
PHYSICAL REVIEW FLUIDS 5, 084005 (2020)
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Viscoelastic polymer films are present in numerous industrial applications such as
in paint coatings, lubricants, and optoelectronics which involve a large variation in
temperatures. The present study deals with the general linear stability analysis (GLSA) of
a Jeffreys viscoelastic fluid layer having a deformable free surface deposited on a perfectly
conducting slippery plate. Variation in temperature results in variation in surface tension
thereby inducing Marangoni stresses leading, under certain conditions, to the emergence
of instability of the quiescent, heat-conducting base state which may be either stationary
or oscillatory. Accounting for the deformability of the free surface of the layer, the GLSA
reveals the existence of the long-wavelength Marangoni instability absent in the previous
studies that assumed a nondeformable free surface. The analysis reveals a strong effect of
variation in the capillary number, Ca, on the stationary mode, whereas the oscillatory mode
is moderately affected. The critical parameters for the stationary mode remain unaffected
by variation in the Prandtl number, Pr, and the dimensionless relaxation L1 and retardation
L2 parameters; however, their impact on the oscillatory modes is significant. Variation in
the Biot number, Bi, has a stabilizing effect on the system. Variation in the Bond number,
Bo, is found to strongly influence the long-wave regime of the stationary mode, but it
does not influence the short-wave regime of the stationary mode and oscillatory modes.
Variation in the slip coefficient leads to a moderate increase in Mac in the case of the
stationary mode, whereas in the case of the oscillatory mode variation of both Mac and kc

is nonmonotonic. The energy balance analysis suggests that viscoelasticity of the fluid is
responsible for the emergence of oscillatory instability. Our analysis reveals the existence
of a wide parameter range where oscillatory modes determine the stability properties of
the system. This result emphasizes that neglecting viscoelasticity of the fluid may lead to
significant errors when the dynamics of a viscoelastic fluid is investigated. The present
study further demonstrates that even for a highly elastic fluid, the interface deformability
prevails and promotes the long-wave stationary instability at the expense of the oscillatory
instability.

DOI: 10.1103/PhysRevFluids.5.084005

I. INTRODUCTION

Layers of soft matter and their stability is a subject of prime scientific and technological interest.
The dynamics of thin liquid layers [1–3] is important to a wide variety of applications and contexts
including paint coatings, plane wing deicing, and mucus blockage of lung airways. Generation
of waves on film interfaces with small characteristic thicknesses may also contribute to the
development of both miniaturized and microgravity heat and mass transfer technology. Polymer
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thin films are ubiquitous in many applications such as microfluidics, functional coatings, lubricants,
sensors and actuators, optoelectronics, and biotechnology. Singer [4] reviewed thermocapillary ap-
proaches to polymer patterning and emphasized that only since the early 2010s have these methods
been developed and applied. Furthermore, the advantages of the thermocapillary techniques over
other approaches to patterning assure that their applications will continue to expand and develop.

The general linear stability analysis (GLSA) of thermocapillary instability in a layer of a
Newtonian fluid has been investigated already over several decades [5,6]. It was first studied
theoretically by Pearson [7], who showed the emergence of an instability as a consequence of the
surface-tension dependence on the temperature at the layer interface. The analysis of Pearson [7]
showed that the cellular patterns observed by Bénard [8] in his pioneering studies are the result
of thermocapillary or Marangoni instability. Scriven and Sternling [9], Smith [10], and Davis and
Homsy [11] extended the study of Pearson [7] for a liquid layer with a flat interface to the system
with a free deformable surface. Here a deformable surface refers to the liquid-gas interface with
a finite surface tension whose presence allows its deformation in response among other factors
to the tangential stresses arising due to surface-tension gradients referred to below as Marangoni
stresses. Their analysis revealed a strong effect of the decrease in surface tension on the instability
which is due to temperature variation along the interface. The Marangoni instability in a layer of
Newtonian fluid was always found to be stationary, either short wave or long wave, until recently,
when oscillatory instability, both long wave and short wave, was discovered in films [12,13] and
layers [14].

Viscoelasticity of liquids has been extensively discussed in a variety of major aspects and models
[15–17] among other properties of polymeric liquids. Various models of viscoelasticity constitute a
significant technical complication over standard challenges encountered in dealing with Newtonian
liquids. Some of the models such as those by Maxwell and Jeffreys [15–17] containing only linear
terms are suitable for linearized studies involving a quiescent base state, whereas a comprehensive
study of nonlinear dynamics requires more involved nonlinear models, such as the Oldroyd-B model
[15]. As explained in Sec. II, in the present study, the linear Jeffreys model is employed. Here, the
word “linear” is used to emphasize that only linear terms are present in the Jeffreys model.

The GLSA of Marangoni instability of viscoelastic layers was first carried out [18] for both
Maxwell and Jeffreys [17] models of viscoelasticity under assumption that the liquid-gas interface
is flat. While the Newtonian liquid layers with a temperature-independent density exhibit mostly
stationary Marangoni instability, the viscoelasticity introduces novel effects so that both stationary
and oscillatory instabilities are possible depending on the viscoelastic relaxation and retardation
times. Here the terms stationary and oscillatory instabilities refer to the cases when the leading
eigenvalue has a zero real part with a zero or nonzero imaginary part, respectively. The topic was
further developed and extended to the cases of a coupled Rayleigh-Marangoni instability [19–21],
a layer of a liquid with temperature-dependent viscosity [22], and a layer on a thick substrate
[23]. A nonrobustness of a Maxwell-fluid model for the problem of Marangoni instability in a
viscoelastic layer was discussed by Wilson [24]. In all these papers, both stationary and oscillatory
types of instability were found. Coupled Rayleigh-Marangoni convection in thin polymeric layers
was experimentally studied and hexagonal patterns were observed [25]. Various applications in
polymeric liquids involving thermal effects and thermocapillarity in small scales were demonstrated
experimentally [25–27].

It is interesting to note that the experiments with polymer layers [25] heated at the substrate
side showed the emergence of hexagonal patterns akin to those emerging in a layer of a Newtonian
liquid [28,29]. In the backdrop of these experiments, it is essential to understand the origin of the
instability modes in order to unravel the experimentally observed patterns.

The previous studies [18–22,24] of the thermocapillary instability exhibited by viscoelastic fluids
considered a nondeformable free surface. However, for the fluids with a moderate surface tension
or in the case of a sufficiently high differential heating there exists a significant surface deformation
eventually leading to the modification in the emerging instability. The coupled Rayleigh-Marangoni
convection in a layer of a viscoelastic fluid with a deformable interface and heated from below was
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also addressed in several papers [30–33]. Chiang [30] developed a numerical method to solve linear
eigenvalue problems and applied it briefly to the linear stability analysis of the Marangoni instability
in a layer of a Maxwell liquid.

Ramkissoon et al. [31] and Comissiong et al. [32] were the first to address the coupled Bénard-
Marangoni instability in a layer of a linear Jeffreys liquid with a deformable interface. The governing
equations employed in their studies were the Boussinesq equations whose main assumption for their
validity is that

α�T � 1, (1)

where α is the coefficient of volumetric thermal expansion and �T is the temperature difference
across the layer. Velarde et al. [34] discuss in detail the issue of validity of the Boussinesq
approximation in general and the criterion for its validity, in particular. Equation (1) can transformed
in the form

Ra ≡ gα�T d3

νκ
� Ga ≡ gd3

νκ
= Bo

Ca
, (2)

where Ra, Bo, Ca, and Ga are, respectively, the Rayleigh, Bond, and capillary numbers, defined
below in Eq. (9), and the modified Galileo number. The Galileo number, defined in the study of
Ramkissoon et al. [31] and denoted there by G, is related to the modified Galileo number Ga via
Ga = Gσ , where σ is the Prandtl number in their notation, which recasts Eq. (2) to the form

Ra � Gσ. (3)

It is easy to see that most of the results [31] do not satisfy the validity criterion Eq. (3) around the
criticality representing the parameter range of importance.

Another serious shortcoming of the theory presented there, which is again related to the use
of the Boussinesq equations, is an inclusion of the interfacial deformation representing a non-
Boussinesqian effect into these equations. An account and a detailed discussion of various incorrect
results arising from this combination can be found in Velarde et al. [34]. Some of the examples of
these incorrect results discussed there are contained in Benguria and Depassier [35], Perez-Garcia
and Carneiro [36], and many others. Apart from the fact that a pure Marangoni instability was not
addressed [31] at all and the results were presented only for a given ratio between the Marangoni and
Rayleigh numbers, another inconsistency there [31] is associated with an assumption of 1/Ca = 0,
which makes the upper bound in Eq. (3) vanish given the fact the Bond number is bounded, e.g.,
for water layers of thickness of 1 mm, the Bond number is O(0.1). The assumption of 1/Ca = 0
implies a zero surface tension, i.e., an infinitely deformable interface. However, the interface of a
liquid layer with an immiscible outer fluid has a finite surface tension which renders the assumption
mentioned above to be unphysical. The other paper [32] follows the same pattern adding to the
scope of Ref. [31] internal heat generation.

There is a growing practical and theoretical interest in extending our understanding of the coupled
Bénard-Marangoni (also referred to as Rayleigh-Bénard-Marangoni) instability to the wide range
of parameters that is covered by a non-Boussinesq theory. Such an extension is also consistent
with the inclusion of the interfacial deformation which is on par with other non-Boussinesqian
effects neglected in the Boussinesq approximation. A recent paper [37] highlights the importance
of non-Boussinesq effects in Bénard-Marangoni convection in a Newtonian liquid layer with a
deformable surface, demonstrating clear quantitative and qualitative differences in comparison to
a Boussinesq-based theory. In particular, they found that at small values of Galileo number G,
and when deformation of the free surface is important, there are significant differences in stability
behavior as compared to results obtained using the Boussinesq approximation.

Sarma and Mondal [33] considered the pure Marangoni instability in a layer of a Maxwell liquid
with a deformable interface subjected to a constant temperature gradient imposed at the substrate.
They found that a stationary short-wave mode along with both short-wave and long-wave oscillatory
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instability modes emerge. In most cases discussed there, the instability sets in as a competition
between the oscillatory modes.

The present work aims at filling the gap in the current knowledge and at a further understanding
of the role of the fluid viscoelasticity in a layer of a linear Jeffreys fluid with a deformable
surface and its effect on the pure Marangoni instability by revisiting the problem in its consistent
mathematical and physical context. The forthcoming linear stability analysis reveals the parametric
regimes where stationary, either short wave or genuinely long wave, and oscillatory instability
emerge. The effect of slippage at the substrate on the instability properties is also discussed.
This analysis may be potentially helpful in understanding observed patterns in future relevant
experiments in viscoelastic liquid layers.

The rest of the paper is arranged as follows. In Sec. II, the problem is formulated, governing
linearized equations and boundary conditions are derived, and the corresponding Orr-Sommerfeld
problem is posed for the perturbed state by introduction of normal modes. The results obtained from
the linear stability analysis via numerical solution of the Orr-Sommerfeld eigenvalue problem are
presented and discussed in Sec. III. The salient conclusions of the present study are summarized in
Sec. IV. The details of numerical methodology used here are addressed in Appendix.

II. PROBLEM FORMULATION

We consider a layer of an incompressible viscoelastic liquid of a mean thickness d and of an
infinite lateral extent with temperature-independent viscosity μ, density ρ, kinematic viscosity ν,
and thermal diffusivity κ deposited on a horizontal planar substrate. The layer is bounded by the
ambient inert gas phase at the liquid-gas interface which is assumed to be a free deformable surface
with the surface tension σ ∗. The planar substrate and the ambient gas phase are assumed to be held
at the respective uniform temperatures T ∗

0 and T ∗
∞, such that the temperature difference between

these is �T ∗ = T ∗
0 − T ∗

∞ > 0.
The coordinate system used here is Cartesian with the axes x∗ and y∗ located in the substrate

plane, whereas the axis z∗ is normal to the substrate and directed into the liquid layer with the
reference point z∗ = 0 located on the substrate plane. Surface tension σ ∗ of the fluid is assumed to
be temperature dependent,

σ ∗ = σ ∗
0 − γ ∗(T ∗ − T ∗

0 ), (4)

where γ ∗ = − dσ ∗
dT ∗ > 0 and σ ∗

0 is the surface tension of the fluid at the reference temperature of
the lower plate T ∗

0 . In what follows, the asterisk denotes dimensional variables, whereas their
counterparts without asterisk decoration express their dimensionless variants.

The length, velocity, time, and temperature are nondimensionalized by d, κ/d , d2/κ , and βd ,
respectively, where β = − dT̄ ∗

dz∗ and an overbar denotes a base-state quantity. Furthermore, pressure
and stresses are nondimensionalized by μκ/d2. We denote the dimensionless fluid velocity field as
v = (vx, vy, vz ) with vi being the velocity components in the direction i, i = x, y, z.

The dimensionless continuity and momentum conservation Cauchy equations are

∇ · v = 0, (5)

1

Pr

[
∂v
∂t

+ (v · ∇ )v
]

= −∇p − GPr∇z + ∇ · τ, (6)

where Pr = μ

ρκ
is the Prandtl number, G = gd3

ν2 is the Galileo number, ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ) is

the gradient operator, p is the pressure, and τ is the stress field. The dimensionless heat
advection- diffusion equation is

∂T

∂t
+ (v · ∇ ) T = ∇2T, (6a)

where ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian operator.
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To describe the rheological behavior of the Jeffreys viscoelastic fluid, three types of models, viz.,
corotational Jeffreys, upper-convected Jeffreys, or lower-convected Jeffreys models [15], can be
utilized. The difference in these models is in the way the time derivative in the linear Jeffreys model
is made objective or frame invariant. The terms arising due to the frame-invariant time derivative
are nonlinear for all the three models. In the linear stability analysis of the present problem, due
to the fact that the base state is quiescent, any nonlinear term in the constitutive equation will not
contribute. Thus, for the perturbed state, the linearized about the quiescent base-state corotational
Jeffreys, upper-convected Jeffreys, or lower-convected Jeffreys models will result in the same
equations as the linear Jeffreys model. Consequently, in the present work, the linear Jeffreys model
is used to describe the fluid viscoelasticity.

The dimensionless linear Jeffreys rheological equation reads [15–17][
1 + L1

∂

∂t

]
τ =

[
1 + L2

∂

∂t

]
(∇v + ∇vT ), (7)

where L1 = λ∗
1κ

d2 and L2 = λ∗
2κ

d2 with λ∗
1 and λ∗

2 representing dimensional relaxation and retardation
times, respectively.

The governing equations (5)–(7) are subjected to the following boundary conditions. Assuming
extension of the Navier slip model for slippage [38], impermeability and a constant specified
temperature at the solid substrate z = 0 yields

vx = ζ τxz; vy = 0; vz = 0; T = T0. (8a)

At the deformable gas-liquid interface z = ξ (x, y, t ), the boundary conditions are the kinematic
boundary condition, the tangential and normal components of the stress balance [36], and the
continuity of the heat flux, respectively,

∂ξ

∂t
+ v⊥ · ∇ξ = vz, (8b)

t · τ · n = −Ma∇T · t, (8c)

−p + n · τ · n = − 1

Ca
(∇ · n) − Bo

Ca
ξ , (8d)

∇T · n = −Bi(T − T∞), (8e)

where

Ma = γ βd2

μκ
, Bo = ρgd2

σ̄ ∗ , Bi = qd

kth
, Ca = μκ

σ̄ ∗d
(9)

are, respectively, the Marangoni, Bond, Biot, and capillary numbers and Bo = GCa. Here q, σ̄ ∗,
g, and kth are the coefficient of thermal convection at the free surface, surface tension evaluated at
the free surface temperature, gravity acceleration, and thermal conductivity of the fluid. The vectors
t = ex + ∂ξ

∂x ez and n = − ∂ξ

∂x ex + ez represent the unit tangent and normal vectors to the free surface,
respectively. Also, the vector v⊥ is the two-dimensional part of vector v, v⊥ = (vx, vy).

The two terms in the boundary condition Eq. (8c) represent the contributions of deviatoric
viscous and viscoelastic components to the tangential stress at the layer interface and of the
Marangoni stress. The terms in the boundary condition Eq. (8d) from the left to the right represent
the contributions of pressure, deviatoric viscous and viscoelastic components to the normal stress
balance at the layer interface, and the effects of capillarity and gravity due to the interface deflection,
respectively. A similar boundary condition but for a Newtonian liquid may be found in many papers,
e.g., in Pérez-Garcia and Carneiro [36].
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We note that the surface tension σ̄ ∗ appears effectively only in the first term of the right-
hand side of Eq. (8d). Since σ̄ ∗ varies along the layer interface due to a nonuniform interfacial
temperature, the above-mentioned term produces an extra component containing γ . However, since
the corresponding term contains the coefficient γ�T ∗/σ0, which is normally small for moderate
values of temperature difference �T ∗, it will be further neglected.

The most important feature of the analysis presented below which is absent in previous
work is deformability of the layer interface. Its presence is quantified by surface tension and in
dimensionless form by the capillary number, Ca: If the interface is nondeformable, then Ca = 0,
whereas if the latter is nonzero, then the interfacial deformability becomes more pronounced with
its increase. Note that surface tension σ̄ ∗ appears also in Bond number, Bo, but the pair Bo-Ca may
be replaced by G-Ca, so the capillary number will be the only representative for surface tension.

Equations (5)–(8) yield the dimensionless base state of the system,

v̄ = 0, T̄ = −z + T0. (10)

Next, infinitesimally small perturbations are imposed on the base-state Eq. (10) to carry out
the linear stability analysis of the system. It can be proved that Squire’s theorem is applicable in
the present case. Thus in what follows, only two-dimensional disturbances are considered. The
governing equations are then linearized around the base-state Eq. (10) and normal modes

f ′(x, t ) = f̃ (z) exp (ikx + st ), ξ (x, t ) = ξ̃ exp (ikx + st ), (11)

are substituted, where f ′(x, t ) is the perturbation to a dynamic quantity f (x, t ), such as the
components of the fluid velocity field vx and vy, the stress tensor τ, pressure p, and temperature
T ; f̃ (z) is the corresponding eigenfunction in the Laplace-Fourier space; and ξ̃ is a constant. The
parameters k and s = sr + isi are the wave number of the perturbations in the x direction and its
complex growth rate, respectively. The flow is linearly unstable if at least one eigenvalue satisfies
the condition sr > 0.

As a result of this procedure, the linearized continuity, momentum conservation, and heat
advection-conduction equations become

ikṽx + Dṽz = 0, (12a)

1

Pr
sṽx = −ik p̃ + ikτ̃xx + Dτ̃xz, (12b)

1

Pr
sṽz = −Dp̃ + ikτ̃xz + Dτ̃zz, (12c)

sT̃ − ṽz = (D2 − k2)T̃ , (12d)

where D = d
dz . The stresses in Eqs. (12) satisfy the Jeffreys constitutive relation

(1 + L1s)τ̃xx = 2ik(1 + L2s)ṽx, (13a)

(1 + L1s)τ̃xz = (1 + L2s)(Dṽx + ikṽz ), (13b)

(1 + L1s)τ̃zz = 2(1 + L2s)Dṽz. (13c)

Equations (12) and (13) are then supplemented with two sets of boundary conditions. At z = 0,
assumption of Navier slip [38] and impermeability at the plate implies

ṽx = ζ τ̃xz; ṽz = 0; T̃ = 0; (14a)

At the deformable boundary, due to the presence of the Marangoni forces additional stresses are
generated. Thus, based on the standard procedure of projection of the boundary conditions at the
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deformed interface z = ξ onto z = 1, the boundary conditions at z = 1 read

ṽz = sξ̃ , (14b)

τ̃xz = −ikMa(T̃ − ξ̃ ), (14c)

−p̃ + τ̃zz = − (Bo + k2)

Ca
ξ̃ , (14d)

DT̃ + Bi(T̃ − ξ̃ ) = 0. (14e)

Equations (12)–(14) constitute a generalized linear eigenvalue problem which is to be solved
for the eigenvalues s and the eigenfunctions for a specified set of parameter values Bi, Bo, Ca, L1,
L2, Pr, and Ma. To determine the spectrum of the eigenvalue problem (12)–(14) the pseudospectral
method is employed and its details are presented in Appendix.

III. RESULTS AND DISCUSSION

In this section, we present the results of our investigation. Sections III A and III B are devoted to
the case with no slippage at the substrate, whereas Sec. III C contains the results for the case with
slippage.

A. Dilute polymer solutions

The previous studies [7,9–11,36] on Marangoni instability in a layer of a Newtonian fluid
with a deformable surface showed the predominant emergence of the stationary mode which is
characterized by si = 0, implying nontraveling disturbances at the onset of instability. Here the
numerical approach employed to solve the present problem is validated by comparing with the
results available in literature or with some analytical results and results obtained from the numerical
computations for the stationary mode.

The neutral stability curve for the stationary mode in the case with no slippage, ζ = 0, can be
obtained analytically by substituting s = 0 into the governing equations (12)–(14) and the resulting
dispersion relation in terms of the Marangoni number, Ma, in the form [9] is

Ma = −8k(Bo + k2)[k cosh(k) + Bi sinh(k)][k − cosh(k) sinh(k)]

−k3[Bo + (1 − 8Ca)k2] cosh(k) + (Bo + k2) sinh3(k)
. (15)

It can be immediately deduced from Eq. (15) that the neutral Marangoni number and its critical value
(if the instability is indeed stationary) Mac are independent of Pr, L1, and L2. This feature stems
from the fact that along the neutral stability curve for the stationary mode s = 0, and therefore
the parameters Pr, L1, and L2 appearing in the eigenvalue problem (12)–(14) only in association
with s cannot affect the neutral stability curve for a stationary mode. This implies that the critical
conditions for the stationary mode for a Jeffreys fluid remain the same as in the case of a Newtonian
fluid. The variation of Ma with k given by Eq. (15) is presented in Fig. 1 for a fixed set of parameters.
The critical value of the Marangoni instability Mac is obtained by minimizing Ma(k) and the critical
wave number kc is determined then as Mac = Ma(kc).

For the stationary mode with Bi = 0, Bo = 0.1, and Ca = 0.01, the critical Marangoni number
Mac = 6.6667 as obtained by Pérez- Garcia and Carneiro [36] is in agreement with the value of Mac

obtained from Eq. (15). To validate our numerical code, the neutral stability curve determined both
via Eq. (15) and numerically is presented in Fig. 1, which exhibits an excellent agreement between
the two.
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FIG. 1. Variation of Ma with k for the stationary mode in a layer of a Newtonian fluid with Bi = 0, Bo =
0.1, ζ = 0, and Ca = 0.01. The figure also presents a validation of our numerical approach. The continuous
curve is obtained from the analytical expression (15), whereas the dots are obtained numerically. The system
is unstable for Ma in the domain above the curve.

Along with the stationary modes, the present system may also exhibit oscillatory modes due to
the viscoelastic nature of the fluid. Our numerical method is also validated for the oscillatory modes
in Fig. 2 by assuming zero gravity Bo = 0 and infinite surface tension Ca = 0 which corresponds to

FIG. 2. The variation of Ma with the wave number k for the oscillatory mode in a layer of Jeffreys fluid
with a nondeformable interface at Bo = 0, Ca = 0, Bi = 0, L1 = 0.2, ζ = 0, and L2 = 0.01. The continuous
curve is obtained using our numerical method, whereas the dots represent the data extracted from the results
by Lebon et al. [19]. The figure also presents a validation of our numerical method for the oscillatory mode
exhibited by a Jeffreys fluid with a nondeformable surface.
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FIG. 3. [(a)–(c)] The eigenvalue spectrum of the problem Eqs. (12)–(14) for k = 4, Bi = 0, Bo =
0.1, L1 = 0.5, L2 = 0.01, Ma = 40, ζ = 0, and Ca = 0.01. Panels (a) and (b) present the full spectrum
of the problem obtained for N = 50 and N = 75 collocation points, respectively. (c) Close-up of panel (b)
in the vicinity of s = 0 to emphasize the emergence of two unstable oscillatory modes with sr > 0 and
si 	= 0. The discrete modes at si ∼ 0 are stable stationary modes independent of the viscoelasticity of the
fluid. The balloon constitutes the continuous spectrum part of the problem, whereas the present discrete
modes representing stationary and oscillatory modes are spread all over the spectrum. Panel (d) shows the
variation of the leading eigenvalues of the problem with a variation of the dimensionless relaxation parameter
L1 for the rest of parameters as specified for panels (a)–(c). The modes from the bottom to top correspond to
L1 = 0.15, 0.175, 0.2, 0.225, and 0.25, respectively. The oscillatory modes become stable with a decrease in
L1. Note that stationary modes are not shown here to focus on the oscillatory modes since the effect of L1 on
the stationary mode is negligible.

a nondeformable free surface of the layer. Here the results obtained for the Marangoni instability in
a Jeffreys fluid by Lebon et al. [19] are compared with those obtained by our numerical method. The
perfect agreement between the results validates our numerics in the case of the oscillatory modes as
well.

Before further presenting the results on the onset of the Marangoni instability it is essential to
analyze the eigenvalue spectrum of the problem. Figures 3(a) and 3(b) show the full spectrum and
its close-up around the value of s = 0, i.e., sr = si = 0, to emphasize the emergence of unstable
oscillatory modes. The full spectrum of the problem may be subdivided into the continuous
and discrete parts. The continuous spectrum arises due to the singularity present in the Jeffreys
constitutive relation [39]. After substitution of the normal modes, the singularity emerges in the
coefficient 1 + L1s multiplying the stresses. Thus, the continuous spectrum is defined by the
relation, s = −1/L1. Mathematically, the continuous spectrum is expected to be a line. However,
due to truncation of the Chebyshev polynomial series in the pseudospectral method, the line assumes
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a ballon shape [40] shown in Figs. 3(a) and 3(b). If an eigenvalue changes significantly and/or new
eigenvalues emerge with a variation in the number of collocation points, N , then it belongs to the
continuous part of the spectrum. However, in the case of an eigenvalue from the discrete part of the
spectrum, it exhibits small variations with respect to the change in the number of collocation points
provided that the latter is sufficiently large to warrant the convergence of the results.

The unstable discrete eigenvalues of the present problem are shown in Fig. 3(c). These conjugate
oscillatory modes have the same growth rate sr ; however, the frequencies si are of an equal absolute
value but have opposite signs. Thus, one oscillatory mode induces wave propagation in the positive x
direction, whereas the other one does the same but in the negative x direction. Since both oscillatory
modes grow at the same rate, both are related to the same critical parameter values. Therefore, it
suffices to analyze either one of the oscillatory modes to determine the critical parameters, which
is indeed the case in the following results. Note that along with the unstable symmetric modes,
there exist other discrete stable modes such as the pair with si ∼ ±211 observed in Figs. 3(a)
and 3(b). Such modes can be a part of the spectrum of the governing equations and boundary
conditions corresponding to stable disturbances of arbitrary traveling speed and decay rate sr .
They may coexist with other stable or unstable modes. These modes are innocuous due to their
stable nature and hence do not need to be studied in detail. For a Newtonian fluid, only stationary
modes normally exist; however, in a viscoelastic fluid with nonzero values of L1, oscillatory modes
emerge in addition to the stationary modes. Thus, the elastic nature of the fluid gives rise to the
emergence of oscillatory modes. Furthermore, Fig. 3(d) illustrates that the oscillatory modes can
be destabilized by making a fluid increasingly elastic. This result indicates that the oscillatory
instability found in the present work could be a result of the coupling between the elastic stresses
introduced by the relaxation term in the constitutive equation and Marangoni stresses caused by the
temperature dependence of the surface tension of the fluid. It is important to note here that the mere
emergence of oscillatory instability with an increase in the relaxation time of a viscoelastic fluid
instead of stationary instability was also found by Getachew and Rosenblat [18] but for a layer with
a nondeformable interface. Therefore, the emergence of the oscillatory instability is not related to
the interface deformability but to viscoelasticity. The fact that the stationary mode may become long
wave instead of a finite-wavelength [18] is due to deformability.

The contour plots of v′
x and v′

z and temperature T ′ corresponding to the leading eigenvalue
for the oscillatory instability are shown in Fig. 4. These eigenfunctions have been normalized
by their respective maximal absolute values. The velocity eigenfunctions are essentially nonzero
near and at the layer interface as a consequence of the Marangoni effect driving the instability
at the layer interface. The contour lines in both the velocity and temperature disturbance fields
display maximum achieved by the perturbations in the vicinity of the layer interface with respect
to the domain away from it, which demonstrates the source of the instability lying at the interface.
Figure 4(c) shows the perturbed temperature field that substantially deviates from zero toward the
layer interface. We note in passing that the perturbed temperature field can be well approximated
by a cubic polynomial in z in contrast to the base-state temperature, which is a linear function
of z.

As shown in Sec. III D, the energy analysis of the perturbations reveals a major role of both
the Marangoni stresses acting at the free surface and bulk stresses in introducing the oscillatory
instability. The maximal value of each field attained by the perturbation amplitude near the interface
shown in Fig. 4 is clearly due to the presence of the Marangoni stresses. Thus, the contour plots
emphasize in this case the role of the Marangoni stresses in causing the oscillatory instability,
although, they do not glean much information about the role of the bulk stresses in the emergence of
the oscillatory instability. The Marangoni stresses also play a big role in destabilizing the stationary
mode as revealed in the energy analysis of Sec. III D.

In the present work, the Marangoni instability emerging in the polymer solutions dissolved
in a water solvent is analyzed. In this case, the typical ranges for the physical properties are
[6,25,41] d ∼ 10−6–10−3 m, ρ ∼ 103 kg/m3, σ̄ ∗ ∼ 10−3–10−1 N/m, γ ∼ 10−5–10−3 N/(m K),
kth ∼ 10−6–10−3 J/(m s K), q ∼ 1–102 J/(m2 s K), α ∼ 10−7–10−5 m2/s, μ ∼ 10−3–102 Pa s,
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FIG. 4. Normalized contour plots for the oscillatory instability mode with Bi = 0, Bo = 0.1, L1 =
0.5, L2 = 0.01, Ma = 40, ζ = 0, k = 4, and Pr = 7. The x domain of 0 � x � 2π/k is normalized to the
interval [0,1], which is also the interval of the z axis. Panels (a)–(c) represent the contour plots of the perturbed
velocities v′

x and v′
z and the temperature T ′, respectively. Here v′

x = Re[ṽx exp (ikx)], v′
z = Re[ṽz exp (ikx)],

and T ′ = Re[T̃ exp (ikx)]. Essentially nonzero values of the perturbation velocities, v′
x and v′

z, concentrate near
and at the layer interface z = 1 and serve as an evidence that the flow is driven by the Marangoni stresses there.

λ1 ∼ 10−7–10−1 s, and λ2 ∼ 10−7–10−3 s. In the case of dilute solutions, the typical dimensionless
numbers are Bi ∼ O(10−3 − 10), Bo ∼ O(0.001 − 0.1), Ca ∼ O(0.0001 − 0.1), L1 ∼ O(0.01 −
1), L2 ∼ O(0.001 − 0.01), and Pr ∼ O(1 − 10). This parametric range will be used here to study
the various modes of instability.

Before proceeding with the stability analysis of the oscillatory modes, the effect of the variation
of the capillary number Ca on the stationary modes needs to be studied to facilitate the subsequent
discussion. For a further discussion, the characterization of the stationary instability mode is
subdivided into two segments, viz., a low-wave-number or long-wave (LW) instability confined
to k � 1 and a finite-wave-number or short-wave (SW) instability constrained to k ∼ 1 to identify
the effect of variation in the different ranges of the dimensionless numbers k on the stationary mode.
The neutral stability curves for a fixed parameter set with a varying Ca for the stationary mode in
a layer of a Newtonian liquid are shown in Fig. 5. As readily seen, an increase in Ca has a strong
effect on the LW mode. For Ca < 0.0087, SW instability dominates the stability behavior with
critical values kc ∼ 2 and Mac ∼ 79.6. This range is close to the conducting mode of a layer with the
nondeformable interface considered by Pearson [7]. However, for Ca > 0.0087, the deformational
mode becomes dominant and the LW instability determines the system stability with kc = 0. Since
kc = 0 for the LW instability, thus, it follows from Eq. (15),

Mac = 2

3

(1 + Bi)Bo

Ca
. (16)
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FIG. 5. Neutral stability curves showing variation of Ma with the disturbance wave number k for the
stationary mode with Bi = 0, Bo = 0.1, L1 = 0, L2 = 0, ζ = 0, and Pr = 7. Curves 1 to 4 correspond
to Ca = 0.0001, 0.001, 0.01, and 0.1, respectively. An increase in Ca, i.e., in surface deformability has a
strong effect on the LW part of the neutral stability curve transforming the finite-wavelength instability to the
long-wave one. The domain of instability is located above the curves.

It is quite clear from Eq. (16) that the transition of the dominant mode from the stationary SW or
from oscillatory instability (if exists, see below) depends strongly on both Bo and Ca and weakly on
Bi, since the latter is usually small. This transition of the dominant mode also helps in determining
the parameter regime for the applicability of the long-wave analysis [1].

The neutral stability curves for the oscillatory modes are shown in Fig. 6. The destabilization
of the system taking place with an increase in Ca is understood via an associated weakening in the

FIG. 6. Neutral stability curves displaying the variation of Ma with the wave number k for the oscillatory
mode at Bi = 0, Bo = 0.1, L2 = 0.01, ζ = 0, and Pr = 7. (a) For L1 = 0.1, curves 1–3 correspond to
Ca = 0.001, 0.01, and 0.1, respectively. (b) For L1 = 0.5, curves 1 and 2 correspond to Ca = 0.0001 and
0.1, respectively. An increase in surface deformability leads to destabilization via a decrease in Mac for the
oscillatory mode. The system is destabilized by an increase in the relaxation parameter L1. The domain of
instability is located above the curves.
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FIG. 7. The neutral stability curves in (a) for Ca = 0.0001 and (b) for Ca = 0.01 presenting variation of
Ma with k for the oscillatory mode at Bi = 0, Bo = 0.1, L2 = 0.01, ζ = 0, and Pr = 7. Curves 1–3 in both
panels correspond to L1 = 0.1, 0.5, and 1, respectively. Curve 4 in both panels represents the neutral stability
curve for the stationary mode. The figure shows that the effect of variation of the interface deformability is
strong on the LW instability, whereas the effect on the oscillatory instability is relatively weaker. An increase
in L1 leads to a significant decrease in Mac for the oscillatory mode. The domain of instability is located above
the curves in both panels.

surface tension at the free surface and its resulting enhanced deformability. Furthermore, with an
increase in deformability, i.e., Ca, the minimum in the neutral stability curve corresponding to the
SW instability disappears giving rise to the presence of only stationary LW instability at sufficiently
high Ca, as shown in Fig. 5. A comparison between the two panels of Fig. 6 makes clear that an
increase in the relaxation parameter L1 with a fixed retardation parameter L2 results in a significant
decrease in the critical values of the Marangoni number Mac and the wave number kc, and the
ensuing destabilization of the system.

Neutral stability curves for a fixed Ca and a varying L1 are presented for the oscillatory mode
in Fig. 7. They exhibit a strong decrease in Mac associated with an increase in L1. As noted above,
the neutral stability curve for the stationary mode remains unaffected with the variation in Pr, L1,
and L2. Thus, there is only one curve in Fig. 7 which depicts the corresponding stationary mode.
It follows from Figs. 5 and 6 that an increase in Ca leads to a decrease in Mac for both stationary
and oscillatory modes. However, Fig. 7 shows the existence of a stronger effect on the stationary
mode as compared to that on the oscillatory modes, thereby making the stationary mode a dominant
instability mode as Ca increases. As displayed in Fig. 7(a), for a low value of Ca, the stationary
finite-wavelength mode is dominant for lower values of L1. With an increase in L1, the oscillatory
finite-wavelength mode becomes dominant. However, as shown in Fig. 7(b) for a larger value of Ca,
the long-wave stationary mode determines the onset of instability for a range of L1 much wider than
in Fig. 7(a). This long-wave mode of instability is replaced by a finite-wavelength oscillatory mode
when L1 exceeds a certain value. This aspect becomes much clearer in the following discussion
where both types of modes are compared for their critical parameter values in the Mac-Ca plane.

A relative location of the stationary and oscillatory neutral curves determines the type of the
instability onset in the system. Figure 8 presents a summary of the variation of the critical values
of the Marangoni number Mac and the wave number kc with the capillary number Ca. Figure 8(a)
shows the stationary mode either SW or LW as the dominant mode of instability for L1 < 0.1,
whereas for L1 > 0.1 the scenario is more complex. In this range, there exists an upper limit on Ca,
Ca = Cau below which for Ca < Cau the oscillatory mode sets in first in the system. Above this
value, for Ca > Cau the instability is LW. Also, the value of Ca = Cau above which the LW mode
dominates the instability of the system increases with an increase in L1. On the physical grounds,
this property implies that if the fluid is sufficiently elastic, i.e., polymer concentration in the solution
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FIG. 8. Variation of the critical parameters with Ca at Bi = 0, Bo = 0.1, L2 = 0.01, ζ = 0, and Pr = 7.
Panels (a) and (b), respectively, display the variation of the critical values Mac and kc of the dominant mode with
Ca. (a) Curves 1 and 2 show the critical Marangoni number for the stationary instability, long wave and short
wave, respectively. Curves 3–5 correspond to the oscillatory instability for L1 = 0.1, 0.5, and 1, respectively.
Note that the points of intersection between the diagonal LW curve and the horizontal lines for either stationary
SW or oscillatory modes represent codimension-two points of the system. (b) Curve 1 corresponds to the
stationary instability, curves 2 and 3 correspond to the oscillatory instability for L1 = 0.5 and 1, respectively.
The steplike drop in the curves is due to the switching of the dominant mode from the SW or oscillatory
instability to the LW stationary instability. The figure illustrates the effect of surface deformability on the
parameter domains where SW, LW, and oscillatory instabilities are dominant.

is sufficiently high, then the oscillatory mode is likely to be observed before the stationary mode,
as long as an increase in the capillary number is concerned. In the case of a nondeformable surface
Ca = 0, thus, with L1 > 0.1 the oscillatory mode of the instability dominates without a competition
from LW. However, interface deformability affects the parametric regimes in which the oscillatory
mode is dominant. Hence, interface deformability is crucial for selection of the dominant instability
mode. Note that the points of intersection between the diagonal LW curve and the horizontal lines
for either stationary SW or oscillatory modes represent codimension-two points of the system. The
corresponding variation of the critical wave number kc with Ca is depicted in Fig. 8(b), where sudden
jumps from a finite kc value to kc = 0 illustrates the transition of the instability mode from the SW
instability or an oscillatory mode to the stationary LW instability. In the range of L1 < 0.1, since the
stationary mode dominates the system instability, the corresponding curves depicting kc variation
with Ca coincide with curve 1 in Fig. 8(b).

To this point, we have presented the results obtained for an effectively insulated free surface,
i.e., for a vanishing Biot number, Bi. However, depending on the relative values of h, d , and kth,
the system has a finite Biot number. To illustrate the effect of variation in the Biot number, Fig. 9
presents neutral stability curves for both stationary and oscillatory modes for three values of Bi. It
follows from Eq. (16) that the Biot number affects the LW instability through the term 1 + Bi. Thus,
for the Biot number to impart a significant effect on the LW instability, it has to have an order unity
value. This is the reason that the effect of the Biot number variation is marginal, as seen in Fig. 9(a).
In the case of the oscillatory mode, similarly to the stationary mode, the effect of an increase in the
Biot number is stabilizing. An enhancement in the heat transfer at the free surface and an ensuing
increase in the Biot number Bi could explain the stabilizing effect observed in Fig. 9(b),

From the discussion above, it is immediately clear that the stability picture shown in Fig. 8 will
be slightly altered with a small change in the Biot number, for example, for Bi = 0.5. This is indeed
the reason that the effect of the Biot number as seen in Fig. 10 is marginal. The major difference
between Figs. 8(a) and 10 is the presence of the overlap of the curves for the SW stationary and
oscillatory modes for L1 = 0.1 in the latter which represents the emergence of a codimension-three
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FIG. 9. Neutral stability curves for stationary (a) and oscillatory (b) modes at Ca = 0.1, Bo = 0.1, L1 =
0.5, L2 = 0.01, ζ = 0, and Pr = 7. An increase in Bi leads to an increase in Mac for both stationary and
oscillatory modes. Curves 1–3 in both panels correspond to Bi = 0, 0.1, and 0.5, respectively. The domain of
instability is located above the curves in both panels.

point. This overlap phenomena occurs because of the relatively lesser stabilization of the oscillatory
modes as compared to the SW instability with an increase in Bi.

Similarly to the variation in Bi, next the effect of the variation in the Bond number, Bo, on the
instability is investigated. The Bond number, Bo, representing the ratio of gravitational forces to
the capillary forces, can be as low as 0.001 depending on the solvent fluid and a polymer used to
prepare a viscoelastic liquid. The effect of the variation in Bo on the neutral stability curves for both
stationary and oscillatory modes is shown in Fig. 11. A decrease in Bo has a strong effect on the

FIG. 10. Variation of Mac with Ca for both stationary and oscillatory modes for Bi = 0.5, Bo = 0.1, L2 =
0.01, ζ = 0, and Pr = 7. An increase in Mac due to an increase in Bi is clearly observed in comparison with
Fig. 8 where Bi = 0. Curves 1 and 2 correspond to the long-wave and finite-wavelength stationary instability,
respectively. Curves 3–5 correspond to the oscillatory instability for L1 = 0.1, 0.5, and 1, respectively. The
major difference between Figs. 8(a) and 10 is the presence of the overlap of the curves for the SW stationary
and oscillatory modes for L1 = 0.1 in the latter which represents the emergence of a codimension-three point.
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FIG. 11. Neutral stability curves for (a) stationary and (b) oscillatory modes for Ca = 0.01, Bi = 0,
L1 = 0.5, L2 = 0.01, ζ = 0, and Pr = 7. An increase in Bo has a strong effect on the LW instability. The
impact on the SW instability is negligibly small effect. (a) Curves 1 to 3 correspond to Bo = 0.001, 0.01,
and 0.1, respectively; (b) the three curves corresponding to Bi = 0.001, 0.01, and 0.1 overlap. This implies
a negligible effect of variation in Bo on the oscillatory mode. Panel (a) illustrates the effect of variation in
interface deformability as a consequence of variation in interfacial stress relative to the gravitational one on the
stationary mode. The instability domain is located above the curves in both panels.

LW part of the stationary mode but as k increases, the effect of variation in Bo becomes negligible
as shown in Fig. 11(a). The threshold value of the Marangoni number decreases with an increase in
Bo.

For the oscillatory modes, similarly to the stationary SW modes, a variation in Bo has a negligible
effect on the neutral stability curves. A decrease in Bo is equivalent to an increase in surface
tension compared to the gravity effect, corresponding therefore to a more deformable interface.
But the relative deformability introduced by the decreasing Bond number affects selectively the LW
instability, while producing a negligible effect on the stationary SW and oscillatory modes which
can be explained as follows. In the case of the LW disturbance k → 0, the impact of gravity is
much stronger than that of surface tension. In the same vein, Bo appears only as Bo + k2 in the
normal-stress boundary condition at the deformable surface, Eq. (14d), and Bo explicitly appears
in the expression for Mac for the LW instability, Eq. (16). However, for k � Bo, the effect of Bo
becomes negligible, thereby exhibiting the behavior shown in Fig. 11. In summary, in the presented
range of Bond numbers, the instability is long wave.

B. Concentrated polymer solutions

The results presented in Sec. III A have been obtained for dilute aqueous polymer solutions.
In polymer processing industries, highly concentrated polymer solutions or polymer melts are
frequently encountered. These viscoelastic fluids are characterized by higher viscosities and the
relaxation time constants, as compared to those of the dilute solutions. Due to an increase in
the rheological properties these fluids possess high values for Pr and L1, of order 1000 and 10,
respectively. Additionally, an increase in the polymer concentration also implies a decrease in L2

down to 0.0001 for polymer melts. This subsection deals with concentrated polymer solutions.
Figure 12 displays the neutral stability curves for the typical values of L1 and L2 of concentrated

polymers solutions. Note that a change in Pr from 7 to 200 does not have any significant effect on
the qualitative features of the stationary and oscillatory modes. For higher polymer concentrations
the values of L1 = 10 and L2 = 0.001 are possible and this fact leads to a drastic decrease in Mac

for the oscillatory mode. As a consequence of this, oscillatory modes can become dominant even
for Ca > 0.01 unlike in dilute solutions.
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FIG. 12. Neutral stability curves for Ca = 0.01, Bi = 0, ζ = 0, and Pr = 200. (a) L2 = 0.01 with varying
L1. Curves 1–4 correspond to L1 = 0.1, 0.5, 1, and 10, respectively, whereas curve 5 is for the stationary
instability. (b) L1 = 0.5 with varying L2. Curves 1–3 correspond to L2 = 0.001, 0.005, and 0.01, respectively,
whereas curve 4 is for the stationary instability. These results differ from those obtained for dilute aqueous
solutions due to the presence of higher values of L1 and lower values of L2. Both panels show a decrease in
Mac with either an increase in L1 or a decrease in L2. The domain of instability is located above the curves in
both panels.

To further explore the effect of variation in Pr on the oscillatory mode of instability, the variation
of Mac with respect to Pr is presented in Fig. 13. As shown, with Pr > 5 both the critical values of the
Marangoni number, Mac, and the wave number kc are approximately constant. Thus, the conclusions
drawn for the dilute aqueous polymer solutions (Pr = 7) regarding the effect of variation in the
parameter values are applicable even for the concentrated polymer solutions.

FIG. 13. Variation of the critical values for the disturbance wave number kc and the Marangoni number,
Mac, with the Prandtl number, Pr, for oscillatory modes with Bi = 0, Bo = 0.1, Ca = 0.01, ζ = 0, L1 = 0.1,
and L2 = 0.01. Curves 1 and 2 correspond to Mac and kc, respectively. For Pr > 5, the dependence of Mac

and kc with Pr is weak. Thus, the conclusions drawn for dilute solutions are applicable also for concentrated
polymer solutions with quantitative changes.
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FIG. 14. Variation of the growth rate, sr , with Pr for oscillatory modes at Bi = 0, Bo = 0.1, Ca = 0.001,
and L2 = 0.01. Curves 1 and 2 are for L1 = 1, Ma = 10, and L1 = 0.5, Ma = 20, respectively. The growth
rate sr is nonmonotonic with the variation of Pr for an oscillatory mode. Thus, although Pr does not have a
strong effect on the critical parameters, it strongly affects the growth rate.

Besides a negligible effect on the critical parameters, variation in Pr has no effect on the growth
rate for the stationary mode similar to a Newtonian fluid. However, variation in Pr strongly affects
the growth rate, sr , of the oscillatory modes as shown in Fig. 14. The nonmonotonic variation of the
growth rate with Pr depicted in Fig. 14 shows that although Pr does not have a strong effect on the
critical parameters for the oscillatory modes, it strongly affects their growth rate. Thus, concentrated
polymer solutions exhibit oscillatory modes with higher growth rates compared to dilute polymer
solutions since the former display higher values of Pr due to their higher viscosity. To conclude, the
Marangoni instability in concentrated polymer solutions differ from that in dilute polymer solutions
because of higher values of Pr and L1 and lower values for L2 which not only affect the critical
parameters but also the growth rate of the disturbances. The effect of these parameters is presented
in Fig. 12, thereby completing the thermocapillary stability analysis for both dilute and concentrated
polymer solutions.

C. Effect of slippage at the substrate

In this subsection, we study the effect of slippage at the substrate expressed in terms of the
dimensionless parameter ζ on the stationary and oscillatory modes of instability. It must be
noted that for the processes such as additive manufacturing, various fluid-flow models require slip
parameter ζ as high as 10 [42]. In other cases, such as flows past hydrophobic and grooved surfaces,
ζ ranges from 0.001 to 0.1 [38]. The effect of the basal slip on the critical parameters in the case of
the stationary mode is shown in Fig. 15(a): It is stabilizing for higher values of Ca, e.g., Ca = 0.01,
and destabilizing for lower ones, e.g., Ca = 0.0001. In the case of Ca = 0.01, the instability is
long wave and variation in ζ affects only the critical Marangoni number Mac, whereas the critical
wave number kc = 0 for the LW mode remains unaffected in the entire range of the slip coefficient
ζ . Thus, the long-wave nature of the stationary instability remains unaffected by the presence of
slippage at the substrate and variation of the slip coefficient ζ . As observed in Fig. 15(a) an increase
in the value of the slip coefficient ζ leads to an increase in Mac for the LW stationary mode, whereas
in the case of the finite-wave stationary mode with Ca = 0.01, an increase of slippage causes a
decrease in both Mac and kc.

In the case of oscillatory instability, an increase in ζ has a nonmonotonic effect on the critical
parameters as shown in Fig. 15. Initially, for lower values of ζ , its increase leads to a moderate
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FIG. 15. (a) Variation of the critical Marangoni number, Mac, and the critical wave number kc with the
slip parameter ζ in the case of the stationary mode. Curves 1 and 2 correspond to Mac(ζ ) for Ca = 0.01 and
Ca = 0.0001, respectively. Curve 3 depicts variation of kc for the shortwave instability with Ca = 0.0001. Note
that instability for Ca = 0.01 is long wave for the entire range of ζ . (b) Neutral stability curves in the case of
the oscillatory mode for Ca = 0.01, L1 = 0.5, and L2 = 0.01. Curves 1–4 correspond to ζ = 0, 0.1, 1, and 10,
respectively. The domain of instability is located above the curves. The other parameters for both the panels
are Bo = 0.1, Bi = 0, and Pr = 7.

increase in the critical values Mac and kc. For ζ > 1, however, a further increase in ζ at the substrate
leads to a decrease in both Mac and kc.

D. Mechanism for the emergence of oscillatory instability

This section explains the mechanism for the emergence of oscillatory instability found above
for the case of no-slip at the substrate, i.e., ζ = 0. Here we follow the approach used by Hu et al.
[43,44].

Taking the scalar product of the linearized around v = 0 version of Eq. (6) by the perturbation
velocity vector v′, integrating the result over the flow domain, and simplifying the resulting integrals
yields an equation describing the time evolution of the total kinetic energy,

E =
∫

v′ · v′ dV (17)

in the form

1

Pr

∂E

∂t
= −

∫
p′v′ · n dA − 1

2

∫
τ ′ : γ̇ ′ dV +

∫
τ ′ · v′ · n dA ≡ −Ip − Ib + IM, (18)

where Ip, Ib, and IM are the pressure work, the bulk stress work, and surface stress work (Marangoni
work) components in the balance, respectively; dV and dA are the volume and area elements,
respectively; and the area integrals are over the flow domain boundary. The expression γ̇ ′ =
∇v′ + ∇v′T represents the strain-rate tensor. Since only at the free deformable surface the velocity
perturbations v′ do not vanish, the contribution to the area integrals will come from the free surface
alone. It must be noted that for a nondeformable surface the pressure integral Ip vanishes [43].
However, due to interfacial deformability, it does not vanish, and as shown below it contributes to
the growth of the perturbations. The Marangoni stress work component of Eq. (18) IM is found to be
positive for the parameter values explored here, and thus it exerts a destabilizing effect. Incidentally,
the bulk stress work component Ib is unconditionally positive in the case of a Newtonian fluid, since
τ ′ : γ̇ ′ = 2μ�i, jγ

2
i j � 0, and thus results in a decrease in the perturbation energy due to the presence

of viscous dissipation. Note that stationary modes may still emerge even if the bulk stress work is
positive as in the case of a Newtonian fluid. These stationary modes may become unstable by virtue
of the Marangoni stress work.
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FIG. 16. Variation of the integrand of the bulk stress work component Ib of the energy balance in the
layer with z for Bi = 0, Bo = 0.1, Ca = 0.01, L1 = 0.5, k = 4, Ma = 15, ζ = 0, Ra = 0, and L2 = 0.01
for the most unstable oscillatory mode. The local bulk stress work component is negative in the enture domain,
and thus it causes an increase in the energy of the disturbances. Additionally, in this case the Marangoni stress
work is positive and the pressure work is negative. Thus, all the three components of Eq. (18) induce the growth
of the perturbation energy E .

The integrand in the bulk stress work component Ib determined numerically for the unstable
oscillatory mode turns out to be negative definite, when viscoelasticity exists (L1, L2 	= 0) within
the liquid layer, as a function of z, as displayed in Fig. 16, which implies Ib < 0. Thus, to destabilize
an oscillatory mode along with the Marangoni and pressure work components, the bulk stress
work component caused by the elastic stresses in the fluid are essential. The values of the various
components of Eq. (18) determined numerically and normalized with the Marangoni stress work IM

for the three different types of unstable modes, viz., long wave, short wave, both stationary, and two
oscillatory modes, are presented in Table I. Finally, Ib is found to be of a larger magnitude than IM

and Ip in the case of unstable oscillatory modes, suggesting that the elastic forces supply via the bulk
stress work a significant part of the energy required for the destabilization of the system through the
oscillatory modes.

TABLE I. Sample values of the pressure work Ip and bulk stress work Ib normalized by the value of the
surface stress work (Marangoni stress work) IM for Bi = 0, Bo = 0.1, ζ = 0, and Pr = 7 in the case of unstable
stationary long wave (the first row), stationary short wave (the second row), and oscillatory (the last two rows)
modes. The component Ib switches from positive to negative as viscoelasticity of the fluid is introduced, i.e.,
L1 becomes nonzero, thereby emphasizing the effect of the liquid viscoelasticity on the bulk stress work. The
pressure integral Ip possesses a nonzero value as a consequence of the interface deformability.

Parameters Ip Ib

L1 = 0, L2 = 0, k = 0.01, Ma = 10, Ca = 0.01 −0.21976 0.15748
L1 = 0, L2 = 0, k = 2, Ma = 85, Ca = 0.0001 −0.30730 0.24500
L1 = 0.5, L2 = 0.01, k = 4, Ma = 15, Ca = 0.01 −0.402385 −3.45082
L1 = 0.2, L2 = 0.01, k = 4, Ma = 45, Ca = 0.01 −0.695511 −3.47756
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IV. SUMMARY

In this paper, we have carried out the linear stability analysis for the Marangoni instability in a
linear Jeffreys viscoelastic fluid with a deformable liquid-gas interface in the gravity field subjected
to a differential heating between an underlying uniform-temperature wall and the adjacent gas phase.
The analysis has been performed with and without taking into account slippage at the wall and in
the absence of buoyancy effects which is justified in the case of a thin layer. The fluid layer is
assumed to be deposited on a solid substrate held at the constant temperature higher than that of
the ambient gas phase. The surface tension of the fluid linearly decreases with the temperature
introducing Marangoni stresses at the layer interface. The problem contains seven dimensionless
parameters, namely the Biot, Bond, capillary, Prandtl, and Marangoni numbers, along with the
dimensionless rheological relaxation and retardation numbers. The problem reduces naturally to
that for a Newtonian fluid when the two latter parameters vanish.

The main findings of the present paper are now listed next. Our investigation reveals that the
Marangoni stresses lead to two types of instability modes, namely (i) a stationary instability mode
characterized by a growth rate expressed by a real (in general, complex) dominant eigenvalue
s = sr + isi with si = 0 and (ii) an oscillatory instability mode which manifests at the instability
threshold via the emergence of two modes with complex conjugate purely imaginary dominant
eigenvalues at the instability threshold which possess the same growth rate and propagate in opposite
directions with the same speed.

We have found that stationary instability may be either long wave or short wave. The genuine
long-wave (k = 0) regime of the stationary instability mode (or LW instability in short) is strongly
affected by the interface deformability expressed by the value of Ca, whereas the SW instability
with the wave number k ∼ 1 range of the stationary mode disappears above a certain value of
Ca depending on the values of other parameters. Similarly to other works [31,32] we have found
codimension-two points of the system. However, unlike the codimension-two points in Refs. [31,32]
representing intersection between both finite-wavelength stationary and oscillatory modes, in our
case they represent coexistence of the LW stationary mode with either finite-wavelength stationary
or oscillatory mode. We have also revealed, for the first time to the best of our knowledge, the
existence of codimension-three points where LW, SW, and oscillatory modes coexist.

We emphasize that accounting for deformability of the free surface of the layer leads to revealing
the emergence of the long-wave stationary Marangoni instability in the Jeffreys viscoelastic fluid
in contradistinction to the previous theoretical studies [18–24] that considered nondeformable free
surface, corresponding to Ca = 0. The oscillatory modes of instability are all short wave and are
moderately affected by Ca as compared to the long-wave instability. The critical Marangoni number
for the oscillatory modes can be significantly reduced by either increasing the relaxation constant
L1 or decreasing the retardation constant L2. At the same time, the instability threshold for the
stationary mode is invariant with respect to variation in Pr, L1, and L2, similarly to its independence
of the Prandtl number in the case of a Newtonian liquid. Our analysis shows the existence of
a parametric regime where the oscillatory instability mode sets in first becoming unstable at a
lower Ma than for the stationary mode, thereby showing the importance of accounting for (and
not neglecting) the fluid viscoelasticity when present in the real system. The interface deformability
plays a major role in selection of the dominant instability mode. Its increase favors the emergence
of LW instability, thereby making it the dominant instability mode in a wider parameter domain as
compared to the SW instability. The present study, therefore, demonstrates that even for a highly
elastic fluid, the interface deformability triggers the LW instability to set in before the oscillatory
instability.

An increase in Bi leads to an increase in the critical value of Mac for both stationary and
oscillatory modes, thereby displacing the neutral stability curve toward higher values of Ma. A
decrease in Bo, however, has a strong effect on the LW instability but a negligible effect on the
SW instability and the oscillatory modes. In the presence of slippage at the substrate, an increase

084005-21



PATNE, AGNON, AND ORON

in the value of the slip coefficient ζ leads to a moderate increase in Mac in the case of the
stationary long-wave mode while the long-wave character of the instability is preserved. However,
an increasing slippage leads to decrease in Mac and kc for the SW mode. In the case of the oscillatory
instability mode, variation in ζ results in a nonmonotonic variation in both the critical values of Mac

and the wave number kc.
As noted in the Introduction, only a few papers investigated Marangoni instability in a layer of a

linear Jeffreys viscoelastic liquid with the deformable interface. The coupled Bénard-Marangoni
instability was addressed based on the Boussinesq equations and the emergence of both finite-
wavelength stationary and oscillatory modes of instability was identified [31,32]. Physical validity
of these results was already discussed there and in the Introduction of this paper. Comparing between
the contents of our paper and those of other relevant papers, we conclude that only the paper
by Sarma and Mondal [33], where a pure Marangoni instability in a viscoelastic Maxwell liquid
was studied, may be comparatively examined. In the case of a layer of a Jeffreys liquid with the
deformable interface considered here, the Marangoni instability fed by a constant temperature of
the solid substrate possesses long-wave stationary mode of instability with a zero wave number
kc along with both finite-wavelength (also referred to as short wave) stationary and oscillatory
modes, whereas in the case of the Marangoni instability in a Maxwell liquid driven by a constant
temperature gradient at the substrate [33], the instability modes were finite-wavelength oscillatory
and long wave stationary and oscillatory with 0 < kc � 1. Also, in the case of Ref. [33], the
instability was frequently set by competition between two oscillatory (long- and short-wave) modes;
whereas in our case this scenario could be set by the long-wave stationary and finite-wavelength
oscillatory modes but also by three modes via codimension-three point mentioned above.

The perturbation energy analysis reveals the dominant effect of the liquid elasticity and interfacial
deformability on the emergence of the oscillatory instability. In the case of a Newtonian fluid, the
surface stress work which is due to the presence of the Marangoni stress and the pressure work
lead to the growth of the perturbation energy, whereas the bulk stress work leads only to viscous
dissipation. The pressure work is nonzero in the present study due to the interface deformability
and leads to an increase in the perturbation energy. However, in the case of a viscoelastic fluid,
due to elastic relaxation, the bulk stress work also leads to an increase in the perturbation energy in
contradistinction to a Newtonian fluid when oscillatory modes are involved. The energy increase due
to the bulk stress work plays therefore a major role in the emergence of the oscillatory Marangoni
instability in linear viscoelastic Jeffreys liquid.

The present study shows the dominance of the long-wave instability in certain parametric regimes
where a thin-film analysis [1] should be applicable. It would be also important to investigate how
the viscoelasticity of the fluid affects the type of bifurcation from the equilibrium exhibited by the
system. Thus, a weakly nonlinear analysis would be the next step in understanding the effect of
fluid viscoelasticity on the thermocapillary instability. Furthermore, from the applications’ point of
view, it would be important to reveal whether a thin viscoelastic film will rupture and whether this
rupture can be prevented or controlled. Therefore, nonlinear analysis of the system dynamics may
lead to a deeper understanding of the fluid viscoelasticity impact on the film dynamics subjected to
the Marangoni effect. All of these are now underway and the results will be reported and discussed
elsewhere.
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APPENDIX: DETAILS OF THE NUMERICAL APPROACH

To carry out the linear stability analysis of the problem at hand, the pseudospectral method is
employed in which the eigenfunctions are expanded into series of the Chebyshev polynomials. For
convenience, the domain 0 � z � 1 is transformed into −1 � z � 1 by stretching z → 2z − 1.

The eigenfunctions for the perturbed velocity, stresses, pressure, and temperature fields in
Eqs. (12)–(14) are expanded in terms of the Chebyshev polynomials as

ṽx(z) =
m=N∑
m=0

amTm(z); ṽz(z) =
m=N∑
m=0

bmTm(z); p̃(z) =
m=N∑
m=0

cmTm(z), τ̃xx(z) =
m=N∑
m=0

dmTm(z);

τ̃xz(z) =
m=N∑
m=0

emTm(z); τ̃zz(z) =
m=N∑
m=0

fmTm(z), T̃ (z) =
m=N∑
m=0

gmTm(z), (A1)

where Tm(z) are Chebyshev polynomials of degree m and N is the highest degree of the polyno-
mial in the series expansion or, equivalently, the number of collocation points. The coefficients
am, bm, cm, dm, em, fm, and gm are the unknowns to be solved for. The expansion series for the
derivatives of the eigenfunctions is simply obtained by taking derivative of the series as, for instance,

Dṽx(z) =
m=N∑
m=0

amDTm(z), (A2)

where D = d/dz is the differentiation operator. Similar expansions are written for the rest of
dependent variables in Eq. (A1) as well. All series expansions are then substituted into the governing
equations to yield

ik
m=N∑
m=0

amTm(z) +
m=N∑
m=0

bmDTm(z) = 0, (A3a)

1

Pr

m=N∑
m=0

amTm(z) = −ik
m=N∑
m=0

cmTm(z) + ik
m=N∑
m=0

dmTm(z) +
m=N∑
m=0

emDTm(z), (A3b)

1

Pr
s

m=N∑
m=0

bmTm(z) = −
m=N∑
m=0

cmDTm(z) + ik
m=N∑
m=0

emTm(z) +
m=N∑
m=0

fmDTm(z), (A3c)

s
m=N∑
m=0

gmTm(z) −
m=N∑
m=0

bmTm(z) =
m=N∑
m=0

gmD2Tm(z) − k2
m=N∑
m=0

gmTm(z), (A3d)

(1 + L1s)
m=N∑
m=0

dmTm(z) = 2ik(1 + L2s)
m=N∑
m=0

amTm(z), (A4a)

(1 + L1s)
m=N∑
m=0

emTm(z) = (1 + L2s)

[
m=N∑
m=0

amDTm(z) + ik
m=N∑
m=0

bmTm(z)

]
, (A4b)

(1 + L1s)
m=N∑
m=0

fmTm(z) = 2(1 + L2s)
m=N∑
m=0

bmDTm(z). (A4c)

The boundary conditions (14a) at the solid substrate, i.e., z = −1, become

m=N∑
m=0

amTm(−1) = 0;
m=N∑
m=0

bmTm(−1) = 0;
m=N∑
m=0

gmTm(−1) = 0. (A5)
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There are four boundary conditions at the free surface, one of which is utilized to eliminate the
amplitude of the perturbed location of the free surface ξ̃ . Here the normal stress balance boundary
condition (14d) is solved for ξ , which yields an expression of ξ̃ in terms of the perturbed pressure
and normal stress component

ξ̃ = − Ca

Bo + k2
(−p̃ + τ̃zz ). (A6)

Equation (A6) is then substituted into the rest of the boundary conditions. The kinematic boundary
condition now yields

ṽx + s
Ca

Bo + k2
(−p̃ + τ̃zz ) = 0 (A7)

and substitution of the Chebyshev series expansion into it results in

m=N∑
m=0

amTm(1) + s
Ca

Bo + k2

[
−

m=N∑
m=0

cmTm(1) +
m=N∑
m=0

fmTm(1)

]
= 0. (A8)

A similar procedure is then followed for the rest of the boundary conditions at the free surface
z = 1.
The generalized eigenvalue problem is then constructed in the form

Ae + sBe = 0, (A9)

where A and B are the matrices obtained from the discretization procedure explained above and e
is the vector containing the coefficients of all series expansions (A1).

In these matrices, each eigenfunction corresponds to an N × N block, so ṽx occupies the first N
rows and columns, the second eigenfunction ṽz occupies the next N rows and columns from the
N + 1 to 2N , and so on. Thus, matrices A and B are of order 7N × 7N .

Now, in order to incorporate the boundary conditions into the discretized matrices the following
procedure is employed: For the boundary conditions at z = −1, the N th row in the expansion for ṽx

is replaced by the first boundary condition of Eq. (A5). Similarly, to impose the second boundary
condition of Eq. (A5) for ṽz, the 2N th row is replaced in a similar way. A similar procedure is then
applied toward the temperature boundary condition via the 7N th row.

As for the boundary conditions at the free surface at z = 1, to impose the kinematic boundary
condition, the first row for ṽx is replaced by Eq. (A8). The contributions of the pressure and normal
stress terms will appear between the (2N + 1)th column to the (3N )th and between the (5N +
1)th column to the (6N )th. A similar procedure is then implemented for the rest of the boundary
conditions at the free surface.

Further details of the discretization of the governing equations and boundary conditions, and
of the construction of the matrices A and B, can be found in the standard procedure described
by Trefethen [45] and Schmid and Henningson [46]. Next, we use the polyeig MATLAB routine
to solve the constructed generalized eigenvalue problem Eq. (A9). To filter out the spurious
modes from the numerically computed spectrum of the problem, the latter is obtained for N and
N + 2 collocation points, and the eigenvalues are compared with a specified tolerance, e.g., 10−4.
The genuine eigenvalues are verified by increasing the number of collocation points by 25 and
monitoring the variation of the obtained eigenvalues. Whenever the eigenvalue does not change to
a prescribed precision, e.g., to the sixth significant digit, the same number of collocation points is
used to determine the critical parameters of the system. In the present work, N = 50 is found to be
sufficient to achieve the convergence and to determine the leading most unstable eigenvalue within
the investigated parameter range.
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