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Resolvent analysis of an airfoil laminar separation bubble at Re = 500 000
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We perform a resolvent analysis to examine the perturbation dynamics over the laminar
separation bubble (LSB) that forms near the leading edge of a NACA 0012 airfoil at
a chord-based Reynolds number (Re) of 500 000 and an angle of attack of 8 degrees.
While we focus on the LSB residing over 6% of the chord length, the resolvent operator is
constructed about the global mean flow over the airfoil, avoiding numerical issues arising
from domain truncation. Moreover, randomized singular value decomposition is adopted
in the present analysis to relieve the computational cost associated with the high-Re global
base flow. To examine the local physics over the LSB, we consider the use of exponential
discounting to limit the time horizon that allows for the instability to develop with respect
to the base flow. With discounting, the gain distribution over frequency accurately captures
the spectral content over the LSB obtained from flow simulation. The peak-gain frequency
also agrees with previous flow control results on suppressing dynamic stall over a pitching
airfoil. According to the gain distribution and the modal structures, we conclude that the
dominant energy-amplification mechanism is the Kelvin-Helmholtz instability. In addition
to discounting, we also examine the use of spatial windows for both the forcing and
response. From the response-windowed analysis, we find that the LSB serves the main role
of energy amplifier, with the amplification saturating at the reattachment point. The input
window imposes the constraint of surface forcing, and the results show that the optimal
actuator location is slightly upstream of the separation point. The surface-forcing mode
also suggests the optimal momentum forcing in the surface-tangent direction, with strong
unidirectionality that is ideal for synthetic-jet-type actuators. This study demonstrates the
strength of randomized resolvent analysis in tackling high-Reynolds-number base flows,
and it calls attention to the care needed for base-flow instabilities. The physical insights
provided by the resolvent analysis can also support flow control studies that target the LSB
for suppressing flow separation or dynamic stall.

DOI: 10.1103/PhysRevFluids.5.083906

I. INTRODUCTION

The physics of an initially laminar boundary layer separating from a surface, transitioning to a
turbulent state, and reattaching to the surface has been studied since at least the late 1920s [1,2].
The presence of these so-called laminar separation bubbles (LSBs) is highly dependent on the local
Reynolds number, pressure gradient, surface curvature, and free-stream disturbance levels. Despite
typically being considered a low-Reynolds-number feature, for moderate to high incidence and

*cayeh@seas.ucla.edu
†stuart.benton.1@us.af.mil
‡ktaira@seas.ucla.edu
§daniel.garmann@us.af.mil

2469-990X/2020/5(8)/083906(24) 083906-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0426-8381
https://orcid.org/0000-0002-2442-4663
https://orcid.org/0000-0002-3762-8075
https://orcid.org/0000-0002-9459-4254
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.5.083906&domain=pdf&date_stamp=2020-08-31
https://doi.org/10.1103/PhysRevFluids.5.083906


YEH, BENTON, TAIRA, AND GARMANN

leading-edge curvature, the presence of a LSB has been confirmed for airfoil chord-based Reynolds
numbers approaching 107 [2,3]. Early classification of airfoil stall behaviors [4,5] linked post-stall
lift-curve shape to the presence and dynamics of the LSB during the stall event. When LSBs exist at
high Reynolds numbers on airfoils, their size can shrink to less than 1% of the airfoil chord, making
their detection and analysis through standard experimental techniques difficult [6,7].

More recent studies have highlighted the natural behavior of LSBs strongly amplifying incoming
disturbances within a selective frequency range due to inviscid instability within the separated
laminar shear layer [8,9]. This leads to a strong sensitivity to free-stream turbulence levels such that
the streamwise length of the LSB can be a function of both pressure gradient and turbulence intensity
[10–12]. These unique aspects of LSBs have motivated numerous experiments in controlled envi-
ronments, linear stability investigations (both local and global), and direct numerical simulations
[13–17]. In a related effort, unsteady forcing as a means of flow control that specifically targets
shear-layer instabilities has been well studied [18]. In this approach, laminar separations within the
airfoil boundary layer naturally amplify incoming disturbances within a specific frequency range.
This generates a series of spanwise vortical structures that allow for momentum transfer from the
free stream. A promising aspect of this approach is that the natural amplification by the instability
allows for amplitude growth of multiple orders of magnitude such that the actuator amplitude can
be very minimal yet effective.

A recent research campaign has applied wall-resolved large-eddy simulation to the study of flows
over airfoils at low Mach number and chord Reynolds numbers in the range of ReLc = (0.2–1.0) ×
106. The airfoil is pitched about its quarter-chord axis to observe the series of nonlinear events
leading to the onset of the dynamic stall process once the airfoil has pitched above its static stall
angle. These computations [19,20] highlighted the role of a small LSB which initiates leading-
edge breakdown and the subsequent development of the dynamic stall vortex (DSV). At higher
Reynolds numbers, where turbulent separation is able to progress to the airfoil leading-edge region,
the breakdown of the LSB still results in a separate vortex structure [20]. Parallel efforts by the same
group [21–23] studied the ability for low-amplitude forcing upstream of the leading-edge LSB,
in the frequency range amplified by the LSB, to alter the state of the airfoil boundary layer and
significantly affect the development of dynamic stall. This type of forcing can effectively eliminate
the development of the DSV for sinusoidal pitching motions. A further study by Benton and Visbal
[24] utilized a surface heat-flux oscillation based on the possibility of implementing a so-called
“thermophone” [25–29] for flow control. It demonstrated that effective control could be maintained
with an order of magnitude in energy savings, given the proper placement and tracking of the shear-
layer frequency. The control mechanism for this thermal-based actuator has been investigated by
Yeh et al. [30], relating the thermal input to the vorticity generation near the actuator.

These efforts suggest that knowledge of the energy-amplification characteristics and the physical
mechanism that supports the amplification over the LSBs is critical for guiding the design of active
flow control. Moreover, a challenge with developing optimal flow control techniques is the large
number of flow control parameters, including actuator geometry, waveform characteristics, and
actuation amplitudes. Extensive parametric studies based on experiments or high-fidelity numerical
simulations are costly. The practical constraints on the actuator types, sizes, and equipments also
need to be taken into account in the investigation.

In the present effort, we leverage resolvent analysis to conduct preliminary investigations into
the unsteady response of a given flow field in order to reduce the parameter space to search for
the optimal control setup. Among the modal analysis techniques [31,32], resolvent analysis is
an attractive tool for this investigation since it is concerned with the energy amplification in an
input–output process. It allows for the characterization of the frequency response of a base flow
[33,34]. The corresponding modal shapes provide physical insights into the mechanism of how the
perturbations are amplified or attenuated. This approach is closely related to the pseudospectral
analysis by Trefethen et al. [34], which provides a physics-based explanation of the subcritical
transition in turbulent flows. Moreover, McKeon and Sharma [35] have extended resolvent analysis

083906-2



RESOLVENT ANALYSIS OF AN AIRFOIL LAMINAR …

to turbulent flows by considering the finite-amplitude nonlinear interaction terms as a self-sustained
internal forcing.

The present study aims to investigate the perturbation dynamics of the LSB that forms in a high-
Reynolds-number flow near the leading edge of a canonical airfoil. Since the high-Reynolds-number
flow considered in this study is turbulent, we adopt the perspective of McKeon and Sharma [35]
to conduct the resolvent analysis of the LSB. Moreover, we adopt discounted resolvent analysis to
address the input-output relation for the unstable linear operator [36,37]. The use of a spatial window
is also considered to uncover the mechanism of energy amplification over the LSB [38,39] and to
shed light on the placement of an actuator. We will find that the energy amplification saturates after
the flow reattaches, which suggests that the LSB is indeed the main energy amplifier. We will also
show that the optimal actuator location is upstream of the separation point, with the most effective
momentum-based forcing aligning with the direction of the local surface tangent.

II. APPROACH

A. Problem setup

We analyze the perturbation dynamics over the laminar separation bubble that forms over a
NACA 0012 airfoil at an angle of attack α = 8◦. The flow over the airfoil is analyzed at a
chord-based Reynolds number of ReLc ≡ v∞Lc/ν∞ = 500 000 and a free-stream Mach number
of M∞ ≡ v∞/a∞ = 0.1, where Lc is the chord length of the airfoil, and v∞, ν∞, and a∞ are,
respectively, the free-stream velocity, kinematic viscosity, and sonic speed. To perform this study,
we leverage implicit large-eddy simulation (ILES), linear stability analysis, and resolvent analysis,
as described below. Throughout this study the Cartesian coordinate system is used, where the x, y,
and z directions are aligned with the streamwise, transverse, and spanwise directions, respectively.

B. Large-eddy simulation

The base flow used in the present modal analyses is the time- and span-average of the ILES
computation presented in Benton and Visbal [24], where the ReLc = 500 000 flow over the airfoil
is examined with an ILES based on the extensively validated high-order Navier-Stokes equation
solver FDL3DI [40,41]. In this code, a sixth-order compact finite-difference scheme [42] is employed
to discretize the governing equations, along with a high-order low-pass spatial filtering [40,43] to
eliminate spurious components. The filtering operation is applied to the conserved variables along
each transformed coordinate direction once after each time step or subiteration. Time-marching
is accomplished through the second-order, iterative, implicit, approximately factored Beam and
Warming method [44].

To perform an ILES, the above numerical methods are applied to the original unfiltered Navier-
Stokes equations, and they are used without change in laminar, transitional, or fully turbulent regions
of the flow. For transitional and turbulent regions, these high-fidelity spatial algorithmic components
provide an effective ILES approach in lieu of traditional subgrid stress models [45–47]. In regions
of laminar and early-stage transition, this methodology is effectively a direct numerical simulation
of the Navier-Stokes equations. The transition over the LSB occurred naturally in the simulation
without explicit forcing.

C. Quasiparallel linear stability analysis

We perform the quasiparallel linear stability analysis on the time-averaged boundary layer
profiles over the LSB using the linearized compressible Navier-Stokes equations. On a body-fitted
coordinate system with its origin located at the stagnation point, this quasiparallel stability analysis
considers infinitesimal perturbations q′

ξ (η) about the wall-normal boundary-layer profiles q̄ξ (η) at
successive wall-tangent stations ξ , as shown in Fig. 1 (left). By plugging in a real frequency ω and
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FIG. 1. The grid setups for the linear stability analysis (left) and biglobal resolvent analysis (right). The
mean flow obtained on the LES mesh is interpolated onto a separate grid to conduct the resolvent analysis.
Every eight grid lines are shown. Contour lines are shown for the time- and spanwise-averaged streamwise
velocity.

a real spanwise wave number kz, the spatial stability analysis is performed by formulating

[−iω − Lq̄ξ
(kx, kz )]q̂ξ = 0 (1)

as an eigenvalue problem with respect to the complex streamwise wave number kx = kx,r + ikx,i.
Here, Lq̄ξ

≡ k2
xL2(kz ) − kxL1(kz ) − L0(kz ) is the linearized Navier-Stokes operator about the

boundary-layer profile q̄ξ (η) with the boundary conditions of q′
ξ = 0 at ξ = 0 and ξ → ∞,

and q̂ξ (η) is the Fourier mode representation of q′
ξ (η) = q̂ξ (η) exp [i(kzz − kxx − ωt )]. For each

combination of streamwise station and frequency, the most unstable eigenvalue (with the highest
kx,i) is extracted and saved. For each frequency, the local spatial amplification rate kx,i(ξ ) is
integrated over ξ ∈ [ξ0, ξ ] such that the total ξ -wise amplification (effective gain) of an incoming
disturbance a0 can be expressed as

a(ω, ξ )/a0 = e
∫ ξ

ξ0
kx,i (ω,ξ )dξ

, (2)

where ξ0 is the initial point of integration (the first station to return an unstable eigenvalue). The
results obtained from the quasiparallel linear stability analysis will be used to identify the relevant
frequency range of LSB dynamics. We will sweep over this frequency range in fine increments in
the computationally intensive global resolvent analysis, and we will examine what can be further
revealed by the global analysis from the quasiparallel linear stability analysis.

D. Resolvent analysis

1. Formulation

We conduct the global resolvent analysis about the mean turbulent flow. The flow vari-
able is Reynolds decomposed into the sum of the time- and spanwise-averaged base state
q̄(x, y) ≡ [ρ̄, v̄x, v̄y, v̄z, p̄] and the statistically stationary fluctuating component q(x, y, z, t ) ≡
[ρ ′, v′

x, v
′
y, v

′
z, T ′]. With the Reynolds decomposition, we express the compressible Navier-Stokes

equations as an input-output system [33–35,38,39,48],

∂t q = Aq̄q + B f , (3a)

y = Cq, (3b)

where Aq̄ is the linearized Navier-Stokes operator constructed about the two-dimensional mean
flow q̄(x, y). When a time-averaged flow is used in resolvent analysis, the finite-amplitude nonlinear
terms with respect to q are collected in u, which can be viewed as a sustained internal forcing
input within the natural feedback system about the mean state [35,49,50]. In the above input-output
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FIG. 2. The discounted resolvent analysis for unstable Aq̄ can be related to the shift of the vertical integral
path in the inverse Laplace transform (7) such that the unstable eigenvalues are enclosed in the Bromwich
contour.

formulation, the matrices B and C specify the input and output of interest, which will be discussed
later in Sec. II D 3.

For the variables in the input-output system (3), we perform a Laplace transform in time and a
Fourier transform in the homogeneous z-direction to yield

q̂(x, y) =
∫ ∞

0

∫ ∞

−∞
q(x, t )e−ikzz−st dz dt, (4)

where s is the Laplace variable, and the same transformation applies to y and f . With this Laplace-
Fourier transform, the asymptotic output under the sustained harmonic input can be found in the
frequency domain as

ŷ = Hq̄(s, kz ) f̂ , where Hq̄(s, kz ) ≡ C
[
sI − Aq̄(kz )

]−1
B. (5)

The operator Hq̄(s, kz ) is referred to as the resolvent, which serves as a transfer function that
amplifies (or attenuates) the harmonic forcing input f̂ and maps it to the response ŷ at a given
combination of (s, kz ).

Resolvent analysis identifies the dominant directions along which f̂ can be most amplified
through Hq̄(s, kz ) to form the corresponding responses in ŷ. These directions can be determined
through singular value decomposition (SVD) of

Hq̄(s, kz ) = Y�F∗, (6)

where F∗ denotes the Hermitian transpose of F. Resolvent analysis interprets the singular vectors
Y = [ŷ1, ŷ2, . . . , ŷm] and F = [ f̂ 1, f̂ 2, . . . , f̂ m], respectively, as the response modes and forcing
modes, with the magnitude-ranked singular values � = diag(σ1, σ2, . . . , σm) being the amplifica-
tions (gains) for the corresponding forcing-response pair. In this study, we examine the resolvent
gains and modes in detail to study the perturbation dynamics over the laminar separation bubble.

2. Stability of Aq̄ and discounting

We can bring the output ŷ in Eq. (5) back to the time domain by performing the inverse Laplace
transform using the Bromwich integral

y(t ) = 1

2π i

∮
D→∞

Hq̄(s) f̂ (s)ds = 1

2π i

∫ β+i∞

β−i∞
C

[
sI − Aq̄

]−1
B f̂ (s)est ds, (7)

where we have left out the kz-dependence for brevity. To satisfy causality, the real-valued parameter
β needs to be chosen such that all poles of the transfer function Hq̄(s) reside on the left side of
the line of integration, s(β, ω) = {β + iω | ω ∈ (−∞,∞)}, allowing for the D-shaped Bromwich
contour to enclose all the poles. This is demonstrated in Fig. 2. It is important to include the
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rightmost poles in the Bromwich contour, since in general they are the most dominant ones in
determining the dynamical behavior of the system response. According to Eq. (7), these poles are
the eigenvalues of Aq̄, suggesting that β needs to be greater than the dominant modal growth rate
of Aq̄.

Resolvent analysis for fluid-flow problems is usually conducted along this line of integration,
which is equivalent to sweeping through the frequency (imaginary) component of the Laplace
variable, s = β + iω. Commonly, β is chosen to be zero, and the Laplace transform in (7) degrades
to the Fourier transform [35,51,52]. The Fourier transform is a natural choice for a statistically
stationary flow and is appropriate for a stable Aq̄ as all of its eigenvalues lie on the left plane of the
imaginary axis. However, statistical stationarity does not guarantee a stable Aq̄. If Aq̄ has unstable
eigenvalues, the use of β = 0 does not recover the output y(t ), as suggested by Eq. (7).

Therefore, when performing resolvent analysis for an unstable system along a path parallel to
the frequency axis, we consider a shift of this path to the right of the most unstable eigenvalue by
choosing β > max (Re(λ)), where λ are the eigenvalues of Aq̄. The effect of this shift is equivalent
to the exponential discounting approach introduced by Jovanović [36], where a temporal damping
e−βt is applied to the variables as [yβ, qβ, f β] = e−βt [y, q, f ]. Substituting the discounted variables
[yβ, qβ, f β] into Eq. (3) and performing the Laplace transform, the discounted resolvent operator
can be found as

Hq̄(β, s, kz ) ≡ C[(s + β )I − Aq̄(kz )]−1B, (8)

and the shifted path in Fig. 7 can be recovered by considering s = iω. The discounted resolvent
operator (8) can be equivalently expressed as Hq̄ ≡ C[iωI − (Aq̄ − βI)]−1B, representing the
transfer function for the harmonic input-output process through the stable operator (Aq̄ − βI). This
discounting approach can be viewed as a finite-time horizon input-output analysis, since there exists
a finite time t such that the monotonically increasing gain for the unstable system at t is equal to the
long-time amplification from a corresponding discounted system [36]. We also note that discounted
forcing implies that the forcing amplitude grows faster than the instabilities within the unstable
system. This ensures that the amplification of forcing overtakes the growth of the instabilities,
which is an important perspective in examining the frequency response to external forcing for
flow control. In our previous effort [37], we also found that the effect of a higher discounting
parameter β is similar to that of a shorter time-horizon over which the exponentially increasing
gain is evaluated, and the streamwise extent of convective response structure reduces with higher β.
This finding further motivates the use of the discounted analysis to reveal the local physics of the
laminar-separation bubble from a global resolvent operator by choosing an appropriate range for the
discounting parameter β.

Let us use a simple example to demonstrate how the discounting approach captures the energy
amplification in a forced unstable system. We consider the forced problem of ∂t q = Auq + f , where

Au =
[

0.3 + 1.2i 5
0 −0.1 + 2.4i

]

has an unstable pole at λ1 = 0.3 + 1.2i. For this system, we choose a discounting parameter
β = 0.4 > Re(λ1) and find the discounted input-output system ∂t qβ = Adqβ + f β , where Ad =
Au − βI is stable. Starting with zero initial condition, we force both the unstable and discounted
systems at a single frequency ω = 1.2 and show the energy growths of q and qβ in Fig. 3(a). The
asymptotic value of ||qβ ||2 reveals the gain at the forcing frequency for the stable discounted system
[53]. For the original unstable system, we can also choose a finite time horizon over which we
examine the effect of forcing frequency on the exponentially growing ||q||2. This finite-time gain
profile, determined with ||q(t )||2 at t = 30, is accurately captured by the gain from the discounted
resolvent analysis performed over the path of s = β + iω, as shown in Fig. 3(b). However, the gain
profile obtained from the nondiscounted resolvent analysis is completely off from the finite-time
gain profile obtained from the simulation of the forced unstable system. In addition to forcing the
unstable system with growing amplitude, we also consider the use of harmonic forcing (constant
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FIG. 3. Discounted resolvent analysis of a simple system: (a) Finite-time energy amplification for the
forced unstable system and discounted stable system with forcing frequency ω = 1.2; (b) comparison of the
finite-time gain from the unstable system (evaluated at t = 30 and rescaled as e−βt ||q||2) to the gains obtained
from discounted and nondiscounted resolvent analyses. Finite-time gain of the harmonically forced unstable
system (evaluated at t = 30 and rescaled as e−Re(λ1 )t ||q||2) also shows agreement with the gain profile obtained
from the discounted resolvent analysis. Inserted in (b) are the eigenvalues (magenta dots) and pseudospectrum
(contour levels) of Au. The nondiscounted analysis is performed over the path of s = iω and the discounted
analysis is performed over s = β + iω.

forcing amplitude in time) to the unstable system. The trend of the finite-time amplification for
the harmonically forced unstable system with respect to the forcing frequency is captured by the
discounted analysis, showing the most amplified forcing frequency at ω = 1.2. These insights given
by the discounted resolvent analysis are crucial from the perspectives of flow control where the
trend in gain profiles is relied upon.

Unlike an equilibrium base flow,1 inferring the stability of a mean flow (or, more precisely,
the stability of Aq̄ constructed about the mean flow q̄) via physical intuition is not always
straightforward. Thus, a companion stability analysis of Aq̄ is required to identify the most unstable
eigenvalue with which the minimal discounting parameter β can be determined. In the present study,
we perform the stability analysis of Aq̄ as a precursor to resolvent analysis, and the dominant global
modes will also be discussed. However, we also note that stability analysis of time-averaged flow
has been questioned for its validity in providing physical interpretations, since such a base flow does
not constitute a steady solution to the Navier-Stokes equations due to the omitted nonlinear terms
of finite amplitude [31,58,59].

3. Windowed analysis

For studying the local perturbation dynamics of the LSB, we also consider the use of spatial
windows in the present input-output analysis [38]. To identify the region that is associated with
high-energy amplification over the LSB and its connection with the laminar-turbulent transition and
reattachment [37,60], we consider the output spatial window M(x, y) = {(x, y) | x ∈ (−∞, xb], y ∈
(−∞,∞)} that encapsulates the region of the LSB. This spatial window is implemented in the
output matrix C in Eq. (5) by assigning unit weights to its diagonal elements inside the window and
zeros otherwise [39,48]. This matrix C defines the output ŷ as the response observed only through

1For unsteady flows, the equilibrium base states, also referred to as the steady solutions or the fixed points,
can be found through selective frequency damping [54] or Newton-based solvers [55]. Their stabilities can
usually be inferred by how the flows naturally behave without any external forcing [56,57].
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x → −∞ x = xb x = xb

y → ∞

y → −∞

y → ∞

y → −∞

y → ∞

y → −∞

M(x, y)

1.8

−0.3

v̄x/v∞

FIG. 4. The spatial window M(x, y) = {(x, y) | x ∈ (−∞, xb], y ∈ (−∞,∞)} that defines the output ŷ =
Cq̂. We perform a series of response-windowed resolvent analyses by moving the right-boundary xb of this
window over the region of the LSB, which is highlighted by the magenta dashed line for the zero-streamwise
velocity contour (v̄x = 0).

this spatial window, while masking out the response outside. Meanwhile, we keep the input matrix
B = I such that there is no spatial constraint on the forcing input. We move the right-boundary of the
spatial window xb along the streamwise extent of the LSB, as depicted in Fig. 4, and we examine
how the resolvent gain changes when xb moves over the point of laminar separation, shear-layer
roll-up, transition, and reattachment.

Similar to the output-windowed analysis, we consider the use of the input windowing as
implemented in matrix B. This input-windowed analysis is motivated by the actuator placement
problem encountered in active flow control. In practical scenarios, the actuator can only be placed
on the surface of an aerodynamic body. We also note that the chosen actuator can only introduce a
specific form of forcing input [61], such as momentum [22,62] or thermal [24,30,63–65]. Therefore,
we design the input matrix B such that the forcing can only be introduced from the surface of the
airfoil with specific forcing inputs. A similar use of the input matrix has been considered by Garnaud
et al. [66] such that the forcing can only be introduced from the flow boundary. In addition to the
spatial constraint, we add forcing only to the momentum equations by prescribing zero weights for
the components in continuity and energy equations [33].

4. Numerical setup

We interpolate the time- and spanwise-averaged turbulent flow onto a separate mesh with
its resolution specifically tailored toward resolving the short wavelength of the high-frequency
structures in the vicinity of the laminar separation bubble. This interpolated base flow and the
mesh are shown in Fig. 1 (right). The linearized Navier-Stokes operator Aq̄ is discretized with this
mesh using a finite-volume compressible flow solver CharLES [57,67], incorporating the boundary
conditions of [ρ ′, v′

x, v
′
y, v

′
z,∇n p′] = 0 over the airfoil and the far field and ∇n[ρ ′, v′

x, v
′
y, v

′
z, p′] =

0 at the computational outlet, where ∇n denotes the surface-normal gradient. This mesh has
approximately 0.22 × 106 grid points, and the matrix-based size of the resulting resolvent operator
Hq̄(s, kz ) is approximately 106 × 106. In the resolvent computation, we incorporate the energy norm
of Chu [68] with the cell volume size in a weighting quadrature matrix W , and perform the SVD for
WHq̄W −1 [37,53].
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FIG. 5. Comparison of the randomized SVD results to those from full SVD using ARPACK. Agreements are
found with respect to (a) gain profile and (b) cosine similarity between the response modes 〈ỹ1, ŷ1〉 over the
range of examined frequency. Here, we use kzLc = 0 and βLc/(2πv∞) = 20, without spatial windowing, i.e.,
B = C = I. Inserted in (b) are the v̂y-components of the representative response mode at St = 20, highlighted
with • on the cosine similarity profile.

5. Randomized SVD

Performing SVD for the aforementioned high-dimensional resolvent operator is computationally
taxing and memory-intensive. Since we only seek a few dominant resolvent modes, we consider
leveraging randomized numerical linear algebra to relieve the computational cost of performing
the large-scale SVD. Instead of directly performing the SVD on the large Hq̄ ∈ Cm×m to find the
leading-mode representation [35], we carry out the SVD on a small low-rank representation of Hq̄.
The first and most essential step is to obtain a sketch S of the operator Hq̄ by passing a tall and
skinny test matrix � ∈ Rm×k (k � m) through

S = Hq̄�. (9)

This provides a sketch S that contains the leading actions of Hq̄ [69–71]. The standard choice for a
test matrix � is a random matrix with a normal Gaussian distribution [72]. Here, we consider the use
of physics-informed � by further weighing each element of a random matrix with the corresponding
velocity gradient [73].

As the sketch S holds the dominant influence of Hq̄, we can form an orthonormal basis Q ∈ Cm×k

from S using QR decomposition and project the full Hq̄ onto Q to derive its low-rank approximation.
In this way, it is possible to approximate Hq̄ for a rank k � m, since this approximation preserves
the features of the leading modes. With the orthonormal basis Q, a low-rank approximation of Hq̄

can be found as Hq̄ ≈ QG, where G = Q∗Hq̄ ∈ Ck×m is the projection of Hq̄ onto the reduced
basis [70]. It is this reduced matrix G upon which we perform the SVD, i.e., G = U�̃F̃∗, leading to
the low-rank approximation of

Hq̄ ≈ QU�̃F̃∗, (10)

where the left singular vector is approximated as Ỹ = QU . This is the standard process for
randomized SVD by Halko et al. [70]. In this study, we follow Ribeiro et al. [73] to recover the
gain �̃ and response modes Ỹ by passing the forcing modes F̃ to the full resolvent operator as
Ỹ �̃ = Hq̄F̃ for enhanced accuracy.

In this study, we use only five test vectors (k = 5) to derive the low-rank approximation for Hq̄,
achieving a significant compression of k/m ≈ 5 × 10−7. We show the comparison of the results
obtained from randomized SVD and full SVD (ARPACK package) in Fig. 5. Here, we observe
remarkable agreements with respect to the gain (singular value) profiles and resolvent modes
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FIG. 6. (a) Instantaneous flow-field visualization with the isosurface of Q-criterion colored by the stream-
wise velocity. The extent of the laminar separation bubble is represented by the zero time-averaged streamwise
velocity contour v̄x = 0, highlighted by the magenta dashed line in (b). Time-resolved measurements are taken
along the time-averaged shear layer, as highlighted with the magenta dashed line in (c). The vertical scale in
(b) and (c) is stretched by two times to visualize the LSB.

(singular vectors) across a wide range of frequency. The response modes at St = 20 are also inserted
in Fig. 5(b) for comparison. At an error level of 10−4, which is still far from the best accuracy
achieved with the present randomized resolvent, we observe no visual discrepancy in the modal
structure. A slight difference in gain can be seen in St ∈ [0, 10]. However, this frequency range is
not of our primary interest, since the wavelength of the convective structure in this frequency range
is at least twice the streamwise extent of the LSB, which is not observed over the LSB according to
our flow simulation.

With the randomized SVD, the computational cost and the memory requirement are significantly
reduced. These benefits allow us to conduct resolvent analysis for the present high-Reynolds-
number base flow in a computationally tractable manner.

III. RESULTS

A. Base flow: Laminar separation bubble

The focus of the current study is the laminar separation bubble (LSB) that forms over a NACA
0012 airfoil at α = 8◦. The visualization of an instantaneous flow field using the isosurface of
Q-criterion is shown in Fig. 6(a). For ReLc = 500 000 and M∞ = 0.1, the flow separates over
the suction surface at x1/Lc = 0.022. At the separation point, the displacement- and momentum-
thickness-based Reynolds numbers are Reδ∗ = 493 and Reθ = 127, respectively. The flow separa-
tion forms a shear layer over the LSB. At x2/Lc = 0.066, the shear layer rolls up in the frequency
range of St ≡ ωLc/(2πv∞) ≈ 100. At this location, the boundary layer reaches its maximum
thickness over the LSB and transitions to turbulence. This transition provides momentum mixing
and reattaches the flow [37,60,74] at x3/Lc = 0.080, giving the total streamwise extent of 0.058Lc

to the LSB. In the downstream of this streamwise location, the boundary layer remains attached and
turbulent over the rest of the suction surface. Meanwhile, the boundary layer on the pressure surface
is laminar from the leading edge to the trailing edge.

These three locations—x1, x2, and x3—are marked by the gray dashed lines over the time-
averaged streamwise velocity and spanwise vorticity fields in Figs. 6(b) and 6(c). Their respective
flow features of separation, shear-layer roll-up, and reattachment can be clearly identified in
Fig. 6(b) by the magenta dashed line of zero time-averaged streamwise velocity. In Fig. 6(c), we
track the shear layer by the maximum spanwise vorticity and take probe measurements along this
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FIG. 7. Results of quasiparallel linear stability analysis. Shown are (a) the contour of the local amplification
rate kx,i, (b) representative boundary-layer profiles, and (c) the corresponding eigenfunctions. Eigenfunctions
in (c) correspond to St = 200 at x/Lc = 0.009 (first station of adverse pressure gradient) and St = 120 at
x/Lc = 0.022 (separation point) and 0.048 (upstream of absolute instability). The dotted black line in (a) tracks
the most amplified frequency at a given streamwise location.

magenta line. In the following discussions, we will revisit these three locations and the associated
flow physics. We will also compare the velocity spectra along the shear layer to the results of linear
stability and resolvent analyses.

B. Quasiparallel linear stability analysis

We perform the quasiparallel linear stability analysis on the body-fitted coordinate system
aligning with the surface-tangent (ξ ) and surface-normal (η) directions, as shown in Fig. 1(a).
The origin of the coordinate system is placed at the stagnation point, located slightly below the
airfoil leading edge due to the positive α condition. The analysis is conducted in each successive
surface-tangent station ξ over the region where the LSB resides, considering two-dimensional (2D)
perturbations (kzLc = 0).

The results of the linear stability analysis are shown in Fig. 7(a). We find that instability first
occurs at x/Lc = 0.009 near the frequency of St = 200. This streamwise station corresponds to the
point of peak suction and the beginning of the adverse pressure gradient (APG), which characterizes
the boundary layer on the suction surface. From this station to the laminar separation point x1/Lc =
0.022, the boundary layer remains laminar and attached, as suggested by the velocity profile in
Fig. 7(b). Correspondingly, we find that the instability in this region is of the Tollmien-Schlichting
(TS) type for an APG laminar boundary layer, which we recognize according to the eigenmode
profile at x/Lc = 0.009 shown in Fig. 7(c). The frequency associated with the maximum kx,i

decreases to St ≈ 140 at x1/Lc = 0.022, reflecting the thickening of the boundary layer while
marching downstream.

From the laminar separation point (x1/Lc = 0.022) to the point of transition (x2/Lc = 0.066), we
observe the Kelvin-Helmholtz (KH) type instability. This region is characterized by significantly
higher amplification rates and the development of reverse flow within the boundary layer. The strong
reverse flow over x/Lc ∈ [0.05, 0.066] advects amplified perturbations back upstream, resulting in
a closed region of absolute instability (amplification in both time and space) depicted by the white
area in Fig. 7(a). We compute the total spatial amplification using Eq. (2) for each frequency, up
to the location ξai where absolute instability occurs. This amplification profile, shown in Fig. 8,
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FIG. 8. Amplification profile using Eq. (2), according to the quasiparallel instability analysis.

suggests that the amplification peaks at St = 135. This peak frequency will be compared to the
results of resolvent analysis and the shear-layer probe measurements shortly.

C. Resolvent analysis

The quasiparallel stability analysis in the previous section showed both viscous and inviscid
mechanisms as well as convective and absolute instabilities. The complexity of this flow system
motivates the use of global analysis that is capable of a more general description of these modal
behaviors. In this section, we investigate the dominant energy-amplification mechanism over the
LSB using resolvent (input-output) analysis. We will first perform the global stability analysis to
show that Aq̄ is unstable and the discounting needs to be considered. With the minimal discounting
parameter obtained from the global stability analysis, we determine an appropriate range of the
discounting parameter for the present unstable Aq̄. Within this range, we will expand the response
window over the LSB region and reveal that the dominant mechanism for energy-amplification is
indeed the KH instability along the shear layer.

1. Global stability analysis: Minimal discounting

We perform the eigenvalue analysis of Aq̄(kz ) to examine its stability characteristics as a
precursor to the resolvent analysis to determine whether the discounting approach is needed. This
is equivalent to the global stability analysis of the mean flow q̄ at a given kz. The eigenvalues
of Aq̄(kz ) are shown in Fig. 9(a) for three selected spanwise wave numbers of kz = 0, 20π , and
60π . We focus on the low-wave-number range since shear layers are known to be more unstable
to long-spanwise-wave perturbations [75]. While the modal growth rate decreases with increasing
kz, we find that the linear operator Aq̄(kz ) is unstable for all the considered kz. All the eigenmodes
presented in Fig. 9(a) show fluctuations over the region of the LSB, as represented by the two modal
structures in Fig. 9(b). In particular, we find that both modes show the highest level of fluctuations
over x ∈ [x2, x3], suggesting that the dominant instability is associated with the shear-layer roll-up
process.

Since the linear operator Aq̄ about the turbulent mean flow is found to be unstable, we consider
the use of the discounting approach for the present resolvent analysis. According to the spectra in
Fig. 9(a), the most unstable global mode of Aq̄(kz ) appears at λLc/(2πv∞) = 16.0 + 111i for kz =
0. This highest modal growth rate of λrLc/(2πv∞) = 16.0 is determined as the minimal threshold
for the discounting parameter.
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FIG. 9. Global stability analysis for determining the minimal discounting parameter. (a) Eigenvalues of
Aq̄(kz ) appearing in the frequency range of the LSB. (b) Modal structures of two representative global modes
(v̂x-component, kz = 0) circled in (a).

2. Discounting parameter

With the minimal discounting determined, we start the analysis by seeking an appropriate range
of the discounting parameter β. Instead of quoting β, we report the results in an alternative form
tβ ≡ 2π/β, since this form of a time scale is more straightforward in providing insights into the
convective structures of the resolvent modes. As the largest modal growth rate is found to be
λrLc/(2πv∞) = 16.0, the longest allowable tβv∞/Lc = 0.0625. Therefore, we decrease tβ from
this point and characterize its effect by sweeping through a range of values for tβ .

We sweep through the parameter space spanned by (St, kz, tβ ) and present the gain profiles in
Fig. 10. A general trend of decreasing leading gain (σ1) with increasing kz and decreasing tβ is
observed in Fig. 10(a). The trend of decreasing gain with deceasing tβ agrees with the previous
studies [37,76], which can be explained by the exponentially growing amplification being evaluated
within a shortening finite-time horizon due to the decreasing tβ . We also find that the highest
gain always appears at kz = 0 for a given combination of (St, tβ ), agreeing with previous studies
on shear layer instabilities [37,75]. As such, we turn our attention to the 2D gain profiles in
Figs. 10(b) and 10(c). The 2D gain profiles of tβv∞/Lc ∈ [0.01, 0.062] are shown in Fig. 10(b). At
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FIG. 10. (a) Isosurfaces of the leading gain over the parameter space of (St, kz, tβ ); (b) gain profiles for
kz = 0 for different tβ ; (c) effect of tβ on the peak frequency.
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FIG. 11. The v̂x-components of forcing (green-yellow) and response (red-blue) modes for representative
frequencies and discounting parameters. Here the resolvent modes of kzLc = 0 are shown. The lowest
magnitude marked by the contour lines is 1% of the modal maximum.

tβv∞/Lc = 0.062, the gain profile has several extruding (yet smooth) peaks. From the perspective of
a pseudospectrum, the appearance of these peaks suggests that this path of frequency sweeping lies
in proximity to the least stable eigenvalues. At each tβ , we find the frequency at the highest leading
gain and show the tβ-effect on the peak frequency in Fig. 10(c). We observe that the peak frequency
remains in the vicinity of St = 110 in tβv∞/Lc = [0.04, 0.062], suggesting an energy-amplification
mechanism that is independent of the choice of tβ in this range.

This mechanism can be revealed by studying the structures of the resolvent modes, as shown
in Fig. 11. In the range of tβv∞/Lc ∈ [0.04, 0.062], we observe no apparent changes in the modal
structure for all examined frequencies and wave numbers, similar to the tβ-effect on the gain profiles
in Figs. 10(b) and 10(c). Within this range, we find that the spatial supports for forcing and response
modes are almost disjointed. While the forcing modes cover the vicinity of the separation point
x1, the response modes exhibit high levels of fluctuations downstream of the forcing and extend
their structures over the region of the LSB. This observation indicates that the dominant energy-
amplification mechanism is the convective KH instability which amplifies perturbations by the base
flow advection.

When tβ further decreases, the spatial supports of forcing and response gradually overlap. At
tβv∞/Lc = 0.02 and beyond, the spatial support of the response mode lies on top of that of
the forcing. This overlap between forcing and response indicates that the energy amplification is
dominated by the nonmodal growth through the Orr mechanism for the short tβ . Recently for jet
flows, Schmidt et al. [39] offered similar discussions on the overlap between forcing and response
and its relation with the Orr mechanism. The tilting of the modal structure against the mean shear
observed in the visualization is also a typical signature of the Orr mechanism [39,66,77].

Arratia et al. [77] concluded on the same dominant energy-amplification mechanisms for free
shear layers over short- and long-time horizons. They examined the transient energy growth and
showed that the amplification is dominated by the Orr mechanism over short-time horizons and by
the KH instability over long-time horizons. While the resolvent analysis considers the harmonically
forced problem instead of the initial value problem for transient growth, we find interesting
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FIG. 12. (a) Gain profiles of tβv∞/Lc = 0.05 (black line) and β = max (λr (Aq̄)) + ε (blue line), where
ε = 10−4; (b) velocity spectra in terms of probability density function, and (c) in terms of power spectral
density.

agreement here in the dominant mechanisms and the associated time horizons. This agreement
suggests that the discounting approach is capable of revealing the energy amplification mechanism
in a forced system.

We have noted that in Fig. 10(b) the gain profiles in tβv∞/Lc ∈ [0.04, 0.062] peak near St ≈ 100.
For short tβ where the Orr mechanism becomes dominant, the peak frequency gradually moves to
St ≈ 200. However, according to the ILES spectra, we find that the velocity spectrum along the shear
layer exhibits peaks in the frequency range of St ≈ 100. This suggests that the long-time-horizon
KH mechanism dominates in the nonlinear flow. In fact, the gain profiles in Fig. 10(b) only show
energy attenuation for tβv∞/Lc < 0.022, which may explain the absence of high-frequency peaks
that is associated with the Orr mechanisms in the nonlinear flow. Moreover, the resolvent modes in
Fig. 11 exhibit high levels of fluctuations between the roll-up location x2 to the reattachment point
x3 particularly for St = 100. As it is close to the peak-gain frequency in tβv∞/Lc ∈ [0.04, 0.062],
this frequency has been shown to be effective in targeting the KH instabilities of the LSB to suppress
the flow separation under dynamic stall in the previous flow control studies [21,22]. Supported by
these agreements, we conclude that the range of tβv∞/Lc ∈ [0.04, 0.062] is suitable for the present
study when characterizing the energy-amplification mechanism over the LSB, as it properly reflects
the effective KH instability. In what follows, we will focus on the use of tβv∞/Lc = 0.05.

3. Resolvent gain and velocity spectrum over the LSB

In addition to the gain profile obtained from tβv∞/Lc = 0.05, shown in black in Fig. 12(a), we
also consider the use of the discounting parameter of β = max (λr (Aq̄)) + ε, where ε = 10−4, to
move the discounted frequency axis as close as possible to the unstable eigenvalues of Aq̄. The
obtained gain profile is shown as the blue line in Fig. 12(a). We observe several sharp peaks in the
gain profile appearing with β = max (λr (Aq̄)) + ε. From a pseudospectrum point of view, a high
level of gain will be achieved when evaluating the pseudospectrum in the vicinity of an eigenvalue,
since the resolvent gain is unbounded at eigenvalues. For the gain profile with tβv∞/Lc = 0.05,
even farther away from the eigenvalues, signatures of these eigenvalues can still be observed by the
slightly extruding gain profile at these frequencies.

These peak frequencies obtained from resolvent analysis are compared to the velocity spectra
from the probe measurements along the shear layer, as discussed in Fig. 6(b). The spectra along
the shear layer are shown with its probability density function (PDF) in Fig. 12(b) and power
spectral density (PSD) in Fig. 12(c) in successive streamwise stations. The laminar-turbulent
transition at x2/Lc = 0.066 can be identified in Fig. 12(c), where the spectra become broadband
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FIG. 13. Resolvent analysis with discounting and/or spatial windowing. (a) Gain profiles for kzLc = 0;
(b)–(d) representative response modes at St = 100.

beyond this streamwise station. At the point of transition with broadband spectra, we still observe
prominent spanwise coherent structure in the flow visualization in Fig. 6(a). This is also reflected
by the sharp peaks in the PDF in Fig. 6(b). These peaks are compared to those obtained from
the discounted resolvent analysis, marked by magenta dashed lines. We find good agreement in
these peak frequencies between the resolvent analysis and probe spectra. The amplitude difference
between the gain and probe data can be caused by the frequency-colored fluctuations sustained in the
nonlinear flow [78], which the resolvent analysis assumes are white. The presence of the additional
peaks can be attributed to the subdominant modes observed in the global stability analysis and
their nonlinear interactions with the dominant ones. We also note that the peak frequency according
to the quasiparallel stability analysis is found to be St = 135 in Fig. 8. However, this frequency
component is not apparent in the probe measurement. This comparison further values the use of the
global resolvent approach to analyze the complex high-Re flow.

With the agreements between the resolvent gain and the velocity spectra over the LSB, we
showed that the discounted analysis is capable of predicting the frequency content over the
LSB. Next, we compare the results to those from the nondiscounted analysis, and we show that
discounting is needed to arrive at these agreements.

4. Discounting (temporal windowing) versus spatial windowing

Since the use of exponential discounting for unstable systems can be viewed as imposing a finite-
time horizon in evaluating the input-output gain [36], its effect on resolvent analysis can also be
interpreted as introducing a temporal filter, or window, that damps the output gain. We have seen in
Fig. 11, as well as from the previous study [37], that the response structure shrinks with the finite-
time horizon due to its convective nature. While the restriction of the spatial extent on resolvent
modes can also be achieved using spatial windowing in the input-output analysis, its effect on the
resolvent analysis is not equivalent to that of temporal discounting.

In Fig. 13, we show the gain profiles and the representative response modes at St = 100 obtained
from the resolvent analyses using spatial windowing and/or temporal windowing (discounting).
Here, we apply the window only in the output matrix C due to the convective nature of the response
while keeping the input matrix B = I. The right boundary of the spatial window is chosen to be
located at xb/Lc = 0.25, and only the 2D modes (kz = 0) are examined. We notice that the response
mode obtained from the discounted analysis resides entirely in this spatial window, as shown in
Fig. 13(b). As such, the gain profile obtained from the use of the spatial window in addition to
the same discounting perfectly collapses with that using discounting only, both revealing a highly
amplified frequency range in the vicinity of St ≈ 100 that is associated with the KH instability
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FIG. 14. The leading gain against xb of the spatial window. (a) kzLc = 0; (b) kzLc = 200π . For all
frequencies, the increase in gain with xb saturates at x3/Lc = 0.08, the turbulent reattachment point.

over the LSB. We also observe no discrepancy in the response structure by comparing the response
modes in Fig. 13(b) to that in Fig. 13(c).

Applying only the spatial window does not provide similar results obtained from the other two.
Without discounting (β = 0), the resolvent analysis is conducted along the imaginary (frequency)
axis. From a pseudospectral point-of-view, the gain profile obtained along this path is influenced
more by the subdominant eigenmodes than by the dominant ones, which are located farther from
this path on the complex plane. Consequently, the gain profile in Fig. 13(a) does not exhibit a similar
trend over frequency, as it is influenced by subdominant modes populated close to the imaginary
axis. This gain profile struggles to reveal the dominant frequency range over the LSB in Fig. 12(b),
failing to provide accurate assessments on the energy-amplification characteristics of the LSB even
with the applied spatial window.

According to these findings and the agreements from the previous section, we showed that the
appropriate use of discounting is needed in order to properly evaluate the energy-amplification
characteristics of the LSB. The discounting moves the frequency axis to the right of the least stable
eigenmodes such that their dominance on the energy-amplification can be appropriately captured.
Such a procedure is also necessary considering the validity of the inverse Laplace transform on the
steady-state output y. The discounting approach not only establishes a fair basis for assessing the
energy amplification that takes place before it is overshadowed by the unbounded growth due to
asymptotic instability, but it also provides a zoom-in investigation of local physics from a global
operator.

5. Output-windowed analysis

In this section, we continue the use of the response window and keep B = I. We fix the
discounting parameter at tβv∞/Lc = 0.05 and move the right boundary of the spatial window, xb,
over the region of the LSB from the separation point x1/Lc = 0.022 to the turbulent reattachment
point x3/Lc = 0.080, and we track how the energy amplification changes with respect to xb. The
results are shown in Fig. 14 with five representative frequencies and wave numbers of kzLc = 0
and 200π . The gain for all frequencies continues to increase with increasing xb, as driven by
the convective KH instability that allows perturbations to grow over the LSB while advecting
downstream. An important observation is that the increase in gain with xb saturates at the turbulent
reattachment point x3/Lc = 0.080. While the results of tβv∞/Lc = 0.05 are shown in Fig. 14, we
observe no apparent increase in gain beyond the reattachment point for all frequencies and wave
numbers in the range of tβv∞/Lc ∈ [0.04, 0.062]. This observation indicates that the dominant
mechanism for energy-amplification over the LSB is indeed the KH instability along the shear layer.
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FIG. 15. (a) The leading gain profile against the windowing xb for St = 110 and kzLc = 0. The energy
amplification according to the linear stability analysis using Eq. (2) is also shown for comparison, where the
dashed part of the curve is obtained by interpolating for kx,i in the regions of absolute instability. (b) The rate of
change in the leading gain with respect to xb. (c) Base flow streamwise velocity profiles at three representative
locations.

Once the flow transitions to turbulence and reattaches, there is no mechanism to support effective
energy amplification over the suction surface. This is an important consideration for flow control
applications that target the flow instabilities to amplify the actuation input around the LSB. The
revealed mechanism suggests that the actuator needs to be placed upstream of the separation point
to fully leverage the energy amplification over the LSB.

Besides the saturation of the increase in gain at x3/Lc = 0.080, we also notice that the gain
exhibits the steepest ramp-up at x2/Lc = 0.066, where the shear layer rolls up and a transition
occurs. This behavior is particularly prominent for frequencies of high gain, as seen for the case
of St = 100 at kzLc = 0 in Fig. 14(a). In Fig. 15, we focus on the case for St = 110 and kzLc = 0,
which provides the highest gain over the spectral space spanned by (St, kz ), and we show the location
of the steepest gain increase. A similar observation on the gain saturation at x3/Lc = 0.080 can
be made in Fig. 15(a) for this frequency according to both resolvent analysis and linear stability
analysis. In particular, for this gain obtained from windowed resolvent analysis, we compute its
spatial growth rate and show it in Fig. 15(b). The spatial growth rate exhibits the highest positive
value at the shear-layer roll-up location, x2/Lc = 0.066. This is also suggested by the wall-normal
gradient of the local velocity profile at the same station, as shown in Fig. 15(c) along with another
two representative stations before and after the roll-up. All of the velocity profiles show an inflection
point to support the KH instability. At x2/Lc = 0.066, the shear layer remains thin and compact,
and the velocity gradient at the inflection point is higher than that of the upstream stations,
represented by the profile at x/Lc = 0.05. This high velocity gradient carried by the inflection
point provides a high spatial growth rate, according to inviscid instability theory [79,80]. Although
the inflection-point velocity gradient becomes even higher at x/Lc = 0.075, the thickened shear
layer due to roll-up slows down the spatial growth rate, resulting in the steepest growth in gain at
x2/Lc = 0.066.

6. Input-windowed analysis

In this section, we apply the spatial window in the input matrix B while keeping the output
matrix C = I in order to study the optimal actuator location. The input spatial window imposes the
restriction that the forcing can only be introduced from the surface of the airfoil [66]. Moreover, we
only introduce the forcing to the momentum equations, since we found that the forcing modes f̂ ≡
[ρ̂ f , v̂ fx , v̂ fy , v̂ fz , T̂f ] obtained from the previous sections typically have more than 95% of the modal
energy in their kinetic-energy components [v̂ fx , v̂ fy , v̂ fz ]. This form of forcing can be experimentally
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FIG. 16. Comparison of the gain profiles from the input-window analysis with that without windowing
(kz = 0).

accomplished by various momentum-based actuators, including synthetic jets [61,62]. The obtained
forcing mode in this section will also provide insights into the orientation of the jet-type momentum
actuation.

The gain profile with the input window is shown as the blue line in Fig. 16. Here, we keep our
attention on the 2D perturbations with kz = 0. Compared to the gain profile without windowing,
the gain with the surface forcing is lowered approximately by an order of magnitude. This is due to
the fact that the forcing structure with the surface constraint is no longer the optimal forcing to the
resolvent operator without the input window. However, it is important that the gain profile conserves
the overall trend over the entire frequency range of interest.

With the input window, the forcing mode structures provide interesting and important insights
into the optimal actuator locations that render effective energy amplification, since they indicate
sensitive regions in the flow. These forcing modes are representatively shown in Fig. 17(a) by their
magnitudes | f̂ | over the airfoil surface along with the corresponding response modes in the flow.
Compared with those modes without windowing in Fig. 11, the response modes do not exhibit
observable changes. For the forcing modes on the surface, we observe their highly compact spatial
supports of approximately 1% of the chord. Moreover, the magenta dashed line marks the location
xact where | f̂ | exhibits its highest magnitude, i.e., xact ≡ arg maxx (| f̂ (x)|), for each forcing mode.
As the most sensitive point of the flow, this point xact can be viewed as the optimal actuator
location for the corresponding frequency. We make an important observation here that xact is always
upstream of the separation point. This finding holds for the entire frequency range of interest and
aligns with those from past studies [15,18,22,37,81,82]. It is also physically intuitive in introducing
perturbations at the onset of the shear layer. In particular, we find that the optimal actuator locations
xact vary by less than 1% of the chord length for St ∈ [0, 250].

We also examine the directionality of the momentum-based forcing modes at xact for the three
representative frequencies. The trajectories of these oscillatory forcings, shown as the solid orbits
in Fig. 17(b), can be computed by rotating the phase of [v̂ fx , v̂ fy ]xact over a period. Along with
these forcing orbits, the surface-normal vectors at the corresponding xact are also shown in the
same color. Here we make another important observation that the optimal forcing orientation is
in the local tangential direction of the surface. This observation agrees with the phase-reduction
analysis by Taira and Nakao [83], where they found that the surface tangent is the most effective
forcing direction in synchronizing the vortex shedding in the cylinder wake with the periodic forcing
introduced from the surface. Moreover, by plotting these orbits in the same êx-êy aspect ratio, we
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FIG. 17. (a) The surface-forcing modes (in their magnitudes | f̂ |) and the v̂x-components of response modes
for representative frequencies (kz = 0). The magenta dashed lines mark xact ≡ arg maxx (| f̂ (x)|) as the optimal
actuator locations. (b) The orbit of the momentum-based forcing at xact computed by rotating the phase of
[v̂ fx , v̂ fy ]xact over a period.

find that all of these orbits form ellipses of high eccentricity. This is also an ideal feature for the
momentum-based periodic forcing, since most of the actuators can only introduce unidirectional
forcing [61,62].

In this section, we used the input window to impose the constraint that the forcing can only
be introduced from the surface. We showed that the optimal actuator location is upstream of
the separation point, which enables the injection of perturbations at the onset of the shear layer.
Furthermore, we found that surface-tangent forcing is the optimal orientation for the momentum-
based forcing. The high unidirectionality of the forcing orbits also suggests a great potential for
implementing active flow control with synthetic jets.

IV. CONCLUSIONS

We perform resolvent analysis to examine the energy-amplification characteristics over the
laminar separation bubble (LSB) that forms over a NACA 0012 airfoil at a high ReLc = 500 000 and
α = 8◦. While we focus on the LSB residing over 6% of the chord length, the resolvent operator
is constructed about the global mean flow over the airfoil. The resulting global resolvent operator
for the high-Re base flow has the big size of 106 × 106. Therefore, we use the randomized SVD to
perform resolvent analysis to relieve the computational cost. With only five sketching vectors, the
randomized SVD provides high levels of accuracy in terms of gain and resolvent modes, promising
its use in performing resolvent analyses on large-scale problems.

To examine the local physics over the LSB, we consider the use of exponential discounting to
limit the time horizon that allows for the instability to advect along the base flow. In addition to
discounting, we also examine the use of a spatial window that highlights the LSB in the resolvent
analysis. We find that the discounting can reveal the stability characteristics of the LSB due to
the unstable base flow, regardless of the use of the spatial window. With discounting, the gain
distribution over frequency accurately captures the spectral content over the LSB obtained from
the flow simulation. The peak-gain frequency also agrees with previous flow control studies on
effectively suppressing dynamic stall over a pitching airfoil. Supported by these findings, we show
that discounting is capable of revealing local physics from a global operator and serves as an
extension to resolvent analysis for unstable linear operators.
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We also apply the spatial window to the response along with discounting in the resolvent analysis
in order to reveal the energy-amplification mechanism over the LSB. We move the downstream
boundary of the spatial window across the extent of the LSB to allow for the convective instability to
grow. We find that the energy amplification grows over the LSB and saturates near the reattachment
point. The results show that the dominant energy-amplification mechanism is the KH instability
over the LSB, and they agree with physical insights from the base flow. These findings confirm that
the KH instability dominates the energy amplification over the LSB.

Analogous to the response windowing, we also consider spatial windowing the input to impose
the surface-forcing constraint for revealing the optimal actuator location. In addition to this spatial
constraint, the input window also confines the forcing only to the momentum equations. We find
that, according to the magnitude of the forcing mode, the optimal actuator location is always
upstream of the separation point such that the forcing can be effectively introduced at the onset
of the shear layer. The forcing mode also sheds light on the optimal momentum forcing in the
surface-tangent direction, with the high unidirectionality of forcing that is ideal for synthetic-jet-
type actuators. The physical insights provided by resolvent analysis can support the development of
flow control strategies to target the LSB for suppressing flow separation and dynamic stall.
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