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Inertial effects in shear flow of a fluid-particle mixture: Resolved simulations
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This paper presents results of the resolved simulation of particles suspended in a fluid
in shear flow. Unlike most of the existing work on this subject, the ratio of the particle
density to that of the suspending fluid is not 1 but varies between 2.5 and 10, with a focus on
inertial effects rather than gravity, which is not considered. Two particle Reynolds numbers
are considered, 20 and 40, while the average particle volume fraction varies from 5% to
33%. The study focuses on the effects of inertia on this class of flows. It is shown that
the memory of the particles’ earlier state of motion associated with inertia is responsible
for significant effects. Among others, the collision rate is increased and, with it, the rate
of momentum transfer from the moving walls into the bulk of the fluid-particle mixture;
normal stress differences become larger and the particle-rich layer near the walls becomes
denser. Comparable effects are found by increasing the particle density and the particle
Reynolds number. The two normal stress differences are found to be both negative and
comparable in spite of their very different physical origin. Additional results concern the
wall slip, the stresslet, the effects of a nonzero collisional tangential force, the wall stress,
and others. The great importance of particle-particle and particle-wall collisions reveals
itself in influencing the rheology of the mixture, the normal stress differences, and the
transport of momentum.
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I. INTRODUCTION

The importance of particulate flows in nature and technology has motivated a rich literature
devoted to improving our understanding of the physical processes that determine their behavior,
an important aim being the development of reliable reduced-order models for their prediction.
Particle-resolved simulations play an important role in this effort as they have the potential to
facilitate an understanding of the detailed microphysics of these flows. Until fairly recently, the
vast majority of these studies have been devoted to viscous suspensions at vanishing Reynolds
number [see, e.g., Refs. 1–4]. Among others, an important result of these studies is the anisotropy
of the pair distribution function which is at the root of the non-Newtonian behavior of suspensions
manifesting itself in shear-thickening [5], nonzero normal stress differences [6], and shear-induced
migration [1,7].

In the past few years improvements in algorithms and hardware have made particle-resolved
numerical simulation possible at finite Reynolds numbers, first with the lattice-Boltzmann method
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TABLE I. A representative list of papers devoted to the numerical study of fluid-particle mixtures in shear
flow; φ is the particle volume fraction, ρp/ρ the ratio of the particle to the fluid density, Rep and St the particle
Reynolds and Stokes numbers defined in Eqs. (1) and (2), H/d the ratio of the gap width to the particle diameter,
and Npart the number of particles in the simulation.

Reference φ, ρp/ρ Rep St H/d Npart

Verberg and Koch [8] 10–41 450–4500 0.04–40 10–100 12 64–240
Kulkarni and Morris [9] 5–30 1 0.04–20 ∼0-1.67 10 77–516
Yeo and Maxey [10] 20–40 – 0 – 5–15 285–1718
Yeo and Maxey [11] 20, 30, 40 1 0.02–8 ∼0-0.67 ∞ 438, 657, 876
Haddadi and Morris [12] 10–35 1 0.02–20 ∼0-1.67 10 ∼191-∼668
Gallier et al. [13] 10–55 – 0 0 10 1,000
Fornari et al. [14] 5–30 1 4–40 0.33–3.33 1.5–6 –
Rahmani et al. [15] 5–38 1 0.002–20 ∼0-1.67 10 ∼95-∼726
Present 5–33 2.5–10 20, 40 3.3–12.2 20 800–5000

[see, e.g., Refs. 8,16–18] and, more recently, with the immersed boundary method [see, e.g.,
Refs. 14,19–26] and others [see, e.g., Refs. 10,27,28]. A representative list, focused on the object
of the present study, namely, shear flow, is given in Table I, which also shows the parameter range
investigated in the various references. It can be seen from this table that all the studies, with the
exception of Ref. [8], which was focused on gas-solid systems, have considered neutrally buoyant
particles. This is of course the case of greatest relevance for experiments if gravitational settling is to
be avoided. Nevertheless, an exploration of the effects of enhanced inertia associated with particles
heavier than the fluid is also valuable to illuminate the physics of the particle-fluid interaction when
the latter has a strong influence on the particle motion. It is the purpose of this paper to describe
some results of resolved numerical simulations of this type. While our focus is on particles heavier
than the suspending fluid, gravity is not considered.

Inertia is of particular significance in steady shear flow as, in its laminar single-phase counterpart,
it plays no role. It will be shown that, as the particle density is made progressively larger, the
resulting stronger memory of their earlier state of motion introduces significant effects. Among
others, the collision rate is increased and, with it, the rate of momentum transfer from the moving
walls into the bulk of the fluid-particle mixture is facilitated, normal stress differences become
larger and the particle-rich layer near the walls becomes denser. Comparable effects are found by
increasing the particle density and the particle Reynolds number. While, with increasing density,
features such as the collision rate become close to the corresponding results for granular gases,
subtle differences remain which have important consequences on wall and bulk shear stress and
other features of the flow.

II. BRIEF DESCRIPTION OF THE SIMULATIONS

We consider a shear flow between two smooth parallel no-slip planes, separated by a distance H ,
moving along the x axis in opposite directions with velocities ±U , so that the nominal shear rate is
γ̇ = 2U/H and the system Reynolds number Res = 2HU/ν, with ν the fluid kinematic viscosity.
The particle Reynolds number is defined by

Rep = 4a2γ̇

ν
, (1)

with a the particle radius. We carried out simulations with Rep = 20 and 40; the ratio H/(2a) = 20
was kept fixed so that Res = 400 Rep. An important parameter characterizing the particle behavior
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is the Stokes number, which we define by

St = γ̇ τp = 2U

H

[
2

9

a2

ν

(
ρp

ρ
+ 1

2

)]
. (2)

Here ρp and ρ are the particle and fluid density, respectively, and the terms in brackets will be
recongized as the time constant of inertial particles. The values of St quoted in Table I have been
calculated using this relation and, therefore, in some cases they are different from those quoted in
the original publications which often use the viscous particle time constant τp = 2ρpa2/(9ρν). We
mostly focus on the density ratio ρp/ρ = 5 presenting more limited results for ρp/ρ = 2.5 and 10.
The computational domain extends over 80a, 20a, and 40a, respectively, in the flow direction x, the
spanwise direction y and the gradient direction z. Periodicity conditions are imposed in the x and
y directions. With volume fractions φ = 5.2%, 21%, and 33%, this computational domain contains
800, 3200, and 5000 particles, respectively.

We have carried out particle-resolved simulation by means of the PHYSALIS method which is
described in detail in a number of papers [see, e.g., Refs. 29–32]. The method is based on the
observation that, due to the no-slip condition, near the particle the fluid motion differs little from
rigid-body motion so that, in the particle rest frame, velocities are small, inertia is negligible, and
the Stokes approximation is applicable. After a local change of frame to the particle rest frame,
this circumstance makes the known Lamb general solution of Stokes equations locally applicable
[33,34]. This solution is used as a “bridge” between the particle surface and the closest nodes
of a regular Cartesian grid, which constitute an internal boundary for a finite-difference solution
of the fully nonlinear Navier-Stokes equations. The local Lamb solution is in terms of unknown
coefficients which are determined iteratively until the local Stokes analytical solution matches the
Navier-Stokes solution. A useful feature of the method is that these coefficients are proportional
to the force, couple, stresslet and higher-order multipoles associated with each particle, which
therefore become available avoiding the need for data post-processing and additional computations.
The Navier-Stokes equations are solved by a projection method on a staggered grid.

The collision model used in the simulations embodies a nonlinear Hertzian contact model which
is activated whenever the distance between two particle centers becomes equal to a diameter. In
addition to the normal force, colliding particles also interact via a tangential force Ft which, for the
sake of generality, we describe allowing properties of the colliding particles, α and β, including their
radius, to be different [35]. The form of the tangential force is similar to that proposed in Ref. [36]
and is given by

Ft = kt [wc − (wc · n)n]	t, (3)

with 	t the time step. The quantity in brackets is the tangential component of the relative velocity
between the surfaces of the two particles at their point of contact and is given by

wc = wα − wβ − 1
2 (aα + aβ + h)(
α − 
β ) × n. (4)

Here w and 
 are the particle velocity and angular velocity, n is a unit vector directed along the line
of centers and aα + aβ + h, with h < 0, is the distance between the particles’ centers. The stiffness
kt is given by Mindlin’s theory as [see, e.g., Ref. 37]

kt = 8

(
1 − σ 2

α

Hα

+ 1 − σ 2
β

Hβ

)−1(
aαaβ

aα + aβ

)1/2

(−h)1/2, (5)

in which H = 1
2 E/(1 + σ ) with E Young’s modulus and σ the Poisson ratio.

This collision model is complemented by a lubrication interaction which is activated when the
distance between the particle surfaces is less than a radius. The same strategy is used for the particle-
wall interactions; see Refs. [30,35] for details.
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TABLE II. A concise view of the cases simulated in the present work; φ is the particle volume fraction
averaged over the computational domain, Rep = 4a2γ̇ /ν is the particle Reynolds number, ρp/ρ is the ratio of
the particle to fluid densities, St is the Stokes number, and Np is the number of particles in the simulation.

Case no. Label φ Rep ρp/ρ St Np

1 Reference 21% 20 5.0 6.1 3200
2 High Rep 21% 40 5.0 12.2 3200
3 Small φ 5% 20 5.0 6.1 800
5 Large φ 33% 20 5.0 6.1 5000
7 Light 21% 20 2.5 3.3 3200
9 Heavy 21% 20 10 11.7 3200

In this paper we describe the results of six simulations. To avoid repetition we will refer to them
by the number shown in Table II. We use case 1 (φ = 21%, Rep = 20, ρp/ρ = 5) as the reference
case. Cases 2, 7, and 9 all have the same volume fraction but differ by having a larger Rep and a
smaller and larger density, respectively. Cases 3 and 5 differ by having, respectively, a smaller and
a greater volume fraction. Table II also shows the Stokes number for the different cases. It may
be noted that cases 2 and 9 have a very similar Stokes number. The former has a higher particle
Reynolds number, 40, with ρp/ρ = 5, the latter has a smaller Reynolds number, 20, but a higher
particle density ρp/ρ = 10. We will see that, for these two cases, many of the results that follow
are very similar. This fact suggests that inertia, whether due to flow or particle density, has similar
effects on many features of these flows.

III. PARTICLE VOLUME FRACTION

We begin by showing in Fig. 1 the results of our simulations for the local particle volume fraction.
This quantity is calculated by dividing the computational domain into 320 layers parallel to the
plates with a thickness of one computational cell, by calculating the volume internal to particles in
each layer, and averaging over time.

Several authors have reported on the formation, near the solid walls, of particle layers with a
density larger than that in the bulk [8,10,15]. The results for Re = 20, ρp/ρ = 5 and φ = 5%, 21%,
and 33% (cases 3, 1, and 5) are shown in Fig. 1(a). Wall peaks are clearly visible for all cases.
The peaks move toward the walls as the volume fraction is increased, consistent with Ref. [16],
and a depletion layer adjacent to the wall is also clearly present at all volume fractions as found in
Ref. [10]. However, unlike this latter work, the wall peaks do not grow relative to the bulk value
as the volume fraction is increased. In fact, for φ = 33%, the bulk volume fraction is only slightly
below the wall peak. Unlike ours, those simulations were conducted for Rep = 0 and included only
a model for lubrication interactions with the wall, but no actual collisions. The combination of a
finite-Reynolds number and collisions may be expected to disrupt the wall layers especially since,
with our model, the collision force upon particle-wall collisions can acquire a component directed
away from the wall. A trend similar to that of Ref. [10] was reported in Ref. [9] in which, however,
the volume fraction was based on the position of the particle centers rather than on the distribution
of the actual particle volume. A similar procedure applied to our data produces much higher wall
volume fractions than shown in the figure. It can be seen from Fig. 1(b), which shows the volume
fraction for Rep = 20 and φ = 21% for different density ratios, that the peak height tends to slowly
increase with ρp/ρ. The result of Ref. [15] for φ = 38% exhibits a much stronger layering than ours
for 33%, likely due to their channel height which was half of ours. The connection of a pronounced
layering with a limited channel height has been explored and explained in Ref. [14].

The increasing peak height with increasing particle density is an effect of collisions. As shown
in Sec. IV, the collision rate increases with ρp/ρ and, with a higher rate, particles have a greater
probability of reaching the walls. Once there, they cannot be easily dislodged due to the fact that,
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FIG. 1. Local time-averaged particle volume fraction between the plates. (a) Effect of the average volume
fraction for Rep = 20, ρp/ρ = 5 and, in ascending order, φ = 5% (orange, case 3), 21% (blue, case 1), and
33% (green, case 5); (b) Effect of the particle density for Rep = 20, φ = 21% and in ascending order near the
walls, ρp/ρ = 2.5 (orange, case 7), 5 (blue, case 1), and 10 (green, case 9); (c) Effect of the Reynolds number
for φ = 21%, ρp/ρ = 5 and, in ascending order near the wall, Rep = 20 (blue, case 1) and Rep = 40 (orange,
case 2).

in this region, collisions are strongly biased in the wall direction. This explanation is supported by
Fig. 1(b), showing the effect of the density ratio for Rep = 20 and φ = 20%, and by Fig. 1(c),
showing the effect of the particle Reynolds number for ρp/ρ = 5 and the same volume fraction.
While, in agreement with the results of Ref. [19], these two parameters do not exert a strong
influence on the volume fraction in the bulk region of the flow, both figures indicate that the wall
peak increases as both ρp/ρ and Rep increase.

IV. COLLISIONS

Inertia has a significant effect on the particle collision rate which, in turn, influences several
aspects of the flow under consideration as we have begun to see in the previous section.

Figure 2 and Table III show the collision rate (defined as the number of actual Hertzian contacts)
per unit normalized time γ̇ t as a function of normalized time for all the simulations described in
this paper. The collisions of each particle are counted so that a binary collision, for example, would
increase the collision count by 2. Thus, since, for this volume fraction, collisions involving more
than two particles are rare, with a rate of 6400 collisions per unit time, approximately all the 3200
particles of the simulations with φ = 21% on average would undergo a collision in a time unit, i.e.,
the time it takes for the plates to move one quarter of their length.
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FIG. 2. Average normalized collision rate as a function of the dimensionless time for, in ascending order,
Rep = 20, φ = 5%, ρp/ρ = 5 (red, case 3); Rep = 20, φ = 21%, ρp/ρ = 2.5 (brown, case 7); Rep = 20, φ =
21%, ρp/ρ = 5 (blue, case 1); Rep = 40, φ = 21%, ρp/ρ = 5 (black, case 2); Rep = 20, φ = 21%, ρp/ρ = 10
(green, case 9); Rep = 20, φ = 33%, ρp/ρ = 5 (orange, case 5).

Focusing on the results for Rep = 20, φ = 21% and, in increasing order, density ratios ρp/ρ = 2.5
(brown), 5 (blue), and 10 (green), we see that the corresponding collision rates are, approximately,
2100, 2600, and 3600 per unit time. The evident systematic increase with the density ratio is due
to the increasing inertia that delays the particle response to the disturbance flow induced by the
presence of a neighboring particle. This delayed response causes the first particle to continue in its
original motion longer than it would have if it had a lower density and, in this way, it increases the
collision rate. The same result was found in an earlier paper on a fluidized-bed-like system [38].

A different view of the collision rate fc is given by Fig. 3 in which the rate is normalized as
(Table III)

f ∗
c = 2a fc√

T
, (6)

with

T = 1
3 〈u′

p · u′
p〉, (7)

TABLE III. Several numerical results of the present simulations; T ∗ is the granular temperature defined in
Eq. (7) normalized by U 2; “coll” is the number of collision per unit normalized time γ̇ t ; “norm coll” is the
normalized collisions rate (6); “Couette dev’n” is the root-mean-squared deviation of the velocity profile from
the Couette linear one (Sec. V and Fig. 6); “ang vel” is the normalized angular velocity in the vorticity direction
Eq. (13).

Case 104T ∗ Coll Norm coll f ∗
c Couette dev’n Ang vel 
∗

y

1 2.72 2,617 4.96 0.11 0.58
2 4.95 3,314 4.65 0.07 0.62
3 25.3 102 0.25 0.02 0.77
5 3.20 9,054 10.1 0.17 0.51
7 2.31 2,078 4.27 0.12 0.58
9 5.20 3,545 4.86 0.07 0.63
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FIG. 3. Collision rate normalized according to Eq. (6), the collision rate in granular flow, shown by the
dashed line. Circle: Rep = 20, φ = 21%, ρp/ρ = 5 (case 1); triangle: Rep = 40, φ = 21%, ρp/ρ = 5 (case 2);
square: Rep = 20, φ = 5%, ρp/ρ = 5 (case 3); star: Rep = 20, φ = 33%, ρp/ρ = 5 (case 5); pentagon: Rep =
20, φ = 21%%, ρp/ρ = 2.5 (case 7); diamond: Rep = 20, φ = 21%, ρp/ρ = 10 (case 9).

the granular temperature defined in terms of the mean particle velocity fluctuations, calculated as
explained in Sec. V below; normalized values of this quantity are shown in Table III. The dashed
line is the Enskog collision frequency for elastic hard spheres [see, e.g., Refs. 39,40],

fE = 4g2(φ)d2n
√

πT , (8)

normalized in the same way; here g2(φ) is the angle-averaged two-particle distribution function at
contact, approximated by the Carnahan-Starling formula,

g2(φ) = 1

2

2 − φ

(1 − φ)3
. (9)

It is remarkable that, except for the very dilute case with φ = 5% and the dense case with φ = 33%,
all the results fall very close to the Enskog collision frequency which, in principle, should only be
applicable in the absence of interstitial fluid. Interstitial fluid has an obvious effect in slowing down
the particles, but it also causes a particle to sense the approach of another particle. The first effect is
probably strongest for the dilute case φ = 5%, in which the mean free path is longest and the effect
of drag, therefore, largest. The second one may be more important at large volume fraction in which
relative velocities are smaller and particles are more easily deflected. The normalized collision rates
for the three density ratios ρp/ρ = 2.5, 5, and 10 are remarkably close to each other even though, as
will be seen later, their effects on other flow quantities are significantly different. As far as collision
rate is concerned, these cases with φ = 21% seem to be close to a “sweet spot” which is least
affected by the interstitial fluid.

V. VELOCITY FIELDS

Four examples of the horizontally averaged fluid and particle velocities in the direction of motion
of the plates are shown in Fig. 4. Figures 4(a) and 4(b) are for Rep = 20, ρp/ρ = 5, with φ = 21%
(case 1) and 33% (case 5), respectively; Figs. 4(c) and 4(d) are for φ = 21%, the former with Rep

= 40 and ρp/ρ = 5 (case 2), the latter with Rep = 20 and ρp/ρ = 10 (case 9). The dashed line in
these figures represents the single-phase Couette velocity profile. The two lines showing the phase
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FIG. 4. Phase velocities normalized by the plate velocity U ; the dashed line shows the linear Couette
velocity profile. (a) Rep = 20, φ = 21%, ρp/ρ = 5 (case 1); (b) Rep = 20, φ = 33%, ρp/ρ = 5 (case 5); (c)
Rep = 40, φ = 21%, ρp/ρ = 5 (case 2); (d) Rep = 20, φ = 21%, ρp/ρ = 10 (case 9). The particle and fluid
velocity are indistinguishable except very near the walls, an area enlarged in Fig. 7.

velocities essentially superpose except near the walls where particle slip becomes noticeable; we
show detailed results on this region later. The formation of this “Vand layer” [41] is due to the fact
that, due to excluded-volume effects, the volume fraction must decrease from about one particle
diameter away from the wall until it vanishes at the wall itself (cf. Fig. 1). As the sketch of Fig. 5

FIG. 5. Sketch of the velocity distribution in a system in which the effective viscosity near the walls is
lower than in the bulk.
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FIG. 6. Root-mean-square normalized difference udevi between the mean fluid velocity and the velocity of
the linear Couette profile at the same position for the cases considered in this study. Circle: Rep = 20, φ = 21%,
ρp/ρ = 5 (case 1); triangle: Rep = 40, φ = 21%, ρp/ρ = 5 (case 2); square: Rep = 20, φ = 5%, ρp/ρ = 5
(case 3); star: Rep = 20, φ = 33%, ρp/ρ = 5 (case 5); pentagon: Rep = 20, φ = 21%%, ρp/ρ = 2.5 (case 7);
diamond: Rep = 20, φ = 21%, ρp/ρ = 10 (case 9).

shows, near-wall particles are therefore immersed in a medium with a lower (effective) viscosity
than the bulk which cannot set them into motion as effectively. The result is a significant wall slip,
visible in Fig. 4 and, in greater detail, in Fig. 7, and a smaller mean velocity gradient in the bulk of
the system compared to the analogous single-phase flow.

The increased resistance to flow offered by the bulk as the volume fraction increases is evident in
Figs. 4(a) and 4(b), in which the increased deviation from the single-phase profile is seen to increase
as φ goes from 21% to 33%. Figures 4(c) and 4(d) show that increases of Rep or of the particle
density bring the velocity profiles closer to the linear Couette one, which implies a greater and
greater ability of the system to transfer momentum in the cross-stream direction as inertia effects
increase. In these latter two cases, the velocity profile is close to linear in the bulk of the flow
approaching the velocity distribution sketched in Fig. 5. It will therefore be possible to define an
effective viscosity for this region of the flow as will be done in Sec. VI. No clear definition of such
a quantity is however possible for the other cases.

To illustrate the deviation of the profiles from the linear one we show in Fig. 6 the root-mean-
square difference udevi = √〈(〈u〉x,y,t − γ̇ z)2〉z between the fluid velocity and the velocity of the
linear profile at the same position for the three volume fractions considered in this study. Here the
inner average is the average over time and planes parallel to the moving plates; the outer average is
over the gap thickness. We can see here that the deviation increases with increasing φ and decreasing
particle density reflecting the adverse influence of these opposite trends of the two variables on the
transverse transport of momentum. This process occurs by the establishment of velocity gradients
in the fluid and by the transverse motion of particles and their collisions, which are limited by
increasing φ. Increasing the particle density, however, makes the collisions stronger and more
frequent, which benefits the cross-stream momentum transport thus reducing the deviation from
the linear profile. This interpretation is supported by the observation that the same effect is found by
increasing the Reynolds number as shown by the near coincidence of the symbols with Rep = 20,
ρp/ρ = 10 (diamond), and Rep = 40, ρp/ρ = 5 (downward triangle). A similar ability of increased
inertia to promote cross-stream transfer is present in the heat-transfer results of Ref. [42] and (for
momentum transfer only) it is visible in the results of Ref. [8], although a quantitative comparison is
not possible due, first, to the order-of-magnitude difference of the fluid-to-particle density ratio and,
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FIG. 7. Detail of phase velocities near the walls. The dotted line is the linear Couette velocity profile, the
solid line is the fluid velocity, and the dashed and dash-dotted lines the particle material velocity including and
excluding the particle rotation, respectively. (a) Rep = 20, φ = 21%, ρp/ρ = 5 (case 1); (b) Rep = 20, φ =
33%, ρp/ρ = 5 (case 5); (c) Rep = 40, φ = 21%, ρp/ρ = 5 (case 2); (d) Rep = 20, φ = 21%, ρp/ρ = 10
(case 9).

second, to the use by these authors of an artificially roughened wall to decrease the particle-wall
slip.

Details of the phase velocities in the direction of the flow near the upper wall are shown for
two cases in Fig. 7. Here the dotted line is the Couette profile and the solid line joining it at the
top is the fluid velocity. Since the local particle volume fraction adjacent to the walls is small, the
fluid velocity distribution in this region closely represents the entire mixture velocity as well. The
particle velocity is represented in two ways. The dashed line is the velocity of the particle material
in the flow direction. The dash-dotted line is obtained by attributing to each point in the particle the
translational velocity of its center. The difference between the two results is due to particle rotation
which will mostly be clockwise near the upper wall and therefore increase the velocity with respect
to that of a pure translatory motion within one radius from the wall and decrease it in the region
immediately below. One notices in Fig. 7(c) a somewhat larger slip velocity for the Rep = 40 case
and a somewhat larger difference between the two results for the particle phase velocity indicating a
stronger effect of rotation. The effect of rotation in the other cases is very similar, which shows that
rotation is essentially dictated by the plate motion with little if any effect of the particle density.

The four panels of Fig. 8 show the distribution of the particle velocity fluctuations u′
p in the

gap between the plates for the same four cases of Fig. 4. In these figures the rightmost group
of points (blue) refers to the fluctuations in the streamwise direction and the others (green and
yellow) to those in the orthogonal plane, which are seen to be very comparable. To generate these

084301-10



INERTIAL EFFECTS IN SHEAR FLOW OF A …

FIG. 8. Distribution of the normalized particle velocity fluctuations in the gap between the plates; the
rightmost group of points (blue) are the fluctuations in the streamwise direction and the others (green and
yellow) those in the orthogonal plane. (a) Rep = 20, φ = 21%, ρp/ρ = 5 (case 1); (b) Rep = 20, φ = 33%,
ρp/ρ = 5 (case 5); (c) Rep = 40, φ = 21%, ρp/ρ = 5 (case 2); (d) Rep = 20, φ = 21%, ρp/ρ = 10 (case 9).

figures the computational domain was divided into 100 layers, each one with the thickness of
three computational cells. Each point in the figure shows the root mean square velocity fluctuation
averaged over all the particles in that layer.

For φ = 21% and 33%, ρp/ρ = 5 and Rep = 20 (cases 1 and 5), the fluctuations are large near
the wall but decrease approaching the bulk, a tendency that increases with the volume fraction.
This feature indicates the difficulty with which the wall momentum, which is the ultimate source
of the fluctuations, is transported into the bulk that was already apparent in the deviation of the
velocity distribution from the linear profile in Figs. 4(a) and 4(b) and in Fig. 6. If inertia is increased
by increasing the Reynolds number, as in Fig. 8(c), or by increasing the particle density, as in
Fig. 8(d), the velocity fluctuations become quite comparable throughout the gap. Increased inertia
favors the transport of cross-stream momentum as already noticed in connection with the smaller
deviation of the mean velocity distribution from the Couette profile in Fig. 6. A similar beneficial
effect of increased inertia is visible in the granular temperature reported in Ref. [8]. In all cases, as
reported in Ref. [15], the velocity fluctuations along the direction of the flow are larger than those
in vorticity-shear plane.

Finally, we turn to the particle velocity correlation coefficient which, in the i direction, is defined
by

Ri =
〈[

uα
p,i(t + τ ) − 〈

uα
p,i

〉
t,Np

] [
uα

p,i(t ) − 〈
uα

p,i

〉
t,Np

]〉
t,Np〈[

uα
p,i(t ) − 〈

uα
p,i

〉
t,Np

]2〉
t,Np

. (10)
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FIG. 9. Particle velocity correlation coefficient vs. the dimensionless delay time γ̇ τ ; the left panel is the
correlation coefficient in the flow direction and the right panel that in the direction normal to the plates. Here
Rep = 20, φ = 21%, and ρp/ρ = 2.5 (orange, case 7), 5 (blue, case 1), and 10 (green, case 9).

Here, for brevity, we have used a synthetic notation. In more detail, uα
p,i(t + τ ) = uα

p,i[y
α (t+τ ), t+τ ]

is the ith component of the velocity of particle α at its instantaneous position yα (t + τ ), while
〈uα

p,i〉t,Np is the particle velocity at the position zα averaged over all the particles, over time and over
xα and yα; the subscript t denotes average over time and the subscript Np average over the particles.

The correlation coefficient for Rep = 20, φ = 21% and ρp/ρ = 2.5 (orange, case 7), 5 (blue,
case 1), and 10 (green, case 9) are shown in Figs. 9(a) and 9(b) in the direction x of the flow
and in the direction z normal to the plates, respectively. In the range explored here, as found in
Ref. [19], the particle density does not have a strong effect on the correlation coefficient. However, it
is seen that larger inertia tends to increase the persistence of the correlation, as expected. Persistence
of the velocity fluctuations in the flow direction x (left panel) and in the vorticity direction y (not
shown) revert to zero slightly faster than persistence in the z direction (right panel). Another point
of interest is that both correlation coefficients become negative before approaching zero. As noted
in Ref. [43], this feature suggests that, on average, individual particles reverse their velocity with
respect to the mean, which is expected in the case of binary collisions because of the very mechanics
of the collision itself.

The two panels of Fig. 10 show, respectively, the effect of the volume fraction and of inertia
on the velocity correlation. The coefficient becomes negative considerably later for the dilute case
with φ = 5%, in which inertia maintains memory of the particle velocity for a long time before
interaction with the other particles destroys it. For the same particle concentration, inertia, due to
the Reynolds number or to particle density, does not seem to have a strong effect.

VI. STRESS

In considering the stress distribution in the gap it is useful to distinguish between the bulk and
the wall regions. Starting from the former, we show in Fig. 11, as functions of time, the three
distinct contributions to the (x, z) component of the stress due to the fluid velocity gradient, particle
stress and collisions averaged over the flow domain with the exclusion of the two regions within
three particle radii from the solid walls. The fluid velocity gradient is just the phase average of
μ(∂xuz + ∂zux ). The stresslet is defined by

sxz = 1

2

∮
s
[z(σ · n)x + x(σ · n)z]ds, (11)

in which σ is the total fluid stress and the integral is over the surface of the particle. One advantage
of the PHYSALIS method is that the stresslet is generated directly by the simulation and does not
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FIG. 10. Particle velocity correlation coefficient in the direction normal to the plates vs. the dimensionless
delay time γ̇ τ . The left panel highlights the effect of the average volume fraction for Rep = 20 and ρp/ρ = 5;
the lines are from left to right, for φ = 33% (green, case 5), 21% (blue, case 1), and 5% (orange, case 3). The
right panel shows the very weak effect of inertia for φ = 21%: Rep = 40 ρp/ρ = 5 (orange, case 2), Rep = 20
ρp/ρ = 5 (blue, case 1), and 10 (green, case 9).

FIG. 11. Contributions to the bulk stress: fluid stress (green), particle stress Eq. (11) (blue) and collisional
stress, Eq. (12) (orange). (a) Rep = 20, φ = 21%, ρp/ρ = 5 (case 1); (b) Rep = 20, φ = 33%, ρp/ρ = 5
(case 5); (c) Rep = 40, φ = 21%, ρp/ρ = 5 (case 2); (d) Rep = 20, φ = 21%, ρp/ρ = 10 (case 9).
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FIG. 12. Time-averaged distribution of the three contributions to the stress in the gap between the plates:
fluid stress (green), particle stress (blue), and collisional stress (orange). (a) Rep = 20, φ = 21%, ρp/ρ = 5
(case 1); (b) Rep = 20, φ = 33%,ρp/ρ = 5 (case 5); (c) Rep = 40, φ = 21%, ρp/ρ = 5 (case 2); (d) Rep = 20,
φ = 21%, ρp/ρ = 10 (case 9). The stress components are normalized by division by μγ̇ .

require the differentiation of the velocity field and its integration at the end of the time step as in the
immersed-boundary method. The collisional stress is defined by

σ̂ c
xz = 1

2

(
z f c

x + x f c
z

)
, (12)

in which f c
j is the sum of the collision and lubrication forces. Although f c

j includes both forces, the
lubrication component typically amounts at most to 10% of the total collision stress shown in the
figures so that σ̂ c

xz essentially represents the effect of true collisions. It is shown in Ref. [44] that
this break-up of the stress contributions is equivalent to that developed in the pioneering work of
Ref. [45].

For Rep = 20, φ = 21% and ρp/ρ = 5 (case 1) the three contributions are comparable as can be
seen in Fig. 11(a), but the collisional contribution is strongly dominant for φ = 33% as reported in
Ref. [9] (Fig. 11(b), case 5), as well as for the high-inertia cases Rep = 40, ρp/ρ = 5 (Fig. 11(c), case
2) and Rep = 20, ρp/ρ = 10 (Fig. 11(d), case 9). In the last three cases, the stresslet contribution
exceeds that of the fluid stress. In viscous suspensions at zero Reynolds number contact interactions
give a negligible contribution to the effective mixture viscosity at volume fractions below about
25–30% [46,47]. The difference with our results is yet another manifestation of the importance
of inertia. All the contributions to the stress are larger near the beginning of the calculations. Their
decrease slows down with time and appears to have nearly stabilized near the end of the simulations.

Figure 12 shows the distribution of the three contributions to the stress over the gap between
the plates. In all cases the stresslet contributions is dominant near the plates (recall that the region
included in the average stress contributions shown in Fig. 11 did not include three-radii-thick layers
adjacent to the plates). The fluid contribution is the smallest, although it steeply increases near the
wall as found in Ref. [15]. In Fig. 12(a), for Rep = 20, φ = 21%, and ρp/ρ = 5 (case 1) all three
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TABLE IV. The various contributions to the effective viscosity of the bulk region for cases 2 and 9
normalized by division by μγ̇ and by division by μ〈∂zum,x〉. The sum of the fluid and stresslet contributions is
close to 2, very similar to the predictions of both the Krieger and Eilers correlations for viscous suspensions at
zero Rep.

Normalized by μγ̇ Normalized by μ〈∂zum,x〉
Case Fluid Stresslet Collisions Total Fluid Stresslet Collisions Total

2 (Rep = 40, ρp/ρ = 5) 0.84 0.90 2.51 4.33 1 1.05 2.94 5.00
9 (Rep = 20, ρp/ρ = 10) 0.84 0.81 2.41 4.11 1 0.96 2.85 4.81

contributions are comparable and similarly distributed in the gap. For the larger volume fraction
φ = 33% of Fig. 12(b) (case 5), the collisional stress near the wall is much larger, reflecting the
particle distribution seen in Fig. 1(a) and the intense collisional activity responsible for the velocity
fluctuations in Fig. 8(b). In the two higher inertia cases with Rep = 40 of Fig. 12(c) (case 2) and
ρp/ρ = 10 of panel (d) (case 9) the collisional component dominates, while the other two compo-
nents are comparable; all three components are fairly uniformly distributed in the bulk in keeping
with the very nearly linear velocity distribution visible in Figs. 4(c) and 4(d) and the approximately
uniformly distributed velocity fluctuations for these cases shown in Figs. 8(c) and 8(d).

In these two latter cases the near uniformity of the three components permits us to define the
corresponding contributions to the effective mixture viscosity relative to the fluid viscosity. This
step can be taken in two ways, either by dividing the computed stress by μγ̇ , or by dividing it by
μ〈∂zum,x〉, in which um,x is the mixture velocity in the flow direction and the angle brackets indicate
an average taken over time and the same bulk region used to generate the results of Fig. 11. In the
first case one would be using the nominal shear rate which, however, is rather unrepresentative of
the true shear rate in the gap as can be seen, e.g., in Fig. 4. For this reason, the second alternative
seems preferable as it involves the actual velocity gradient rather than that estimated as in a Couette
flow. Since, as can be seen, e.g., in Fig. 4, γ̇ > 〈∂zum,x〉, the second alternative also leads to larger
values.

The results of the two alternatives are shown in Table IV. In both cases the collisonal contribution
accounts for more than 60% of the total. For the 21% volume fraction of both of these cases the well-
known Eilers and Krieger [48] correlations predict a normalized effective viscosity of about 2 which
is close to the sum of the fluid and stresslet effects but less than half the collisional contribution. Of
course, collisions have a much stronger effect in the presence of significant inertia, a situation not
considered in the development of these correlations.

Turning to the wall stress, we show in Fig. 13, versus time, the fluid and collisional stress on
the walls normalized by division by μγ̇ . The collisional contribution was calculated by summing
components of the collisional impulse in the flow direction over a certain interval of time and
dividing by the time interval and the plate area. In all cases the collisional stress is comparable
or even exceeds the fluid stress. The effect is particularly strong in the high-volume-fraction case
of Fig. 13(b) and in the large-particle-density case of Fig. 13(d). In deducing an effective viscosity
from these results one is faced with the same ambiguity as for the bulk effective viscosity, namely,
whether to divide the stress by the second alternative also leads to larger values.

The results of both procedures are shown in Table V. One notices here a very large contribution
from the fluid velocity gradient which, as indicated in Fig. 5 and, more quantitatively, in Fig. 7,
is significantly larger than γ̇ . Reference [15] used the first normalization and, for Rep = 20, φ =
20% and ρp/ρ = 1, reported values of around 2.5, about 30% smaller than the fluid contribution
that we calculate. The reasons for this discrepancy are unclear as the way in which the wall stress is
calculated is not specified in the reference. Provisions for lubrication were not included; in addition,
inertial effects would have been smaller since the particles had the same density as the fluid.
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FIG. 13. Contributions to the wall stress from the fluid (orange) and particle-wall collisions (blue),
nondimensionalized by division by μγ̇ , vs. nondimensional time γ̇ t . (a) Rep = 20, φ = 21%, ρp/ρ = 5
(case 1); (b) Rep = 20, φ = 33%, ρp/ρ = 5 (case 5); (c) Rep = 40, φ = 21%, ρp/ρ = 5 (case 2); (d) Rep = 20,
φ = 21%, ρp/ρ = 10 (case 9).

Figure 14 permits a direct comparison among the fluid component of the wall stress for all the
cases. Generally speaking, the fluid stress increases with volume fraction, inertia and the Reynolds
number. Turning specifically to the effect of particle density, we do not notice much difference
between ρp/ρ = 2.5 (brown) and 5 (blue), but the result for ρp/ρ = 10 (green) is clearly larger than
for the other two cases. The fact that the stress appears to be slightly larger for ρp/ρ = 2.5 with

TABLE V. The various contributions to the effective viscosity of the wall region for cases 1, 2, 5 and 9
normalized by division by μγ̇ and by division by μ〈∂zum,x〉.

Normalized by μγ̇ Normalized by μ〈∂zum,x〉
Case Fluid Collisions Total Fluid Collisions Total

1 3.36 3.60 6.96 1 1.07 2.07
2 5.13 5.15 10.3 1 1.00 2.01
5 7.25 8.77 16.0 1 1.21 2.21
9 4.00 4.64 8.64 1 1.16 2.16
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FIG. 14. Fluid contribution to the wall stress as a function of the nondimensional time γ̇ t . In ascending
order the curves are for Rep = 20, φ = 5%, ρp/ρ = 5 (red, case 3); Rep = 20, φ = 21%, ρp/ρ = 5 (blue,
case 1); Rep = 20, φ = 21%%, ρp/ρ = 2.5 (brown, case 7); Rep = 20, φ = 21%, ρp/ρ = 10 (green, case 9);
Rep = 40, φ = 21%, ρp/ρ = 5 (black, case 2); Rep = 20, φ = 33%, ρp/ρ = 5 (orange, case 5).

respect to ρp/ρ = 5, while both are smaller than the result for ρp/ρ = 10 opens the possibility of
a nonmonotonic dependence of the wall fluid stress on the particle density, although the difference
between the first two results is small and may also be due to imperfect statistical convergence.

VII. NORMAL STRESS DIFFERENCES

It is well known in the shear flow of low-Reynolds number suspensions that the particle pair
distribution function is not isotropic, a feature which leads to nonzero-normal stress differences
[6]. The results of Ref. [49] suggest that inertia contributes to this lack of isotropy and may be
responsible for the shear-thickening of suspensions at finite Reynolds numbers. Our results also
show a pronounced lack of isotropy in the present flow.

Figure 15 shows the projection of the pair distribution function on the plane of shear for the
same cases shown in several earlier figures for our simulations. The scales are normalized by the
particle diameter and the outer circle of the figure has a radius of 4 diameters. A significant density
of pairs is clearly visible in the compression direction of the flow and a corresponding paucity in the
extension direction. A plot of the higher volume fraction case versus distance from the test particle
(not shown) reveals a double-peaked pair density distribution which is faintly visible as a more
intensely colored outer ring also in Fig. 15(b). The two lower panels, corresponding to the larger
inertia cases, exhibit a somewhat stronger anisotropy as compared with Fig. 15(a), as expected.

Since these figures are projections of the three-dimensional pair distribution function on the plane
of shear, they do not give a clear picture of the pair distribution on the sides of the test sphere. This
information is conveyed by Fig. 16, which shows the angular dependence of the pair distribution
function at contact for Rep = 20 and ρp/ρ = 5, the left panel with φ = 21% (case 1) and the right
panel with φ = 33% (case 5). The data have been plotted assuming symmetry of the two sides of the
test sphere with respect to its plane of symmetry parallel to the plane of shear. As already visible in
the previous figure, contacts are virtually absent in the extension quadrants 0 < θ < 1

2π for ϕ ∼ 0
(i.e., the upper half of sphere’s front side) and 1

2π < θ < π with ϕ ∼ π (i.e., the lower side of the
sphere back), as is well known. Very few contacts are also seen in the range 1

4π < φ < 3
4π and its

symmetric one on the other side of the sphere, namely, on the two lateral quarters of the sphere. This
feature is likely a consequence of the fact that the centers of two spheres colliding in these regions
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FIG. 15. Projection on the plane of shear of the pair distribution function in the neighborhood of the test
particle. (a) Rep = 20, φ = 21%, ρp/ρ = 5 (case 1); (b) Rep = 20, φ = 33%, ρp/ρ = 5 (case 5); (c) Rep = 40,
φ = 21%, ρp/ρ = 5 (case 2); (d) Rep = 20, φ = 21%, ρp/ρ = 10 (case 9).

FIG. 16. Examples of the angular dependence of the pair distribution function at contact. Both figures are
for Rep = 20 and ρp/ρ = 5, in (a) for φ = 21% (case 1) and in (b) for φ = 33% (case 5).
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(a) (b)

FIG. 17. Frontal three-dimensional view of the pair distribution function on contact with the test particle.
The pixels are colored according to the frequency of contacts. The test particle moves out of the page, the
gradient direction is up and the vorticity direction horizontally to the right. Both images are for Rep = 20 and
φ = 21%; (a) ρp/ρ = 5 (case 1); (b) ρp/ρ = 10 (case 9). A similar picture is found on the back of the sphere
with the contacts occurring in the upper hemisphere.

would have a relatively small separation in z and, therefore, a smaller relative velocity that makes it
easier for them to be deflected away from each other. The main difference between the two cases is
a somewhat greater number of contacts in the denser one as expected.

A different view of the pair distribution function with focus on contact is afforded by Fig. 17,
which shows a three-dimensional frontal view of the test particle for two cases with Rep = 20 and
φ = 21%, the reference case with ρp/ρ = 5 (left panel, case 1) and the high-density case with ρp/ρ

= 10 (case 9). Here pixels are colored according to the frequency of contacts with other particles.
The flow is out of the page, the gradient direction is up and the vorticity direction horizontally to
the right. A similar picture is found on the back of the test sphere with the contacts occurring on
the upper hemisphere. It is clear upon comparison that the region where contacts occur is somewhat
smaller in the higher-density case since more massive particles are less susceptible to being deflected
by the flow upon approaching another particle.

In suspension mechanics, the anisotropy of the pair distribution function is associated with
nonzero normal stress differences N1 = �xx − �zz and N2 = �zz − �yy, and the same is true in
the present case. This is a long-standing issue in suspension mechanics as discussed in many papers
[see, e.g., Refs. 1,6,12,47,50–52]. It is an established fact that N2 is negative [see, e.g., Refs. 47,50],
but the sign of N1 is still uncertain as experiments are difficult and it is not clear to what extent the
results may be affected by the rheometer walls [see, e.g., Refs. 10,13,52]. Numerical simulations
mostly agree on a negative sign for N1, starting with the work of Ref. [6], including a series of later
studies mentioned in the referenced review papers, until the recent study of Ref. [52].

Our results for these quantities are shown in Table VI where they are broken up into the
contributions from the particle-particle interaction (including collision and lubrication) and from
the stresslet; since the suspending fluid is Newtonian it gives no contribution to these quantities.
These results have been obtained by calculating the average values of the collisional and stresslet
contributions of each particle to the stress in the bulk of the suspension, namely, including only
particles the center of which is at least three radii away from the walls, and normalizing by division
by μγ̇ . We found that the collisional results were influenced by outlier values of the collisional
contribution. This finding suggests that quantitatively correct contributions of this component would
require much longer integration times than we could carry out. For this reason, in calculating the
results shown in the table, after gathering the contributions of all the particles at each time step, we
have dropped 1% of the largest and smallest values.
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TABLE VI. Stresslet contribution, collisional contribution, and total normal stress differences normalized
by μγ̇ .

Stresslet Collision Total

Case N1 N2 N1 N2 N1 N2

1 −0.43 0.14 0.06 −0.31 −0.37 −0.17
2 −0.63 0.16 −0.08 −0.54 −0.71 −0.38
3 −0.13 0.02 0.00 −0.01 −0.13 0.01
5 −0.57 0.18 −0.16 −0.78 −0.73 −0.60
7 −0.42 0.15 0.06 −0.29 −0.36 −0.14
9 −0.48 0.11 −0.09 −0.41 −0.57 −0.30

One observes that both normal stress differences are negative and of comparable magnitude, as
found in the inertialess simulations of Ref. [6], both becoming more negative as the particle volume
fraction is increased. Comparison of the results for Rep = 20 and 40 reveals an increase by about a
factor of 2 for both N1 and N2. Table VI shows that the largest contribution to N1 comes from the
stresslet, while the largest contribution to N2 is due to particle-particle interaction. This finding is in
agreement with the results of the authors of Ref. [46], who found that N1 is mostly of hydrodynamic
origin, whereas N2 is mostly the result of contact interactions due to the fact that collisions occur
predominantly in the plane of shear. The collisional contribution to N1 is mostly small and changes
sign, probably as a consequence of insufficiently converged statistics.

The second normal stress difference N2 does not change appreciably as the particle density
is increased rom 2.5 to 5, but nearly doubles upon a further increase to 10. The effect appears
dominated by collisions as the stresslet contribution is seen to be essentially insensitive to particle
mass in the range we have explored. Both N1 and N2 are in modulus about an order of magnitude
less than τxz as found in Ref. [6] for viscous suspensions.

VIII. EFFECT OF THE TANGENTIAL COLLISION FORCE

Recent work [see, e.g., Refs. 53–55] has shown the importance of particle-particle tangential
contact forces in several phenomena exhibited by dense suspensions such as solidification during
sudden impact and discontinuous, order-of-magnitude increases of the effective viscosity in the
presence of intense shear. Although no such dramatic effects can be expected at the volume
fractions considered in this study, these observations prompted us to repeat the simulation for case
1 (φ = 21%, ρp/ρ = 5, Rep = 20) setting the tangential component Eq. (3) of the collision force to
zero. We found that, while the collision rate is indistinguishable from that shown in Fig. 2, several
significant aspects of the flow are affected.

Figure 18 compares the local, time-averaged volume fraction in the gap between the plates.
Here the blue line is the previous result with a nonzero tangential contact force already shown in
Fig. 1. Away from the walls the distributions coincide, but one notices a smaller secondary peak
(balanced by a larger wall peak) with tangential dissipation. The average distribution of the particle
material velocity is compared for the two cases in Fig. 19 (it will be recalled that the fluid velocity
is indistinguishable except very near the walls). It is seen here that, as the tangential contact force is
eliminated, the velocity distribution becomes closer to the linear Couette profile (dotted line). Both
results idicate that the cross-stream momentum transfer is increased by the absence of tangential
dissipation, as could have been anticipated. We have also calculated the effect of the tangential
collision force on the second normal stress difference N2 finding a (normalized) value close to
−0.45, to be compared with −0.31 as reported in Table VI.
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FIG. 18. Local time-averaged particle volume fraction between the plates for the reference case with
φ = 21%, ρp/ρ = 5, Rep = 20. Orange: zero tangential collision force; blue: nonzero tangential collision
force; the latter results are the same as in Fig. 1.

Even on the basis of these very limited results we may conclude that the effects of the tangential
collision force are profound and do not manifest themselves only in the dense case but affect
suspension mechanics over nearly the entire volume fraction range.

IX. PARTICLE ROTATION

Figure 20 shows, for all the cases, 〈
∗
y〉, the mean particle angular velocity in the vorticity

direction, normalized by one half of the single-phase fluid vorticity 2U/H :


∗
y = 
y

U/H
; (13)

FIG. 19. Time-averaged particle phase velocity normalized by the plate velocity U with (dashed) and
without (solid) a tangential component of the collision force; the dotted line shows the linear Couette velocity
profile. Here Rep = 20, φ = 21%, ρp/ρ = 5. The fluid velocity is nearly coincident with that of the particle
phase except very near the walls (see Fig. 7).
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FIG. 20. Normalized particle angular velocity 
∗
y defined in Eq. (13) vs. normalized time γ̇ t . In descending

order the curves are for Rep = 20, φ = 5%, ρp/ρ = 5 (red, case 3); Rep = 20, φ = 21%, ρp/ρ = 10 (green,
case 9); Rep = 40, φ = 21%, ρp/ρ = 5 (black, case 2); Rep = 20, φ = 21%, ρp/ρ = 5 (blue, case 1); Rep = 20,
φ = 21%, ρp/ρ = 2.5 (brown, case 7); Rep = 20, φ = 33%, ρp/ρ = 5 (orange, case 5).

numerical values are provided in Table III. The simulations were initiated assigning to each particle
the angular velocity �∗ = (0, 1, 0) in the three coordinate directions. It has been argued that the
average particle angular velocity of an isotropic suspension at vanishing Reynolds number is the
same as for an isolated particle in the same shear flow at any concentration [56]. The results of
Ref. [56] at zero Reynolds number are in fair agreement with this prediction although the mean
absolute value appears to increase somewhat as the volume fraction increases. The results of
Ref. [12] at Re = 0.05, 0.6 and 1 show a similar 10–20% increase as the volume fraction goes
from 10% to 30%. At first sight, our results seem to be very different, but it should be kept in mind
that, as is evident from Figs. 4 and 7, the shear rate in our gap is rather far from the nominal shear
rate 2U/H and it is non-uniform. If we try to characterize the mixture shear rate by the velocity
gradient on the midplane, then we find that our calculated mean angular velocity is within 20% of
half of this velocity gradient. The difference can be imputed to the nonuniformity of the mixture (cf.
Fig. 1) and of the strain rate, in addition, of course, to inertial effects.

Since, as can be seen from Fig. 11, the mixture velocity gradient slowly decreases with time, so
does the average particle rotation rate. The results for case 5 (orange line) suggest that true steady
conditions may not have quite been reached by the end of the simulations for this case, probably due
to the fact that it has the largest volume fraction, φ = 33%. A similar slow residual slow decline is
also visible in the collision rate shown in Fig. 2. However, other quantities related to this case, such
as the bulk and wall stresses in Figs. 11(b), 13(b), and 14 seem to be well converged. To a much
lesser extent, a similar comment may be applicable to case 1 (blue line).

Comparison of Figs. 4(a) and 4(b) shows that the shear rate decreases with increasing volume
fraction and, correspondingly, we see in Fig. 20 a decreasing angular velocity with increasing
φ. Turning to the effect of particle density and Reynolds number, we see in Figs. 4(c) and 4(d)
comparable shear rates and the corresponding particle angular velocities are also quite comparable.

X. SUMMARY AND CONCLUSIONS

In this paper we have described results of resolved simulations of a particle-fluid mixture with
particle volume fraction in the range between 5% and 33% occupying the space between two parallel
plates moving with equal velocities in opposite directions. Unlike other papers on this subject,
summarized in Table I, we have considered particles heavier than the fluid, with a density ratio
between 2.5 and 10, and two single-particle Reynolds numbers, 20 and 40. In this way we have
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been able to focus on the effect of inertia finding that this property exerts a profound influence on
many aspects of the flow including the distribution of particles and velocity in the gap between the
plates, the collision rate, the stress and others.

The nonuniformity of the two-particle distribution function found in low-Reynolds-number
simulations [5] is confirmed for our parameter range and results in significant normal-stress
differences N1 and N2. These quantities are both negative and of comparable magnitude, although
they have different origin, the first one mostly determined by the flow and the second one strongly
dependent on collisions [46]. Motivated by recent work on jamming [see, e.g., Refs. 53–55] we
have conducted limited simulations in which the tangential component of the collision force was
set to zero. We have found that this version of the model leads to significantly different particle
and velocity distributions in the gap compared with the model with a nonzero tangential collisional
force in spite of the relatively small particle volume fraction considered. Since the second normal
stress difference is mostly determined by collisions, there is a strong effect on N2 as well.

It is hoped that the gradual accumulation of results such as the ones reported here will
help achieve a deeper understanding of particle-fluid systems beyond the low-Reynolds-number
conditions that have mostly been studied so far. One positive outcome of these efforts would be the
formulation of reduced-order models more realistic and mathematically well-posed than many that
have been proposed. A serious problem on this path, however, is that of averaging. Our simulations
have up to 5000 particles but, in spite of this relatively large number, the results still exhibit strong
fluctuations that would prevent, for instance, the calculation of smooth time and space derivatives.
Yet, it is essential to be able to calculate differential quantities of this type if the objective is
the formulation of reduced-order models expressed in terms of differential equations. Statistical
convergence cannot be achieved in situations of this type, which renders necessary the development
of filtering methods capabale to smoothen out the fluctuations present in the simulations. In an
earlier paper we have shown how the use of a truncated Fourier series can achieve this result in a
special case [38]. The development of a method of general applicability, however, still belongs to
the future.
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