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Transonic buffet is an unsteady flow phenomenon that limits the safe flight envelope
of modern aircraft. Scale-resolving simulations with span-periodic boundary conditions
can provide detailed insight into the flow physics associated with buffet and can help to
calibrate simplified models that are needed, for example, to develop more efficient wings
based on laminar-flow supercritical sections. However, such simulations are often feasible
only for severely restricted spanwise domains. In the current contribution, we analyze an
unswept laminar-flow wing section (of Dassault Aviation’s V2C profile) at a moderate
Reynolds number of Re = 500 000 and a Mach number of M = 0.7 with spanwise domains
equal to 5% and 100% of the airfoil chord. An implicit large-eddy simulation methodology,
using a spectral error estimator to control the action of a high-order filter, is first validated
against direct numerical simulations and then used for the domain width study. Quantitative
differences, due to domain size, include an increase in amplitude and regularity of the
buffet oscillations in the wider domain. Nevertheless, a space-time analysis shows that key
physical phenomena such as upstream-propagating shock waves are properly represented
in the narrow domain and there is limited sensitivity to the domain size of the aerodynamic
coefficients. Even in the very wide domain, which is an order of magnitude wider than
the largest turbulent structures measured at the trailing edge, certain features remain two
dimensional, including the shock and expansion waves that interact with the boundary layer
upstream of transition. The transition mechanism is found to have subtle variations during
a typical buffet cycle, with Kelvin-Helmholtz structures prominent during low-lift phases
and oblique modes developing behind shock/boundary-layer interactions during high-lift
phases. The availability of the wide domain data is used for further study of the buffet
mechanism, considering phase-averaged data and instantaneous flow fields to show the
global structure of the buffet oscillation.

DOI: 10.1103/PhysRevFluids.5.083903

I. INTRODUCTION

Transonic buffet is usually associated with large-amplitude, autonomous shock oscillations,
caused by the interactions between shock waves and separated shear layers, for which there is a
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substantial literature base [1–4]. Different types of shock motion (back and forth moving shocks
or periodically upstream-propagating shock waves) have been studied by Ref. [5] and have also
been reported for several rigid airfoils under buffet conditions [6–9]. The structural response of
wings and control surfaces to these aerodynamic oscillations is commonly referred to as “buffeting,”
which limits the safe flight envelope of modern aircraft. Therefore, it is of great interest to be able to
predict buffet onset as precisely as possible. While traditional explanations for transonic buffet (e.g.,
acoustic feedback and wave-propagation models [8,10–14]) have difficulties to directly couple the
shock motion with the low-frequency fluctuations in the lift [15–17], more recent studies describe
transonic buffet as a global instability [18–20].

Buffet has some different characteristics on swept versus unswept wings. While for unswept
cases, transonic buffet is associated with a sharp spectral peak at Strouhal numbers (defined as
St = f c/U∞) in the range of St ≈ 0.05–0.1, a broadband frequency signature exists for swept-wing
cases. Furthermore, chordwise shock oscillations are more confined in the swept cases with
variations in the spanwise direction. Outboard-traveling shock waves can also be connected to
so-called “buffet cells” [21–23]. Not everything is different, however, since recent studies for
swept wings also exhibit a sharp spectral peak comparable to unswept cases [24], where the
mode associated with the broadband swept-wing behavior seems to be driven by flow-separation
phenomena and converges towards a zero-frequency mode for decreasing sweep angles [25]. These
results suggest that there is more to learn from unswept cases, as they not only capture phenomena
that are still not fully understood, but are connected to more general swept-wing configurations.

So far, airfoils and wing sections with mainly turbulent boundary layers have dominated transonic
buffet research. However, challenging emission goals have encouraged research into laminar-flow
designs with potential fuel savings of the order of 10% for typical commercial aircraft. The key
to this technology is to maintain laminar boundary layers over a large part of the airfoil in order to
reduce skin-friction drag, even though laminar boundary layers can be more sensitive to disturbances
and off-design conditions. To exploit its full potential it is important to understand and eventually
to be able to control key flow phenomena such as laminar shock-wave/boundary-layer interaction
and undesired instabilities such as transonic buffet. Experimental studies have reported significant
differences in the buffet characteristics under laminar-flow conditions. For an RA16 airfoil with a
natural transition (Re = 3–6 × 106), Ref. [26] reported a strong increase of the pressure fluctuation
level without any particular frequency, instead of the typical sharp spectral peak [27]. Also, Ref. [28]
compared laminar and turbulent buffet characteristics of an OAT15A airfoil and for the laminar
case found a dominant peak at significantly higher frequencies (St ≈ 0.9) compared to the turbulent
case (St ≈ 0.06). Numerical studies have recently been applied to laminar-flow airfoils. Analyzing
ONERA’s OALT25 profile using large-eddy simulations, Ref. [29] reported a sharp spectral peak
at significantly higher frequencies (St = 1.2 instead of St = 0.06) and more confined shock motion
compared to a case with tripped boundary layers. Experimental investigations on the same airfoil
also reported this sharp peak at St = 1.2, but with a less dominant broadband phenomenon at
St ≈ 0.05 [30]. Analyses of Dassault Aviation’s laminar-flow V2C profile showed a quite different
trend, as Strouhal numbers were reported in the range of St = 0.12–0.16 for laminar as well as
for tripped turbulent cases, albeit different from typical Strouhal numbers mentioned above. This
airfoil geometry was the subject of experimental [31,32] as well as numerical studies [33–36] and
is also considered for our investigations. It is likely that, over some parameter ranges and airfoil
geometries, different types of buffet exist (or can even coexist) [16,30,37] and it is still unclear how
they relate to each other and to turbulent cases [38].

Further progress to clarify the mechanisms can be made using scale-resolving simulations.
However, due to the high resolution of direct numerical simulations (DNSs) that is required even
at moderate Reynolds numbers (for example, grid spacings based on wall scaling of �x+ < 5,
�y+ < 1, �z+ < 5 [37,39]), both the runtime and domain width have been limited. For example,
the grid required for a well-resolved DNS at moderate Reynolds numbers considering a narrow
domain of 5% of the chord length contains approximately 1 billion grid points and required more
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than 130 000 core hours to compute one dimensionless time unit, which is defined as the ratio of
chord length and free-stream velocity (c/U∞), making parametric studies unfeasible.

Large-eddy simulations (LESs) have the potential to capture the main flow phenomena involved
in buffet, saving several orders of magnitude in cost versus DNS. Previous scale-resolving
simulations of airfoils at transonic buffet conditions have captured the low-frequency unsteadiness
[37,40,41], but have also recognized the sensitivity to the computational grid and subgrid scale
model [36,40], which becomes even more of a challenge when details of the transition process
must be captured [42]. The particular challenges include the need for stretched, curvilinear grids
and the presence of significant portions of a laminar boundary layer where any subgrid model must
turn off to avoid unphysical additional dissipation. In order to maintain the numerical stability of
LESs with subgrid models, however, filtering is often required, and in an airfoil flow the amount
of filtering necessary may be different within the boundary layer as opposed to the near acoustic
field. Implicit LESs (ILESs) can be attractive, since in this kind of flow one already has schemes
designed for adding dissipation to capture shock waves without spurious oscillations [43]. However,
without additional tuning, ILES can also be far too dissipative in key regions with transitional or
turbulent flow features [44]. In this context, one aspect of the current work is to try to improve
methods for airfoil flow and here we use a technique that is highly selective in where filtering
is applied. In addition to shock capturing, which is carefully limited to the immediate vicinity
of shock waves using a proven methodology, we also control filtering away from shocks, where
mostly we are relying on central difference schemes that develop oscillations when the flow is
underresolved. The methodology adopted here is to detect these characteristic oscillations and
apply local filtering, helping to minimize the amount of filtering. The method will be validated
against DNS for a buffet test case. Eventually, the data of such benchmark cases can be used to
improve turbulence and transition models in order to facilitate more efficient simulation methods
[e.g., unsteady Reynolds-averaged Navier-Stokes (URANS)] with increased complexity of the test
case (e.g., half-wing configuration, fluid/structure interaction, etc.).

The main objective of the present contribution is to assess the influence of the spanwise domain
size on key physical phenomena associated with buffet. If key phenomena are captured in the
narrower domain, this justifies its use for further fundamental studies including instability analyses.
If significant differences are found, then we know that we need to use the wider domains. To check
the effects, we run two cases with a factor of 20 different spanwise domain size. In Sec. II we
describe the spectral-error-based implicit large-eddy simulation (SE-ILES) methodology, which is
validated against DNS in Sec. III, demonstrating excellent results with a factor of 16 overall saving
in computer time relative to the DNS. In Sec. IV we make the central comparison of domain size
using aerodynamic coefficients, x/t diagrams, and two-point correlations. In Sec. V we exploit the
data from the wide domain size to study the transition and low-frequency phenomena in more detail
and make conclusions in Sec. VI.

II. METHODOLOGY

All simulations reported here were carried out using the high-order parallel multiblock finite-
difference in-house code SBLI. Details of the solver and previous applications can be found in
Refs. [45–47]. The basic setup outlined in this section is the same as the direct numerical simulations
in Ref. [37]. The dimensionless time-dependent compressible Navier-Stokes equations in three
spatial dimensions can be written as

∂ρ

∂t
+ ∂ρui

∂xi
= 0, (1)

∂ρui

∂t
+ ∂ρuiu j

∂x j
= − ∂ p

∂xi
+ 1

Re

∂τi j

∂x j
, (2)

∂Et

∂t
+ ∂Et u j

∂x j
= −∂ pu j

∂x j
+ ∂q j

∂x j
+ 1

Re

∂ (uiτi j )

∂x j
. (3)
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The pressure and heat flux are denoted by p and Q, respectively, while τ denotes the stress
tensor. The nondimensionalization scheme used to formulate the above equations is based on the
free-stream density ρ∗

∞, velocity u∗
∞, and temperature T ∗

∞, where the asterisk denotes dimensional
quantities. The pressure p is normalized by ρ∗

∞u∗2
∞. The characteristic length is set according to the

airfoil chord length c. The five conservative variables are contained in a solution vector q, consisting
of the density ρ, the specific momentum components ρu, ρv, and ρw, and the volume specific total
energy Et = ρeint + 1/2 × ρ(uu + vv + ww), where eint = T/[γ (γ − 1)M2] denotes the specific
internal energy. The fluid is considered as a Newtonian fluid with the stress tensor

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
, (4)

where μ and δi j denote the kinematic viscosity and the Kronecker delta, respectively. The heat
conduction is considered according to Fourier’s law, written in dimensionless form as

q j = − μ

(γ − 1)Re Pr M2

∂T

∂x j
, (5)

where the specific heat ratio and Prandtl number are assumed to be constant with γ = 1.4 and
Pr = 0.72, respectively.

The temperature dependency of the dynamic viscosity is modeled by Sutherland’s law according
to

μ = T
3
2

1 + CSuth

T + CSuth
, (6)

where the Sutherland constant is set to CSuth = 110.4/T ∗
∞ = 0.41 with T ∗

∞ = 268.67 K. For statisti-
cal analysis, the Favre (density weighted) average of a variable q is defined by

q̃ = ρq

ρ
, (7)

where an overbar denotes the usual Reynolds average.
The equations are discretized in time using an explicit third-order low-storage Runge-Kutta

scheme and in space by applying a fourth-order central finite-difference scheme on a structured
multiblock grid. Five-point stencils are used to calculate the interior of the flow field, while
the boundaries are treated by a fourth-order accurate scheme according to Ref. [48]. The same
discretization schemes were used for DNSs of airfoil flows by Ref. [47]. Figure 1(a) shows an LES
grid (every 18th and 14th grid point in the ξ and η direction, respectively) and Fig. 1(b) a closeup
of the airfoil (details P© and B© will be explained later). Zonal characteristic boundary conditions
[49] are applied at the outlet [highlighted with green in Fig. 1(a)], whereas integral characteristic
boundary conditions [50] are applied at the remaining outer boundaries (highlighted in orange). Due
to the appearance of shock waves, a total variation diminishing (TVD) scheme is used, but limited
to the immediate vicinity of shock waves and turned off completely within a small zone near the
leading edge, as described in Ref. [37]. To avoid the formation of spurious structures in the free
stream, a sixth-order filter, similar to the one used by Ref. [51], is incorporated in the far field, but
disabled within a distance of �n ≈ 0.2 from the airfoil surface (the boundary is sketched by the
magenta lines), so that the boundary layer and near-wake flow features are not affected. For the
filtering, we solve the tridiagonal system

α f q̆(i−1) + q̆i + α f q̆(i+1) =
N∑

n=0

an

2
(q(i+n) + q(i−n) ) with N = 3, (8)

where q and q̆ denote unfiltered and filtered components of the solution matrix, respectively. The
adjustable parameter is set to α f = 0.45, while the coefficients are derived in terms of α f using

083903-4



WIDE DOMAIN SIMULATIONS OF FLOW OVER AN …

FIG. 1. (a) Multiblock LES grid plotting every 18th and 14th grid point in the ξ and η direction,
respectively. Integral characteristic and zonal characteristic boundaries are highlighted in orange and green,
respectively. (b) Closeup of the region around the airfoil, where the magenta lines sketch the boundary between
the near and far field. Details A© and B© indicate a processor block and a stencil for error-indicator calculation,
respectively.

Taylor- and Fourier-series analyses [51] as

a0 = 11

16
+ 5α f

8
, a1 = 15

32
+ 17α f

16
, a2 = −3

16
+ 3α f

8
, a3 = 1

32
+ 1α f

16
. (9)

References [52,53] provide more detailed information on the filtering technique. The filter is
applied to the conserved variables in each spatial direction in a sequential way. In the current
implementation, an additional coefficient alim is specified according to the update algorithm

qnew = qorig − alim · (qorig − q̆), (10)

where qorig is the solution before applying the filter and qnew contains the updated variable. For direct
numerical simulations, alim is set to alim = 0.1 in the free-stream region, where the filter is applied.
This approach has also been used to improve the numerical stability of simulations with decreased
resolutions, for example, during initial grid studies. More details on the numerical implementation
are provided in Ref. [37].

The present contribution utilizes a newly developed spectral-error-based implicit large-eddy
simulation (denoted SE-ILES) approach, which uses the same sixth-order filter as used in the
free stream, but with the filter coefficient set to alim = 0.4. In the SE-ILES approach, this filter
is only applied in regions that are developing grid-to-grid point oscillations, and hence does not
affect structures in well-resolved regions. Corresponding to the number of available computational
cores, the domain is split into subdomains, here denoted as processor blocks (PBs), so that each
core solves the flow for approximately the same number of grid points. In the present case,
each three-dimensional PB contains approximately ∼25 000 grid points [∼2500 grid points in the
two-dimensional (2D) plane] and sketched by the green box (detail A©) in Fig. 1(b). To identify
insufficiently resolved regions of the flow we adopt a spectral error estimator previously used to
identify regions of poor resolution and then for iterative grid design [54,55]. For fully developed
turbulence we expect the energy in small-scale structures to reduce with increasing wave number
according to Kolmogorov’s −5/3 law in the inertial sublayer, or at an even higher rate in the
dissipation range. However, for high-order finite-difference schemes, we often observe significantly
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weaker decay rates, or even spectra that increase with increasing wave number, in regions of reduced
grid resolution. Spectral error indicators are used to efficiently estimate the actual spectral decay rate
against a specified minimum acceptable decay rate. Explicit filtering is then applied only in regions
with high error severity. Spectral error indicators are also applied in the context of spectral element
simulations of wing flows to control grid adaptation [56].

In the present approach, spectral error indicators are calculated every NE = 10 time steps for
each processor block according to Ref. [54] using the vorticity magnitude |ω|. Instead of computing
the full spectra for each 3D PB, the Fourier amplitudes A2, A4, and A8 (proportional to the square
root of the spectral energy) of selected modes (Ne/2, Ne/4, Ne/8) for stencils of Ne = 16 grid points
[detail B© in Fig. 1(b)] are defined by

A2 = 2−2r

Ne

Ne−1∑
j=0

(−1) j |ω j |, A4 = 21−r

Ne

Ne−1∑
j=0

(−i) j |ω j |, A8 = 2

Ne

Ne−1∑
j=0

exp
(
−π

4
i
) j

|ω j |. (11)

The parameter r denotes the minimum acceptable decay rate of amplitudes in the short-wavelength
part of the spectrum, here set to r = −1. The average of Fourier amplitudes (A) of a set of similarly
oriented stencils, which are homogeneously distributed within the PB [indicated by the staggered
orange lines for representative planes in detail A© of Fig. 1(b)], is calculated and the mean error
indicator I f is obtained by

I f = ln

(
1 +

⌊
A2

A4 + ε

⌋
+

⌊
A4

A8 + ε

⌋
+

⌊
A2

A8 + ε

⌋)
, (12)

with

A2 =
Nstencil∑
n=1

A2,n

Nstencil
, A4 =

Nstencil∑
n=1

A4,n

Nstencil
, and A8 =

Nstencil∑
n=1

A8,n

Nstencil
, (13)

where �· · · � is a “floor” operation and ε = 0.03 used to avoid division by zero and tune the error-
indicator sensitivity [54]. In cases where I f exceeds a value of ε1 = 0.6, the error in this PB is
considered as high. The threshold is based on a grid study of the Taylor-Green vortex test case [54].
In addition to the instantaneous error, an average error is computed according to

εav = (1 − Cav)εav + Cav if I f > ε1, (14)

εav = (1 − Cav)εav + Cav
Nhigh

Ncheck
else, (15)

which indicates the probability of I f exceeding the threshold ε1 in this PB using Cav = 0.1. The
number of cases in which spectral errors were calculated and exceeded the threshold ε1 is denoted
by Nhigh, while Ncheck denotes the total number of checks.

Every NF = 30 time steps, the filter is applied in a PB, if either I f > ε1 or εav > ε2 (for the
present study ε2 = 0.2). Blending is used to transition from alim = 0.4 (in PBs with a high spectral
error) to alim = 0.0 in adjacent PBs with low error estimates. This is repeated for three stencil sets
within each PB to calculate error indicators corresponding to the curvilinear coordinates and to
apply the filter in each direction independently.

Table I summarizes relevant parameters for the spectral-error-based ILES approach. Parameters
r, Ne, ε, and ε1 are based on Ref. [54], where these settings were shown to do a good job of capturing
grid-to-grid point oscillations. The remaining parameters were tuned in the current work and the
methodology is applied throughout the simulations. Calculating spectral errors every NE = 10 time
steps corresponding to 3.2 × 10−4 time units was found to be sufficient to gain a good representation
of the average error εav, when applying filtering (if required) every NF = 30 time steps. In general,
it is recommended to keep NE < NF to avoid an underestimation of the errors. The factor NF was
adopted from previous uses of filtering to enhance numerical stability. Factor ε2 depends on NE , as it
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TABLE I. Overview of spectral-error-based filter parameters.

Computation of SE indicators Control of filter activity

r Ne ε NE NF alim ε1 ε2

−1 16 0.03 10 30 0.4 0.6 0.2

accounts for fluctuating error-indicator values within the filter intervals and can be used to increase
the sensitivity. The parameter alim can be used used to control numerical stability. However, if this
parameter becomes too high it is better to adapt the grid resolution instead. More details on spectral
error indicators and the chosen settings can be found in Refs. [54,55], respectively.

III. COMPARISON OF NARROW DOMAIN DNS AND LES

To validate the SE-ILES approach, comparisons are made with DNS. The objective is to check
that various phenomena associated with buffet can be reproduced using the cheaper approach. This
then enables longer run times and simulations with wider domains.

Previous DNSs were reported in Ref. [37]. These were run at a moderate Reynolds number
of Re = 500 000, a Mach number of M = 0.7, and an angle of attack of α = 4◦. An extensive
grid study resulted in a choice of a computational grid for this flow configuration with around 1
billion grid points, based on a spanwise domain width equal to 5% of the airfoil chord. Due to the
computational cost, only a short run time of four buffet cycles was possible, but this is sufficient to
assess the capability of SE-ILES to capture the main phenomena.

A summary of the simulations discussed in this section is given in Table II, listing the angle
of attack α, Reynolds number, grid size, spanwise domain extent Lz, number of grid points in
the spanwise direction Nz, grid spacing of the smallest cells (�xmin and �ymin), and sixth-order
filter activity. In the DNS the filtering is only applied in the far field, where the grid stretching
results in underresolved acoustic waves, whereas in the SE-ILES filtering is applied in those blocks
where underresolution is detected, as described in the previous section. The DNS was started from
a 2D solution at a lower Reynolds number, which was extruded in the spanwise direction. Initial
volume forcing similar to Ref. [47] was added to the right-hand side of the momentum equations to
introduce a random three-dimensional disturbance at the leading edge for a short time period only,
which accelerated the formation of turbulent structures. After self-sustained turbulence was fully
developed on both sides of the airfoil, the Reynolds number was increased in a stepwise manner,
until the target Re = 500 000 was reached. To initialize the SE-ILES, a DNS solution taken after a
few buffet cycles was interpolated onto the coarser SE-ILES grid. It should be noted that starting a
SE-ILES with the same setup from a uniform flow field as an initial condition instead, would still
develop the same low-frequency unsteadiness, but would lead to a longer transient of at least two
low-frequency cycles.

Figure 2 shows the lift coefficient as a function of time for the DNS (blue curve) and SE-ILES
(red curve), both with a spanwise domain extent of 5% of the chord length. Looking at the DNS
results, low-frequency fluctuations are observed at a Strouhal number of St ≈ 0.12. The amplitude
of the CL oscillation shows some variation, with the last two cycles having larger amplitudes than

TABLE II. Overview of simulations discussed in Sec. III.

Case Name α Re Grid points Lz Nz �xmin �ymin Filter

A0 DNS 4◦ 500 × 103 1.07 × 109 0.05c 150 4 × 10−4 6.8 × 10−5 Far field
B0 SE-ILES 4◦ 500 × 103 75.3 × 106 0.05c 50 1 × 10−3 1.7 × 10−4 Targeted
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FIG. 2. Instantaneous lift coefficient (of a 2D slice at z = 0) of a DNS (blue curve) and SE-ILES (red
curve) as a function of time.

the first two. A similar variability can be seen in the SE-ILES results. Shortly after restarting from
the DNS solution, the SE-ILES develops a low-frequency phenomenon with similar amplitudes to
the DNS. The oscillation is irregular: After approximately 32 time units the minimum lift increases
and then steadily decreases again (indicated by the black dotted line). After another four low-
frequency cycles, there is a significant drop in the minimum CL values. The maximum lift over the
last four cycles (indicated by the black dashed-dotted line in Fig. 2) is reasonably constant, while
the minimum values still show significant variations. Over the full SE-ILES run time the variation
of the maxima is only �CL ≈ 0.03, while for the minima it is �CL ≈ 0.14. The effect of spanwise
domain size on this behavior will be shown in the next section. Since a turbulent flow is present, it
is expected that the SE-ILES and DNS solutions will eventually diverge from one another. In the
context of this paper, the initial agreement between DNS and SE-ILES, with the SE-ILES closely
matching the DNS over the first two cycles suggests that the key physical mechanisms resulting
buffet are captured in the SE-ILES.

A more detailed comparison of DNS with SE-ILES can be made in the context of x/t diagrams
that have been used previously [37] to show the shock and boundary-layer phenomena associated
with key frequencies visible in the energy spectra. For orientation, Fig. 3(a) shows an instantaneous
2D slice at z = 0 of the streamwise pressure gradient of the DNS at t = 156.4. Red contours
correspond to compressions, including shock waves, while blue lines indicate expansion regions.
It can be seen that a transition to turbulence occurs towards the rear of the airfoil, on both the
suction and pressure surfaces, while shock and expansion waves are present upstream, above laminar
boundary layers. The white dashed curve, located at a fixed distance (�n = 0.05c) from the airfoil
surface, is used to monitor and store time-resolved flow-field data, whereas the green lines denote
sonic lines (M = 1).

Figures 3(b) and 3(c) show contours of the streamwise pressure gradient ∂ p/∂x as a function
of space (x) and time (t) for the narrow domain DNS [Fig. 3(b)] and SE-ILES [Fig. 3(c)] along
the monitor curve defined in Fig. 3(a). The green lines denote sonic lines and indicate the path
of shock waves intersecting the monitor plane. It can be seen that these waves generally move
upstream up to about the 30% chord location. The blank region at t ≈ 163 in Fig. 3(c) is omitted
due to corrupted data, but the trends are clear in this region. In addition, the vertical white lines
visible near the leading edge are an artifact of the postprocessing which took the closest point
to �n = 0.05. These lines are less pronounced in Fig. 3(a) due to the increased resolution of the
DNS. On the right-hand side of the contour plots, the lift coefficient is shown as a function of time.
Representative time segments of SE-ILES and DNS were chosen and synchronized according to
their low-frequency cycles. It can be seen that the lift oscillation corresponds to large-scale forward
and backward motion of the line of intermittent separation of the boundary layer, which moves
forward to 60% chord during the low-lift parts of the cycle and backwards to 70% chord during
the high-lift parts of the cycle. The separation is followed by fine lines with positive slope. These
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FIG. 3. (a) Snapshot showing contours of the streamwise pressure gradient of the DNS at t = 156.4.
Contours of the streamwise pressure gradient of the narrow domain (b) DNS and (c) SE-ILES as a function
of x and time along the white dashed curve in (a). Green curves denote the sonic lines and the lift coefficient
is shown as a function of time for DNS (blue) and SE-ILES (red) on the right-hand side of the x/t diagrams.
Please note that the time intervals are chosen to synchronize low-lift and high-lift phases of both simulations.
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TABLE III. Overview of simulations discussed in Sec. IV.

Case Name α Re Grid points Lz Nz Filter

B0 SE-ILES narrow 4◦ 500 × 103 75.3 × 106 0.05c 50 Targeted
C0 SE-ILES wide 4◦ 500 × 103 1.5 × 109 1c 1000 Targeted

lines initially correspond to the convection of Kelvin-Helmholtz roll-ups of the separated shear
layer. Further downstream the lines are further apart and correspond to large-scale turbulent flow
features, convecting over the airfoil surface. During low-lift phases, the large vortices appear as
noisy patches near the trailing edge, showing up here because their influence reaches up to the
white dashed monitor line in Fig. 3(a).

Further interesting details of the flow can be observed in Fig. 3(b). At x ≈ 0.05, the green line
indicates the beginning of the supersonic region. In the present case, shock trains are found in the
region from x = 0.3 to x = 0.6 and usually consist of repeating patterns of a compression wave
[red contours in Fig. 3(b)], followed by a subsonic region and an expansion fan [blue contours in
Fig. 3(b)] turning the flow and returning it to a supersonic condition. The shock and expansion waves
form a V-shaped structure in the xy plane, which is well pronounced around the half-chord location
in Fig. 3(a). Where the compression waves meet the surface there is a thickening of the boundary
layer due to the shock-wave/boundary-layer interaction, which can be observed in Fig. 3(a) at
x ≈ 0.3. On the other hand, in the same figure, acoustic waves generated downstream of the
supersonic region propagate upstream, and slow down when approaching the supersonic region,
where they strengthen and merge to form new shock waves.

All these flow features are remarkably consistent between the DNS version in Fig. 3(b) and
the SE-ILES version in Fig. 3(c). None of the described phenomena are significantly different in
the two figures, allowing us to have confidence that the SE-ILES are properly capturing the flow
physics and can be used for further parametric studies. After having validated the SE-ILES method
against a DNS, we will compare next the SE-ILES of this section with a simulation considering a
much wider computational domain.

IV. EFFECT OF SPANWISE DOMAIN SIZE

In this section, we consider the impact of the spanwise domain extent on the buffet and related
phenomena. It is of particular interest to confirm whether 2D phenomena, such as boundary-layer
instabilities or shock waves reported by Ref. [37] (where studies were limited to Lz � 0.25), are
preserved in much wider domains. We would like to be able to establish guidance for future DNS
studies, by determining which phenomena can be safely studied in relatively narrow domains and
which other phenomena, such as potentially highly three-dimensional separations, require much
wider computational domains.

In this study, we use the same spectral-error-based large-eddy simulation (SE-ILES), which
was validated in the previous section, and compare it to a corresponding simulation considering
a 20 times wider domain (Lz = 1c). The details of the simulations are summarized in Table III as
case C0.

An initial comparison of the effect of the massively increased computational domain is shown
by the lift coefficient in Fig. 4. The solid black line shows the wide domain SE-ILES (case C0 in
Table III) as a function of time, while the red line shows the narrow domain case (B0 from the
previous section). To initialize the wide domain SE-ILES, a narrow domain SE-ILES solution was
periodically replicated in the spanwise direction and left to evolve lower spanwise wave numbers.
This transient phase of the wide domain SE-ILES is shown by the dashed gray line in figure 4.
For case C0, representative time instances at high-lift and low-lift phases are labeled wide-domain
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FIG. 4. Lift coefficient as a function of time for SE-ILES considering wide (black solid line) and narrow
(red solid line) domains. The dashed gray line denotes the transient phase of the wide SE-ILES. Labels WH
and WL correspond to snapshots in Fig. 11.

high-lift phase (WH) and wide-domain low-lift phase (WL), respectively, and will be discussed later
with respect to Fig. 11.

Two observations can be made immediately from Fig. 4. First, the amplitude of lift oscillations
increases significantly in the wider domain, and second, the oscillations become significantly
more regular. As shown later in 3D visualizations of Sec. V B, the wide domain case exhibits
larger vortical structures. The increased energy content captured by the wider domain seems to
be the reason for increased amplitudes of lift oscillations. Despite the differences in unsteady lift
coefficients, the mean values of aerodynamic coefficients summarized in Table IV agree well (±5%)
for the wide and narrow domain cases. For example, the lift coefficient CL only changes by 1%
and the lift-to-drag ratio only changes by 3%. The drag coefficient CD in Table IV is decomposed
into skin-friction and pressure drag components according to CD, f and CD,p, respectively. The
contribution of the base pressure at the blunt trailing edge is denoted by CD,p|TE in Table IV. The
mean trailing-edge pressure, which is often assumed to play an important role for buffet-related
phenomena, does not seem to be affected by the domain size.

To analyze the variations observed in integral quantities in more detail, Fig. 5 shows time
averages of the wall-pressure coefficient Cp [Fig. 5(a)] and skin-friction coefficient Cf [Fig. 5(b)]
as a function of chord position x. The solid and dashed lines correspond to the suction side (SS)
and pressure side (PS), respectively. The red line corresponds to the narrow domain, while the
black line shows the wide domain. The dotted horizontal line in Fig. 5(a) indicates the critical
pressure coefficient Cp,crit (i.e., the pressure coefficient, where an isentropic flow would reach sonic
conditions) defined as

Cp,crit = 2

γ M2

[(
2 + (γ − 1)M2

γ + 1

) γ

γ−1

− 1

]
, (16)

corresponding under the present flow conditions to Cp,crit = −0.779. The solid and dashed lines in
Fig. 5(c) show the root mean square of the Cp and Cf fluctuations on the suction side, respectively.

TABLE IV. Aerodynamic coefficients. Values in parentheses denote the percental deviation from the wide
domain case.

Name CL /CD CL CD CD, f CD,p CD,p|TE

SE-ILES wide 20.28 (±0%) 0.77 (±0%) 0.038 (±0%) 0.0038 0.034 −0.014
SE-ILES narrow 20.97 (+3%) 0.76 (−1%) 0.036 (−5%) 0.0037 0.032 −0.014
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FIG. 5. Time- and span-averaged (a) pressure, (b) skin-friction coefficient, and (c) root mean square of
corresponding fluctuations on the suction side as a function of chord position x for narrow (red) and wide
domain (black) cases. Critical pressure coefficient Cp,crit = −0.779 is indicated by the horizontal dotted line.
In (a) and (b), solid and dashed lines correspond to suction and pressure sides, respectively, while solid and
dashed lines in (c) denote C′

p,rms (right-hand-side scale) and C′
f ,rms (left-hand-side scale), respectively.

A general observation again is that the mean flow is not very sensitive to the spanwise domain size.
The pressure distribution is almost completely unchanged, while the skin friction shows a slightly
(5%) earlier separation for the wide domain and the upper side Cf and C′

f ,rms, appear earlier and
stronger in the wide domain case, consistent with the larger CL variations.

In order to get a better impression of the unsteady flow features for both cases, we consider
x/t diagrams for the narrow and wide domain cases, which are compared in Fig. 6. While the
corresponding earlier Fig. 3(b) showed only a short time interval consisting of two low-frequency
cycles, Fig. 6(a) shows contours of the streamwise pressure gradient for six buffet cycles. A
corresponding x/t diagram is shown in Fig. 6(b) for the wide domain case. The general structure
of the x/t diagrams has been already discussed in the previous section in connection with Fig. 3.
Comparing the wide and narrow domain cases we see that the patterns are more regular in the wide
domain case. In addition, we see a wider range of movement of the separation line in the wide
domain case. Both observations are consistent with the changes seen in the lift time histories.

Given the greater regularity and repeatability of the wide domain simulation, it is worth exploring
some of the features of the x/t diagrams in more detail. On the left-hand side of Fig. 6(b) at x ≈ 0.05,
the green line indicates the front end of the supersonic region, oscillating at a frequency similar
to the lift coefficient, but slightly phase shifted. This oscillation is caused by varying the slope
of the sonic line in the xy plane near the front of the airfoil and is not affected by the domain
width. Above the laminar region in the range 0.2 < x < 0.5, the path of shock waves is well
approximated by the black dotted lines in Fig. 6(b) corresponding to a constant speed of us = −0.09.
Considering the speed of sound in the free stream (a = 1/0.7 ≈ 1.43), the Mach number of the
upstream-propagating shock waves Ms = −us/a ≈ 0.06 is significantly lower compared to acoustic
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FIG. 6. Contour of the streamwise pressure gradient of the (a) narrow domain and (b) wide domain
SE-ILES as a function of x and time at a distance of �y = 0.05c from the upper airfoil surface. Green curves
denote the sonic lines and the lift coefficient is shown as a function of time for narrow (red) and wide domain
SE-ILES (black) on the right-hand side of the x/t diagrams. Traces of shock waves and acoustic waves are
indicated by black dotted and magenta dashed-dotted lines in (b), respectively. The lift coefficient is shown on
the right-hand side of the contour plots as a function of time.

waves (sketched as a magenta dashed-dotted curve after 210 time units) propagating at Ma ≈ −0.14.
Also, neither the pressure ratio of p2/p1 ≈ 1.07 nor the absolute level of the peak pressure in
between the compression and expansion, i.e., p2 ≈ 1.09, vary significantly in that region. The green
curves are interrupted just before half chord at x ≈ 0.4, where the flow near the shock foot does not
turn subsonic at the monitored location. Parallel to the shock waves, there are compression waves
(so-called “separation shocks”) moving ahead with the same speed and forming a lambda-shock
structure with the mean shock, which is typical for laminar shock-wave/boundary-layer interactions
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FIG. 7. Red, blue, green, and magenta lines show two-point correlations of density (ρ), streamwise- (U ),
vertical- (V ), and spanwise-velocity (W ) components, respectively. Solid and dashed lines correspond to the
wide and narrow domain cases, respectively.

[13,57]. Both waves eventually disappear at x ≈ 0.2, where the pressure ratio increases to p2/p1 ≈
1.11, and then vanish shortly after a brief downstream excursion. It is interesting to note that
the continuations of the black dotted lines corresponding to the shock speed always intersect the
front sonic line at their most downstream position, even though no shock features are observed in
that region, suggesting that the upstream wave-propagation effects continue even when the shock
themselves are no longer visible. Further discussions of the unsteady flow field will be provided in
the next section, after we conclude the assessment of spanwise domain width effects.

A common method of assessing the suitability of the spanwise domain width is via two-point
correlations, which in homogeneous directions should drop to zero over half the domain width.
Here, we consider a fixed position close to the suction-side trailing edge with a wall-normal distance
of �y ≈ 0.06 (x = 1.0035 and y = −0.0015). The averaged two-point correlation R is calculated
according to

R(�k) = 1

NzNt

Nz∑
k=1

Nt∑
t=1

q′
(k,t )q

′
(k+�k,t )

|q′
(k,t )||q′

(k+�k,t )|
for �k ∈ [0, Nz], t ∈ [0, Nt ], (17)

�z = Lz

Nz
�k, (18)

where the vector q′
(k,:) contains a time series of the fluctuations in the quantity of interest at a

fixed position in the xy plane at the kth point in the spanwise direction, which is projected onto
vector q′

(k+�k,:) and normalized by the magnitudes of both vectors. Finally, the average value is
calculated for each �k, looping through each point in the spanwise direction (1 < k < Nk/2), and
transformed to the physical distance �z, using Eq. (18). Figure 7 shows the two-point correlations
for both cases (solid lines for the wide domain and dashed lines for the narrow domain), where
the red, blue, green, and magenta lines correspond to density (ρ), streamwise- (U ), vertical- (V ),
and spanwise-velocity (W ) components, respectively. The extreme cases for the wide domain are
the density, which remains highly correlated (R = 0.9), and the spanwise velocity, which drops to
R = 0 for �z > 0.075. What we are seeing in the two-point correlations is the effect of two distinct
phenomena in the flow field. The periodic motion associated with buffet (as shown in the next
section) is essentially two dimensional, hence the density field remains highly correlated across the
span. However, the superimposed turbulence is three dimensional and contained within the domain,
so that the spanwise velocity correlations drop to zero within �z = 0.075. The spanwise velocity is
different to the other velocity components since it has a spanwise-mean value that is constant (equal
to zero) during all phases of the buffet cycle.

In the narrow domain (shown with the dashed lines in Fig. 7 for the full range of possible �z)
the spanwise two-point correlations do not decay to zero even for the spanwise velocity component.
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FIG. 8. Extraction of high-lift and low-lift statistics: (a) Variation of lift coefficient with time, showing in
red the high-lift samples and in blue the low-lift samples, (b) pressure-drag coefficient, (c) skin-friction drag
coefficient, and (d) trailing-edge pressure.

Despite this, and in common with the experience of other flows in restricted (but not minimal)
domains [58], the flow phenomena are representative of the wider domain case, so that such narrow
domain simulations can still be useful.

V. FURTHER ANALYSIS OF THE WIDE DOMAIN CASE

In this section we look in detail at statistics and instantaneous flow fields from representative
phases of the buffet cycle, exploiting the large amounts of data available for the wide domain
case. To begin with, we focus in Sec. V A on phase-averaged data collected during high- and
low-lift phases (denoted by HLP and LLP, respectively). In Sec. V B we analyze instantaneous
3D visualizations at representative time instances during high- and low-lift phases, which allow us
to study the spanwise characteristics of transition, shock waves, and low-frequency phenomena.
Finally, in Sec. V C, we consider the global behavior of low-frequency phenomena associated with
transonic buffet, including the flow over the pressure side of the airfoil.

A. Phase-averaged flow fields

The regularity of the buffet cycle in the wide domain case allows us to extract reliable phase-
averaged statistics. Figure 8(a) shows in red and blue the sections of the lift history that were used
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FIG. 9. Extraction of high-lift (red) and low-lift (blue) statistics corresponding to Fig. 8: (a) Pressure
coefficient, including the critical value denoted by the dashed-dotted black line, and (b) skin-friction coefficient.
The upper surface is shown with solid lines and the lower surface with dashed lines.

to create averages over the high- and low-lift phases of the buffet cycle. Figures 8(b) and 8(c)
show respectively the pressure drag and skin-friction drag coefficient, with the trailing-edge pressure
measured at the upper-side corner in Fig. 8(d). The pressure drag is broadly in phase with the lift
coefficient, although the pressure drag has a slightly delayed peak and has a sharper drop during the
decreasing-lift part of the cycle. Skin-friction and trailing-edge pressure are roughly in phase with
each other (the trailing-edge pressure lags slightly), and both lead the lift by about a quarter of a
cycle. The friction drag, for example, reaches a minimum when the transition takes place at its most
downstream position (x > 0.7), just before the lift reaches its minimum.

Figure 9 shows in red and blue wall-pressure [Fig. 9(a)] and skin-friction coefficient [Fig. 9(b)]
as a function of x corresponding to high- and low-lift phases in Fig. 8(a). Figure 9(a) is continued
into the near wake to show the pressure variations downstream of the trailing edge. Key features
are identified on the figure. Points H1 and L1 correspond to the first occurrences of flow separation
(Cf = 0) on the upper surface (denoted with the solid lines). The initial separation is significantly
earlier in the low-lift phase, after which there is an extended region with Cf close to zero. Although
the separation is later in the high-lift phase, there is still an extended region of reverse flow
present. Points H2 and L2 correspond to the crossing of the critical pressure, i.e., the isentropic
sonic condition, and it is notable that in both cases these points correspond to the minimum skin
friction from Fig. 9(b), i.e., with the location of the peak strength of the reverse-flow vortex that
precedes reattachment. The pressure gradient at H2 and L2 and the upstream-pressure plateau hardly
change during the low-frequency cycles, while the blue curve flattens at x > 0.6 converging to a
higher trailing-edge pressure. Considering the Rankine-Hugniot equations modeling the pressure
jump across a shock wave, the shock strength is solely defined by the pressure and relative Mach
number of the shock wave. This would suggest that shock waves terminating the supersonic region
at high- and low-lift phases have the same strength on average. It is also interesting to note that,
superficially, the Cp curves in Fig. 9(a) resemble the picture we would expect for a single shock wave
oscillating back and forth over 0.5 < x < 0.8. Strong gradients are removed by time averaging,
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TABLE V. Aerodynamic coefficients. ∗Values in parentheses denote the percental deviation from the total.

Name CL/CD CL CD CD, f CD,p CD,p|TE

HLP 17.91 (−12%) 0.89 (+16%) 0.049 (+29%) 0.0036 0.046 −0.014
Total∗ 20.28 (±0%) 0.77 (±0%) 0.038 (±0%) 0.0038 0.034 −0.014
LLP 29.24 (+44%) 0.62 (−19%) 0.021 (−45%) 0.0039 0.017 −0.013

so that the black curve is reminiscent of the full-time statistics of experiments at high Reynolds
numbers [31]. However, the instantaneous flow field looks quite different, as we observe multiple
upstream-propagating shock waves in Fig. 6(b) and animations. The animation [59] shows contours
of the axial pressure gradient similar to Fig. 3(a). Due to the decreased resolution above the fore
part of the airfoil (x < 0.2), grid-to-grid point oscillations can occasionally be seen as multiple
stripes parallel to oblique shock waves in the visualizations, e.g., at t = 184. These grid-to-grid
point oscillations are exaggerated by the narrow color-map scaling (−5 < ∂ p/∂x < 5) and show no
impact on the boundary layer.

Table V summarizes the aerodynamic coefficients from these two flow phases and gives their
relative departure from the time average, which is up to 19% in the case of the lift coefficient and
45% for the drag coefficient. However, it is also interesting that some quantities, such as the friction
contribution to drag and the base-drag coefficient CD,p|TE (integrating pressure contributions along
the blunt trailing edge), vary by less than 10%.

To link more clearly the boundary-layer behavior with the external flow field, Fig. 10 shows
span-averaged contours of the long-time-averaged Mach number, comparing the corresponding
sonic line in black with the same line in the high- and low-lift phases shown by the red and blue
lines, respectively. Figure 10(a) shows the whole supersonic region, while Fig. 10(b) focuses on the
boundary layer. Both parts of the figure are distorted by stretching the y coordinate, more severely

FIG. 10. Contours showing the time- and span-averaged Mach number of case C0. Solid black, red, and
blue curves denote sonic lines corresponding to full time-averaged, high-lift, and low-lift phase-averaged flow
fields, respectively. Dashed light-blue and magenta lines indicate a high adverse pressure gradient for the low-
lift phase (LLP) and high-lift phase (HLP), respectively. Magenta and light-blue solid lines denote isocurves
of streamwise velocity u = 0. Both (a) and (b) are distorted.
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in Fig. 10(b). As well as the sonic line, the figures show the u = 0 contour (in magenta and light
blue for low- and high-lift phases, respectively) and dashed lines show the region of the strongest
adverse streamwise pressure gradient. While the region of flow reversal on the pressure side hardly
changes between the high- and low-lift phases, we can observe the significantly larger region of
flow reversal consistent with the skin-friction plots in Fig. 9(c). The supersonic region is clearly
larger in the high-lift phase, with oscillations in the sonic line after the half chord showing the
time-averaged effect of the shock/expansion combination, while such oscillations extend throughout
the supersonic region in the low-lift phase. As seen in the x/t diagrams there are more than one
of these shock/expansion waves, in contrast to the standard picture of buffet involving a single
shock oscillating back and forth. The region of highest-pressure gradient (the dashed lines) can
be interpreted at the averaged effect of the multiple propagating shock waves seen in the present
configuration and is, again, more consistent with the standard picture of where a shock would
occur: further upstream during the low-lift phases and further downstream during the high-lift phase.
In addition to longitudinal regions oriented orthogonal to streamlines, which are reminiscent of
shock waves, we also observe regions near the wall showing high-pressure gradients. These regions
seem to be caused by upstream-propagating acoustic waves accumulating near the sonic line. These
regions are larger during high-lift phases and may be the reason for the increased pressure gradient
at the rear part of the airfoil [observed in Fig. 9(b)].

B. Instantaneous 3D visualizations

More information, particularly relating to the transition process, can be gained from visual-
izations of the flow fields at high- and low-lift instants. These were identified in Fig. 4 as time
instants WH and WL, respectively, for the wide domain case. A common practice to visualize vortex
structures is the so-called Q criterion, defining vortices as a local imbalance of vorticity and shear
strain according to

Q = 1
2 (||�||2 − ||S||2) = 1

2 (uiiu j j − ui ju ji ), (19)

where � denotes the vorticity tensor and S the strain-rate tensor. Figure 11 shows a combination
of side (x-y) and top views (x-z) using an isosurface of Q = 100 colored by the magnitude of the
velocity, which serves to identify the key flow features for further discussion. The Q-criteria surfaces
are only plotted for the upper part of the wake to help distinguish coherent vortical structures. In
addition, the side view shows contours of the streamwise pressure gradient and the white line is the
instantaneous sonic line. At the high-lift condition the separation point is further aft and we have
a much narrower wake compared to the low-lift condition. Associated with this we have a large
supersonic region, extending beyond the half-chord location in the high-lift condition, whereas in
the low-lift condition we have a series of shocks and expansions over the front part of the airfoil,
reminiscent of the shock train of Ref. [60].

In the top views of Fig. 11 we can observe the transition process and get an impression of the size
of turbulent structures in the separated flow region and extending into the wake. In the low-lift phase
we see clear evidence for Kelvin-Helmholtz roll-ups (i.e., arising from an inflectional instability) of
the separated shear layer, with about six successive roll-ups visible for x < 0.5. Similar structures
were observed over a high-pressure turbine vane cascade at a comparable Reynolds number and
predicted by linear stability methods in boundary layers near flow separation (velocity profiles
exhibit deflection points) [61]. The presence of Kelvin-Helmholtz roll-ups does not exclude a
possible connection to Tollmien-Schlichting waves in the upstream boundary layer, though the
significant amplification seen here is associated with the strong inflectional instability.

These Q structures are continuous across the span, with a slight waviness, which may be caused
by linear instabilities with large spanwise wave numbers [61]. The first spanwise dislocations are
visible at the midchord location x = 0.5, followed by a rapid breakdown to turbulence, attributed
in previous work [37] to a three-dimensional self-sustained instability of the unsteady large-scale
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FIG. 11. Instantaneous 2D slices [side view (x-y) and top-down view (x-z)] showing Q-criterion surfaces
(Q = 100) colored by velocity magnitude at the (a) high-lift and (b) low-lift phase corresponding to labels WH
and WL in Fig. 4, respectively.

structures. In the developing flow downstream of the transition we observe the formation of larger-
scale structures, but these are still comfortably contained within the large computational domain.

Additional features of the flow upstream of transition are Q structures that form as the flow is
turned at the edge of the boundary layer due to shock/expansion combinations that cause a local
thickening and then thinning of the boundary layer. Examples are seen at x ≈ 0.28 in the high-lift
phase and x = 0.55 in the low-lift phase in Fig. 11(a). We have observed similar structures in shock-
induced separation bubbles, where the flow at the apex of the bubble turns rapidly in response to the
impinging shock wave, also resulting in a reflected expansion wave. The interesting feature here is
that these structures show almost no variation across the span, even in the wide domain, despite the
turbulent flow regions being fully three dimensional.

In the high-lift phase, seen in Fig. 11(a), transition appears to follow directly from the Q
structures that form from the shock-wave/boundary-layer interaction [62]. The spanwise structure
at x = 0.66 is followed by a cross-hatched pattern of structures corresponding to a spanwise wave-
length of λz ≈ 0.07 and suggesting an oblique mode of instability preceding the final breakdown
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FIG. 12. Top-down view (x-z) showing Q-criterion surfaces (Q = 100) colored by velocity magnitude.
Perspective (stereo 3D) views at (a2) HLP and (d2) LLP.

to turbulence [63,64]. The transition process continues up to x = 0.8 in this case, after which
larger-scale turbulent features emerge. The wake is more intermittent in the high-lift phase and
shows large-scale structures roughly up to a fifth of the domain width.

Figure 12 shows the variation of the Q structures during the complete buffet cycle, considering
four intermediate phases [in Figs. 12(b), 12(c) 12(e), and 12(f)] in between the high-lift phase
in Fig. 12(a) and the low-lift phase in Fig. 12(d). The high- and low-lift phases are also shown
respectively in perspective (stereo 3D) views in the top right and bottom left of the figure, which
show more clearly the large-scale structures in the near-wake region. The main features of the
other plots have already been described in connection with Fig. 11. Considering the whole buffet
cycle in Fig. 12, we see the forward and backward movement of the separation location and the
strict two-dimensionality of the shock-train patterns. The only indication of potentially larger-scale
structures is the spanwise waviness of the transitional flow structures seen in Fig. 12(e), but these
are a weak feature and are only present for a small part of the buffet cycle. Similar to the present
study, no significant 3D structures were observed in experiments by Ref. [65] on a two-dimensional
NASA common research model (CRM) airfoil, however, stall and buffet cells have been reported
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by Refs. [66,67] at spanwise wavelengths λz > 1c for different airfoil geometries. One would have
expected to see significant larger-scale features already in the present wide domain simulation in
the case that stall/buffet-cell behavior was relevant for this airfoil at this flow condition, although it
is not possible to say for sure that they would not form in even wider computational domains.

C. Global behavior of low-frequency phenomena

Having confirmed that the low-frequency phenomenon associated with buffet has a significant
2D component, we next consider additional x/t diagrams at z = 0. While we focused in Fig. 6
on the behavior of shock waves and acoustic waves, we now consider the overall characteristics
of the flow undergoing buffet. Contours in Fig. 13 show fluctuations of isentropic Mach number
fluctuations at the airfoil surface [Fig. 13(a)] and Mach number fluctuations along a monitor line
outside the boundary layer [Fig. 13(b)] (at �y = 0.05 from the surface). The left part of both plots
in Fig. 13 shows the pressure sides, while the right part shows the suction sides (the sketches on the
top indicate active monitor curves by solid lines and inactive ones by dotted curves). The x axis of
the pressure-side plots has been reversed so that the trailing edge corresponds to the extreme left
and right edges of the figure, while the leading edge is located at the center. The isentropic Mach
number is commonly used to estimate locations of shock waves in experiments, using only the wall
pressure [68] and is computed here according to

Mis =
√√√√[(

p0

p

) γ−1
γ

− 1

]
2

γ − 1
. (20)

Fluctuations of Mach numbers in Fig. 13 are defined as

M ′ = M − M

M
, (21)

where M denotes the local time average. While Fig. 6 focused our attention on shock waves and
acoustic phenomena associated with intermediate and small timescales (St > 0.4), Fig. 13 highlights
low-frequency phenomena corresponding to St < 0.4.

Considering first Fig. 13(a) at the airfoil surface, we observe at the right of the figure a
periodic pattern moving downstream with a speed of vc ≈ 0.098, representing a slow adjustment
of the reattached boundary layer. After encountering the trailing edge, this pattern then continues
propagating along the pressure side, but in the upstream direction at a velocity of vu = −0.364
[deduced from the positive slope on the left plot in Fig. 13(a)]. At the leading edge, we observe a
phase shift between the suction and pressure side, which means that the flow is accelerating on one
side, while it is decelerating on the other side. On the upper side we can observe weak indications
of downstream-moving structures in the Mach contours near the leading edge [positive slope on the
right-hand plot in Fig. 13(a) corresponding to a velocity of vc ≈ 0.113 at x ≈ 0.2]. For x > 0.2,
these structures then disappear or are hidden by upstream-propagating structures with a negative
slope on the right-hand plot in Fig. 13(a) in the range of 0.2 < x < 0.6. Near the transition region
we observe a patchy green sonic line undergoing the low-frequency oscillations associated with
transonic buffet. This is reminiscent of the traditional picture of transonic buffet, where only a
single shock wave is moving back and forth [27,69].

The shock waves are clearer in Fig. 13(b), showing fluctuations of the Mach number along a
monitor line �y = 0.05 away from the surface. The green sonic lines correspond to those shown
previously in Fig. 6(b). The upstream-propagating shock waves seem to move only during phases
where Mach numbers are lower than the time average corresponding to blue corridors, in good
agreement with the discussion of Fig. 13(a). While we observe multiple shock waves per low-
frequency cycle at x ≈ 0.5, we observe only one shock wave per cycle at positions further upstream
(x < 0.3). A striking qualitative difference between the two monitor curves shown in Figs. 13(a)
and 13(b) is observed near the suction-side trailing edge, where the structures within and outside
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FIG. 13. Contours showing (a) isentropic Mach number fluctuations at the airfoil surface and (b) Mach
number fluctuations along an isocurve outside the boundary layer as a function of space and time, respectively.
The green lines denote sonic lines.

the boundary layer are completely different, as, for example, highlighted at t ≈ 225 by the white
cross. The underlying wave structure is revealed in the isentropic Mach number fluctuations, but
obscured in the Mach number plot. The remaining features of Fig. 13(b) agree well with Fig. 13(a)
or have been already discussed in connection with the pressure-gradient field in Fig. 6(b).

Lines have been added to the first two low-frequency cycles of the upper side plot in Fig. 13(a),
to illustrate the form of a standing-wave pattern between the suction-side leading edge and trailing
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edge, as previously seen in Ref. [37]. The role of the trailing edge in the buffet cycle has been
the subject of some previous experiments, for example, by adding splitter plates to the trailing edge
[70]. Even though buffet could be suppressed in some cases, there were also cases showing no effect
or just a change in the buffet characteristics. This suggests that the behavior on the pressure side can
affect the low-frequency phenomenon, but is not necessarily part of the mechanism that drives the
buffet. The work of Ref. [71] supports this assumption, as they applied selective frequency filtering
on the pressure side without affecting the buffet phenomenon significantly. This would mean that,
also in our case, the pressure side is only reacting to changes in the flow field induced by the suction
side via the trailing edge.

A question arising from the present work is the significance of the leading-edge phase shift. This
could just be a random shift, due to the different arrival times of waves from the lower and upper
sides, or it could be that the weak downstream-propagating wave, observed on the suction side near
the leading edge, plays a role in connecting the pressure side disturbances to the boundary layer on
the suction side, upstream of its separation point. This aspect deserves further study.

VI. CONCLUSIONS

A comparison has been made of transonic buffet, captured in simulation with widely different
spanwise domain sizes and span-periodic conditions. The configuration is based on an unswept
laminar-flow supercritical airfoil (Dassault Aviation’s V2C profile) at a free-stream Mach number
of 0.7 and Reynolds number of 500 000. The numerical approach was based on a large-eddy
simulation, using a spectral estimate to control the level of local filtering applied. Initially, a
narrow domain simulation was used to validate the numerical approach against a direct numerical
simulation. Then an LES was run in a domain 20 times wider, with the same x-y grid and 20 times
the number of points in the spanwise direction.

It was found that the narrow domain was sufficient to capture the flow physics of the buffet
cycle, with the lift-to-drag ratio, for example, being within 3%. In terms of the usual measures used
to assess the effect of domain width, it was found that two-point correlations mostly failed to fall
to zero. This is due to the continued two-dimensionality of the potential flow outside the boundary
layer, including the pattern of upstream-propagating shock waves. The exception was the spanwise
velocity which, since it only depends on the turbulent flow, fell to zero within a spanwise separation
an order of magnitude smaller than the domain width.

Quantitative effects of the increasing domain width included the increasing regularity of the
buffet cycle and the increased amplitude. These effects were both attributed to the increased capture
of large-scale structures near the trailing edge. The increased energy of these can lead to high buffet
amplitudes and the larger statistical sample of such structures in the wide domain can lead to greater
regularity, since the conversion to two-dimensional waves at the trailing edge is averaged over more
structures.

The transition mechanism was studied at representative instants of high- and low-lift phases of
the buffet cycle. At low lift the transition proceeded via Kelvin-Helmholtz structures and a rapid
breakdown consistent of a kind seen before. At the high-lift condition the transition proceeds from
span-uniform structures imposed by upstream-propagating shock waves reflecting as expansion
waves. Such structures show up clearly in Q isosurfaces, with the transition following via oblique
modes rather than via two-dimensional Kelvin-Helmholtz waves. There was no sign of stall cells,
with the only large-scale three-dimensionality being a slight waviness in the Kelvin-Helmholtz
structures.

Phase-averaged statistics from the wide domain simulation provide an impression of a single
back and forth moving shock wave, while instantaneous data show multiple upstream-propagating
shock waves. Considering the global flow field, the pressure side was found to be linked with the
unsteady flow over the suction side via upstream propagation of acoustic waves originating at the
trailing edge that can be traced back to the separation region by a slow downstream propagation that
is visible in isentropic Mach number contours. Upstream-propagating waves also appear over the
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suction side where they may connect to the pressure side waves near the leading edge, the precise
role of which needs further study.

The source code to compile the SE-ILES grid (it was not possible to include Dassault Aviation’s
V2C profile), a PYTHON code for two-point correlation, data corresponding to Figs. 2–6, 8, 9,
and 13, and animations are openly available from the University of Southampton repository [72].
Animations are also accessible via YouTube [73].

The corresponding data set also contains additional quantities along monitor lines at the airfoil
surface and outside the boundary layer as a function of chord position and time, which were not
discussed in this work, but may be of interest of the research community.
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