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The undisturbed flow of a particle is of fundamental importance since it controls
both the undisturbed flow force and the perturbation force (which includes quasisteady,
added-mass, and history forces). Here we use the pairwise interaction extended point
particle framework to evaluate the undisturbed flow of each particle through superposition
of the perturbation flow induced by all its neighbors. This approach allows calculation of
various statistics related to undisturbed fluid velocity under conditions of both stationary
and nonstationary particles. In a random distribution of stationary particles, while the
macroscale undisturbed flow is slowly varying, the microscale undisturbed flow that arises
due to the perturbation flow of neighbors varies substantially from one particle to another
and this in turn leads to large variation in the hydrodynamic force exerted on the particles.
The effect of particle motion is generally to increase the particle-to-particle variation in
the undisturbed fluid velocity of the particles. We observe that this increase is greater for
the transverse component than for the streamwise component. As a result, with increasing
random particle motion, the distribution of undisturbed fluid-velocity fluctuation becomes
isotropic. Three different normalized forces are defined: �L is the Lagrangian normalized
force on an individual particle suitable for application in a microscale-informed Euler-
Lagrange simulation, �E is the Eulerian normalized average force suitable for application
in an Euler-Euler simulation, and �LE is the Lagrangian normalized force on an individual
particle suitable for application in the standard Euler-Lagrange simulation. We establish
precise relations between these different definitions. The drag laws developed based
on particle-resolved direct numerical simulation results and experiments are appropriate
for application only as the Eulerian normalized average force. We introduce the force
consistency relation and use it to obtain an expression for �L , which when applied to
each particle and averaged over all the particles equals �E . The results are first obtained
in the limit of stationary particles and then extended to the general case of nonstationary
particles.

DOI: 10.1103/PhysRevFluids.5.084302

I. INTRODUCTION

The three commonly used computational approaches in multiphase flow problems are the
particle-resolved (PR), Euler-Lagrange (EL), and Euler-Euler (EE) simulations. Among these, the
PR direct numerical simulations (DNSs) are the most accurate, since the governing Navier-Stokes
equations for the fluid and the Newton-Euler rigid-body equations of motion for the particles,
along with boundary conditions that couple their motion, are solved without making any additional
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closure or modeling assumption besides interparticle collision models. In contrast, the EL and EE
approaches are necessarily approximate, since their governing equations are obtained by averaging
or filtering the fundamental Navier-Stokes and Newton-Euler equations. The resulting averaged
equations include additional terms that require closure modeling assumptions.

In the EL approach, if the dynamics of all the particles within the system are followed, then
there is no averaging over the particulate phase. The fluid phase is averaged or filtered over a length
scale that is typically an order of magnitude or more larger than the particle diameter. The filtering
process removes the pseudoturbulent component of the fluid phase by averaging out the perturbation
flow induced by all the boundary layers and wakes around the particles. Depending on the filter
size, some of the ambient turbulence may be filtered out as well. Nevertheless, the details of fluid
pressure and stress distribution around each particle are lost and as a result, force and torque on the
particles cannot be directly computed. They must be modeled in terms of the particle and the filtered
fluid motion. The force and torque represent the momentum exchange between the particle and the
surrounding flow and therefore must be applied in reverse back on the fluid. The small-scale velocity
fluctuations that have been filtered out in the averaging process contribute to subgrid stress, whose
closure model must account for the effect of the filtered microscale fluid motion on the dynamics
of the larger fluid scales. Thus, in the EL approach, the filtering of the fluid phase has important
consequences in the governing equations of both the fluid and the particulate phases.

In the Euler-Euler approach not only the fluid phase is averaged or filtered over a length scale
larger than the particle diameter. The particulate phase is also suitably averaged over this length scale
and this results in a continuum representation for the particulate phase. Instead of the Newton-Euler
equations of motion for the individual particles in the Lagrangian frame, we now have continuum
equations for the collective dynamics of the locally averaged state of the particles in the Eulerian
frame. Hence the EE approach is also known as the two-fluid approach. In the EE approach, the
averaging of both phases introduces the need for additional closure models. Even the closure models
of force and torque that account for interphase momentum coupling become more complex and
must be distinguished from the force and toque models that are employed in the EL approach. This
distinction will be a focus of the present paper.

To explore this further, let us consider an EL simulation and a companion EE simulation of
the same problem. In the EL simulation, the simplest approach to evaluating the force on each
particle is to use the standard drag relation that is based on the relative velocity between the particle
and the interpolated fluid velocity evaluated at the particle location [1]. Several improvements
to this basic closure have been advanced and widely used in EL simulations. Most relevant to
the present discussion is the finite-volume-fraction correction. As the local volume fraction of
particles increases, the finite-Reynolds-number correction of the standard drag can be augmented to
accounted for the finite volume fraction [2–10].

The standard drag model and its improvements are designed to account for the net pressure and
viscous stress effects of the perturbation flow induced by the particle. It is important to note that
these models predict the force on a particle in terms of its undisturbed flow, which is the source
of the perturbation flow the particle induces. However, in an EL simulation, we do not have direct
access to the undisturbed flow of the particle. Only the macroscale flow is known and its value
interpolated to the center of the particle is typically used to compute the force. While the macroscale
part of the undisturbed flow is nearly the same for all the particles within an averaging volume,
the microscale component of the undisturbed flow substantially varies from particle to particle.
This microscale variation is both due to differences in the arrangement and motion of neighboring
particles (i.e., pseudoturbulence) and due to the random nature of filtered subgrid turbulence. Several
recent efforts [11–19] have focused on understanding and modeling the deterministic effect of
pseudoturbulence. An alternate approach is to statistically account for subgrid turbulence in the
drag models by modifying the undisturbed fluid velocity at the particle location (obtained from the
EL simulation) with an additional stochastic component obtained with a Langevin model [20].

Therefore, in order to develop proper force and torque models, we must distinguish the following
two different EL implementations. In the first, the fluid velocity at the particle is simply taken to
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be the macroscale velocity interpolated to the particle center, which we call EL-mac. The second
approach attempts to approximate the fluid velocity at the particle more accurately by accounting
for the microscale contribution, either deterministically or stochastically using a Langevin model.
In either case, since the microscale variation in undisturbed fluid velocity is taken into account, we
will call this second approach EL-mic.1

In the companion EE simulation, since the motion of individual particles is not being tracked,
particle-related Eulerian quantities, such as the particle volume fraction φ(x, t ) and the particle-
velocity field v(x, t ), represent average properties that result from a spatial filter or average of the
underlying Lagrangian quantities. The microstructural details of how the particles are randomly
distributed in the neighborhood of a point x are not known in an EE simulation. The only available
information is the average number density of particles in a neighborhood, expressed as the particle
volume-fraction field. The actual distribution of particles within the averaging volume around the
point x will be random. Thus, there is a fundamental difference in particle characterization between
the EL and EE approaches. In the EL approach, the particles are characterized in a deterministic
fashion, while in the EE approach the particle characterization is necessarily stochastic. Even
within the stochastic framework, φ(x, t ) is only the leading-order description in a hierarchy of
possible statistical information. Quantities beyond φ(x, t ) are needed to properly characterize any
inhomogeneity or anisotropy in the local distribution of particles at the microscale. The above
description applies to particle-velocity field v(x, t ) and to all other particle-related quantities (such
as granular temperature field) as well. In other words, v(x, t ) represents only the average particle
velocity and the actual velocity of individual particles within the filter volume will substantially
vary from the average value.

Thus, there are fundamental differences in what aspects of the hydrodynamic force on the
particles are being modeled in the EL-mac, EL-mic, and EE approaches. In the EL-mac approach,
the force on an individual particle is calculated taking into account its velocity and the macroscale
fluid velocity at the particle location as

Fi = 3πμd (umac@i − vi )�
LE (Remac@i, φ@i ), (1)

where Fi is the force on the ith particle of diameter d . Here μ is the dynamic viscosity of the fluid, vi

is the particle velocity, and umac@i is the macroscale fluid velocity of the EL simulation interpolated
to the location of the ith particle. Note that subscript i denotes a Lagrangian quantity and subscript
@i denotes an Eulerian quantity evaluated at the particle location. The function �LE is the correction
to the Stokes drag and it depends on both the macroscale Reynolds number of the ith particle, which
is evaluated as Remac@i = d|umac@i − vi|/ν, and the particle volume fraction evaluated at the ith
particle.

In the EL-mic approach, the force on an individual particle is again calculated as

Fi = 3πμd (u@i − vi )�
L(Re@i, φ@i ). (2)

However, the relative velocity of the ith particle is based on its velocity vi and the undisturbed fluid
velocity u@i. Here the undisturbed fluid velocity u@i includes both the macroscale contribution
umac@i and the microscale contribution from the perturbation flow of its neighbors and filtered
subgrid turbulence. The particle Reynolds number is also calculated based on this more accurate
relative velocity estimation.

1In this work we will assume EL and EE simulations to be sufficiently coarse grained. In other words, the filter
width L � d , the particle diameter. As a result, Eulerian average drag will be an average over many particles
that lie within the averaging volume. The results of this paper thus will not directly apply to fine-grained
EL and EE simulations whose grid size is comparable to particle diameter. Similarly, in the EL approach the
macroscale velocity at the particle location will be taken to be not corrupted by self-induced perturbation.
Otherwise, a self-induced correction must be applied to recover the proper macroscale velocity (see [21–28]).

084302-3



S. BALACHANDAR

In the EE approach, the mean hydrodynamic force on all the particles within the averaging
volume around the point x, denoted by F(x, t ), is of primary interest. The traditional approach has
been to evaluate the average force F(x, t ) based on the local volume fraction φ(x, t ) and the average
velocity difference u(x, t ) − v(x, t ), where u(x, t ) is the macroscale fluid velocity and v(x, t ) is the
average particle velocity (both are part of the EE solution). Here again the average drag is expressed
as that according to Stokes drag law multiplied by the correction function as

F(x, t ) = 3πμd[u(x, t ) − v(x, t )]�E (Re(x, t ), φ(x, t )). (3)

In the above, Re(x, t ) = d|u(x, t ) − v(x, t )|/ν is the average particle Reynolds number based on
the average relative velocity (see footnote1).

We first draw attention to the important fact that the functions �L, �LE , and �E are not the same,
as indicated by differences in their superscript. Superscript L denotes its applicability in the EL-mic
simulation, which like a PR simulation tends to account for subgrid turbulence in particle motion.
Superscript E denotes applicability for the EE approach and superscript LE denotes applicability in
the EL-mac approach, where the fluid information for particle motion remains averaged. Henceforth
we will refer to �L, �LE , and �E as

�L = Lagrangian normalized drag

�E = Eulerian normalized average drag

�LE = macro − Lagrangian normalized drag.

All three functions have been normalized by their respective Stokes drag, and it must be stressed
that the definition of Stokes drag and therefore the normalization is different for the three functions.

The difference between �L, �LE , and �E arises from their nonlinear dependence on the
parameters: Reynolds number and volume fraction. As pointed out earlier, there is substantial
variation in the relative velocity of the individual particles within the averaging volume, which
results in a substantial variation in the Reynolds number. Furthermore, variation in the manner in
which particles are distributed within the averaging volume contributes to volume-fraction variation
[29,30]. As a result of these variations, if we were to calculate the force on each particle using the
Lagrangian normalized drag �L and then average over all the particles within the average volume,
the resulting average force would not equal that obtained by evaluating �L based on the average
Reynolds number and volume fraction. This clearly illustrates why the Eulerian normalized average
drag correlation �E must necessarily be different from the Lagrangian counterpart �L. The Eulerian
normalized average force �E must additionally account for the variation in the Reynolds number
and volume fraction within the averaging volume.

The difference between �L, �LE , and �E has been recognized by developers of various drag
correlations [7,10,31]. However, the difference has not been well appreciated in typical EL and
EE simulations. Often the standard drag correlation with the same finite Reynolds number and
volume-fraction correction is used in both the EL and EE simulations, although in the former to
calculate the drag on an individual particle and in the latter to calculate the average drag. Also, the
drag laws developed based on PR DNS results of flow over a stationary random array of particles
[2,3,6,7,9,10] are fundamentally different from those developed based on experiments with freely
sedimenting particles [4,5,8]. Their difference is due to the distribution of particle Reynolds number
and volume fraction within the averaging volume. Nevertheless, these drag correlations are directly
appropriate for application only in EE simulations, owing to their average nature. The goal of the
paper is to establish firm theoretical relations between the Lagrangian and the Eulerian normalized
drag relations (i.e., between �L, �LE , and �E ) and relate them to commonly used drag relations
obtained from simulations and experiments.

We advance a force consistency relation between the �L, �LE , and �E that must be satisfied
when they are properly defined. According to this consistency relation, �L, when properly applied
to each particle based on its relative velocity and volume fraction and averaged over all the particles
within the averaging volume, must equal �E (for consistency between EL and EE approaches also
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see [32]). Accordingly, while �L is only a function of the particle’s Reynolds number and volume
fraction [as defined in (2)], not only �E must be a function of the average Reynolds number
and average volume fraction, but its parametrization must also include proper quantification of
variation in particle Reynolds number and volume fraction within the averaging volume. A similar
consistency condition exists between �L and its macroscale counterpart �EL. Establishing these
consistency relations and elaborating on them is an important goal of the paper.

A technical difficulty arises in estimating the distribution of Reynolds numbers that will be
encountered within the averaging volume. The particle-velocity variation can be easily assessed
in an EL simulation and can be obtained from the granular temperature equation in the case of an
EE simulation. In comparison it is not easy to estimate the level of particle-to-particle variation
in the undisturbed fluid velocity within the averaging volume. This difficulty is because only the
macroscale component of the undisturbed fluid velocity is available in EL and EE simulations. In
this work we overcome this difficulty with the use of the pairwise interaction extended point-particle
(PIEP) model [11,12,33]. This model provides a rational approximation for the pseudoturbulence
generated by the particles in terms of summation of superposable wakes of all the particles. The
PIEP model thus allows for the accurate evaluation of undisturbed fluid velocity u@i of all the
particles with the inclusion of the microscale component.

Towards our goal of establishing the appropriate �L, �LE , and �E correlations, the strategy we
follow in this paper proceeds along the following steps.

(a) Eulerian average drag of a stationary homogeneous system (Sec. IIIC). We first take the
drag laws developed based on PR DNS results of flow over a stationary random array of particles
[2,3,6,7,9,10] to be the Eulerian normalized average force �E

0 , where subscript 0 indicates stationary
particles.

(b) Lagrangian drag of individual particles in a stationary homogeneous system (Sec. IVE).
Then, using the consistency relation and the PIEP model to estimate the undisturbed fluid velocity
of a stationary random array of particles, we obtain the corresponding Lagrangian normalized force
correlation �L

0 .
(c) Lagrangian drag of individual particles in a nonstationary homogeneous system (Sec.

IVE). For lack of additional detailed information, we then make the assumption that for a given
particle Reynolds number Re@i and volume fraction φ@i, the Lagrangian normalized force �L in a
nonstationary system remains the same as that for stationary particles (i.e., we assume �L = �L

0 ).
This assumption can be justified in cases when relative particle motion is not very rapid and therefore
the timescale of particle rearrangement is long. Nevertheless, the validity of this assumption must
be verified.

(d) Eulerian average drag of a nonstationary homogeneous system (Sec. IVD). As the final
step, �L is used to evaluate the force on each particle in a random array of particles undergoing
random motion following Maxwellian statistics (here again the PIEP model is used to evaluate the
undisturbed fluid velocity of each particle). By averaging the force on all the particles we obtain
the Eulerian normalized average force �E for nonstationary particles. For averaging volumes much
larger than the particle size, we recognize the fact that �LE will approach �E .

The two key quantitative results of the present study are as follows. (i) The Lagrangian
normalized force correlation �L

0 given in Eq. (33) is consistent with the Tenneti et al. [7] Eulerian
average normalized force correlation �E

0 . Both these are appropriate only for the stationary
system. (ii) The Eulerian average normalized force correlation �E given in (41) extends the
Eulerian average normalized force correlation to nonstationary systems. While these results are
of fundamental importance, due to the restriction to the homogeneous distribution of particles,
their impact on practical multiphase flow problems will be incomplete. Extension of the present
study to inhomogeneous and anisotropic distributions of particles is essential to obtain a complete
parametrization.
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II. FRAMEWORK

Let us consider a multiphase flow that at time t consists of N particles that are located at xi

with velocity vi (where i = 1, 2, . . . , N). From the Lagrangian distribution of particles an Eulerian
volume-fraction field can be defined as

φ(x, t ) =
∫

�

G(x − x′)Ip(x′, t )dV, (4)

where the integral is over the entire volume occupied by the multiphase flow and Ip is the particle
indicator function which is equal to unity only in regions occupied by the particle and is otherwise
zero in regions occupied by the fluid. In Eq. (4) G(x − x′) is the filter function that has been
assumed to be homogeneous and has been properly normalized to yield

∫
�

G dV = 1. The filter
function is generally chosen to be a top-hat function or a Gaussian of width L and thus the filter
operation smoothens or averages out all subgrid variations that are smaller than the filter scale L. An
Eulerian particle-velocity field can similarly be constructed from the Lagrangian particle-velocity
information as

v(x, t ) = 1

φ(x, t )

∫
�

G(x − x′)Ip(x′, t )vpr (x′, t )dV, (5)

where vpr (x′, t ) = vi if x′ falls within the volume of the ith particle, with a similar definition
applying for all other particles. The particle velocity vpr (x′, t ) is undefined if x′ falls within the
fluid volume. Thus, v(x, t ) is the average velocity of all the particles around the point x weighted
by the filter function. A similar definition applies to other particle properties and (5) can be used
to convert any Lagrangian quantity into an Eulerian field that has been smoothened over the length
scale L.

Let upr (x, t ) be the particle-resolved fluid flow around the particles. However, in EL and EE
simulations we only have access to the macroscale flow, which can be formally defined through the
filter operation as

u(x, t ) = 1

1 − φ(x, t )

∫
�

G(x − x′)I f (x′, t )upr (x′, t )dV, (6)

where the fluid indicator function is the complement of the particle indicator function [i.e.,
I f (x, t ) = 1 − Ip(x, t )]. Also, the normalization is with the fluid volume fraction 1 − φ(x, t ). While
the particle-resolved velocity upr is defined only in the region outside the particles, provided L � d ,
the filtered macroscale velocity u(x, t ) is smoothly defined over the entire volume of the multiphase
flow.

In a typical EL or EE simulation, the Eulerian fields are discretized and defined on a three-
dimensional grid. They can then be evaluated at the ith particle through interpolation as

umac@i = u(xi, t ), φ@i = φ(xi, t ). (7)

Other derived quantities can be defined either as Lagrangian quantities of the ith particle or as
Eulerian fields averaged over all the particles around the point x. Foremost among the derived
quantities is the macroscale Reynolds number. The Lagrangian and Eulerian macroscale particle
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Reynolds numbers2 are defined as

Remac@i = d|umac@i − vi|
ν

,

Remac(x, t ) = d|u(x, t ) − v(x, t )|
ν

.

(8)

The above two Reynolds numbers are termed macroscale with the subscript mac, since they are
based on the macroscale fluid velocity either as interpolated to the ith particle as umac@i or evaluated
at x as u(x, t ). These definitions do not include the effect of the velocity perturbations induced by
the particles at the microscale.

A. Macroscale and microscale undisturbed flow of the ith particle

With the above preliminaries we now carefully address what determines the particle force and
how best to parametrize it in both the Lagrangian and Eulerian frameworks. We first note that
any parametrization of force on a particle (including the simplest Stokes drag) is in terms of the
undisturbed flow. Undisturbed flow of the ith particle is defined as the flow that would exist in the
absence of the ith particle but in the presence of all other particles. With this definition, we can
distinguish the following flow fields

upr (x, t ) = particle resolved flow around all the particles

u(x, t ) = macroscale flow in the presence of all the particles

upr,�=i(x, t ) = particle resolved flow without the ith particle

u�=i(x, t ) = macroscale flow without the ith particle,

where the macroscale flows are filtered versions of the PR flows and the last two flows are the same
as the first, but without the presence of the ith particle. Figure 1(a) shows an example of upr (x, t )
obtained from a PR simulation plotted on a small section of a vertical plane passing through a
periodic box containing a random distribution of monodispersed particles. Here the macroscale flow
is from the left to the right of the box and the wake behind the particles can be clearly identified.
Figure 1(b) shows the corresponding PR velocity field in the absence of particle marked i (which
is shown by a dashed line). This flow field is upr,�=i(x, t ) and it is nonzero at the location of the
ith particle. In a multiphase flow consisting of N particles, N such PR flows can be constructed by
removing one particle at a time. Thus, it will not be computationally possible to evaluate upr,�=i(x, t )
for all i using PR DNS and an efficient approach to evaluating it using the PIEP model will be
presented below.

In this example, the computational box is a triply periodic cube whose size normalized by the
particle diameter is (3π )3. The box contains about 160 randomly distributed particles at an average
volume fraction of about 10%. We define the filter to be a box filter of size the same as the triply
periodic cube and thus the macroscale flow u(x, t ) is a uniform flow. The undisturbed macroscale
flow of the ith particle u�=i(x, t ) that results from box filtering of upr,�=i(x, t ) will also be a uniform
flow. Its magnitude will be slightly higher than u(x, t ), since it is in the presence of one fewer
particle within the cubic box; however, due to the large number of particles within the box, we make
the assumption u �=i(x, t ) ≈ u(x, t ).

2Here and everywhere else in this work the particle Reynolds number is defined in terms of fluid velocity
within the distribution of particles. We caution that in some papers Reynolds number is defined in terms of
superficial fluid velocity, which will be lower by the multiplicative factor 1 − φ.
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FIG. 1. (a) Contours of normalized streamwise velocity on a vertical plane computed in a particle-resolved
simulation of flow around a random distribution of stationary particles in a periodic box. (b) Contours of
normalized streamwise velocity on the same vertical plane in the absence of only the particle marked i. The
resulting velocity field at the location of the ith particle is called the undisturbed velocity at the ith particle,
whose complexity can be clearly associated with the perturbation flow induced by its neighbors. Both these
flows were obtained by superposition of superposable wakes, which will be defined in Sec. II D.

Based on the above definitions, the undisturbed flow of the ith particle can thus be separated into
macro and micro contributions as

upr,�=i(x, t ) = u(x, t )︸ ︷︷ ︸
macro part

+ [upr,�=i(x, t ) − u(x, t )]︸ ︷︷ ︸
micro part=umic,i (x,t )

, (9)

where (i) the macroscale undisturbed flow accounts for the collective action of all the particles
within the multiphase flow and (ii) the microscale undisturbed flow of the ith particle is given by the
second term on the right-hand side and it accounts for the perturbation flow induced by the specific
arrangement of all the neighbors of the ith particle. In general, the filter width is chosen such that
the macroscale undisturbed flow varies negligibly from one particle to its nearby neighbor, while the
microscale flow can dramatically change depending on the specific arrangement of the neighbors.
In the example shown in Fig. 1(b), the microscale undisturbed flow of the ith particle is due to the
perturbation velocity of all neighbors.

From the perspective of the ith particle we can separate the microscale perturbation flow induced
by all the particles into two parts as

upr (x, t ) − u(x, t )︸ ︷︷ ︸
total perturbation

= [upr,�=i(x, t ) − u(x, t )]︸ ︷︷ ︸
neighbor perturbation

+ upr (x, t ) − upr,�=i(x, t )︸ ︷︷ ︸
self-perturbation

, (10)

where the first term on the right-hand side is the perturbation flow due to all other particles and it
is the same as the microscale undisturbed flow of the ith particles. The second term on the right-
hand side is the perturbation flow induced by the ith particle in order to enforce its no-slip and
no-penetration boundary conditions. As we will discuss in Sec. II C, this separation between self-
induced and neighbor-induced perturbation flow is important in establishing the different forces that
act on the ith particle.
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B. Reynolds number of the ith particle

For the evaluation of particle force, the undisturbed flow field must be evaluated “at” the ith
particle. Based on the separation of the undisturbed flow velocity into its macroscale and microscale
contributions we write

u@i(t ) ≈ u(xi, t )︸ ︷︷ ︸
=umac@i

+ umic,i(xi, t )︸ ︷︷ ︸
=umic@i

. (11)

The macroscale contribution can be directly evaluated from the computed flow field of the EL
or EE simulation as given in (7). The microscale contribution umic@i is subgrid information and
therefore is not directly available in EL and EE simulations. As will be discussed in Sec. II D,
in an EL simulation, umic@i can be approximated from the knowledge of the relative location and
motion of the neighboring particles, by modeling the neighbor-induced perturbation flow. In the EE
approach, the microscale information of both the fluid and particle motion has been averaged, since
the individual particles are not tracked. Nevertheless, the statistical influence of these microscale
fluctuations in both the fluid and particle velocities remains important in the EE approach, whose
modeling is the focus of this study.

As discussed before, the macroscale undisturbed flow varies slowly on the scale of the particle
diameter and thus the definition of umac@i given in the above equation is adequate. However, this
approximation is not appropriate for the microscale undisturbed flow. As can be seen in Fig. 1(b),
the microscale flow varies substantially over the size of the particle. Thus, evaluating the microscale
contribution at the center of the ith particle may not be adequate. A better estimation of the
microscale undisturbed flow at the ith particle will be based on an average of the neighbor-induced
perturbation flow over the surface of the ith particle as given by

umic@i = (umic,i )
Si
, (12)

where ( )
Si denotes an average over the surface of the ith particle. The motivation for this improved

definition comes from Faxén’s law [34] and its extension in the form of the Maxey-Riley-Gatignol
equation. Though its use at finite Reynolds number and in the presence of multiple neighbors has
not been rigorously established, we expect it to provide a better characterization of the undisturbed
flow than evaluation at the center of the ith particle as given in (11).

Based on the above estimate of the undisturbed fluid velocity, the particle Reynolds number of
the ith particle can be defined as

Re@i = d|u@i − vi|
ν

, (13)

which includes contributions from both the macroscale and microscale flows. Thus, in the rest
of the paper we carefully distinguish the following two definitions of undisturbed flow and the
corresponding Reynolds numbers: (i) u@i and Re@i are the total undisturbed flow and Reynolds
number, respectively [see Eqs. (11) and (13)], and (ii) umac@i and Remac@i are the macroscale
undisturbed flow and Reynolds number, respectively [see Eqs. (7) and (8)]. In contrast to the above
two Reynolds-number definitions, the volume-fraction field has only the macroscale contribution
and the definition of φ@i for the average particle volume fraction at the ith particle given in (7)
remains applicable.

C. Undisturbed and perturbation flow forces on the ith particle

In relating the force on the ith particle to the undisturbed flow we distinguish the following two
contributions. The first is the direct contribution and will be termed the undisturbed flow force.
It is also often refereed to as the pressure gradient, stress divergence, or Archimedes force. This
contribution is due to the net stress divergence that acts on the volume occupied by the particle and
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is given by

Fun,i ≈ V (−∇p + μ∇2u)@i︸ ︷︷ ︸
=Fmac,un,i

+V (−∇pmic,i + μ∇2umic,i )
Vi︸ ︷︷ ︸

=Fmic,un,i

, (14)

where V is the volume of a particle and ( )
Vi corresponds to an average over the volume of the ith

particle. Here again, in the first term on the right-hand side, the macroscale contribution has been
approximately evaluated at the center of the ith particle, due to the slow variation of the macroscale
flow. In the second term, the volume average Faxén form is used for the microscale contribution.
Even in the absence of the ith particle, the undisturbed flow force is experienced by the fluid that
occupies the volume of the ith particle.

In the presence of the ith particle, the actual flow in the neighborhood of the particle will
negotiate around the particle and result in the self-induced perturbation flow [see Eq. (10)]. The
self-induced perturbation flow results in the second contribution, the perturbation flow force on
the ith particle. As illustrated by the Basset-Boussinesq-Oseen and the Maxey-Riley-Gatignol
equations, the perturbation flow force can further be divided into (i) the quasisteady force that
depends on the relative velocity, (ii) the added-mass force, and (iii) the viscous history force,
where (ii) and (iii) depend on the relative acceleration between the particle and the undisturbed
flow [1,35,36].

Here we will restrict attention to nonaccelerating condition and focus on the approximation of
the force on the ith particle

F i ≈ Fmac,un,i + Fmic,un,i + Fqs,i, (15)

where the quasisteady force Fqs,i accounts for the effect of self-perturbation arising from both the
macro and micro components of the undisturbed flow. In fact, the self-induced perturbation flow
due to the ith particle will depend not only on the undisturbed flow of the ith particle, but also on
the presence and the motion of the neighboring particles. Thus, even the quasisteady force due to
the macroscale undisturbed flow will be influenced by the microscale details of how the neighbors
are arranged around the ith particle.

The micro portion of the undisturbed flow force can be evaluated only in an EL-mic simulation
and that too only approximately with the use of the PIEP model. In both the EL-mac and EE
approaches, Fmic,un,i cannot be directly calculated. Therefore, in order to establish consistent
relations between the force expressions of the three approaches, we will consider parametrization
of the total force Fi as a modified quasisteady force that includes the macro and micro portions of
the undisturbed flow force. A discussion of the parametrization of the undisturbed flow force alone
in the EL and EE approaches is given in Appendixes A–C.

D. Superposable wake approximation of the microscale flow

In both the EL and EE approaches, only the macroscale flow u is being computed and therefore
there is no direct access to the microscale undisturbed flow umic,i of the ith particle. However, as
shown in [33,37] the microscale undisturbed flow of the ith particle can be approximated as a sum
over perturbation flow induced by each of the N − 1 neighbors taken one at a time to obtain

umic,i (x, t ) ≈
N−1∑
j=1

usw(x − x j ; Re@ j, φ@ j ), (16)

where the perturbation flow of each neighbor is taken to be given by its superposable wake (denoted
by the subscript sw). The superposable wake flow depends not only on the distance from the
perturbing jth neighbor, but also on the Reynolds number of the flow and the average particle
volume fraction at the neighbor. As discussed in [33,37], the superposable wakes are axisymmetric
flows and have been precomputed and stored for varying values of Re@ j and φ@ j .
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In the evaluation of the microscale undisturbed flow surface averaged over the surface of the ith
particle we make the approximation

umic@i = (umic,i )
Si ≈

N−1∑
j=1

(usw )
Si

j . (17)

Due to the axisymmetric nature of the superposable wake, the surface average depends only on
the axial and radial distance between the i- j particle pair and on Re@ j and φ@ j , which determine

the superposable wake. Axisymmetric maps of streamwise and transverse components of (usw )
Si

j
are precomputed and stored for varying values of Re@ j and φ@ j . For each particle, the appropriate
contributions from its neighbors to the above sum are then read from the maps and added to obtain
the microscale undisturbed velocity. As a final point, it should be noted that the above sums need
not be carried out for all N − 1 neighbors. The superposable wake maps decay rapidly and are
nearly zero when the distance between the ith and the jth particle exceeds more than a few particle
diameters [33,37]. So, for each particle, the above sums need to include only the few nearest
neighbors that fall within a distance of a few particle diameters.

E. Quasisteady force parametrization in the EL approach

In our quest to parametrize the particle force, we will consider the three contributions listed in
(15) and address how their sum can be modeled in the EL approach. We normalize the total force
by the corresponding Stokes drag based on the undisturbed relative velocity as

�L = F i

3πμd (u@i − vi )
, (18)

where superscript L denotes its applicability to each individual particle in an EL simulation. The
�L will depend on the following nondimensional factors: Reynolds number Re@i, which is a
nondimensional measure of relative velocity between the ith particle and its undisturbed ambient
flow; volume fraction φ@i, which measures the average number density of particles around the
ith particle; the relative location of all the other particles in relation to the ith particle measured
as (x j − xi )/d for j = 1, 2, . . . , i − 1, i + 1, . . . , N ; and the relative velocity of the neighboring
particles measured in terms of their Reynolds numbers Re@ j .

The above-listed dependences are more complex than how �L is traditionally modeled. In the
traditional approach, considerable simplification is achieved by limiting attention to only the average
statistical influence of neighbors. This simplification leads to the EL-macro model �LE . At this
simplified level, the collective influence of neighbors is accounted for through the volume fraction.
The precise location of the neighbors and their motion are ignored in evaluating the undisturbed
flow of the ith particle. This simplification greatly reduces the dependence and �LE is modeled as a
function of only Remac@i and φ@i.3

However, there is ample evidence that the simpler parametrization based on only Remac@i and
φ@i is not of sufficient accuracy [11,14–16,19]. It only accounts for the macroscale effects. Subgrid
variation in both particle relative velocity and local particle volume fraction strongly influences the
particle force. The complete dependence list presented above is needed to properly account for the
following two influences of the neighbors: (i) the effect of the precise arrangement of neighbors
around the ith particle in influencing the undisturbed flow at the ith particle, which can be taken into
account through the definition of Re@i by including the microscale flow induced by the neighbors
[see Eqs. (11)–(13)], and (ii) the effect of neighbors on the perturbation flow induced by the ith
particle and therefore on the perturbation flow force. The latter effect requires the position and

3It should noted that at this level of simplification, u@i in the denominator of (18) must be consistently
approximated as umac@i, without the microscale contribution.
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velocity of the neighbors to be included in the complete list of dependences. However, because of
a lack of detailed information, we will ignore the latter influence of neighbors and pursue force
parametrization based on only Re@i and φ@i.

F. Force parametrization in the EE approach

Due to the additional averaging of the particulate phase, force parametrization in the EE approach
is more challenging. In the EE approach, force on an individual particle is not the object of interest.
We are interested in the average drag on all the particles in the neighborhood of a point x weighted
by the filter function. We again consider the three contributions listed in (15) and address how their
sum is modeled in the EE approach. The total force normalized by the corresponding Stokes drag
based on the macroscale undisturbed relative velocity is defined as

�E = F(x, t )

3πμd[u(x, t ) − v(x, t )]
, (19)

where superscript E denotes its applicability in the EE approach. The Eulerian force field is defined
as the weighted sum over all the particles within the system

F(x, t ) ≈
N∑

i=1

G(x − xi )F i. (20)

The above approximation assumes a coarse-grid EE simulation where the particle size is much
smaller than the filter width [38]. From the above definition it is clear that the Eulerian force at a
point x represents the weighted average of force on many particles that are in the neighborhood of
the point (the extent of the neighborhood is defined by the length scale of the filter function).

Due to the nonlinear dependence of normalized force �L on Re@i and φ@i, the average force
obtained by averaging over all the particles within the neighborhood of a point x does not depend
only on the average Reynolds number and the average volume fraction. Additional knowledge of
how Re@i and φ@i vary from particle to particle within the averaging volume is necessary in order
to properly evaluate the average force.

The added challenge of modeling �E can now be discussed in relation to the parametrization of
the EL counterpart. In going from the Lagrangian modeling of force of an individual particle to the
Eulerian modeling of the average force, the effect of the following three different fluctuations must
be additionally considered. (i) The Eulerian particle velocity v(x, t ) accounts for only the average
motion of the particles, but the velocity of individual particles in the neighborhood of the point x
substantially varies from the average value. (ii) The velocity u(x, t ) accounts only for the macroscale
undisturbed fluid velocity. The actual undisturbed fluid velocity of individual particles in the
neighborhood of the point x varies substantially from the average value due to the perturbing effect
of the neighboring particles. (iii) The particle volume-fraction field φ(x, t ) provides an adequate
measure only in the limit where the microstructural distribution is homogeneous and isotropic. In
many applications, the distribution of particles can locally be anisotropic and inhomogeneous [16].

Therefore, it is not sufficient to parametrize �E only in terms of Remac(x, t ) and φ(x, t ). The
following additional information is needed.

(a) The nature of particle-to-particle variation in particle velocity must be characterized (i.e.,
whether the distribution of particle velocity in the neighborhood of the point x is Gaussian
log-normal). The magnitude of subgrid particle-velocity variation is characterized in terms of the
particle-velocity fluctuation Reynolds number

ReT px(x, t ) = dvrms,x

ν
, ReT py(x, t ) = dvrms,y

ν
, ReT pz(x, t ) = dvrms,z

ν
, (21)
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where vrms,x, vrms,y, and vrms,z are the rms particle-velocity variation. The rms variation in particle
velocity along the streamwise (x) and transverse (y and z) directions can be formally defined as

v2
rms,x(x, t ) = 1

φ(u, t )

∫
�

G(x − x′)Ip(x′, t ){[vpr (x′, t ) − v(x, t )] · ex}2dV,

v2
rms,y(x, t ) = 1

φ(u, t )

∫
�

G(x − x′)Ip(x′, t ){[vpr (x′, t ) − v(x, t )] · ey}2dV,

(22)

with a similar definition along the z direction. In granular mechanics, collision-modulated particle-
velocity fluctuation is often taken to be isotropic, which leads to the further assumption ReT px =
ReT py = ReT pz. Here we make the assumption that the particle-velocity fluctuation statistics are
axisymmetric about the direction of mean relative velocity u(x, t ) − v(x, t ), which is taken to be
along the x direction. As a result of axisymmetry, ReT py = ReT pz.

(b) The nature of particle-to-particle variation in the undisturbed fluid velocity evaluated at the
particle must be characterized. Its magnitude can be quantified in terms of the undisturbed fluid-
velocity fluctuation Reynolds number

ReTfx(x, t ) = durms,x

ν
, ReTfy(x, t ) = durms,y

ν
, ReT f z(x, t ) = durms,z

ν
, (23)

where urms,x, urms,y, and urms,z are the rms undisturbed fluid-velocity variation.
(c) The nature of particle-to-particle variation in the particle volume fraction must be charac-

terized along with its magnitude quantified in terms of the rms of the volume-fraction fluctuation
φrms(x, t ).

(d) Correlation between particle and undisturbed fluid-velocity variation is also of importance
(as will be seen in Sec. IV) and can be measured in nondimensional terms as

ReT f px(x, t ) = dC1/2
x

ν
, ReT f py(x, t ) = dC1/2

y

ν
, ReT f pz(x, t ) = dC1/2

z

ν
, (24)

where Cx is the correlation between the x component of the particle-velocity variation with the x
component of the corresponding undisturbed fluid-velocity variation from the average value. The
definitions of Cy and Cz are similar.

III. HOMOGENEOUS DISTRIBUTION OF STATIONARY PARTICLES

We begin with the simplest scenario of a random distribution of stationary particles in a large
triply periodic box, inside which the spatial locations of the particles have been chosen with uniform
probability. A uniform mean pressure gradient (∇p)0 is applied along the mean flow direction
(taken to be the x axis), which results in a spatially varying flow around the stationary particles. We
consider a box filter of size L , the same as the triply periodic box, so that the macroscale quantities
are spatially homogeneous. Let Remac = Re0 = U0d/ν be the macroscale Reynolds number, where
U0 is the uniform macroscale velocity along the x direction. The problem is characterized by two
parameters: the macroscale Reynolds number Re0 and the uniform particle volume fraction φ0. This
scenario has been considered in several recent particle-resolved simulations [2,3,6,7,9,10,14,39,40].

Since the particles are stationary, there is no particle-velocity variation. Thus, this configuration
corresponds to the limit ReT px = ReT px = ReT px = 0. Furthermore, due to the uniform random
distribution of particles and the choice of box filter, the macroscale volume fraction is uniform
and φ′ = 0. Thus, the only particle-to-particle variation is in the undisturbed fluid velocity at the
particles. Here we restrict attention to modest values of the mean Reynolds number, so the flow is
steady. In the present problem, the macroscale undisturbed fluid velocity of all the particles is the
same as U0. As illustrated in Fig. 1, the microscale undisturbed velocity of each particle depends
on the precise arrangement of its neighbors and therefore can be substantially different from one
particle to another. For example, the microscale undisturbed velocity of a particle which happens to
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TABLE I. Different volume fraction and Reynolds-number ranges considered.

Case Volume fraction Box size L/d No. of particles Realizations Re0

1 0.11 30.57 1000 6 0–110
2 0.21 24.64 1000 6 0–160
3 0.45 19.11 1000 6 0–160

lie in the immediate wake of other upstream particles will be substantially negative, while that of a
particle that happens to be located in the high-speed flow channel will be substantially positive.

Three different configurations at volume fractions of 11%, 21%, and 45% are considered. Each
system contains a triply periodic box within which 1000 particles are randomly distributed with
uniform probability. The size of the triply periodic box is chosen to yield the appropriate mean
volume fraction (the details are given in Table I). The mean interparticle distances for the three
volume fractions are 2.09, 1.68, and 1.30 particle diameters, respectively. Each configuration is
repeated with six realizations and the results to be presented are averaged over all the particles in
all the realizations. For each volume fraction, a range of Reynolds numbers between 0 and 160 is
considered. The choice of volume fraction and the range of Re0 are based on available superposable
wake maps.

The distribution of umic@i both along the flow direction and along the transverse direction is of
interest here. As presented in (17), the microscale contribution to the undisturbed flow velocity is
approximated by a superposition of surface averages of superposable wakes of nearby neighbors
to define umic@i,x = ∑′N

j=1 (usw,x ) j
Si , with similar definitions that apply for the y and z components.

Here (usw,x ) j represents the streamwise component of the jth neighbor’s superposable wake, whose
average over the surface of the ith particle is denoted by the overbar and the superscript Si. It
has been observed in [17] that the axisymmetric maps (usw,x )

S
and (usw,y)

S
decay rapidly and are

nonzero only over a cylinder of radius 4.3d whose axial length extends from −4.2d to 6.5d along
the flow direction. Thus, for each particle the contribution to the superposition of surface averages
of superposable wakes is limited to only those neighbors that are within this cylinder of influence.
Also, superposable wakes have been properly defined in order to render the microscale undisturbed
flow a true perturbation quantity and therefore not alter the undisturbed flow averaged over all the
particles, i.e., it is ensured that the mean values

〈umic@i,x〉 = 1

N

N∑
i=1

umic@i,x = 0, 〈umic@i,y〉 = 〈umic@i,z〉 = 0. (25)

Thus, the microscale undisturbed flow of each particle can be considered as fluctuation away from
the mean macroscale undisturbed velocity, which in the present problem equals U0 along the x axis.

Normalized histograms of umic@i,x/U0 and umic@i,y/U0 are shown in Fig. 2 for three different
combinations of Re0 and φ0. The histogram of the z component is the same as that of the y
component. Also plotted as red lines in all the figures are the best-fitting probability density
functions (PDFs) of the histogram. It can be observed that the distribution of the transverse
component of the undisturbed velocity fluctuation at the particles follows a Gaussian PDF for all
combinations of the macroscale Reynolds number and volume fraction. The width of the distribution
appears to increase with Re0 and φ0. In the case of the streamwise component, the distribution
follows a shifted � distribution at lower volume fraction and tends to become a Gaussian PDF at
higher volume fraction.

The asymmetric nature of the distribution at low volume fraction can be explained in terms
of the fore-aft asymmetry of the wake at finite Reynolds numbers. The strong negative-velocity
perturbation in the wake and in the front stagnation point region of a particle is compensated by
a very broad region of weak positive-velocity perturbation along its equatorial sides. This feature
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FIG. 2. Normalized histograms of (a)–(c) the streamwise component of the surface averaged undisturbed
velocity fluctuation at the particles and (d)–(f) the transverse component of the undisturbed velocity fluctuation
at the particles for (a) and (d) Re0 = 100 and φ0 = 0.11, (b) and (e) Re0 = 60 and φ0 = 0.21, and (c) and (f)
Re0 = 30 and φ0 = 0.45. In all the plots the red curve shows the best-fitting analytical distribution. In (a) the
best fit is a � distribution, while in all others a Gaussian fit is shown.

of velocity perturbation is responsible for the positive skewness of the umic@i,x distribution. With
increasing volume fraction, it was reported in [33] that the fore-aft asymmetry of the superposable
wake decreases, since the individual particle wakes are increasingly broken up by the neighboring
particles. This is reflected in the more symmetric nature of umic@i,x distribution at the higher volume
fraction. Figure 3 shows scatter plots of the normalized x component plotted against the normalized
y component for the three combinations of Re0 and φ0 shown in Fig. 2. From the plots it is clear that
there is no systematic correlation between the streamwise and transverse components. This is to be

FIG. 3. Scatter plot of streamwise component of the surface averaged undisturbed velocity fluctuation
versus the transverse component for all the particles within the system for (a) Re0 = 100 and φ0 = 0.11,
(b) Re0 = 60 and φ0 = 0.21, and (c) Re0 = 30 and φ0 = 0.45.
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FIG. 4. Plot of rms normalized (a) streamwise, (b) transverse, and (c) total particle-to-particle-velocity
fluctuation. The results are shown for a range of macroscale Reynolds number. Three different volume fractions
are shown: φ0 = 11% (red), φ0 = 21% (blue), and φ0 = 45% (black).

expected due to both the uniform random distribution of particles and the symmetries or periodicity
of the problem.

Hitherto it has not been easy to estimate the level of fluid-velocity fluctuation seen by the particles
in a multiphase flow. The use of a superposable wake with the pairwise interaction approximation of
the PIEP model has given us an opportunity to obtain such an estimate. From Fig. 2 it is clear that the
level of particle-to-particle variation in the undisturbed fluid velocity at the particle is substantial.
In the case of the streamwise component, the fluctuation can be as large as 100%, which indicates
that, given a macroscale Reynolds number of Re0, the Reynolds number of an individual particle
could be as low as zero or can be as high as twice the macroscale value. Furthermore, it is important
to note that each particle within the array is subjected to a substantial local fluid velocity that is not
aligned in the direction of the macroscale flow. The transverse velocity can be as high as 40%. The
resulting particle-to-particle transverse force variation will likely play an important role in transverse
diffusion and dispersion.

It must however be noted that the distributions of undisturbed fluid velocities shown in Fig. 2
are perhaps sightly underestimated. It has been shown in [33] that the subgrid velocity fluctuation
evaluated using the superposition of superposable wakes slightly underestimates the actual velocity
fluctuation computed in a particle-resolved simulation. The effect of this underestimation may
however be mollified by the fact that the undisturbed velocity has been averaged over its surface.
Furthermore, the superposable wakes account for only the pseudoturbulent component. Though not
important in the present demonstration, in other applications subgrid velocity fluctuations may also
include unresolved turbulence.

A. Fluid-velocity-induced Reynolds-number fluctuation

The microscale undisturbed velocity of all N particles within the system, computed via the
surface average in Eq. (12), can then be used to calculate the rms Reynolds-number fluctuation
in the following way:

ReTfx = d

ν

√√√√ 1

N

N∑
i=1

[umic@i,x]2. (26)

In the above, we have taken the mean value of umic@i,x to be zero. If similarly defined, due
to the axisymmetric nature of the statistics about the mean flow direction, we expect ReTfy =
ReT f z. Figure 4 shows plots of ReTfx/Re0, ReTfy/Re0, and ReT f /Re0 for a range of macroscale
Reynolds numbers for three different volume fractions. Figure 4(a) shows that particle-to-particle
variation in the normalized streamwise component of undisturbed velocity decreases with both
the macroscale Reynolds number and volume fraction. It should be pointed out that in the zero-
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volume-fraction limit of nearly isolated particles, each particle is uninfluenced by its neighbors
and thus ReTfx, ReTfy, ReT f z → 0. It is thus interesting to observe that the normalized streamwise
velocity variation rapidly increases in the modest volume fraction range of 0%–11%. A decrease in
ReTfx/Re0 with a further increase in volume fraction is not entirely surprising, since as observed in
[33], due to the collective effect of the increasing number of close-by neighbors, the extent of each
particle’s superposable wake is greatly reduced with increasing volume fraction. Unfortunately,
with the limited availability of particle-resolved simulations it is not possible to identify at what
macroscale volume fraction the rms fluctuation reaches its maximum value. It is nevertheless clear
that the level of particle-to-particle variation is substantial.

In Fig. 4(b) the behavior of the normalized transverse velocity fluctuation is somewhat more
complex. At higher Re0, ReTfy/Re0 tends to increase with increasing volume fraction. At lower
Re0, there appears to be a nonmonotonic trend, with the level of transverse velocity fluctuation
first increasing with increasing volume fraction, reaching a maximum, and then decreasing with a
further increase in φ0. As with the streamwise component, the transverse component also decreases
with increasing Reynolds number. The rms of the undisturbed fluid-velocity fluctuation, which is
the fluid analog of granular temperature, can be defined as

ReT f = [ 1
3 (Re2

Tfx + 2 Re2
Tfy)]1/2. (27)

Variation of ReT f /Re0 is presented in Fig. 4(c). From the figure it appears that with φ0 increasing
from 0 to ∼10% the fluctuation Reynolds number increases, reaches a peak, remains invariant to
further increase in volume fraction to about 21%, and then decreases with a further increase in
volume fraction.

B. Eulerian force model (stationary particles)

In this section we use our understanding of the particle-to-particle variation in undisturbed flow
velocity to examine the existing drag models and advance alternative models as appropriate. Again
we restrict attention to a uniform macroscale flow through a uniform distribution of stationary
particles. Thus the problem is statistically homogeneous and is characterized by the two macroscale
parameters Re0 and φ0, which remain the same for all particles. First, we consider the average
streamwise drag on the particles; this is the information that is required in a typical Euler-Euler
simulation. In the present context, following (19), the average drag after normalization can be
expressed as

�E
0 =

1
N

∑N
i=1 F i · ex

3πμdU0
, (28)

where F i · ex corresponds to the streamwise component of the force on the ith particle and the
average is over all the particles within the homogeneous system. We now clarify the notation: In
�E

0 , the subscript 0 corresponds to stationary, homogeneous, and isotropic distribution of particles.
As a result of these restrictions, �E

0 will depend only on the two macroscale parameters Re0 and
φ0. When evaluated in this manner, the resulting �E

0 will be inappropriate under conditions where
the distribution of particles is inhomogeneous and anisotropic and when the particles are allowed to
freely move, which will introduce substantial particle-velocity variation.

Several models of �E
0 (Re0, φ0) have been proposed in recent years, mainly based on results

from a large collection of particle-resolved simulations [2,3,6,7,9,10]. We draw attention to the fact
that the above list does not include the classic drag correlations [4,5,8], since these correlations
are based on systems where the particles are allowed to move freely. As pointed out in [31], the
latter correlations must therefore account for the added effects of particle velocity and local volume
fraction variation. As an example, we present the average drag correlation of [7] in normalized form
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as

�E
0 (Re0, φ0)=

⎡
⎢⎢⎢⎣1 + 0.15 Re0.687

0

(1 − φ0)2
+ 5.81φ0

(1 − φ0)2
+ 0.48φ

1/3
0

(1 − φ0)3︸ ︷︷ ︸
f1(φ0 )

+ φ3
0 (1 − φ0)Re0

(
0.95+ 0.61φ3

0

(1 − φ0)2

)
︸ ︷︷ ︸

f2(Re0,φ0 )

⎤
⎥⎥⎥⎦.

(29)
The above correlation and other similar ones proposed in [2,3,6,9,10] differ somewhat from each
other. Though differences in the numerical methodology (finite difference vs lattice Boltzmann),
degree of resolution, and the manner in which particles are randomly distributed are expected to
contribute, a complete explanation of differences is still lacking. Nevertheless, the discussion to
follow using the drag correlation of [7] can easily be replicated with any other correlation.

Figure 5 shows plots of �E
0 (shown as the blue solid line) calculated using the above correlation

as a function of Re0 for the three different volume fractions of φ0 = 0.11, 0.21, and 0.45. Also
plotted as a black dashed line is the corresponding normalized drag evaluated using the standard
drag relation of an isolated particle, i.e., using (1 + 0.15 Re0.687

0 ). Since the standard drag law is
independent of φ, the black dashed line is the same in all three frames. The large difference between
the blue solid line and the black dashed line highlights the profound effect of neighboring particles
in substantially increasing the average drag. There are two sources that contribute to this difference.
(i) As discussed in the preceding section, the undisturbed fluid velocity varies from particle to
particle with the particle’s relative velocity being sometimes substantially larger or lower than the
average. Since the drag force’s dependence on the undisturbed fluid velocity is nonlinear, the true
average force is larger than that computed based on the average relative velocity. (ii) For the same
undisturbed fluid velocity, the drag force on a particle in the presence of neighbors is different from
that of an isolated particle. The latter effect is due to the fact that the self-perturbation flow of a
particle is influenced by the presence of neighbors (as a result of their no-slip and no-penetration
boundary conditions).

Since we can compute the undisturbed flow of each particle within the random distribution using
the superposition of nearby neighbor’s superposable wakes, the two effects can be separated as
follows. The first effect of particle-to-particle variation in the undisturbed flow can be taken into
account by computing the drag on each particle using its undisturbed fluid velocity in the standard
drag law and then averaging over all the particles to obtain

1
N

∑N
i=1(u@i · ex )(1.0 + 0.15 Re0.687

@i )

U0
. (30)

By assuming the drag on each particle to be given by the standard drag law of an isolated particle,
the above ignores the second effect of the influence of neighboring particles on the self-perturbation
flow and only accounts for the variation in the undisturbed fluid velocity. Plots of normalized average
drag computed as the summation given in (30) are shown in Fig. 5 as the red dashed lines. The
undisturbed fluid-velocity variation contributes only modestly to the increase in the average drag
force; this influence is larger at lower volume fraction and progressively decreases with increasing
volume fraction.

The summation given in (30) can be carried out after expanding u@i about the mean velocity
U0ex (see Appendix D) to obtain

1 + 0.15 Re0.687
0︸ ︷︷ ︸

standard drag

+ 0.15 × 0.687

2 Re1.313
0

(1.687 Re2
Tfx + 2.0 Re2

Tfy)︸ ︷︷ ︸
leading effect of undisturbed flow variation

+ · · · , (31)

where the ellipsis denotes higher-order terms. The above expression provides an excellent approx-
imation and explains the contribution of the particle-to-particle variation in the undisturbed flow
velocity. The variance of streamwise velocity fluctuation measured in terms of Re2

Tfx contributes
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FIG. 5. Comparison of various evaluations of normalized drag plotted as a function of Reynolds number
for (a) φ0 = 0.11, (b) φ0 = 0.21, and (c) φ0 = 0.45. The black dashed line shows the standard drag evaluated
as a function of macroscale Reynolds number Re0, the red dashed line shows the standard drag evaluated at
each particle based on its Reynolds number Re@i and then averaged, the blue solid line shows the Eulerian
normalized average drag calculated using (29) as a function of the macroscale Reynolds number Re0, blue
crosses show the Lagrangian normalized drag calculated using (33) as a function of the macroscale Reynolds
number Re0, the red solid line shows the Eulerian normalized drag (29) inappropriately calculated at each
particle based on its Reynolds number Re@i and then averaged, and the red crosses show the Lagrangian
normalized drag (33) properly calculated at each particle based on its Reynolds number Re@i and then averaged.
Note that the red crosses are in excellent agreement with the blue solid line.
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68.7% more than the variance of each of the transverse velocity fluctuation. Furthermore, as can be
seen in Fig. 4, Re2

Tfx is typically much larger than Re2
Tfy. Nevertheless, at the level of undisturbed

velocity fluctuation presented in Fig. 4, the increase in average drag is modest (i.e., the difference
between the black and the red dashed lines is small); however, Eq. (31) indicates that with a further
increase in the fluctuation Reynolds number, for example, through particle-velocity variation when
particles are allowed to move, the increase in average drag can be higher. In any case, in Fig. 5 the
major contributor to the large difference between �E

0 (blue solid line) and the standard drag (black
dashed line) is the influence of neighboring particles on the self-induced perturbation flow.

C. Lagrangian force model (stationary particles)

An important point of the earlier discussion is that when a nonlinear drag correlation, such as the
standard drag law, is applied for each individual particle and then averaged over all the particles,
the resulting average will be higher than when the correlation is applied to the average particle
motion. This has an important implication in the application of the Eulerian normalized average
drag correlation �E

0 , such as the one given in (29).
The difference between an EL-mac simulation of flow over a stationary random distribution

of particles and the corresponding EE simulation is small and therefore �E
0 can be applied for

each particle of the EL-mac simulation. The resulting force variation among the particles in a
neighborhood will be quite small. It is however inappropriate to use �E

0 in the evaluation of force on
individual particles in an EL-mic simulation. This is because drag on individual particles computed
this way will vary within a neighborhood, which when averaged over all the particles will be larger,
and exceed the average drag correlation �E

0 .
We define �L

0 as the consistent Lagrangian normalized force correlation (for stationary particles
as indicated by the subscript 0), which when applied to and averaged over all the particles will
correctly yield the appropriate Eulerian normalized force correlation �E

0 . This force consistency
relation can be mathematically expressed as

U0�
E
0 (Re0, φ0) = 1

N

N∑
i=1

(u@i · ex )�L
0 (Re@i, φ0), (32)

where we have canceled the common factor 3πμd on both sides. In the present context of a uniform
macroscale flow in a periodic box with a random distribution of stationary particles, the normalized
average force �E

0 is a function of the macroscale Reynolds number Re0 and volume fraction φ0.
On the other hand, the Lagrangian normalized force �L

0 is a function of the Reynolds number
of the individual particle, whose undisturbed fluid velocity depends on the relative location of its
neighbors, while the volume fraction remains the same for all particles. From the above, it is clear
that in general �E

0 �= �L
0 and the equality applies only in the case when there is no particle-to-

particle variation in the undisturbed fluid velocity or in the Stokes limit of low Reynolds number
when the normalized force is linear in relative velocity.

The above consistency relation can be viewed as an inverse problem of finding the consistent
Lagrangian normalized force correlation �L

0 , which when averaged as given in the above equation
will yield the desired Eulerian normalized drag �E

0 , such as the one given in (29). By a Taylor series
expansion of the right-hand side of (32) about the macroscale Reynolds number Re0 and following
the steps of Appendix D it can be readily seen that �L

0 will be lower than �E
0 . An approximate curve

fit of the inverse problem yields the expression

�L
0 (Re@i, φ0) =

[
1 + 0.15 Re0.687

@i f3(Re@i, φ0)

(1 − φ0)2
+ f1(φ0) + f2(Re@i, φ0)

]
, (33)

where the functions f1(φ0) and f2(Re0, φ0) are the same as in (29) and

f3(Re@i, φ0) = 1 − 1.5φ1.217
0 e−5.44φ0 (1.0 − 0.0051 Re@i + 1.71 × 10−5Re2

@i ). (34)
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The above is the Lagrangian counterpart of the Eulerian drag correlation given in (29). Both apply
only in the limit when the particles are not moving with respect to each other, i.e., when the particles
are stationary relative to each other.

Plots of �L
0 as a function of Re@i for the three different volume fractions are also shown in

Fig. 5 as the blue crosses. As expected, �L
0 is lower than �E

0 , which is the blue solid line. The
difference, though noticeable, is not very large and decreases with increasing volume fraction. The
small difference is again due to the limited range of particle-to-particle variation in the undisturbed
fluid velocity (i.e., due to modest values ReTfx and ReTfy as given in Fig. 4). As a check, an average
over all the particles was performed after calculating the normalized drag force on each particle
using �L

0 . This average is also shown in Fig. 5 as the red crosses. The agreement between the red
crosses and �E

0 (blue solid line) is quite good.
Clearly the Lagrangian correlation given in (33) and (34) is just one possible fit of the force

consistency relation. Here the drag on the particle has been parametrized only in terms of the
surface-averaged undisturbed fluid velocity, through the dependence on Re@i. While �L

0 defined
this way matches the Eulerian counterpart �E

0 upon averaging, there is no guarantee that force
on individual particles will best match their PR DNS values. Nor will higher-order statistics such
as the rms of particle-to-particle force variation match those of PR DNS. To achieve a more
accurate deterministic prediction, the force expression must additionally depend on the volume
average of the undisturbed stress divergence and on the volume-averaged vorticity. This will allow
accurate accounting of other contributions from the undisturbed flow force, added-mass force,
vorticity-induced lift force, etc. (see PIEP force modeling presented in [11,12,37]). Here we proceed
with (33) and (34) for their simplicity. Nevertheless, this correlation is of fundamental importance,
since the difference between the standard drag of an isolated particle (black solid line) and �L

0 (blue
crosses) embodies the effect of neighbors in increasing the drag on an individual particle within a
random stationary array. Only upon further averaging over many particles do we arrive at �E

0 (blue
solid line).

The difference between �L
0 and �E

0 has been accounted for through the function f3. In the
dilute limit of φ0 → 0, the function f3 → 1, since each particle remains unaffected by the presence
of very distant neighbors and the undisturbed flow has no microscale component. In the Stokes
limit of Re → 0, the influence of f3 vanishes. Thus, in both these limits �L

0 = �E
0 . Eulerian drag

correlations, such as those given in (29), have been used in EL-mic simulations. Such application
of the average drag correlation to individual particles will result in a slight overestimation of the
overall drag force. This effect is shown in Fig. 5, where the average

1

N

N∑
i=1

u@i · ex

U0
�E

H,S (Re@i, φ0) (35)

is plotted as a red solid line. In this case, the Eulerian average drag correlation of (29) has been
inappropriately applied to each particle and then averaged to yield the red solid line. As expected,
this contributes to an increase in the average drag above the expected value of �E

0 .
The difference between �E

0 and �L
0 (i.e., the difference between the blue solid line and the blue

crosses in Fig. 5) is due to particle-to-particle variation in Re@i, which in turn is due to variation in
the streamwise and transverse components of the undisturbed fluid velocity at the particles. We now
separate the contribution of the streamwise and the transverse undisturbed fluid-velocity variation.
Such separation will be exploited in the next section where we proceed to extend the Eulerian drag
correlation to nonstationary problems. Towards this goal we expand in a Taylor series �L

0 (Re@i, φ0)
about the macroscale state (Re0, φ0) and substitute the expansion into the right-hand side of (32).
Rewriting the ratio (u@i · ex )/U0 as Re@ix/Re0, we follow the steps of Appendix D to obtain the
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FIG. 6. Plot of fractional contribution to the difference between the Eulerian and Lagrangian normalized
drag (i.e., between �E

0 and �L
0 ) from the particle-to-particle streamwise undisturbed fluid-velocity variation

in the case of flow past a uniform random distribution of stationary particles. The three lines correspond to
φ0 = 0.11 (red), φ0 = 0.21 (blue), and φ0 = 0.45 (black).

relation

�E
0 (Re0, φ0) = �L

0 (Re0, φ0) +
[

1

2

∂2�̂L
0

∂ Re2
@ix

]
0

(
1

N

N∑
i=1

(Re@ix − Re0)2

)

+
[

∂2�̂L
0

∂ Re2
@iy

]
0

(
1

N

N∑
i=1

Re2
@iy

)

= �L
0 (Re0, φ0) +

[
1

2

∂2�̂L
0

∂ Re2
@ix

]
0

Re2
Tfx0 +

[
∂2�̂L

0

∂ Re2
@iy

]
0

Re2
Tfy0, (36)

where �̂ is introduced in Appendix D. At small Re an exact integration over the Maxwellian
distribution can be performed as discussed in [41]. In obtaining the second equality we have used the
Reynolds-number definitions of streamwise and transverse undisturbed fluid-velocity fluctuations at
the particles given in (26). We now define the fractional contribution to the difference between the
Eulerian and the Lagrangian normalized drag from the streamwise component to be

gx(Re0, φ0) =

[
1
2

∂2�̂L
0

∂Re2
@ix

]
0
Re2

Tfx0

�E
0 (Re0, φ0) − �L

0 (Re0, φ0)
. (37)

A plot of gx as a function of Re0 for three different values of φ0 is shown in Fig. 6. It can
be seen that except at the intermediate volume fraction, gx is nearly independent of Re0. At
lower volume fraction nearly 86% of the increase comes from the particle-to-particle streamwise
undisturbed fluid-velocity variation and the contribution decreases with increasing volume fraction.
At φ0 = 0.45, the streamwise undisturbed fluid-velocity variation contributes 63%. A simple curve
fit, assuming gx to be approximately independent of Re0, is given by

gx = 0.927 − 0.513φ0 − 0.337φ2
0 . (38)

By definition, the fractional contribution along the transverse directions is given by gy,z = 1 − gx.
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IV. HOMOGENEOUS DISTRIBUTION OF NONSTATIONARY PARTICLES

This section considers particles in motion and our goals are to identity (i) an appropriate
Lagrangian model of the normalized drag that can be applied to each particle within the system and
(ii) an Eulerian model of the normalized average drag that is appropriate for a group of particles that
lie within the averaging volume. Two additional mechanisms make this problem more complicated
than the stationary particles considered in the preceding section. When particles are allowed to
move freely, the particle-to particle variation in relative velocity changes, since this variation arises
not only from the undisturbed fluid velocity, but also from the particle velocity [31,41,42]. In
granular flows, it is well understood that interparticle collisions lead to large departures in the
motion of individual particles away from the mean particle velocity. Even in the absence of direct
collisions between particles, the fluid-mediated interaction between the particles will contribute to
particle-velocity fluctuation away from the mean.

Another important effect of particle motion is that homogeneity of the particle distribution and
the uniformity of the particle volume fraction cannot be guaranteed. In addition, the microstructure
of the particle distribution as quantified by statistics such as the radial distribution function may
not be isotropic. The variation in particle velocity, the departure from the uniform distribution
of particles, and the nonisotropic microstructure of neighboring particles will all contribute to
the determination of particle force at the level of both an individual particle and an average
over the averaging volume. In the present work we will restrict attention to only the effect of
particle-to-particle variation in particle velocity. We will assume the particle distribution to remain
homogeneous and the microstructure to remain isotropic.

A. EL-mic viewpoint

Here we consider force on an individual particle, when particles are in free motion but under
the conditions of a uniform random distribution. The macroscale state of the system must now be
characterized by the macroscale Reynolds number Re0, the local particle volume fraction φ0, and
the granular temperature or the level of particle-velocity fluctuation, quantified by ReT px and ReT py.

The particle-velocity variation influences the drag on the ith particle in several ways. (i) The
deviation of the ith particle’s velocity from the macroscale value is easy to account for in the
Lagrangian framework. Since the velocity of each particle is being tracked, the drag force model
can properly account for the particle velocity. (ii) The deviation of the neighbors’ velocity from the
macroscale value influences its perturbation flow. As a result, the undisturbed flow at the ith particle
will be influenced by the motion of the neighboring particles. The effect of the neighbors’ motion
on the undisturbed flow of the ith particle can be taken into account with the use of the PIEP model
and superposable wakes. (iii) The relative motion of the neighboring particles with respect to the ith
particle also influences the self-induced perturbation flow of the ith particle.

Based on the above considerations, we pursue the following force modeling strategy in the EL-
mic framework.

Step 1. For each particle calculate its surface-averaged undisturbed fluid velocity as outlined in
Eq. (17).

Step 2. From the surface-averaged undisturbed fluid velocity and the particle velocity calculate
the Reynolds number Re@i of the particle.

Step 3. From Re@i and φ@i of the particle evaluate the force on the particle using the Lagrangian
drag correlation �L

0 .
This three-step process of evaluating the force on each particle is the same as that for the

stationary case. However, application of these steps to a nonstationary system involves two
fundamental assumptions. First, in the evaluation of the undisturbed fluid velocity, in Eq. (17), the
superposable wakes should have been evaluated for the configuration of nonstationary particles;
however, such information is not currently available. Therefore, the superposable wakes of the
stationary configuration, as obtained in [33], have be used in the nonstationary configuration as
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well. Second, the Lagrangian force correlation �L
0 defined in Sec. III C has been developed based

on the results of PR simulations of a stationary configuration. Thus, the use of �L
0 in the present

context of moving particles is an assumption. In any case, without additional PR simulations of
nonstationary particles, the above strategy is the only viable option.

B. EE viewpoint

Here we consider modeling of the average force that has been averaged over a large number of
moving particles but under the conditions of a uniform random distribution. The level of particle-
velocity fluctuation measured in terms of ReT px and ReT py will be strongly dependent on the particle
Stokes number [31,43,44]. Since the particle Stokes number has been defined as the ratio of the
particle-to-fluid timescale, in a turbulent flow, a range of Stokes numbers can be identified for each
particle, with the Stokes number based on the integral scales being the smallest and the Stokes
number based on Kolmogorov eddies being the largest. Three different regimes can be identified
[45,46]. Regime I corresponds to when the Stokes number based on the Kolmogorov scale is much
smaller than unity (i.e., Stk � 1) and in this regime particles nearly follow the fluid. Regime III
is characterized by large particles whose Stokes number based on the integral scale is larger than
unity (i.e., StL � 1) and in this regime particles are ballistic and do not respond to turbulent eddies.
Then, by definition, in the intermediate regime II there exists a turbulent eddy scale that matches
the particle timescale and therefore the regime-II particles are most responsive to flow turbulence.
Based on this classification of particle response, we may expect the dependence of ReT px and ReT py

on the particle Stokes number to be nonmonotonic and complex.
The force on a particle is dependent on the difference between the undisturbed fluid velocity

and the particle velocity. Thus, particle-to-particle variation in force is related to variation in the
relative velocity and not just on ReTfx, ReTfy, ReT px, and ReT py. In regime III, where particle motion
is uncorrelated with the fluid-velocity fluctuations, the variance of relative velocity variation can
be taken to be the sum of the variance of the undisturbed fluid velocity and the variance of the
particle-velocity variation. Since the fluid and particle-velocity fluctuations are additive, we expect
the Eulerian average to increase substantially over the Lagrangian counterpart. In contrast, in regime
I, the particle-velocity fluctuation will be highly correlated with the undisturbed fluid-velocity
fluctuation. Therefore, even when these fluctuations are large, force variation within the averaging
volume will not be large and the Eulerian average will be nearly the same as the Lagrangian
counterpart. This difference in the average force of large- and small-Stokes-number particles has
been well illustrated in the work of [31].

In an EE simulation that does not employ additional equations for granular temperature, ReT px

and ReT py must be parametrized in terms of local values of Re(x, t ), φ(x, t ), and the Stokes number
St(x, t ), which can be chosen to be that based on Kolmogorov eddies. While the first two parameters
dictate the level of microscale fluid-velocity fluctuation seen by the particles, the last parameter
accounts for the particle’s ability to respond to these fluid-velocity fluctuations. Since the particle-
to-fluid density ratio ρp/ρ f is an important parameter that dictates the particle Stokes number, the
density ratio has also been used for parametrization instead of the Stokes number [31,44].

In this work we will neither attempt to predict ReT px and ReT py as a function of the macroscale
parameters nor obtain it from a granular temperature equation. Instead, we will assume ReT px and
ReT py to be given (say, as a percentage of Re0) and investigate the consequences of such particle-
velocity fluctuation on the average drag force.

C. Enhanced undisturbed fluid-velocity fluctuation

First, we investigate the influence of particle-velocity fluctuation on particle-to-particle variation
in the undisturbed fluid velocity. Consider the ith particle surrounded by its neighbors in the
stationary case versus the nonstationary case. Let the instantaneous location of the neighbors be
the same and let the macroscale fluid velocity be the same in both cases. In the stationary case,
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the perturbation flow induced by the jth neighbor depends only on the undisturbed fluid flow at its
location, whereas in the nonstationary case the perturbation flow induced by the jth neighbor will
additionally depend on the velocity of the jth particle.4 Changes in the magnitude and orientation
of the perturbation flow of all the neighbors, due to their motion, will impact the undisturbed flow
of the ith particle.

As a simple example consider an upstream neighbor of the ith particle, under both the stationary
condition and when the upstream neighbor is moving farther upstream (downstream) relative to the
ith particle, on a sufficiently rapid timescale. Due to its upstream (downstream) motion, the relative
velocity and the perturbation flow of the neighbor will be stronger (weaker) in the nonstationary
scenario. In turn, the wake effect of the upstream neighbor on the ith particle will be stronger
(weaker). However, when we superpose the perturbation flow of all the neighbors and consider the
resulting undisturbed fluid flow of a distribution of particles, it is not readily apparent by how much
the resulting distribution of undisturbed fluid flow will differ from that of the stationary particles
presented in Fig. 2.

We therefore revisit the scenario of a random distribution of particles in a large triply periodic
box considered in Sec. III. As before, the random spatial locations of the particles within the box are
chosen with uniform probability. The different volume fractions and Reynolds numbers considered
are the same as those presented in Table I. Though the distribution of particles in each realization
remains the same as in the stationary counterpart, the particles are now in motion and therefore
the chosen particle locations represent their position at one time instant. A uniform mean pressure
gradient is applied along the mean flow direction (x axis). Again the length scale of the box filter is
the same as the periodic box and as a result the macroscale quantities are homogeneous.

Each particle within the periodic box is given a random velocity, obeying the following
properties. (i) The mean particle velocity is zero. In other words, the frame of reference is attached
to the mean particle motion. (ii) Each component of each particle’s velocity is a random variable
of Gaussian distribution. The rms values of the normalized particle-velocity variation are given by
ReT px, ReT py, and ReT pz. (iii) Each particle’s velocity is uncorrelated from that of all others. (iv)
For now we will assume particle-velocity variation to be isotropic (i.e., ReT px = ReT py = ReT pz =
ReT p). Such a Maxwellian particle-velocity distribution has been considered by others [39,41].
The problem is then characterized by three parameters: the macroscale Reynolds number Re0, the
constant particle volume fraction φ0, and ReT p. Particle-resolved simulations of this scenario have
been considered in [39,40], where a steady flow solution was obtained around a random distribution
of particles. Though the particles did not move in the simulation, a nonzero random velocity was
applied as a boundary condition at each particle.

The microscale undisturbed velocity of each particle now depends on the precise arrangement
of its neighbors and their velocities. Again, the distributions of umic@i both along the flow direction
and along the transverse direction are of interest. Following (17), the microscale contribution to
undisturbed flow velocity is approximated by a superposition of surface averages of superposable
wakes of nearby neighbors. Normalized histograms of umic@i,x/U0 and umic@i,y/U0 are shown in
Fig. 7 for the same three different combinations of Re0 and φ0 considered earlier in Fig. 2 for the
stationary particles. The figure shows the results for the particular case when ReT p/Re0 = 0.5. Also
plotted as red lines in all the figures are the best-fitting PDFs of the histograms.

It can be observed that compared to the stationary case the level of particle-to-particle variation
in the undisturbed flow velocity has increased substantially. The increase is observed in both the
streamwise and the transverse components. The width of the distribution increases with Re0 and φ0.
While the distributions are closely Gaussian in shape at the higher volume fraction, the streamwise
distribution follows a shifted � distribution at lower volume fraction with positive skewness. The

4Technically, if the velocity of the ith and the jth particle are the same, the jth particle is considered stationary
with respect to the ith particle.

084302-25



S. BALACHANDAR

FIG. 7. Results for the nonstationary case with the normalized particle-velocity fluctuation ReT p/Re0 =
0.5: normalized histograms of (a)–(c) the streamwise component of the surface averaged undisturbed velocity
fluctuation at the particles and (d)–(f) the transverse component of the undisturbed velocity fluctuation at
the particles for (a) and (d) Re0 = 100 and φ0 = 0.11, (b) and (e) Re0 = 60 and φ0 = 0.21, and (c) and (f)
Re0 = 30 and φ0 = 0.45. In all the plots the red curve shows the best-fitting analytical distribution. In (a) the
best fit is a � distribution, while in the others a Gaussian fit is shown.

enhanced asymmetric nature of the distribution at low volume fraction is due to the increased fore-
aft asymmetry of the wake at finite Reynolds numbers. Plots similar to Fig. 3 were considered to
establish that there is no systematic correlation between the streamwise and transverse components.

The microscale undisturbed velocity of all N particles within the system is then used to calculate
the rms Reynolds-number fluctuation as given in (26). Figure 8 shows plots of ReTfx/ReTfx0 and
ReTfy/ReTfy0 for a range of macroscale Reynolds numbers. The three frames show the results
for three different volume fractions considered. Here ReTfx0 and ReTfy0 correspond to the rms
normalized undisturbed fluid-velocity fluctuation in the stationary particle limit. Thus, in Fig. 8
the ordinate corresponds to an increase in the undisturbed fluid-velocity fluctuation due to particle
motion. In each frame the three different colors correspond to ReT p/Re0 = 0.1, 0.3, and 0.5. From
the figure it appears that the increase is independent of the macroscale Reynolds number and the
increase of the transverse component is larger than the streamwise component. In the dilute limit
of φ0 → 0 we expect the microscale contribution to the undisturbed fluid velocity of a particle
to approach zero, due to the lack of neighbor influence. Thus, in this limit ReTfx, ReTfy → 0,
independently of the magnitude of particle-velocity fluctuation. At finite volume fraction, the effect
of particle-velocity fluctuation appears to initially increase with volume fraction and saturate above
φ0 ≈ 0.2 in the case of the streamwise component. In the case of the transverse component the
variation with volume fraction is not significant. It can also be noted that the increase in ReTfy is
substantially larger than in ReTfx. Thus, compared to Figs. 4(a) and 4(b) for the stationary case,
where the ratio of the streamwise component to the transverse component was much larger than
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FIG. 8. Plot of increase in rms normalized streamwise and transverse undisturbed fluid-velocity fluctuation
due to particle motion for (a) φ0 = 0.11, (b) φ0 = 0.21, and (c) φ0 = 0.45. The ratios ReTfx/ReTfx0 (stars)
and ReTfy/ReTfy0 (circles) are plotted, where ReTfx0 and ReTfy0 correspond to rms normalized microscale
undisturbed fluid-velocity fluctuation in the stationary particle limit. In each frame red, blue, and black
correspond to ReT p/Re0 = 0.1, 0.3, and 0.5, respectively.

unity, in the case of nonstationary particles the streamwise and transverse undisturbed fluid-velocity
components begin to approach each other with increasing particle-velocity variation. This can be
anticipated, since the preferred orientation of the particle wakes along the x direction in the case of
stationary particles is substantially modified with the introduction of random particle motion and
isotropy is recovered.

D. Eulerian force model (nonstationary)

We now consider the Eulerian modeling of force averaged over the local filter volume for the
case of moving particles. The definition of the Eulerian normalized average force given in (28) still
applies (without the subscript 0, since particles are not stationary). We now proceed to apply the
best available model for the force of the ith particle. We assume F i to be well modeled by

F i = 3πμd (u@i − vi )�
L
0 (Re@i, φ0). (39)

Here both the Stokes drag and the function �L
0 are based on the relative velocity between the

undisturbed fluid flow and the particle velocity. The above expression is an approximation, since
it uses the Lagrangian correlation �L

0 even in the present scenario of nonstationary particles. We
recall that �L

0 was earlier defined in the limit of stationary particles. In fact, the observation in [42]
that their DNS force on the particles is larger than that predicted with the EE force model of [2]
suggests that �L under the nonstationary condition is likely to be higher than �L

0 , at least for the
specific case that they considered. Nevertheless, it must be stressed that in the present approach
particle-to-particle variation in both the particle velocity and the undisturbed fluid velocity is taken
into account through the proper definition of relative velocity.

We now revisit the cases considered in Figs. 7 and 8. Since the particle velocity is imposed
(as opposed to being decided by free motion), the correlation between particle velocity and the
undisturbed fluid velocity is zero. This lack of correlation is appropriate only in the case of large
inertia particles, which do not respond to fluid-velocity fluctuations, or when the particle dynamics
is dominated by interparticle collisions. At low values of particle inertia, the particle velocity will
be correlated with its undisturbed fluid velocity. We now use the model presented in (33) for �L

0
in (39) and evaluate the Eulerian normalized average force given in (28). Figure 9 shows plots of
�E thus calculated for a range of Re0, for ReT p/Re0 = 0.0, 0.1, 0.3, and 0.5. The results for four
different values of φ0 = 0.0, 0.11, 0.21, and 0.45 are shown in different frames.

Also shown in the figures as black dashed lines are the corresponding plots of �L
0 as a function

Re0, which corresponds to the Lagrangian drag on an individual particle whose Reynolds number

084302-27



S. BALACHANDAR

FIG. 9. Eulerian normalized average force �E plotted as a function of macroscale Reynolds number Re0

for (a) φ0 = 0.0, (b) φ0 = 0.11, (c) φ0 = 0.21, and (d) φ0 = 0.45. The black dashed line corresponds to �L
0 .

The different solid lines in each frame correspond to different values of particle-velocity fluctuation: red,
ReT px/Re0 = 0.0; blue, ReT px/Re0 = 0.1; green, ReT px/Re0 = 0.3; and black, ReT px/Re0 = 0.5. In all these
cases the particle-velocity fluctuation is isotropic (i.e., ReT px = ReT py).

and local volume fraction are Re0 and φ0, respectively. The red line corresponds to the stationary
limit of zero particle velocity and thus is identical to the plot of �E

0 . As was discussed in the context
of Fig. 5, the difference is due to averaging over the stationary particles whose Reynolds number
varies due to variation in the undisturbed fluid velocity. In the limit of zero volume fraction �L

0 and
�E

0 are identical.
With increasing particle-velocity variation we see that there is a substantial increase in the

Eulerian average. This increase vanishes in the Stokes limit of Re0 → 0 and is amplified at finite
Reynolds number. In the zero-volume-fraction limit, since each particle is unaffected by all other
particles, the difference between �E and �L

0 is entirely due to particle-velocity variation, whereas at
finite φ0 the increase in Eulerian average is due to both particle-velocity variation and undisturbed
fluid-velocity variation. Such an increase in drag due to added particle motion has previously been
reported based on the results of finite-Re PR simulations [39–41]. It must however be cautioned
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FIG. 10. Scatter plot of normalized streamwise force deviation of a particle away from the average as a
function of the streamwise component of the particle velocity for (a) φ0 = 0.0, (b) φ0 = 0.11, (c) φ0 = 0.21,
and (d) φ0 = 0.45.

that this increase is when the particle-velocity variation is uncorrelated with the undisturbed
fluid-velocity variation. Under conditions of freely moving particles of low Stokes number, the
correlation between the fluid and particle-velocity variation greatly reduces the relative velocity
variation. In fact, as a result of correlation, the average drag can fall below that of the stationary
limit as illustrated in the cases considered in [31].

The Eulerian average force under the stationary condition �E
0 (represented by the red solid line

in Fig. 9) is the appropriate quantity that should be compared with the average drag as obtained in
the PR DNSs of [2,3,6,7,9,10]. In contrast, classic drag laws such as those given in [4,5,8] are based
on freely moving particles and therefore should be compared to one of the �E curves given in Fig. 9
with the appropriate value of particle-velocity fluctuation. It should be cautioned that for a proper
comparison, however, one must also include a nonuniform distribution of particles and anisotropy
in the nature of the particle-velocity variation. Nevertheless, it is clear that the Eulerian average of a
freely moving assembly of particles will be higher than that obtained under the stationary condition.

Figure 10 presents scatter plots of the variation in the normalized streamwise force of a particle
away from its average as a function of the streamwise component of particle velocity. Here �L′ =
�L − 〈�L〉, where the angular brackets represent an average aver all the particles. The results are
plotted for the four volume fractions considered at Re0 ≈ 100 and in all cases ReT p/Re0 = 0.3.
These results are in good agreement with those shown in [40] based on their PR simulations. As
can be expected, there is a negative correlation between the streamwise particle velocity and the
streamwise drag, since as the particle velocity increases the relative velocity decreases. In the zero-
volume-fraction limit, there is a very good correlation between the streamwise velocity variation and
the streamwise force, and the lack of a perfect correlation is due to particle-velocity variation along
the transverse directions; however, the correlation between �L′ and ReT p/Re0 weakens at finite
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volume fraction. This is due to the fact that the undisturbed velocity of each particle is influenced
by the particle velocity of its neighbors. In fact, as pointed out in [40], there are instances when the
streamwise component of the particle velocity is positive (negative) and the corresponding effect
on the streamwise force is positive (negative). Clearly, for such particles the increase (decrease) in
streamwise drag must be due to an increase (a decrease) in the undisturbed fluid velocity.

1. Simple model of �E

We now present a simple model for the nonstationary Eulerian average force �E as a function
of the macroscale parameters Re0, φ0, ReT px, and ReT py. We obtain this relation by substituting
Eq. (39) into (28) and following the steps pursued in (36) to get

�E = �L
0 (Re0, φ0) +

[
1

2

∂2�̂L
0

∂ Re2
@ix

]
0

Re2
T x +

[
∂2�̂L

0

∂ Re2
@iy

]
0

Re2
Ty. (40)

In obtaining the above we have defined the mean square fluctuation in the streamwise Reynolds
number to be Re2

T x = 1
N

∑N
i=1(Re@ix − Re0)2, with a similar definition for the transverse compo-

nent. We now use (37) to replace the terms within the square brackets to obtain

�E = �L
0 (Re0, φ0) + (�E

0 − �L
0 ) gx

(
ReT x

ReTfx0

)2

+ (�E
0 − �L

0 ) (1 − gx )

(
ReTy

ReTfy0

)2

, (41)

where the fractional contribution to force enhancement from the streamwise undisturbed fluid-
velocity variation of the stationary configuration (i.e., gx) was defined in (37). The second and
third terms on the right-hand side account for the increase in Eulerian average over the Lagrangian
estimation due to averaging of the nonlinear drag relation. Part of it comes from variation in the
streamwise relative velocity, represented by the second term, and part comes from variation in the
transverse component of relative velocity, represented by the third term. In the limit of stationary
particles, ReT x → ReTfx0 and ReTy → ReTfy0 and as a result, according to the above relation, �E

will correctly approach �E
0 . In the case of freely moving particles, the difference �E − �E

0 will
depend not only on Re0 and φ0, but also on how much streamwise and transverse relative velocity
variations within the averaging volume have amplified their values for the stationary limit.

Relative velocity variation is due to both the undisturbed velocity variation and the particle-
velocity variation. It can be readily shown that(

ReT x

ReTfx0

)2

=
(

ReTfx

ReTfx0

)2

+
(

ReT px

ReTfx0

)2

− 2

(
ReT f px

ReTfx0

)2

,

(
ReTy

ReTfy0

)2

=
(

ReTfy

ReTfy0

)2

+
(

ReT py

ReTfy0

)2

− 2

(
ReT f py

ReTfy0

)2

,

(42)

where the fluctuation Reynolds numbers of the undisturbed fluid-velocity variation (ReTfx and
ReTfy), particle-velocity variation (ReT px and ReT py), and their correlations have been defined in
(21)–(24).

The general expression (41) for the Eulerian force correlation �E has been mechanistically
developed with the intension of broad applicability in a wide variety of multiphase flows. However,
its utility clearly depends on our ability to model the three ratios that appear on the right-hand side
of (42). The ratios ReTfx/ReTfx0 and ReTfx/ReTfx0 measure amplification of the rms streamwise
and transverse undisturbed fluid-velocity variation due to particle motion. Based on the results
presented in Fig. 8, these ratios are larger than unity and the increase is more substantial for the
transverse component. These ratios, when taken to be approximately independent of Re0, are shown
in Fig. 11 as a function of ReT px/Re0. The results are presented for the three different volume
fractions considered. The second term of the streamwise component can be better quantified by
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FIG. 11. Plot of the ratios ReTfx/ReTfx0 and ReTfy/ReTfy0 as a function of ReT px/Re0 = ReT px/Re0 for the
three different volume fractions φ0 = 0.11 (red), φ0 = 0.21 (blue), and φ0 = 0.45 (black). Stars correspond to
the streamwise component and circles to the transverse component.

rewriting it as

ReT px

ReTfx0
= ReT px/Re0

ReTfx0/Re0
. (43)

In the example considered in Fig. 9 the numerator is an input whose value was varied from 0% to
50%. The denominator pertains to the stationary particle case and its variation with Re0 and φ0 was
presented in Fig. 4.

The correlation between the particle and undisturbed fluid-velocity variation represented by the
last term is quite important, since a positive correlation can reduce the additive effect of the particle
and undisturbed fluid-velocity variation. The results presented in Fig. 9 are based on the assumption
of zero correlation employed in that example problem. This assumption is applicable for regime-III
particles of large Stokes number which do not respond to any of the turbulent eddies. As a result, the
particle-velocity variation is uncorrelated from its undisturbed fluid-velocity variation. However, in
other applications involving freely moving particles of smaller Stokes number, the correlation will
be nonzero and its contribution can be so large that the Reynolds number of the relative velocity
fluctuation can decrease below that of the stationary limit. This point is tested in Fig. 12, where
we reconsider the problem studied in Fig. 9. Earlier, each particle of the random distribution was
given a random velocity of the Maxwellian distribution that was completely uncorrelated from
the undisturbed fluid velocity of the particle. In the present test, each particle of the distribution
is given a random velocity of Maxwellian distribution, whose correlation with the undisturbed
fluid velocity was systematically changed (i.e., C = 0.0, 0.25, 0.5, 0.75, and 1.0). The Eulerian
normalized average forces �E for these cases are shown as solid and dashed lines in Fig. 12.
Also plotted in the figure are �L(Re0) as the black crosses and �E (Re0) as the blue crosses.
It is clear from the figure that with increasing correlation, the Eulerian average drag decreases,
since particle-to-particle variation of relative velocity decreases. As can be expected, under perfect
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FIG. 12. Plot of �E investigating the effect of correlation between the particle-velocity variation with the
undisturbed fluid-velocity variation for correlation values of C = 0.0 (red solid line), 0.25 (black solid line),
C = 0.5 (blue solid line), C = 0.75 (green solid line), and C = 1.0 (red dashed line). Also plotted are �L (Re0)
(black crosses) and �E (Re0) (blue crosses). The results are for φ0 − 0.21.

correlation (i.e., C = 1.0) the deviation of the undisturbed fluid velocity of each particle from the
average is perfectly compensated by the deviation of its particle velocity and results in very little
deviation in its Reynolds number from the average value of Re0. This is the reason why the red
dashed line of C = 1.0 is in excellent agreement with the black crosses of �L(Re0). Thus, under
perfect correlation, the Eulerian normalized average force of freely moving particles can be lower
than that for a stationary system. Such behavior was observed in the simulations of [31]. It is
interesting to note that at a correlation of around 0.75, �E for the nonstationary system becomes
approximately the same as �E

0 .
The increase in normalized Eulerian average force due to particle motion can be explicitly

expressed using (41) as

�E − �E
0 = (�E

0 − �L
0 )gx

(
Re2

T x

Re2
Tfx0

− 1

)
+ (�E

0 − �L
0 )(1 − gx )

(
Re2

Ty

Re2
Tfy0

− 1

)
, (44)

which can be compared with prior predictions based on PR simulations in [39,43]. Tang et al.
[43] considered freely moving suspensions of particles of varying particle-to-fluid density ratio
and predicted the increase in normalized drag to be proportional to ReT p. However, the value of
ReT p/Re0 realized in their simulations was quite small. The PR simulations of [39] closely match
the example problem considered here. Huang et al. proposed a model where the increase in Eulerian
normalized average force is expressed as proportional to Re1.49

T p . The quadratic dependence of the
model presented in Eq. (41) is a consequence of the Taylor series expansion, and this scaling
corresponds well with the low-Reynolds-number model advanced in [41]. However, �E in (41)
depends on a change in the Reynolds number based on the relative velocity variation, for which ReT p

is only one of three contributors [see (42)]. The Eulerian normalized average force may increase

084302-32



LAGRANGIAN AND EULERIAN DRAG MODELS THAT ARE …

FIG. 13. Plot of −Rdiss versus Re0 for ReT p/Re0 = 0.1, 0.3, and 0.5 and volume fraction values (a) φ0 =
0.11, (b) φ0 = 0.21, and (c) φ0 = 0.45.

or decrease depending on the relation between the particle-velocity variation and the undisturbed
fluid-velocity variation. The results of [39,43] are useful for the configurations they studied.

The relation between the �E model given in (41) and the granular temperature equation must be
recognized. Particle-velocity fluctuation as predicted by the granular temperature equation is the key
input. Particle-velocity fluctuation in turn influences the distribution of undisturbed fluid-velocity
fluctuation, and their correlation also depends on the response time of the particles. The resulting
mean hydrodynamic force on the particles as predicted by �E is then the source of fluid-mediated
dissipation in the granular temperature equation. Following [41], we define the nondimensional
dissipation of the granular temperature as

Rdiss = 1

9πμdv2
rms

1

N

N∑
i=1

Fi · vi, (45)

where the velocity of the ith particle is vi, whose mean is chosen to be zero and the rms particle-
velocity fluctuation is taken to be the same along all three directions (i.e., vrms,x = vrms,y = vrms,z =
vrms). Plots of Rdiss as a function of Re0 are shown in Fig. 13 for the three different volume fractions
and for the three different values of ReT p/Re0 = 0.1, 0.3, and 0.5. These results can be compared
with the corresponding results of the φ0 = 0 limit. In this very dilute limit, the undisturbed flow
of each particle is simply the macroscale uniform flow and thus fluctuation in force is entirely due
to particle-velocity variation. Furthermore, in the dilute limit, the standard drag correlation applies.
With these facts and using a Taylor series expansion, the leading-order expression of Rdiss can be
obtained as

Rdiss ≈ −2 − 0.3687 Re0.687
0 for φ0 = 0, (46)
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which can be compared with the results presented in Fig. 13. In the dilute limit Rdiss is independent
of the ratio ReT p/Re0 and this lack of dependence appears to hold at finite volume fractions
at lower values of ReT p/Re0. A small increase in Rdiss can be noticed at the high fluctuation
level of ReT p/Re0 = 0.5. The increase in Rdiss with increasing volume fraction is due to both an
increase in mean drag and an increase in the distribution of relative velocity due to undisturbed
fluid-velocity fluctuations. Figure 13 applies only in the case of uncorrelated undisturbed fluid and
particle-velocity fluctuations. We expect the magnitude of Rdiss to decrease in the case of low-inertia
particles whose undisturbed fluid and particle-velocity fluctuations will be correlated.

E. Lagrangian force model (nonstationary)

We finally consider the Lagrangian force model for use in EL simulations of freely moving
particles. Here again we distinguish between the two different EL approaches: EL-mac and EL-mic.
As seen in Fig. 8, as a result of particle motion, even the variation in undisturbed fluid velocity
increases. Particle-to-particle variation in both the particle velocity and the undisturbed fluid
velocity contributes to enhanced variation in the particle Reynolds number based on the relative
velocity and in turn to larger variation in particle force. In the EL-mic approach, each particle is
informed not only of its velocity but also of the undisturbed fluid velocity of the particle, including
the microscale contribution of its neighbors. In other words, both vi and u@i are known for each
particle being tracked in the EL-mic approach. The force of the particle can then be easily evaluated
using (33).

In the case of the EL-mac approach, only the macroscale component of the undisturbed
flow is available. As a consequence, particle-to-particle variation in undisturbed flow is greatly
underestimated. Furthermore, we can expect the particle-velocity variation to be lower than in a PR
DNS or EL-mic simulation. Therefore, similar to (39), we define the Lagrangian force on a particle
as

F i = 3πμd (umac@i − vi )�LE (Remac@i, φ0). (47)

The function �LE in the above expression is different from �L
0 that appears in (39), since it must

account for the effect of enhanced variation in relative velocity. In particular, just like �E , �LE must
also be a function of ReT px. The consistency requirement can be enforced by substituting the above
into the right-hand side of (28) and requiring that it be equal to the nonstationary Eulerian average
drag �E obtained in the preceding section and presented in Fig. 9. In other words, we demand that
the macro-Lagrangian force �LE , when applied to individual particles in an EL-mac simulation and
averaged over the distribution of particles within the averaging volume, should equal the Eulerian
average. This is an inverse problem which can be solved to obtain the correct macro-Lagrangian
force. Provided the averaging filter length is much larger than the particle size, we can expect �LE

to approach the Eulerian average force model �E .

V. DISCUSSION AND CONCLUSIONS

One of the insights presented in this work is information on the undisturbed fluid velocity of a
random distribution of particles subjected to a uniform macroscale flow. The undisturbed flow of a
particle is of fundamental importance since it controls both the undisturbed flow force (also known
as pressure gradient or Archimedes force) and the quasisteady force. An easy way to calculate
the undisturbed flow of a particle is lacking since it requires a particle-resolved simulation in
the absence of that particle but in the presence of all other particles. Here we used the pairwise
interaction extended point particle framework of [11,12,33] to evaluate the undisturbed flow of each
particle through superposition of the perturbation flow induced by all its neighbors. This approach
has allowed us the opportunity to obtain various statistics related to undisturbed fluid velocity under
conditions of both stationary and nonstationary particles.
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TABLE II. List of all the normalized force expressions presented in this work. Here it is assumed that in the
EL-macro approach the filter length scale is sufficiently larger than the particle size, so it is essentially similar
to the EE approach.

Simulation methodology Force law (stationary) Force law (nonstationary)

Euler-Euler �E
0 = Eq. (29) �E = Eq. (41)

Euler-Lagrange–micro �L
0 = Eq. (33) �L ≈ Eq. (33)

Euler-Lagrange–macro �LE
0 ≈ Eq. (29) �LE ≈ Eq. (41)

In a random distribution of particles, even though the macroscale flow of all the particles is the
same, it was observed that the microscale undisturbed flow that arises due to the perturbation flow
of neighbors varies substantially from particle to particle, and this in turn leads to large variation
in the hydrodynamic force exerted on the particles. Even in the case of stationary particles, there
is substantial particle-to-particle variation in both the streamwise and transverse components of the
undisturbed fluid velocity. The variation in the streamwise velocity component is much larger than
the variation in the transverse component. The variation as a percentage of the macroscale velocity
decreases with increasing macroscale Reynolds number. When particles are allowed to move and
given random velocity, the effect of particle motion is to increase the particle-to-particle variation in
the undisturbed fluid velocity of the particles. This increase is greater for the transverse component
than for the streamwise component. As a result, with increasing random particle motion, the
influence of the preferred direction of the macroscale flow decreases and as a result the distribution
of undisturbed fluid-velocity fluctuation approaches isotropy.

Three different normalized forces have been defined for the evaluation of the hydrodynamic force
on the particle: �L is the Lagrangian normalized force on an individual particle that is suitable for
application in an Euler-Lagrange simulation, where particle-to-particle variation in the undisturbed
fluid velocity has been accounted for either in a deterministic or in a stochastic manner; �E is
the Eulerian normalized average force on all the particles within the averaging volume suitable
for application in an Euler-Euler simulation; and �LE is the Lagrangian normalized force on an
individual particle that is suitable for application in an Euler-Lagrange simulation, where only the
macroscale undisturbed fluid velocity is used in calculating the particle force.

An important result of the present work is the establishment of precise relations between these
different definitions of normalized force and how they are related to commonly used drag laws.
The drag laws developed based on PR DNS results of flow over a stationary random array of
particles [2,3,6,7,9,10] are appropriate for application only as the Eulerian normalized average force
�E

0 , where the subscript 0 has been added to indicate its applicability for a stationary system of
particles. The drag laws developed based on experiments on freely sedimenting particles [4,5,8] are
appropriate as the Eulerian normalized average force �E . This however includes the added effect
of particle-to-particle variation in the particle velocity and as a result �E for nonstationary particles
is typically larger than �E

0 and the difference depends on the magnitude of the particle-velocity
variation.

While the Eulerian normalized average force correlation can be obtained from direct numerical
simulations and experiments, the corresponding Lagrangian normalized force expressions cannot
be directly obtained. Here we introduced the force consistency relation [see (32)] according to
which �L, when properly defined and applied to each particle based on its relative velocity and
volume fraction and averaged over all the particles within the averaging volume, must equal �E .
Accordingly, while �L is only a function of the particle’s Reynolds number and volume fraction [as
defined in (1)], �E must be a function of not only the macroscale Reynolds number and volume
fraction, but also of the particle-velocity variation Reynolds number (also rms volume fraction
variation in the case of a nonuniform particle distribution).

A summary of all the Eulerian and Lagrangian force correlations discussed in this work is
presented in Table II. The stationary limits presented in the second column are the limiting values

084302-35



S. BALACHANDAR

of those presented in the third column. We have used the drag correlation of Tenneti et al. [7] as
an example of �E

0 . It can be replaced with similar correlations advanced by others [2,3,6,9,10]
and following the steps outlined in Sec. III the companion �L

0 can be derived so that they satisfy
the force consistency relation. While the Lagrangian force correlation �L and its stationary limit
�L

0 depend only on Re0 and φ0, the EE and EL-mac correlations will additionally depend on the
fluctuation Reynolds number that parametrizes particle-velocity variation. In the table it is assumed
that in the EL-macro approach the filter length scale is sufficiently larger than the particle size so
that it is essentially similar to the EE approach.

Finally, although the above drag correlations offer significant improvement over the use of the
same standard drag in both the EL and EE simulations, several limitations can be identified. These
limitations can be properly addressed with further research. (i) Free motion of particles will result
in an inhomogeneous distribution of particles. The effect of volume fraction variation, in addition
to particle-to-particle variation in the Reynolds number, must also be considered. This can be done
in a similar manner. (ii) Equation (41) for the Eulerian force correlation is intended for broader
use in a wide variety of EE and EL-mac simulations. However, its use requires knowledge of
streamwise and transverse undisturbed fluid-velocity variation, particle-velocity variation, and their
correlation. Such comprehensive knowledge is currently lacking. This requires further study with
particle Stokes number (or particle-to-fluid density ratio) as an important parameter. (iii) Another
fundamental assumption of the above approach is that the Lagrangian force correlation of an
individual particle under the conditions of free motion, i.e., �L, has been taken to be the same as
that under the stationary condition. This assumption is more appropriate than assuming �E = �E

0 ,
since the former only ignores the secondary effect of neighbors on self-induced perturbation flow.
This assumption of �L = �L

0 was required, since we do not know the perturbation flow in terms of
superposable wakes under conditions of freely moving particles. Thus, establishing �L under the
conditions of freely moving particles will be an important future step. (iv) Here we have ignored the
effect of particle rotation and the torque induced on the particle. The effects of particle rotation on
both the particle force and torque variation have been studied [10,31,47] and these effects must be
incorporated into future models.
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APPENDIX A: STRESS DIVERGENCE MAPS

Similar to the superposition given in (16), superposition applies to the microscale undisturbed
pressure field as well

pmic,i (x, t ) ≈
N−1∑
j=1

psw(x − x j ; Re@ j, φ@ j ). (A1)

With the above definitions, the undisturbed velocity and pressure fields of each particle within the
system can be explicitly calculated, but such a calculation as a sum over all the neighbors can be
computationally expensive. In order to reduce the computational burden, we first note that umic,i and
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pmic,i are not needed in themselves in the force calculation. As seen in (14), in the evaluation of
Fmic,un,i only the volume average is needed, which can be approximated as

(−∇pmic,i + μ∇2umic,i )
Vi ≈

N−1∑
j=1

(−∇psw + μ∇2usw ) j
Vi
, (A2)

where ( ) j
Vi stands for the stress divergence of the superposable wake of the jth particle being

averaged over the volume occupied by the ith particle. Due to the axisymmetric nature of the
superposable wake, this volume average depends only on the axial and radial distances between the
i- j particle pair, and on Re@ j and φ@ j , which determine the superposable wakes. Thus, in addition
to the superposable wake velocity fields, the above volume average of stress divergence can be
precomputed and stored as axisymmetric maps for varying Re@ j and φ@ j . Once computed and
stored, the appropriate volume average contribution from each neighbor can be read and summed
over as given in the above summation.

APPENDIX B: UNDISTURBED FLOW FORCE PARAMETRIZATION IN THE EL APPROACH

The macro portion of the undisturbed flow force Fmac,un,i can be readily evaluated from the
macroscale velocity and pressure fields of the EL simulation [see the first term on the right-hand
side of (14)]. If the macroscale flow is nearly homogeneous (or slowly varying in x), then the viscous
contribution is generally very small and can be ignored. Furthermore, in the absence of acceleration
effects, the macroscale pressure gradient that drives the flow must exactly balance the net force on
all the particles [7,41], which yields

−∇p = φ(x, t )F(x, t )

V . (B1)

In the above V is the volume of a particle and F is the average force. Substituting the above in the
expression for Fmac,un,i (14) and ignoring the negligible contribution from the viscous stress, we
identify the relation in which, under nonaccelerating conditions, the macroscale undisturbed flow
force on a particle is simply φ times the average force.

The micro portion of the undisturbed flow force, Fmic,un,i, has generally been ignored in EL
simulations. Even though the precise locations of all the neighboring particles are known in an
EL simulation, Fmic,un,i has been ignored mainly due to the fact that a method to obtain the
neighbor-induced microscale perturbation flow has been lacking. The pairwise interaction extended
point-particle model provides a rational approximation in terms of the summation of superposable
wakes of nearby neighbors. According to the PIEP model, Fmic,un,i can be evaluated in terms of the
precomputed force maps as given by the sum (A2).

APPENDIX C: MACRO UNDISTURBED FLOW FORCE PARAMETRIZATION
IN THE EE APPROACH

The macro portion of the undisturbed flow force can be evaluated by spatially averaging the
corresponding EL quantity to obtain

V
φp

∫
�

G(x − x′)Ip(x′, t )(−∇p + μ∇2u)dV ≈ V (−∇p + μ∇2u). (C1)

Here u(x, t ) and p(x, t ) are the macroscale velocity and pressure fields of the EE simulation. In
obtaining the right-hand side it is assumed that the macroscale stress divergence is slowly varying
and therefore can be moved out of the integral. As in the EL approach, under nonaccelerating
conditions the macroscale undisturbed flow force on a particle is simply φ times the average force.
In the EE approach it is not possible to evaluate the microscale undisturbed flow, since the precise
locations and motion of the neighbors are unavailable.
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APPENDIX D: APPROXIMATION OF AVERAGE DRAG

Towards the goal of obtaining an approximate evaluation of the average drag over all the particles
given in (30), we first rewrite it as

1

N

N∑
i=1

Re@ix

Re0
(1.0 + 0.15 Re0.687

@i )︸ ︷︷ ︸
�̂

, (D1)

where Re@ix = (u@i · ex )d/ν is Reynolds number based on the streamwise x component of the
undisturbed fluid velocity at the ith stationary particle and furthermore we have the relation Re2

@i =
Re2

@ix + Re2
@iy + Re2

@iz. We now expand in a Taylor series the function �̂ in the triplet variables
(Re@ix, Re@iy, Re@iz ) about the macroscale value of (Re0, 0, 0) as

�̂ = [�̂]0 +
[

∂�̂

∂ Re@ix

]
0

(Re@ix − Re0) +
[

∂�̂

∂ Re@iy

]
0

Re@iy +
[

∂�̂

∂ Re@iz

]
0

Re@iz

+
[

∂2�̂

∂ Re2
@ix

]
0

(Re@ix − Re0)2

2
+

[
∂2�̂

∂ Re2
@iy

]
0

Re2
@iy

2
+

[
∂2�̂

∂ Re2
@iz

]
0

Re2
@iz

2
+ · · · , (D2)

where the notation [( )]0 indicates the quantity within the square brackets being evaluated at the
macroscale state. The partial derivatives are then evaluated and the linear terms are ignored in
anticipation that they make zero contribution when averaged over all the particles. With these we
obtain

�̂ = (1.0 + 0.15 Re0.687
0 ) + 0.15 × 0.687

2 Re1.313
0

[1.687(Re@ix − Re0)2 + 2 Re2
@iy] + · · · . (D3)

As the final step we average this expression over all the particles. When carrying out the average,
averages of Re@ix − Re0 and Re@iy are zero and therefore these terms were ignored in Eq. (D3).
We also recognize averages of (Re@ix − Re0)2 and Re2

@iy to be Re2
Tfx and Re2

Tfy. We thus obtain the
final result given in Eq. (31).
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