ratio and the volume of liquid held between the supporting disks,
thereafter, PAS formation is investigated for supercritical conditions. The overall approach
is specifically conceived to provide details about the morphological evolution of these
structures as the main control parameters are varied. For this reason a set of dedicated
notions and definitions (such as the linear extension of the PAS, its inner core radius,
and the area of the “petals” or “blades”) are introduced to allow a precise quantification
of a series of purely geometrical effects. Though the analysis is deliberately limited to
illustrating the macroscopic patterning behavior and its relationship with the overarching
factors, a model is proposed to interpret the increased ability of slender (concave) LBs to
support the formation of PAS over extended ranges of values of the particle Stokes number.
This model yet relies on essentially geometrical arguments, that is, the triadic relationship
among the curvature of the free surface, the topology of fluid streamlines, and particle mass
effects.
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I. INTRODUCTION

Various fundamental types of particle-fluid interaction stemming from different situations in
nature and technology are often regarded as archetypal systems for advancing our knowledge of
complex fluids and multiphase flows [1–17]. In such a context, the structures produced by the
self-organization of particles have enjoyed a widespread interest over recent years as a classical
workhorse to predict the nonlinear dynamics of these systems and their asymptotic behaviors.
Though these situations differ in regard to the spatiotemporal nature of the flow (laminar or
turbulent), and/or with respect to the physical effect driving it (a pressure difference or a force
of buoyant, vibrational, or thermocapillary origin), the identification of general principles and
overarching common mechanisms has actively been sought.

The present work, in particular, aligns with the line of inquiry originating from the landmark
experiments carried out in liquid bridges (LBs) in Refs. [18,19]. If the size of the fluid domain is
relatively limited (few millimetres in normal gravity conditions) or the experiments are conducted
in space, the dominant mechanism of convection in this configuration (a small amount of liquid

*paolo.capobianchi@strath.ac.uk
†marcello.lappa@strath.ac.uk

2469-990X/2020/5(8)/084304(30) 084304-1 ©2020 American Physical Society

https://orcid.org/0000-0003-4253-7853
https://orcid.org/0000-0002-0835-3420
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.5.084304&domain=pdf&date_stamp=2020-08-14
https://doi.org/10.1103/PhysRevFluids.5.084304


PAOLO CAPOBIANCHI AND MARCELLO LAPPA

suspended between two circular supports at different temperature) is generally represented by
surface-tension-driven (Marangoni) convection. The typical hierarchy of bifurcations displayed
by these systems is as follows: initially (for relatively small values of the imposed temperature
difference) a unique flow structure is allowed, namely a steady and axisymmetric toroidal roll. On
increasing the magnitude of the temperature gradient, however, this uniqueness is lost and other
flows with well-defined different patterns of symmetry are established after transients have decayed
away (see Refs. [20] and references therein). In general, the initially steady convection is taken over
by motions that are spatially periodic, quasiperiodic, or chaotic [21–24]. The interest in this problem
is still alive as witnessed by the studies being produced nowadays [25,26].

The onset of time dependence is generally associated with the emergence of waves which travel
in the fluid with an axial component (directed in the upstream direction) and a symmetry-breaking
component oriented in the azimuthal direction. Due to the cylindrical symmetry of the system, these
oblique waves are always produced in couples. Accordingly, two types of waveforms are allowed in
principle, i.e., standing waves (resulting from the superposition of waves with equal amplitude) and
traveling waves (waves with different amplitude; see Ref. [27] and references therein). These modes
of convection have effectively been observed in a number of experimental and numerical studies on
the subject [14,21].

After some initial observations in Refs. [28] where some glimpses of these peculiar particle
phenomena were provided, the aforementioned studies [18,19] were the first to clearly report on
the surprising emergence of fascinating collections of particles (perfectly aligned in space along
paths with the topology of a multiblade circuit or windmill). These phenomena (today generally
referred to with the acronym of PAS, i.e., particle accumulation structures) manifest themselves
in the presence of a traveling wave and in relatively restricted ranges of the imposed temperature
difference and particle size. An extended description of their geometrical properties can be found
in various papers appearing on the subject over the last decade. As an example, Ref. [19] described
them as a circuit spirally wrapped around the core of the basic toroidal vortex. Other researchers
could discern that the apparent property of this circuit to rotate in the azimuthal direction with the
same angular frequency of the traveling wave (as it were a solid body), is just an illusory effect.
Indeed, as demonstrated in Ref. [18], if examined individually, particles may even move in an
opposite direction with respect to the prevailing sense of rotation of the wave (it has been clarified
that a spatially rotating item with fixed shape appears because a relatively large number of particles
undergo spatially correlated large-scale motions). The structures formed by particles generally
reflect the existence of KAM tori, i.e. closed stream-tubes existing in the frame of reference rotating
with the same angular frequency of the wave, in which the flow is steady.

Research conducted over subsequent years involved sifting through existing (experimental,
theoretical, and numerical) approaches with different foci in order to glean hints and draw inferences
about what factors may feed the mechanisms at the root of these structures [29,30]. These efforts led
to the elaboration of two main theories running in parallel in the literature, relying on the concepts
of “inertial” or “finite-size” Lagrangian coherent structures, respectively [10,12,13,31–36]. These
models have displayed a varying degree of success in explaining experimental dynamics depending
on the considered circumstances.

Paralleling these continued theoretical efforts has been a series of other works, aimed to explore
qualitatively and quantitatively different parts of the parameter space to reveal the intrinsic multiple
nature of the solutions (particle attractors) which can characterize this problem. While some
properties of these structures are inherited from the underlying flow pattern (the number of blades
or “petals” characterizing the projection of the particle circuit on a plane perpendicular to the
LB axis generally reflects the so-called azimuthal wave number of the traveling wave, i.e., the
number of sinusoidal distortions affecting the toroidal roll in the circumferential direction), other
topological properties can display a varying nature, which has puzzled the investigators for years
[7,8,15,18,37–39].

Along these lines, as an example, it is also worth mentioning that other researchers [18,34,40,41]
have reported on the existence of an alternate, less ordered state, generally referred to as the “toroidal
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FIG. 1. Sketch of LBs with different volume ratios, S, and the coordinates system adopted to represent the
interface.

core” given the tendency of particles to cluster where the fluid vorticity takes relatively high values.
Romano and Kuhlmann [36] could show numerically that this peculiar behavior should be regarded
as an intermediate stage of evolution. Oba et al. [41] indicated experimentally that the particles
on the core exhibit chaotic motions. Lappa [42] found that the application of high-frequency high-
amplitude vibrations along the axis of the LB could make this peculiar state stable.

Some studies have also demonstrated that different types of highly ordered PAS structures may
coexist in the same regions of the space of parameters [9,11,35,39] and that asymmetric variants
of PAS, i.e., windmills that display an eccentricity with respect to the axis of the LB, are possible
[11,43]. Such line of inquiry has progressed with the aid and support of both experimental results
and numerical simulations, which have shown that the aforementioned set of influential conditions
can encompass a wide range of factors such as (but not limited to) the size of particles [36], their
density [9,19] or “initial position” [11], the mono- or multidispersed nature of the dispersion [9],
and the properties of the carrier flow (Marangoni convection) as determined by the value of the
Marangoni number and the aspect ratio of the related toroidal vortex [8,39]. A similar concept also
applies to the influence of the volume of liquid effectively held between the two disks supporting
the LB for a fixed geometrical aspect ratio. However, only a few experiments have appeared in the
literature dealing with this aspect [7,44]. Unfortunately, numerical results are completely absent due
to the difficulties typically associated with the numerical simulation of noncylindrical geometries.

In such a context, the present analysis should be seen as a very focused effort aimed to explore
aspects which have been poorly addressed in the literature or completely overlooked. Specific
numerical examples about noncylindrical LBs are conceived and examined towards the end to gain
an increased understanding of the properties of the emerging particle structures and the underlying
fluid flow mechanisms.

II. MATHEMATICAL AND NUMERICAL MODEL

A. Geometrical model

The geometry of the problem is shown in Fig. 1. The LB is held by surface tension between
two coaxial cylindrical disks (or rods) of diameter D, placed at a distance L apart. The upper and
lower rods are assumed to be flat and are kept at a different temperature (resulting in an imposed
temperature difference, �T = Thot − Tcold). The free surface (interface separating the liquid from
the external gaseous environment) is considered adiabatic. The LB aspect ratio is defined as AR =
L/D. Gravitational effects are neglected (microgravity conditions).
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The different variants shown in Fig. 1 essentially result from the different volume of liquid
(V ), which can effectively be held between the two disks. Injecting in the LB an amount of liquid
larger than that required to fill a cylinder with the same radius of the rods and height equal to the
distance between them (V0) results in a convex interface (V > V0), whereas the opposite situation
in which the LB is underfilled (V < V0) leads to a concave interface. A relevant nondimensional
parameter able to account for these situation is the volume ratio defined as S = V/V0 [45–47].
Another relevant parameter is the capillary number, defined as Ca = σT �T/σ0, where σ0 is the
surface tension evaluated for a reference temperature T0 and σT is the surface tension temperature
coefficient [formally linking the surface tension to the temperature via the linear relationship
σ = σ0 − σT ([T − T0)]. If this nondimensional number is sufficiently small, the deformation of the
free surface of the LB induced by the Marangoni flow can be neglected. Accordingly, the interface
can be assumed to be rigid and its shape can be determined solving the Young-Laplace equation

�p + ρgz = σ0

(
1

R1
+ 1

R2

)
, (1)

where �p is the pressure jump across the two phases and R1, R2 are the principal radii of curvature.
Equation (1) can be reformulated in nondimensional form in cylindrical co-ordinates (cf. Fig. 1) by
substituting the analytical expression of the principal radii of curvature [46,47]. This leads to

1

c[1 + (c′)2]
− c′

c[1 + (c′′)2]3/2
= L�p

σ0
= k1, (2)

where c = c(z) is the nondimensional (with respect to L) radial position of the interface and the
“primes” represent derivation with respect to the axial coordinate z. Each value of the parameter
k1 = L�p/σ0 determines a fixed volume of the LBs. In the present work, we have changed
parametrically the value of k1, in order to obtain the desired interface shape. The equation has been
integrated by a shooting method with the conditions that the liquid is attached to the solid supports:
c = c(0) = c(1) = R/L.

B. Fluid motion governing equations

The equations governing the flow motion are the incompressible Navier-Stokes and energy
equations, which in dimensionless form can be cast in compact form as (see, e.g., Ref. [48])

∇ · u = 0, (3)

Du
Dt

= −∇p + ∇2u, (4)

DT

Dt
= 1

Pr
∇2T, (5)

where t represents time, u is the fluid velocity, and the operator D/Dt = ∂/∂t + u · ∇ indicates the
substantial derivative (related reference quantities used to put the set of equations in nondimensional
form are L, ν/L, L2/ν, ρ(ν/L)2 and �T for length, velocity, time, pressure and temperature,
respectively, where ν is the fluid kinematic viscosity and ρ is the density).

Closure of the mathematical problem also requires the definition of the conditions at the boundary
of the LB. Neglecting the presence of the surrounding fluid, i.e., by considering the adiabatic
interface as an impermeable rigid boundary where the thermocapillary action is balanced by the
tangential viscous stress produced in the liquid, the related dynamic boundary condition at the free
interface reads [48]

[∇u + (∇u)T] · n + Re∇sT = 0, (6)

where ∇s ≡ ∇ − n(n · ∇) and n is the unit normal vector at the interface (cf. Fig. 2).
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FIG. 2. Schematics of the LB interface showing the unit normal and tangent vectors, and the interface
temperature gradient ∇sT .

The dimensionless numbers appearing in the governing equations and stress boundary condition
Eqs. (3)–(6) are the Prandtl number, Pr = ν/α, and the Reynolds number Re = σT �T L/ρν2, where
α is the thermal diffusivity of the fluid. Following common practice, in the remainder of the paper,
we refer to the Marangoni number, formally given by the product of the Prandtl and Reynolds
numbers: Ma = Re Pr = σT �T L/ρνα.

C. Particle dynamics

The dynamics of finite size, nonmassless particles are generally different from the behavior of the
fluid in which they are dispersed in. Furthermore, in certain conditions, dispersed solid particles can
even have a back influence on the local flow field (making flow and particles dynamics essentially
“coupled”) or interact reciprocally (e.g., particle-particle collision). For relatively limited dimension
of the tracers, particle Stokes number of the order of 10−5 or lower (see, e.g., Ref. [19]), and
dilute dispersions (the ratio of particles volume to LB volume is of the order of 10−4 in typical
experiments; see, e.g., Ref. [19]), such coupling effects are generally neglected, and the simulations
are conducted on the basis of the so-called one-way coupling approach. In other terms, the flow field
is assumed to be completely insensitive to the presence of the dispersed phase.

Though this numerical approach should clearly be regarded as a simplification of reality
(obviously this scheme cannot describe particle interaction when accumulation takes place), it
has enjoyed a widespread use in the literature for the study of PAS [10–13,29,34–36,43,48]. A
justification or rationale for such a practice can be found in available experimental observations
or data [7–9,14,15,19,37–41,44]. Indeed, experiments dealing with a variety of fluids and particle
types have shown that once particles enter the attractor (the KAM torus), they can no longer leave
it (interparticle forces are not sufficiently strong to allow particles to get away from the attractor).

In the present work, particles are tracked according to the Maxey-Riley equation (see, e.g.,
Ref. [49]), which is reported here in dimensionless form:

dv
dt

= 1

ξ + 1/2

[
3

2

Du
Dt

− St−1(v − u)

]
. (7)

The two terms appearing in the brackets on the right-hand side of Eq. (7) are, in order of appearance,
the pressure gradient force and the drag force. The factor in the denominator outside the brackets
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takes into account the added mass force. The parameter ξ = ρp/ρ represents the particle-to-fluid
density ratio. On writing Eq. (7), the Saffman lift force and Faxén corrections have been neglected,
as usual in these problems (see, e.g., Ref. [36]). The additional dimensionless group appearing in
this equation is the particle Stokes number defined as St = d2

p/18L2, where dp is the aforementioned
particle diameter.

The Basset force has also been neglected, which requires proper justification. Some relevant
information along these lines can be found in Ref. [42], where related arguments were elaborated
on the basis of earlier studies [50,51] about the motion of spherical particles in turbulent fluids and
harmonic stokes flows, respectively, and in Ref. [52] about history effects in high-frequency flows.
As shown by these studies, the Basset force can be ignored provided particles and the oscillatory
motion induced by an imposed external forcing (e.g., vibrations or g-jitters in microgravity
conditions) or spontaneously produced by the considered flow (as a result of a Hopf bifurcation)
satisfy well-defined conditions.

These conditions are in general formulated directly in terms of St and the additional parameter
(see, e.g., Ref. [51]) defined as Stω = ωdimd2

p/18ν = ωSt where ωdim is the frequency of oscillation
of the velocity field (ω = 2π fc). General consensus exists that the relative importance of the Basset
force increases with both ξ (particle-to-fluid density ratio) and the nondimensional ω. In particular,
according to the criteria provided in Ref. [50], the effect of the Basset force should be neglected a
priori when the Stokes number (St) satisfies the condition St < 2/9ξ 1/2 (∼=3 × 10−1 for ξ = 2 and
∼=1.5 × 10−1 for ξ = 0.5). An evaluation of St and Stω with the present choice of parameters (see
Sec. III) shows that this criterion is met with St ∼= 10−4 and Stω ∼= 5.6 × 10−2 (considering for ω

the maximum possible value, i.e., the “worst” case ω ∼= 70; see the plots about the frequency of the
oscillatory flow reported in Sec. III C).

Assuming a density ratio larger than those considered here (ξ = 2.7), Ref. [53] concluded that
the effect of the Basset term could be neglected, provided the nondimensional angular frequency
ω of the sinusoidally varying velocity field was smaller than 6.2 × 102 [<0.1 with their reference
units, see Fig. 2(a) of their work]. These conclusions also agree with the analysis in Refs. [51,54].
In our case this condition is also satisfied.

The latter authors, in particular, found that even though the importance of the Basset term
decreases rapidly as the value of Stω → 0 for all values of ξ (as also confirmed later in Ref. [52]);
however, the ratio of the Basset force to the overall force experienced by the particle (virtual mass
+ stokes drag + history term) is ∼=0.2 (see Fig. 1 of their work) for a value of their control
parameter “S” = 0.6, which would correspond in the present case to a frequency of oscillation
ω ∼= 1.25 × 103.

Put together, all these studies essentially indicate that the Basset term may play a non-negligible
role for the conditions considered in the present study only when ω > 103. As evident in the figures
reported in Sec. III C, the frequencies relating to the present cases are much smaller than this limit.
The influence of the Basset force can therefore be considered negligible.

D. Solution method

Equations (3)–(7) have been solved in the present work using the OpenFOAM computational
platform. In particular, the Navier-Stokes equations have been solved in the frame of the well-known
PISO approach [55].

With OpenFOAM such algorithm relies on a collocated grid arrangement of primitive variables,
that is, all velocity components, pressure and temperature are defined in the center of each control
volume. Relevant coupling of all these variables (needed to avoid the onset of numerical oscillations
and keep the time-marching procedure stable) is ensured through a special interpolation scheme
implemented on the faces of the volumes [56].

In particular, in the present study, the different diffusive and convective terms appearing
in Eqs. (4) and (5) have been discretized using second-order central difference schemes. A
preconditioned biconjugate gradient (PBiCG) together with an incomplete lower upper (DILU)
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FIG. 3. Computational cell next to a boundary showing the particle velocity before “time frame h”), and
after “time frame h + 1”) the particle-boundary interaction treatment.

preconditioner in the predictor step has been used to treat the resulting system of algebraic equations
(implicit formulation). The additional pressure equation of elliptic nature associated with the PISO
has been iteratively integrated in the frame of a generalized geometric-algebraic multigrid (GAMG)
method (the reader is referred to Sec. III A for additional information about the solver validation
and the grid refinement study).

E. Particle-boundaries interaction

A separate discussion is needed for the specific algorithm used to track particle motion. To
ensure high accuracy, the Maxey-Riley equation has been integrated with a time step satisfying
the following restricive condition: maximum particle Courant number ∼10−3. Moreover, specific
attention has also been paid to the particle-wall interaction model.

In this regard, OpenFOAM offers a variety of different options. The present work relies on
the so-called local interaction model. In particular, we have implemented it in order to modify
the component of the particle velocity perpendicular to the wall (as the particle approaches the
boundary) while keeping unchanged the original tangential velocity.

Put simply, when the particle is localized inside a cell adjacent to a boundary (see Fig. 3), the
algorithm makes a check on the normal velocity and, if this value is positive (meaning that the
particle is moving toward the boundary), the particle-wall interaction model is activated in order to
modify the velocity according to the following relationship:

[u]h+1 = [u]h − {(1 + ep)[un]hn + μp[ut]h}, if un > 0
[u]h+1 = [u]h, otherwise, (8)

where h is the time step at which the particle hits the wall and the h + 1 is the subsequent one. un,
ut represent the component of the velocity normal and tangential to the cell face, respectively, being
the interface.

To take into account the effective physical extension of particles and avoid that the distance
between their center and the boundary of the considered physical domain becomes smaller than the
particle radius (e.g., situation corresponding to the unphysical penetration of particles into the walls
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TABLE I. Numerical setup of the experiment for the case studied by Refs. [12,42].

Working fluid Pr ν [m2 s−1] ρ [kg m−3] Ma

Sodium nitrate 8 1.27 × 10−6 1904 20 600

or the interface), we have modified the model under discussion to prevent the particle spherical
surface from crossing the external boundaries of the LB.

All the simulations discussed in the remainder of this paper have been conducted by setting
ep = μp = 0, therefore the particle approaching the wall will proceed tangentially to the wall itself
(the velocity perpendicular to the wall is annihilated, while the tangential one is conserved). Similar
approaches have been adopted successfully in previous studies by (see, e.g., Ref. [36]).

III. RESULTS

Most of results have been obtained for S �= 1 (although the cases where S = 1 have also been
examined for the sake of completeness and for comparison with the cases S �= 1). Moreover, as
explained in the earlier section, we have considered microgravity and perfectly rigid interfaces under
the assumption that Ca � 1.

To the best of our knowledge the experimental studies [7,44] are the only works in which the
effect of interface deformation on PAS formation was investigated (though under normal gravity
conditions). Here the problem is addressed numerically with the twofold intention to (1) study
situations (microgravity) for which no experimental data are available and (2) provide additional
details and insights into the topological and morphological evolution of PAS when nonstraight
interfaces are considered.

A. Code validation and Mesh study

In order to test the capabilities of the solver to correctly capture the hydrothermal instability of
Marangoni flow and, the ensuing ability of these flows to force dispersed particles to accumulate in
coherent structures, we have initially considered the same numerical setup of Refs. [12,42]. The test
case (see Table I) is a LB with unit volume ratio (S = 1) and aspect ratio, AR = 0.34 in microgravity
conditions. Sodium nitrate (Pr = 8) is assumed as the working fluid, while the Marangoni number
is Ma = 20 600, which on the basis of our computations (see Sec. III B) corresponds to Ma/Mac ≈
2.25.

Using a mesh with resolution similar to those considered in Refs. [12,42] (a mesh with this
density is shown in Fig. 4 for a LB with convex interface), we have found the flow to be unstable
with the emergence of a hydrothermal traveling wave having wave number m = 3. The angular
frequency, ω = 2π/m�, where � is the period of the oscillations measured by a probe located at
a fixed position inside the LB is in good agreement with the previous findings cited above with a
relative percentage error, ε < 2%, as indicated in the last column of Table II.

As the next step of this validation hierarchy, we have considered the dynamics of solid particles
(their number is np ≈ 1000) through the solution of Eq. (7). The corresponding PAS reported in

TABLE II. Code validation: Comparison with the previous results by Refs. [12,42].

Number of cells (r, ϕ, z) Mode m ω [Hz] PAS |ε|%
Melnikov et al. [12] (40, 32, 40) 3 2.81 Yes 1.1
Lappa [42] (40, 40, 32) 3 2.80 Yes 0.7
Current work (40, 44, 40) 3 2.78 Yes
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FIG. 4. Computational domain (mesh M1) for the configuration AR = 0.34, S = 1.1.

Fig. 5(a) closely resembles the PAS obtained in Ref. [42] [cf. Fig. 5(b)], thereby providing further
evidence for the reliability of the present approach.

A grid assessment study to assess the sensitivity of the overall computational algorithm to the
mesh has been conducted adopting two levels of refinement [obtained by increasing the number of
points along each direction in the coordinate system, (r, ϕ, z)]. The outcomes of such assessment
are summarized in Table III in terms of values of the angular frequency and related percentage error
versus the density of the mesh.

Owing to the good rate of convergence displayed by the algorithm and the modest percentage
error relating to a switch from the mesh M1 to the M2, all the simulations discussed in the remainder
of this paper have been carried out using the resolution M1 reported in Table III (which has proven
to be the best compromise in terms of accuracy and computational efficiency).

B. Investigation of the critical conditions for LBs with different aspect and volume ratios

As already explained in the introduction, particle accumulation in LBs occurs only if the flow
undergoes transition to a three-dimensional oscillatory state and the emerging waveform is a
traveling wave; hence, the Marangoni number has to be larger than the value at which the instability
occurs (in the following indicated as the critical Marangoni number, Mac). Specifically, according
to previous observations (see, e.g., Ref. [19]), particle accumulation is known to occur when the
Marangoni number is such that Ma/Mac ∼ 2. This simple argument implicitly indicates that a

TABLE III. Outcome of the mesh convergence study. The three levels of refinement, M1,2,3, have been
obtained by increasing gradually the number of points along the three fundamental directions of the reference
system.

Mesh Number of cells (r, ϕ, z) ω [Hz] |ε| %

M1 (40, 44, 40) 2.76 4.3
M2 (60, 60, 60) 2.65 1.9
M3 (90, 100, 90) 2.70

084304-9



PAOLO CAPOBIANCHI AND MARCELLO LAPPA

FIG. 5. Top view of PAS obtained obtained numerically: (a) present simulation, (b) after [42]. Flow
conditions are summarized in Table I. In panel (a), the larger circle represents the periphery of the closest
disk, while the smaller circle is periphery of the opposite disk; the shaded region corresponds to the axial
projection of the interface.

necessary prerequisite for the analysis of particle behavior is the determination of the critical
conditions for all the LB configurations under investigation.

In the present work such a threshold has been determined through an “extrapolation” method-
ology (refer to, e.g., Ref. [57] for the details of the technique), i.e., by analysis of the rate of
growth of the maximum azimuthal component of the velocity at the interface. This approach
has been implemented in practice by considering two supercritical states relatively close in the
parameter space, i.e., two subsequent values of the Marangoni number presumably located above the
not-yet-determined threshold. The critical values has finally been obtained via linear extrapolation
to zero of the disturbance growth rate. More precisely, an iterative process has been implemented in
which the ability of the system to produce an oscillatory response has been tested for progressively
smaller values of the parameter, i.e., the Marangoni number. While doing so, we have assumed the
fluid viscosity to be insensitive to temperature variations.

The data for AR = 0.34 are reported in Fig. 6(a), where the extrapolated Mac is shown for
three different volume ratios: S = 0.92, 1, 1.1. Figure 6(b) collects the corresponding values of the
critical frequency in dimensionless form, fc = H2/ν f . It can be seen that both Mac and fc increase
monotonically with S.

Figures 7(a) and 7(b) summarize the critical Marangoni and frequency as a function of S for
AR = 0.5. As witnessed by these figures, the trend is no longer monotone. Mac initially decreases,
then a plateau region is attained (1 < S < 1.2). After this region, a further decrease in Mac can be
noticed. The frequency displays a similar behavior although the extension of the plateau region is
larger.

For the highest aspect ratio considered (AR = 0.9) we have found significant (sudden) variations
for the Marangoni number and related frequency (the affected ranges of S being 0.8 < S < 0.9
for Mac [see Fig. 8(a)] and 0.9 < S < 1 for fc [see Fig. 8(b)]. Such scenario, however, was not
unexpected since similar results were predicted by earlier analyses.

The effect of volume (S �= 1) has indeed been studied by several other authors. As an exam-
ple, through terrestrial experiments with transparent high-Prandtl liquids (various silicone oils),
Refs. [58–60] were the first to reveal the nonmonotonic relationship between the stability limit and
the LB volume ratio, i.e., these authors could clearly show that the stability diagram consists of two
branches with an “overstability” gap (i.e., very high values of the critical Marangoni number) for
intermediate values of the volume (S ∼= 0.9).
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FIG. 6. Critical Marangoni number and respective critical frequency versus volume ratio for the cases with
aspect ratio AR = 0.34.

FIG. 7. Critical Marangoni number and respective critical frequency versus volume ratio for the cases with
aspect ratio AR = 0.5.

FIG. 8. Critical Marangoni number and respective critical frequency versus volume ratio for the cases with
aspect ratio AR = 0.9.
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FIG. 9. Meridian plane (top), and axial view (below) of the temperature field in the presence of hydrother-
mal waves for three different aspect ratios: AR = 0.34, S = 0.92 (left), AR = 0.5, S = 0.82 (center), and
AR = 0.9, S = 0.8 (right). The periphery of the circular cross sections corresponds to the free surface of
the LB.

In many of these experiments the overstability gap was found to correspond to 0.8 < S < 1.0.
These trends were confirmed by linear stability analyses (e.g., Ref. [61] for Pr = 2, 4 and 7 and
AR = 0.5, Ref. [62] for a 5 [cSt] silicone oil, 0.5 � S � 1.4 and AR = 0.75), and numerical
solution of the nonlinear thermal-convection equations (e.g., Ref. [63] for a 10 [cSt] silicone oil,
Pr = 105.6, 0.6 � S � 1.1 and AR = 0.8 and Ref. [64] for Pr = 27 and AR = 0.77). A linear
stability analysis for microgravity conditions was conducted in Ref. [65] for Pr = 1, 10, and
50, a range of aspect ratios 0.4 � AR � 1.4 for three values of S = 0.8, 1, and 1.2 and a wide
range of nondimensional volumes 0.4 � S � 1.4 for the particular case AR = 0.6. Interestingly,
these authors reported that for Pr = 10 (a value relatively similar to that considered in the present
work), a variation of 20% of the volume of the LB can lead to a variation of 100% of the critical
Marangoni number; in particular, they found strong flow stabilization in the range 0.8 < S < 1
(as also confirmed by available experiments, e.g., Ref. [60]), which is in very good qualitative
agreement with the behavior shown in Fig. 8 (the reader is also referred to the very similar plots
reported in Ref. [62]).

Figure 9 provides the contours of the dimensionless temperature distribution (evaluated as T ∗ =
(T − T0)/�T , where T0 = (Thot + Tcold )/2 is the average temperature) in a meridian plane of the
LB, and in the midplane perpendicular to the axis for some representative cases (flow conditions for
each case are indicated in the caption).

C. Particle accumulation in deformed LBs

1. Investigation of the region of existence of PAS

In the earlier section, critical conditions for the onset of oscillatory flow (Hopf bifurcation) have
been determined for LBs with different aspect and volume ratios. Building on those results, in the
present section, we investigate the circumstances under which PAS can emerge. In such a context
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FIG. 10. Lateral and top views of PAS obtained numerically for the case AR = 0.34 and three different
volume ratios: S = 0.92 (t∗ ≈ 0.375) (left), S = 1 (t∗ ≈ 2.5) (center), and S = 1.1 (t∗ ≈ 0.88) (right). Flow
conditions are summarized in Table IV. (For the axial views, the larger circle represents the periphery of the
closest disk, while the smaller circle is the periphery of the opposite disk; the shaded region corresponds to
the axial projection of the interface). The same perspective mode has also been used for other similar three-
dimensional figures included in the present work.

we focus expressly on situations where particle mass is likely to play a central role in the process
leading to structure formation (i.e., cases where ξ �= 1 and for which there is an appreciable gap
of density between the particles and the hosting fluid, that is, ξ ≈ 2 and ξ = 0.5) and concentrate
on situations with Ma/Mac ∼ 2. As already explained to a certain extent in the introduction, rather
than seeking mathematical answers to the mechanisms driving the formation of these structures
(for which there are already running lines of research in the literature and an ongoing debate),
we examine purely topological and morphological aspects and consider configurations for which
new particle structures may show up. In particular, following a logical process, with situations of
increasing complexity examined as the discussion progresses, we begin our analysis from the same
aspect ratio already considered for the validation study, that is, the LB with AR = 0.34 (already
examined by Refs. [12,42] and many other authors).

We wish to recall that our criterion for judging on the attainment of a fully developed flow has
been based on the observation of the signal (temperature) produced by a probe located near the
interface. These observations were carried out over at least a dozen subsequent wave peaks. When
the period and amplitude percentage difference between two subsequent peaks was found to be less
than 1%, we judged the flow to be fully established. Subsequently, particles were tracked starting
from the very last time frame available from the flow simulations until a well formed PAS could
be observed. We considered the PAS completely formed where no changes could be seen in its
morphology by prolonging the simulation over other 10 revolution periods.

Along these lines, Fig. 10 shows the side and top views of the emerging PAS for the cases
S = 0.92 (left view) and 1.1 (right view), respectively (to be directly compared with the structure
obtained for S = 1) taken at different dimensionless time instants, t∗ = t/(L2/ν). The flow
parameters for each simulation are summarized in Table IV. As a fleeting glimpse into this table
would confirm, for this aspect ratio the wave number (m) is insensitive to volume variations. Since
the influence of m is naturally filtered out, this should be regarded as a very suitable condition to
evaluate the influence of the volume on the geometrical properties of the PAS.

Along these lines, by inspecting Fig. 10, the reader will easily realize that, from a purely quali-
tative standpoint, the main features of the PAS remain essentially unvaried, i.e., a trilobe structure
m = 3 PAS can be recognized for each case. Nevertheless, significant topological modifications can
be spotted, especially near the deformed interface.

084304-13



PAOLO CAPOBIANCHI AND MARCELLO LAPPA

TABLE IV. Flow conditions for particle accumulation in LBs with aspect ratio AR = 0.34.

S Ma/Mac m St ξ PAS

0.92 2.33 3 8.89 × 10−5 1.85 Yes
1.00 2.25 3 8.89 × 10−5 1.85 Yes
1.10 2.19 3 8.89 × 10−5 1.85 Yes

More pronounced variations can be seen especially for the configurations S = 0.92. In this case
the PAS appears significantly deformed with respect to the cylindrical and convex setups (cf. the top
views shown in Fig. 10).

We argue that such modifications essentially reflect the corresponding radial expansion or
contraction undergone by the toroidal Marangoni vortex (the reader is also referred to the related
considerations elaborated in Ref. [46]). This aspect, as well as other morphological variations will
be thoroughly described in the forthcoming section where we will introduce a set of “measures”
especially conceived for a quantitative characterization of them.

In this section, rather we concentrate on findings about the effect of the particle Stokes number
and density ratio yet for AR = 0.34 (Table V). These results are particularly interesting as they
provide meaningful information in terms of “basin of attraction” (i.e., the region of existence of the
considered phenomena in the space of parameters) and confirm (in line with the existing literature)
that both ξ and St are relevant influential factors. In particular, Table V is instrumental in showing
that LBs with concave interface (S = 0.92) are more prone to support the emergence of PAS. This
is clearly witnessed by cross-comparison of the outcomes of simulations conducted for the same
Stokes number, density ratio, and volumes smaller or larger than the cylindrical one. Notably, the
same conclusions are also supported by Table VI, where we have collected the analogous results for
AR = 0.5 (we will come back to this important observation later).

The particle structures for AR = 0.5 are shown in Fig. 11 for three representative values of the
volume ratio S = 0.82, 1, 1.3. Also in this case, in the considered range of values of the Marangoni
number, a modification of the volume does not produce a change in the azimuthal wave number
(which takes a fixed value, m = 2). Yet, the alterations induced in the morphology of the toroidal
Marangoni roll are reflected by appreciable changes in the PAS. The transverse extension of the PAS
scales with the volume. These observations are quantitatively substantiated by the numerical results
(in particular, by Fig. 11, where it can clearly be seen that the PAS for S = 0.82 is considerably
narrower than the others).

TABLE V. Summary of the whole set of simulations carried out for the case AR = 0.34 for different values
of St and ξ . The outcome of each run is summarized in the last column.

S Ma/Mac St ξ PAS

0.92 2.33 1.39 × 10−5 1.85 Yes
0.92 2.33 2.20 × 10−5 2.35 Yes
0.92 2.33 2.20 × 10−5 1.85 Yes
0.92 2.33 5.00 × 10−5 1.85 Yes
1.10 2.19 5.00 × 10−5 1.85 Yes
1.10 2.19 8.89 × 10−5 0.50 No
1.10 2.19 8.89 × 10−5 2.0 Yes
1.10 2.19 8.89 × 10−5 2.35 No
1.10 2.19 1.40 × 10−4 1.85 No
1.10 2.19 2.20 × 10−5 1.85 No
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TABLE VI. Flow conditions for particle accumulation in LBs of aspect ratio AR = 0.5.

S Ma/Mac m St ξ PAS

0.82 1.72 2 1.6 × 10−5 1.85 Yes
0.90 2.00 2 1.6 × 10−5 1.85 Yes
1.00 1.69 2 1.6 × 10−5 1.85 Yes
1.10 1.62 2 − − No
1.20 2.03 2 (standing) − − No
1.30 1.80 2 1.6 × 10−5 1.85 Yes

It can therefore be concluded that the trend displayed by the PAS in terms of radial extension is
the same for both m = 2 and m = 3.

A dedicated discussion, however, is needed for the configurations with S > 1. Interestingly,
in this case the modifications are not limited to the radial contraction or expansion of the PAS
(which, as explained before, is linked by a precise cause-and-effect relationship to the behavior of
the underlying carrier toroidal vortex). Remarkably, changes also affect the behavior in the axial
direction. As yet made evident by Fig. 11, the well-known gap of clear fluid located between the
structure and the cold rod (already observed in earlier experimental investigations for LBs with
S = 1, e.g., Ref. [19]) becomes almost negligible for the configurations with S > 1. By contrast, for
S � 1 the PAS is prevented from extending into the region located in proximity to the cold side (this
is very evident in the lateral views reported in Fig. 11 and also appreciable in Fig. 10).

The ability of PAS to occupy the entire available axial space (grazing the cold rod) should
therefore be regarded as a typical signature of particle structures emerging for S > 1. Once again,
the key to understanding these results lies in considering the behavior of the carrier flow.

On the basis of our numerical results, an explanation for this trend could be elaborated in its
simplest form on the basis of the argument that the “secondary vortex” developing near the “cold
corner” (cf. Fig. 12) for S � 1 is no longer present when S becomes larger than 1 (as this vortex is
not created in situations with larger values of the volume ratio, we infer that its presence can limit
the extension of PAS in the axial direction by causing a spatial rearrangement of the structure of the
KAM tori).

Interestingly, Figs. 10 and 11 also show some particles randomly distributed in the physical
domain. These must obviously be regarded as an effect of the chaotic streamlines located outside

FIG. 11. Lateral and top views of PAS obtained numerically for the case AR = 0.5 and three different
volume ratios: S = 0.82 (t∗ ≈ 0.16) (left), S = 1 (t∗ ≈ 0.45) (center), and S = 1.3 (t∗ ≈ 0.24) (right). Flow
conditions are summarized in Table VI.
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FIG. 12. Streamlines for an axis-symmetric two-dimensional simulation for AR = 0.5 and S = 0.82. Flow
conditions are Ma = 14 000 and Pr = 8.

the KAM torus (the reader interested in these specific dynamics is referred to the related discussions
elaborated in Ref. [36]).

Towards the end to explore further the basin of attraction of the stable particle structures (also
for AR = 0.5), additional runs have been performed considering different Stokes numbers (while
keeping Ma constant). These simulations (see Table VII) do confirm the trend already revealed
by those conducted for AR = 0.34. While for the cases with concave and straight interfaces, PAS
can be obtained even for relatively small particles (some simulations were conducted consider-
ing St ≈ 1.00 × 10−8), for S = 1.3 the minimum particle dimension has to be increased up to
St ≈ 1.30 × 10−5.

After examining situations with m = 2 and m = 3, further understanding of the observed
dynamics has been gained by considering situations for which the emerging flow is characterized
by wave number m = 1 (AR = 0.9). This case is of special interest as available results are relatively
rare and sparse. Indeed, if the literature extensively described in the introduction were reconsidered
under a different perspective, that is, the value of the azimuthal wave number, it would become
evident that the majority of existing studies on PAS have been conducted considering states with
m = 2 [9–11] or m = 3 [14,15,36,39,42]. The amount of information about the mode m = 1, the
related multiplicity of solutions and relation with the basin of attraction is relatively limited [19].
What sets this specific case apart from the others discussed earlier is the very elusive nature of
particle structures for this mode of convection. They seem to exist only in a very restricted range of
values of the Marangoni number [19], which explains why available results are so limited.

The main outcomes of the present computations for this value of the azimuthal wave number
have been collected in Fig. 13. Such a figure is useful as it can be used to highlight immediately
the differences between the PAS for m = 1 and those obtained for higher values of the azimuthal
wave number. Perhaps, the most striking distinguishing mark is represented by the limited azimuthal

TABLE VII. Summary of the whole set of simulations carried out for the case AR = 0.5 for different values
of St and ξ . The outcome of each run is summarized in the last column.

S Ma/Mac St ξ PAS

0.82 1.72 <1.00 × 10−8 1.85 Yes
1.00 1.68 <1.00 × 10−8 1.85 Yes
1.30 1.80 >1.30 × 10−5 1.85 Yes
1.30 1.80 �1.30 × 10−5 1.85 No
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FIG. 13. Lateral (above) and axial (below) views of the PAS found for the case AR = 0.9 and S = 0.6
(t∗ ≈ 0.28).

extension of the string formed by the particles. Though it can still be interpreted as a closed circuit
wrapped around the toroidal vortex, it occupies less than one quarter of the overall circumferential
extension of the LB (if an axial view of the LB is considered). Another way to think about the
PAS for m = 1 is to consider an inclined single coil or closed single loop formally encapsulating
a surface that intersects the axis of the LB (a similar interpretation has been provided in Ref. [19],
where the PAS for m = 1 has been described as a “deformed hook”).

2. Effect of the interface shape on PAS morphology

The foregoing discussion has deliberately been limited to illustrating the macroscopic patterning
behavior of PAS and its relationships with the azimuthal wave number. The present section is
entirely devoted to a precise characterization of the PAS in terms of topology and (nondimensional)
extension in space as a function of the volume ratio.

Prior to expanding on how a possible quantification of these effects can be obtained, a rigorous
definition of them must be introduced. In practice, this means that the problem must be placed in a
more precise theoretical context by introducing some definitions. Towards this end, we use ad hoc
defined parameters expressly conceived to allow a quantitative characterization of these structures
in a relatively straightforward way.

Though no definition is perfect, and it is hard to disentangle a definition from a property, first
of all, we define the dimensionless “length” of the PAS as the linear extension of the closed circuit
(i.e., the “windmill”) formed by particles in space normalized with respect to the diameter of the
rods, lPAS = LPAS/D.

This quantity is reported here for all the results presented in the earlier section. In order to do so,
we had to calculate LPAS with the aid of a CAD software (by measuring precisely the length of a
spline mimicking the shape of the closed loop formed by particles).
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FIG. 14. Dimensionless PAS length, lPAS , as a function of S for AR = 0.34, 0.5 (Ma/Mac ∼ 2). The dashed
lines represent quadratic polynomial fits.

These calculations are quantitatively substantiated in Fig. 14 where the variation of the nondi-
mensional lPAS with the volume ratio is shown for the cases AR = 0.34 and 0.5 in the form of two
distinct curves.

For a proper interpretation of these results, it is convenient to start from the simple remark that the
larger (nondimensional) length of the PAS for the shallower bridge simply reflects the well-known
scaling of the azimuthal wave number with the aspect ratio. As the aspect ratio is reduced, the
azimuthal wave number roughly increases as m ∝ 1/AR ([27] and references therein). Since the
number of “petals” (or blades of the windmill) is equal to the azimuthal wave number, when m
increases from 2 to 3 (as the aspect ratio is decreased from AR = 0.5 to 0.34), the PAS length grows.
As evident in this figure, the variation (the vertical distance separating the curves for A = 0.34 and
AR = 0.5) is approximately equal to one (�lPAS ≈ 1), which indirectly indicates that the length of
the portion of PAS corresponding to a single “petal” or blade of the windmill can be assumed to be
approximately equal to the diameter of the supporting rod.

This figure is also instrumental in showing that for each aspect ratio the length increases
monotonically with S following a quadratic law (the reader is referred to the dashed lines). This
finding is particularly interesting as it highlights the possible existence of a point of minimum in the
relationship linking lPAS to the volume. On the basis of the common trend displayed by the curves,
indeed, it is reasonable to speculate that the quantity lPAS would attain a minimum in the limit as the
volume ratio tends to zero.

There is another interesting way to come to the same conclusion: it would be sufficient to consider
that for a hypothetically infinitely thin fluid column, the PAS length would depend only on the
distance between the rods, while the contribution brought to it by the radial extension would be
negligible (unfortunately, these arguments cannot be further substantiated through experimental
investigation since it is well known that LBs cannot be indefinitely “stretched” owing to stability
implications).

When the other limiting situation is considered, i.e., for increasing values of the volume ratio, as
witnessed by the curves, the linear extension of the structure shows no obvious sign to reach a limit
(as one would expect on the basis of geometrical considerations similar to those elaborated above
for the case of very slender LBs). A simple way to think about the rise of lPAS = LPAS/D with the
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FIG. 15. View resulting from the superposition of the different images obtained through rotation of a single
time-frame (i.e., a single image of the PAS) by constant angular increments. The black line indicates the pinning
area in correspondence of the cold disk (conditions are AR = 0.5, S = 0.82).

volume ratio is to consider that for S → ∞ the PAS should possess an infinite length due to the
ensuing expansion of the toroidal Marangoni roll in the radial direction. Also in this case, however,
the “physics” of the considered problem, i.e., limitations stemming from stability considerations,
would put a limit on the maximum volume of fluid that can effectively be held between the two rods
with finite extension (diameter).

As another relevant geometrical parameter characterizing the morphology of the structure, we
have used the minimum meridian extension of the surface of revolution obtained as the envelope of
PAS superimposed at different time intervals (the reader is referred to Fig. 15 where this region and
its diameter dm are reported for AR = 0.5 and S = 0.82). Notably, the same quantity was also used
for the characterization of experimentally obtained PAS by [44]. The values taken by this parameter
(evaluated as d∗

m = dm/D) for the present configurations are plotted in Fig. 17. It can be seen there
that also in this case data for LBs with AR = 0.34 are quantitatively larger than those for the taller
floating zones.

This time, the key to understanding the results lies in considering that, if the diameter of the
supporting rods is kept fixed, a decrease in the height of the liquid column (i.e., in AR) will lead
the toroidal vortex to be clustered progressively closer to the interface and embrace accordingly a
larger percentage of quiescent fluid in the central region. In such a context, it is worth recalling
that the radial depth of penetration of the toroidal roll is almost equal to the distance between the
rods [66]. This implies that as the aspect ratio is decreased, the centerline of the toroidal roll must
necessarily shift outwards, thereby increasing the radial extension of the central region with cold
almost motionless fluid. Since PAS are known to encapsulate (or circumvent) the above-mentioned
region of cold almost quiescent fluid, the above arguments may be regarded as a good rationale for
the observed trend.

Other interesting information can be gathered from Fig. 18 where the dependence of d∗
m on Ma

is illustrated for AR = 0.34, S = 1 and Marangoni numbers exceeding the condition Ma/Mac ∼ 2.
It can be seen that this geometrical parameter decreases as a function of Ma. We wish to highlight
that this trend is in agreement with the earlier experimental results obtained for similar conditions
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FIG. 16. Top view of the structure for the case AR = 0.34, S = 1 with a schematic depiction of the
projected area of a single petal, Ap and it maximum radial extension, r. Note that rm = dm/2 (cf. dm indicated
in Fig. 15).

(AR = 0.32, S = 1) and different values of the Prandtl number (Pr = 15 and Pr = 28.6) in Ref. [40]
for n-decane and 2 cSt silicone oil, respectively. They determined the minimum distance from the
LB center for the PAS (RPAS), using a definition that is consistent with that employed in the present
work. In particular, these researchers found that RPAS ∝ Ma−ηpas (cf. Fig. 7 reported in Ref. [40])
with ηpas = 1.13, 1.39 for Pr = 15 and Pr = 28.6, respectively. Notably, the present results for

FIG. 17. Dimensionless extension of the cavity, d∗
m as a function of S for AR = 0.34, 0.5 (Ma/Mac ∼ 2;

the dashed lines represent quadratic polynomial fits).
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FIG. 18. Dimensionless extension of the cavity, d∗
m as a function of the Marangoni number for the case

S = 1 and AR = 0.34).

Ma/Mac > 2 can be described using a similar law, i.e., d∗
m ∝ Ma−ηPAS with ηPAS = 0.875 (which,

among other things, further confirms the decreasing behavior of the exponent with the Prandtl
number). By synergetic combination of experimental and numerical data, a possible scaling law
for this exponent could therefore be expressed as ηPAS = 0.48 + 5.57 × 10−2 Pr − 8.40 × 10−4 Pr2

(to be used as a benchmark for future experimental and/or numerical studies for intermediate values
of the Prandtl number).

Continuing with the description of the results summarized in Fig. 17, it should also be stressed
that for Ma/Mac ∼ 2 the aspect ratio can influence sensitively the mechanism of variation of d∗

m =
dm/D with the volume ratio S. Indeed, from the analysis of the two curves, fundamental differences
can be noticed in the related dependencies. For the case AR = 0.34, dm increases in a quadratic
fashion (the dashed line corresponds to a polynomial interpolating expression of degree 2), while
for AR = 0.5 the diameter increases almost linearly.

Notably, an extrapolation of the linear relationship valid for AR = 0.5 to zero (d∗
n → 0) would

yield a corresponding value of the volume ratio also close to zero. Yet a reasonable interpretation for
such a behavior can be elaborated in its simplest form on the basis of purely geometrical arguments.
In the limit as S tends to zero, the radial extension of the central region of quiescent fluid shall also
tend to zero. Vice versa, on increasing S, the position of the toroidal roll centerline will be displaced
outwards, thereby causing an expansion of that area.

A more involved explanation, however, is required when the other aspect ratio (AR = 0.34) is
considered. Related data seem to indicate that d∗

m cannot grow indefinitely as S → ∞. The different
(quadratic) scaling law also provides important clues in this regard. These data suggest the existence
of a maximum allowable radial extension of the inner diameter of the PAS in the considered range
of values of the volume ratio.

In the light of the arguments elaborated above, this asymptotic condition may be considered
equivalent to the existence of a maximum radial extension of the inner region of quiescent fluid.

Using this perspective, a heuristic interpretation for the presence of a limit in the curve for
AR = 0.34 could be elaborated as follows: while for larger values of the aspect ratio (AR = 0.5),
an increase in S can cause a significant expansion of the inner quiescent core (with respect to
the diameter of the supporting rod) due to the significant radial displacement undergone by the
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FIG. 19. Location of the main toroidal vortex in a shallow LB with convex interface; the deformation of
the free surface has been exaggerated for illustration purposes.

toroidal roll centerline, the corresponding (same value of S) relative displacement for shallower
LBs will (obviously) be more contained. In practice, another factor contributing to put a limit on
the maximum attainable value of dm for LBs with small aspect ratio is represented by the constraint
that, in any case, the toroidal roll will tend to retain an inner boundary located at a radial distance
from the axis of the LB that is smaller than the radius of the supporting disks. Put simply, this “inner
boundary” corresponds to the return flow that is created due to continuity effects in the cylindrical
subregion of fluid delimited from above and below by the two supporting disks (see Fig. 19).

The most interesting outcome of these observations, perhaps is that, while lPAS = LPAS/D would
grow indefinitely with the volume ratio (if this ratio could be made infinite), similar considerations
do not apply to dm.

There is also another interesting way to use all these considerations to justify the absence of a
visible asymptotic behavior in the trend of dm for AR = 0.5. For this specific aspect ratio (and larger
values of AR) the internal region of quiescent fluid will obviously be less extended (with respect
to the diameter of the supporting rod). This means that values of the volume ratio larger than those
for which the limit condition becomes effective for AR = 0.5 would be needed. We argue that for
AR = 0.5 or larger AR the asymptotic condition would be attained for a value of S located outside
the interval of values examined in the present work.

The remainder of this section is finally devoted to discuss the scaling behavior of another
parameter specifically introduced as a fruitful alternative for obtaining additional insights into the
morphology and topology of all these structures, that is, w∗

p, namely the “mean” extension of a
single PAS petal in the azimuthal direction.

A similar parameter was previously used [7]. In the present work, however, we make its definition
more general and independent from the radial coordinate. Towards this end (see Fig. 16), in
particular, first we define the area of a single petal, Ap, as the area delimited (externally) by
the projection of the three-dimensional PAS line on a plane perpendicular to the bridge axis and
(internally) by the arc of circumference corresponding to the inner diameter dm. Then, we determine
accordingly the mean azimuthal extension of the petal as the ratio of such area and its radial
extension, i.e., wp = Ap/(r − rm). Finally, this quantity is made nondimensional using the radius
of the rods as reference length, i.e., w∗

p = 2wp/D.
Along these lines, Fig. 20 shows the plots w∗

p versus S again for the two aspect ratios examined
before. In this case we have found the data to be well fitted by parabolic curves with concavity facing
downward. Remarkably, this implies that for each curve it is possible to identify a well-defined
point of maximum separating the curve into branches with opposite behaviors (namely, parts of
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FIG. 20. Dimensionless width of a single PAS petal as a function of the volume ratio (Ma/Mac ∼ 2). The
dashed lines represent quadratic polynomial fits.

the curve where the dimensionless width becomes increasingly smaller if the volume ratio, S is
increased or decreased, respectively). Interestingly, the maximum mean width (or area of the petal)
is attained in both cases for a volume ratio in the range between S = 1 and S = 1.2. We argue
that an explanation for this nonmonotone behavior should be sought in the interplay between two
counteracting effects, namely, the tendency of the width of the petal measured at a fixed distance
from the interface (approximately 20% of the rod diameter) to become smaller as the volume ratio
is increased (as originally observed experimentally [7] in normal gravity and also confirmed by the
present results in microgravity conditions; see Figs. 10 and 11) and the opposite tendency of dm

(which by growing causes an increase in the azimuthal extension of the petal).
Before moving to the next section, we wish also to highlight that the evident difference

affecting the two curves in terms of magnitude (average value) simply indicates that the mean
(nondimensional) azimuthal extension of the petals becomes smaller as the wave number increases
(compare the morphology of the petals in Figs. 10 and 11). The different “sensitivity” to S (it
being much more evident for AR = 0.5) can be explained taking into account the different relative
deformation undergone by the interface for a fixed volume ratio and different values of the aspect
ratio. For a fixed S, the relative deformation will obviously be higher for larger values of AR.

3. Influence of interface curvature on PAS formation

Having completed a thorough analysis of PAS topological and morphological details, this final
section is devoted to a critical discussion of the possible cause-and-effect relationships at the root of
the tendency of slender LBs (S < 1) to support the emergence of these structures over an increased
range of values of the particle Stokes number with respect to cases with convex interfaces. In the
present section, we attempt to provide a relatively simple interpretation of this trend on the basis
of kinematic and dynamic considerations and earlier models yielded by different investigators (the
reader interested in these models is referred to the literature extensively cited in the introduction).

To elaborate relevant arguments, in particular, we start from relatively simple observations, that
is, the behavior of the fluid velocity along the free interface [dimensionless velocity (U ∗ = U/Uref ,
where Uref = ν/H) profile shown in Fig. 21 for a representative case]. This velocity attains a
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FIG. 21. Module of the dimensionless velocity field (left) and velocity distribution on its interface (right)
for a two-dimensional, concave LB. The flow conditions adopted were Pr = 8, AR = 0.5, S = 0.82, and Ma =
18 000.

maximum in proximity to the hot wall and then decreases continuously along the interface until it
starts to rise again near the cold corner (due to the presence of a thermal boundary layer adjacent to
the cold side). As evident in Fig. 21, in particular, the portion of the profile where velocity decreases
is relatively extended in the axial direction (corresponding to more than half of the length of the
LBs, regardless of the considered specific volume ratio).

The key to elaborating the aforementioned interpretation relates to the sensitivity of nonisodense
particles to velocity changes. PAS such as those considered here are known to be produced by small
trajectory “defects,” i.e., departure of the particle trajectory from the underlying fluid streamlines
due to a mismatch in the particle density with respect to that of the host fluid. These minute defects
can accumulate in time leading particles to migrate from their original streamlines to different
regions of the fluid domain.

For ξ > 1, denser than the carrier fluid, particles moving in proximity to the free surface in the
region where the surface velocity decreases in the flow direction will be subjected to a force having
the same direction of the fluid velocity. To understand how this works from a physical point of
view it is sufficient to consider that when the fluid decelerates, owing to the density difference, the
velocity of particles will tend to exceed that of the surrounding liquid. This observation becomes
particularly useful if it is considered together with the curvature of the free interface for S < 1 and
S > 1.

As these two situations are one the mirror image of the other, the component of the above-
mentioned force in the radial direction will take an opposite sign for the two configurations. More
specifically, it will be directed inward for the concave shape and outward for the opposite condition
in which the interface is convex. Coupling of merely geometrical and dynamics conditions will
therefore lead to a diametrically opposite effect in terms of radial displacement of the generic
particle. While for S < 1 particles will be forced to leave their original streamline in favor of a more
internal streamline, for S > 1 they will tend to be displaced towards the interface and accumulate
there accordingly.
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FIG. 22. Schematics of the trajectories described by a particle next to the interface moving toward the
“cold” corner of the LB for two opposite configurations: concave interface (top), and convex (below). The
dashed line indicates the free surface.

The evolution (in terms of trajectory) of a particle next to the heated rod that travels first toward
the corner region and then along the interface from the hot side towards the cold one is qualitatively
sketched in Fig. 22 [the particle position is reported there at different times for a LB with a concave
(top view), and convex (bottom view) free surface, respectively].

For S < 1, as soon as the particle enters the above-mentioned region where surface fluid
velocity decreases, even a minute departure of the particle from its original trajectory due to its
different density will cause transfer of the particle to another streamline (thereby contributing to the
mechanism by which Lagrangian coherent structures can be formed [10,11,13,30–32]. Vice versa,
for S > 1, the density jump would act just in the opposite way, tending to push particles towards the
free interface.

These qualitative arguments are quantitatively substantiated by the data reported in Fig. 23
where we have summarized the results provided by high-resolution two-dimensional (axisymmetric)
simulations (grid 360 × 360). This figure shows the radial displacement undergone by particles
that are initially located near the hot rod as a function of the density ratio and two values of the
volume ratio for AR = 0.5. In order to make the variations evident, in particular, the “differential”
radial displacement, δx, has been plotted, that is, the difference between the radial position of the
considered particle for a given value of the density ratio (ξ ) and the radial position (at the same axial
location) that would be taken by a particle with the same density of the surrounding fluid (ξ = 1).

As witnessed by this figure, the particle differential radial displacement relating to the LB with
S > 1 is negligible with respect to the equivalent values obtained for the same density ratios and
S < 1. This supports the above explanation elaborated taking into account the different role played
by the relative density of particles in relation to the different (concave or convex) shape of the LB.

At this stage, we wish to emphasize that, in order to filter out the role of numerical error as a
possible source of “unphysical” noise (mimicking the effects of a density mismatch and potentially
leading to “artifacts” for S < 1), we have conducted additional numerical (three-dimensional)
simulations for the case AR = 0.5 and S = 0.82 and for the smallest Stokes number shown in
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FIG. 23. Deviation of the trajectory of a single particle (evaluated with respect to the reference position
obtained for the case ξ = 1) as a function of the density ratio for two different LB configurations: concave
bridge AR = 0.5 and S = 0.82 (cc), and AR = 0.5 and S = 1.3 (cv). The positions are taken in correspondence
of two different cross sections at z/L = 1/2 and z/L = 1/4.

Table VII using a different computational platform (Ansys Fluent). The same simulation has been
repeated using a fourth-order accurate Runge-Kutta method in combination with the highest mesh
resolution M3 (cf. Table III). No changes have been found in the emerging PAS.

As a concluding remark for this section, we wish also to provide some interesting reflections
about the three-dimensional cases with S > 1. Owing to the effect elucidated above, by which
particles with different density ratios (ξ > 1) moving in proximity to the free interface are forced
to follow the same trajectory as their density were almost equal to that of the surrounding fluid,
it is reasonable to assume that the alternate formation mechanism proposed by Kuhlmann and
co-workers may play a substantial role in this case. This model ([34–36], based on the paradigm
of “finite-size” Lagrangian coherent structures, would indeed be operative in the regions along the
free interface where velocity increases along the flow direction (that is, in proximity to the hot and
cold rods). Future work will be devoted to a precise assessment of this effect for LBs with S > 1
by introducing in the boundary interaction model the so-called “lubrication thickness” [36] and
evaluating its impact on the ranges of particles Stokes number for which PAS can effectively be
obtained (including a precise determination of the related formation time).

IV. CONCLUSIONS AND FUTURE WORK

The recent resurgence in interest in the so-called PAS has led to significant advances in our
understanding of the origin and properties of these phenomena, as witnessed by the various models
proposed by different research groups to explain the underlying mechanisms. As a critical analysis
of the existing literature would reveal, however, most of the past theoretical and numerical research
into this subject has been overwhelmingly devoted to the case of LBs with straight surface (perfectly
cylindrical shape). The present work has continued these investigations by probing the role of a
parameter almost ignored in the literature, that is the effective volume of liquid held between the
supporting rods.
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Building on, but also seeking to extend, the valuable research that has highlighted the role of the
density difference and flow topology in supporting the emergence of these particle structures, we
have explored a relatively wide portion of the space of parameters considering LBs with different
aspect ratios and volume ratios and conditions for which particle inertia is expected to be significant.
In particular, insights have been sought from focused comparisons of two archetypal settings,
namely, LBs with concave and convex free surfaces in microgravity conditions.

In a broad outline, our findings have revealed that the morphology of the emerging structures is
largely affected by the deformation of the interface. Geometrical parameters have been expressly
defined with the intent to quantify precisely the morphological variations undergone by these
structures as a result of liquid volume (and aspect ratio) changes. Whenever possible, scaling
laws for these parameters have been identified and an interpretation of the related trends has been
provided.

Interestingly, while the nondimensional linear extension (“length”) of the PAS shows no obvious
limit when the volume of fluid is increased, as asymptotic behavior can be clearly identified for
its “inner diameter” if relatively small values of the aspect ratio are considered. In terms of axial
extension, PAS grow when the liquid volume is increased. Following the nontrivial interplay among
counteracting effects, however, a nonmonotone law of variation is obtained when a characterization
of the PAS morphology is attempted in terms of the area of its projection in planes perpendicular to
the axis of the LB (the windmill “as seen from above”).

Though the main aim of the present study was to provide a set of predictive links between ge-
ometry, flow properties and particle behavior, some problems have also been used as an opportunity
for discussing fundamental issues that are shared among the two main existing (concurrent) theories
for the explanation of PAS, and putting them in relation with the specific dynamics considered here.

We have found that particle density effects can play a diametrically opposite role if they are
considered in conjunction with concave or convex LBs, respectively. Owing to the existence of an
extended region along the free surface of the LB where the surface flow is decelerated, particles
denser than the carrier fluid that move in proximity to the interface will experience a force with
radial component directed inward or outward depending on whether the volume of liquid is smaller
or larger than the equivalent cylindrical one. An explanation for the increased ability (as provided by
the numerical simulations) of concave liquid to support the emergence of PAS with respect to convex
ones can therefore be directly rooted in the interplay between purely topological flow properties
and the forces acting on the particles mainly as a result of their different density with respect to
the fluid. Future work shall be devoted to assessing precisely the role of particles finite-size effects
in the regions where the surface fluid is accelerated (e.g., in proximity to the hot corner) and their
ability to support the emergence of PAS in convex LBs.
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