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We construct a low-order thermoacoustic network model that contains the most in-
fluential physical mechanisms of a thermoacoustic system. We apply it to a laboratory-
scale longitudinal combustor that has been found to be thermoacoustically unstable in
experiments. We model the flame, which is behind a bluff body, by a geometric level-set
method. We obtain the thermoacoustic eigenvalues of this configuration and examine a
configuration in which six eigenmodes are unstable. We then derive the adjoint equations
of this model and use the corresponding adjoint eigenmodes to obtain the sensitivities
of the unstable eigenvalues to modifications of the model geometry. These sensitivities
contain contributions from changes to the steady base flow and changes to the fluctuating
flow. We find that these two contributions have similar magnitudes, showing that both
contributions need to be considered. We then wrap these sensitivities within a gradient-
based optimization algorithm and stabilize all six eigenvalues by changing the geometry.
The required geometry changes are well approximated by the first step in the optimization
process, showing that this sensitivity information is useful even before it is embedded
within an optimization algorithm. We examine the acoustic energy balance during the
optimization process and identify the physical mechanisms through which the algorithm is
stabilizing the combustor. The algorithm works by, for each mode, reducing the work done
by the flame while simultaneously increasing the work done by the system on the outlet
boundary. We find that only small geometry changes are required in order to stabilize every
mode. The network model used in this study deliberately has the same structure as one used
in the gas turbine industry in order to ease its implementation in practice.
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I. INTRODUCTION

Thermoacoustic oscillations are a major challenge for rocket and gas turbine designers. In gas
turbines they frequently appear in designs for lean premixed combustion (which reduces NOx

emissions) or fuel flexibility (which reduces reliance on fossil fuels) [1]. These oscillations increase
heat transfer to the chamber walls, create noise, and can cause structural damage, all of which are
undesirable.

There are several ways to mitigate or eliminate thermoacoustic instabilities. The addition of
a passive device, such as a Helmholtz resonator, is a relatively simple way to dampen a specific
oscillation [2]. However, with a few exceptions (see, e.g., [3,4]), most of these devices can only
dampen a narrow band of frequencies. The addition of active control has also proven to be effective
in laboratory combustors and full-scale rigs [5–7]. It adapts to changing operating conditions
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but depends critically on the effectiveness and durability of the sensors and actuators, and is not
sufficiently safe for commercial use, particularly in aircraft.

In this paper we develop and apply a passive control approach that does not rely on Helmholtz
resonators. The growth or decay rate of thermoacoustic oscillations is exceedingly sensitive to
particular changes in the acoustic characteristics of a combustion chamber and the flame’s behavior
[8]. On the one hand, this explains why thermoacoustic oscillations are so difficult to eliminate
through good design: even if a given design is stable, small subsequent changes can render it
unstable. On the other hand, this opens up the possibility that all oscillations could be stabilized
through small design changes, if a systematic way to discover these changes could be devised. An
encouraging fact is that all operational gas turbines and rocket engines are thermoacoustically stable,
even though this stability is sometimes reached only after a lengthy design process.

The sensitivity of eigenvalues (i.e., natural frequencies) of a thermoacoustic model can be
obtained very cheaply using adjoint methods [9–12]. With adjoint methods, all the sensitivities
of a given eigenvalue can be calculated for roughly the same computational cost as the original
eigenvalue calculation [13]. (Tutorials on this with sample code can be found in Juniper and Sujith
[8] and Juniper [11].) These sensitivities can be combined in order to calculate how an eigenvalue is
affected by any given change to the system geometry, boundary conditions, or flame behavior. With
these it should be possible to derive small system changes that stabilize all unstable thermoacoustic
oscillations. For example, in a simple case Magri and Juniper [9] stabilized a simple thermoacoustic
model using a drag device and a secondary heat source. These findings were experimentally verified
by Rigas et al. [14] and Jamieson et al. [15]. For a Helmholtz resonator, Caeiro et al. [16] obtained
a target impedance by performing adjoint-based shape optimization on its neck. For a 2D periodic
combustor, Mensah and Moeck [17] tuned and positioned multiple acoustic dampers to stabilize
thermoacoustic modes in a system that resembles an annular combustor. For an annular combustor,
Yang et al. [18] found the position and geometry of Helmholtz resonators to ensure optimal acoustic
damping.

In most of the studies mentioned above, the changes affect the unsteady flow but not the steady
flow. In some thermoacoustic models, such as Helmholtz solvers, the steady flow is not included,
so an unsteady adjoint calculation such as that in Juniper [11] is sufficient. In other thermoacoustic
models, such as the network model used in this paper, the steady flow can be included. If it is,
the sensitivity of the eigenvalue to changes in the steady flow also needs to be calculated. For the
hydrodynamic oscillation of the flow around a cylinder, Marquet et al. [19] showed that when a small
control cylinder is placed downstream, the eigenvalue is five times more sensitive to the steady force
from the cylinder than it is to the unsteady force. This shows that the sensitivity to changes in the
steady flow is not necessarily small.

In this paper we calculate all the eigenvalues (natural frequencies) of a thermoacoustic system
using a low-order network model similar to one used in industry [20]. We identify the handful of
unstable modes and use adjoint methods to calculate the sensitivities of their growth rates with
respect to geometric parameters such as the areas, lengths, and mean radii of the ducts in the
network. We include their influence on the flame transfer function. We input these sensitivities into
an optimization routine which seeks to simultaneously stabilize all modes, while also ensuring that
other modes do not become unstable. The result is a configuration that is stable to all thermoacoustic
modes. Finally we examine the sources and sinks of acoustic energy over a cycle in order to identify
the physical mechanisms that the optimization routine employs to stabilize all modes in the system
simultaneously. This stabilization procedure is performed on several modes at a single operating
condition. In a practical device, all the thermoacoustic modes must be stable at the steady-state
operating points (e.g., takeoff, cruise, and idle for an aircraft engine). It would be straightforward to
extend the technique developed in this paper to several operating points.
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II. GOVERNING EQUATIONS OF THE NETWORK MODEL

Due to their versatility, accuracy, and speed, low-order network models are widely used both in
industry and academia. Examples include LOTAN [21], OSCILOS [22], and TA3 [23]. See Lieuwen
[24] for a detailed introduction to the methods and Bothien [25, Chap. 4] for a review of network
models currently in use. The low-order network model used in this paper is based on the model
originally developed in Stow and Dowling [26,27,28] and is described in detail in Aguilar [29]. It is
governed by the Euler equations:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1a)

ρ
∂u
∂t

+ ρ(u · ∇ )u + ∇p = f , (1b)

∂ p

∂t
+ u · ∇p + γ p∇ · u = (γ − 1)Q, (1c)

where ρ is the density, u is the velocity vector, p is the pressure, γ is the ratio of specific heat
capacities, f is body force, and Q the rate of heat release. In this paper we use the one-dimensional
form of the equations and, following the formalism developed in Stow and Dowling [26], we
linearize around a steady uniform base flow. The flow variables take the form p = p̄(x) + p′(x, t ).
Further, a modal decomposition with complex frequency ω is performed such that the perturbations
become p′(x, t ) = Re{ p̂(x)eiωt }. The acoustic network is then divided into three types of modules:
straight ducts, connecting ducts, and boundaries, as described below.

A. Straight ducts

The main network elements are the straight ducts characterized by length L, mean radius R, and
area A. In these ducts, the governing equations for the steady base flow are

ρ̄
dū

dx
+ ū

d ρ̄

dx
= 0, ρ̄ū

dū

dx
+ d p̄

dx
= 0, ū

d p̄

dx
+ γ̄ p̄

dū

dx
= 0, (2)

which imply that the base flow in a given duct is constant and homogeneous. The governing
equations for fluctuating flow are

iωρ̂ + ρ̄
dû

dx
+ ū

d ρ̂

dx
= 0, iωρ̄û + ρ̄ū

dû

dx
+ d p̂

dx
= 0, iω p̂ + ū

d p̂

dx
+ γ̄ p̄

dû

dx
= 0. (3)

These equations can be decomposed into three traveling waves: one convective wave (AE ) that
propagates with velocity ū and two acoustic waves that propagate upstream (A−) and downstream
(A+) with velocities c̄ ± ū, where c̄ = √

γ̄ p̄/ρ̄ is the speed of sound. The corresponding mode
shapes are given by

p̂(x) = A+eik+x + A−eik−x,

ρ̂(x) = 1

c̄2
(A+eik+x + A−eik−x − AE eik0x ), (4)

û(x) = 1

ρ̄c̄
(A+eik+x − A−eik−x ),

where the wave numbers, defined using the Mach number M̄ = ū/c̄, are

k± = ω

c̄

(
M̄ ∓ 1

1 − M̄2

)
, k0 = ω

ū
. (5)

At the joints between ducts, fluxes are conserved, such as mass flux m = Aρu, momentum flux
fx = Ap + mu, energy flux e = m(h + 1

2 u2), and in some cases entropy s = so − Rg ln(p). Here
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TABLE I. Mean and fluctuating components for fluxes and entropy.

Quantity Steady base flow Fluctuating flow

Mass flux (m) m̄ = Aρ̄ū m̂ = A(ρ̄û + ρ̂ū)
Momentum flux ( fx) f̄x = A( p̄ + ρ̄ū2) f̂x = A( p̂ + ρ̂ū2 + 2ρ̄ūû)
Energy flux (e) ē = m̄(h̄ + 1

2 ū2) ê = A( γ̄ ū
γ̄−1 p̂ + ρ̄(h̄ + 3

2 ū2)û + ū(h̄ − γ̄ p̄
(γ̄−1)ρ̄ + 1

2 ū2)ρ̂ )
Entropy (s) s̄ = s̄o − Rg ln( p̄) ŝ = c̄v ( p̂

p̄ − γ̄ ρ̂

ρ̄
)

h = ∫ cp(T ) dT is the enthalpy and so = ∫ cp(T )/T dT is the entropy function, which varies only
with temperature. cp(T ) is the specific heat capacity at constant pressure, Rg is the ideal gas constant,
and cv (T ) = cp(T ) − Rg is the specific heat capacity at constant volume. Finally, the temperature
T = p/(ρRg) is defined by p and ρ through the ideal gas law. This flux formulation is valid for
semiperfect gases, as described in Ref. [30]. The mean and fluctuating quantities of the fluxes are
given in Table I. Further details on the conversion between wave amplitudes, flow perturbations, and
flux perturbations, as well as wave propagation inside the ducts, can be found in Stow and Dowling
[26].

B. Connecting modules

The modules used to connect ducts are modeled using conservation of fluxes in a control
volume which is assumed to be compact, i.e., the length of the control volume is much shorter
than the acoustic wavelength. For simplicity we will consider the fluxes in vector form such that
fi = [mi, fxi , ei]T and si = [mi, si, ei]T , where the subindex i = 1 represents the position upstream
and i = 2 represents the position downstream of the control volume. For longitudinal configurations
the relevant connecting modules are as follows:

(i) Area increase. A sudden expansion, which is nonisentropic. This requires conservation of
mass and energy fluxes. The axial momentum flux is increased by the force on the sides of the
control surface approximated by the product between the upstream pressure and the difference in
areas:

f2 = f1 + [0 , p1(A2 − A1) , 0 ]T . (6a)

(ii) Area decrease. A sudden contraction, which is isentropic. Mass and energy fluxes are
conserved:

s2 = s1. (6b)

(iii) Heat source. A region of heat addition into the system. Mass and momentum fluxes are
conserved. The energy flux is increased by the rate of heat release Q:

f2 = f1 + [0 , 0 , Q]T . (6c)

For this module the steady rate of heat release is given by Q̄ = ηm̄1hr , where η is the efficiency and
hr is the enthalpy of reaction. The unsteady rate of heat release is assumed to be given by

Q̂

Q̄
= FTF(ω, ū, Ak, Rk, Lk )

û1

ū1
, (7)

where FTF is the flame transfer function, which is a function of the mean velocity, the frequency,
and the geometric parameters Ak , Rk , and Lk , as shown in Sec. III A.

083902-4



THERMOACOUSTIC STABILIZATION …

FIG. 1. Schematic of the longitudinal combustor. Air and fuel enter on the left and are mixed between a fuel
injection plane and a bluff body combustor. A short flame sits just downstream of the bluff body combustor.

C. Boundary conditions

We assume that the inlet is located at x = 0 and the outlet at x = Lt , and consider the following:
(i) Inlet boundary condition. This is modeled with an acoustic reflection coefficient Rci that

assumes no entropy waves (AE = 0) and is given as the ratio between reflected (A+) and incident
(A−) acoustic waves:

A+ − RciA− = 0. (8)

In this paper Rci is treated as a constant complex number.
(ii) Outlet boundary condition. This is modeled with another reflection coefficient Rco defined

in a similar way to the inlet reflection coefficient:

A−eik−Lt − RcoA+eik+Lt = 0. (9)

D. Nonlinear eigenvalue problem

Using the modules described above we build a network model that resembles a combustor. To
obtain the eigenvalues we first solve the steady equations for the steady base flow. Then, using a
shooting method, we form the dispersion relation from which the eigenvalues are computed. We
begin with an initial guess for ω and propagate from the inlet boundary condition, through each
module, to the outlet boundary condition. Usually this boundary condition will not be satisfied,
so we update the value of ω and iterate until the outlet boundary condition is satisfied. The value
of ω = 2π f − iλ is then an eigenvalue of the system, with frequency f and growth rate λ. The
associated global mode is given by {ω; ρ̂, û, p̂}.

III. LINEAR STABILITY ANALYSIS OF A LONGITUDINAL COMBUSTOR

A. Model description

The thermoacoustic system considered in this paper is a 10-kW longitudinal combustor built
in the Cambridge University engineering department, originally intended for the experimental
investigation of the response of turbulent premixed flames to acoustic oscillations [31]. One of the
experimental cases focuses on a configuration with no swirl and imperfectly premixed combustion
and is prone to self-excited oscillations. The geometry consists of an inlet duct connected to a
plenum with a varying cross section at both ends. This is followed by the neck, which contains the
fuel injection plane and a centered bluff body used to stabilize the flame. The outlet is a cylindrical
pipe which contains the flame. The configuration is shown in Fig. 1.
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FIG. 2. (a) Geometry of the flame model. The flame fronts are drawn in red, the conical bluff body in blue,
and the network model in black. In the network model, the bluff body is modeled as a series of ducts with
decreasing area. The angle of the flow between the flame sheets is determined by the last two ducts. (b) The
flame transfer function (FTF), which is derived from this flame geometry (see Appendix A).

To model this rig we consider a total of 124 straight ducts. The conical cross sections on either
side of the plenum are modeled as a sequence of 50 area increases and 50 area decreases. A
convergence analysis on the eigenvalues shows that to capture the frequency accurately, the conical
sections can be modeled by single abrupt junctions. To capture the growth rates accurately, however,
at least ten steps are required. For this model we use 50 steps to ensure that the conical sections are
well represented. The bluff body at the entrance to the combustion chamber is modeled as a sequence
of 20 area decreases. We consider the working fluid to be a semiperfect gas with the properties of
air, as given in McBride et al. [32]. The inlet temperature is 300 K. We assume that air is supplied at
a constant mass flow rate of m̄ = 5.516 × 10−3 kg/s to match the experimental measurement at the
bluff body of ū = 9.90 m/s [31]. We consider an open outlet at atmospheric pressure and a flame
anchored to the bluff body. To match the experimental results and Large Eddy Simulations (LES)
[33], we model the steady heat input with a combustion efficiency of η = 0.90, fuel properties of
ethylene, and an equivalence ratio of φ = 0.61.

For the boundary conditions we consider an inlet modeled by an acoustic reflection coefficient
with Rci = 0.85 + 0.10i, which resembles the impedance of an almost-closed end. The outlet is
modeled with the frequency-dependent reflection coefficient of a circular duct radiating sound
originally proposed by Levine and Schwinger [34]. This model was extended to consider a mean
flow in Cargill [35] and Peters et al. [36]. Taking r as the duct radius the reflection coefficient is
given by

Rco = −
(

1 + 0.9
ū

c̄

)[
1 − 1

2

(
ωr

c̄

)2
]

ei(k+−k− )0.6133r . (10)

The flame transfer function (FTF) used in this model is detailed in Appendix A and shown in
Fig. 2(b). It depends on the geometric parameters that define the bluff body described above. It
assumes a flow field inclined at an angle θ = 1

2 (α + β ). The angle α = 45◦ is computed from the
network model using the difference between the inner radii of the last two ducts that compose
the bluff body, together with the last duct’s length [see Fig. 2(a)]. A similar argument is used to
define the angle β, which for this configuration is kept at 90◦. Furthermore, the FTF depends on a
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FIG. 3. The log of the error in the downstream boundary condition when a shooting method is applied from
the upstream boundary of the network model. This is strongly negative for eigenvalues of the network model.
The red markers show the six unstable eigenvalues (growth rate >0). The white markers show the many stable
eigenvalues.

time delay given by τ = Linj/ū, with Linj = 55 mm. Due to the presence of the area contraction at
the bluff body the flow accelerates. This makes the time delay dependent on the base flow of several
ducts. In order to eliminate this dependency, we use instead an effective length Leff = 103 mm,
which is the equivalent length that the flow would have to travel at the constant velocity at the dump
plane (9.9 m/s).

B. Stability analysis

To perform the stability analysis, we start from a set of initial guesses of the frequency between
0 and 1000 Hz. The solutions of the dispersion relation, which are eigenvalues of the system,
are shown in Fig. 3 overlaid on the logarithmic boundary condition error. The system shows that
there are six unstable eigenvalues at 314, 371, 432, 566, 627, and 754 Hz. The second eigenvalue
has a frequency which is close to the reported one (348 Hz in Balachandran [31]) at which the
self-excited oscillations saturate. The accuracy of this modeling approach depends mainly on the
characterization of the FTF and the boundary conditions. Using a similar network model and an
FTF obtained from LES, Han et al. [33] accurately computed the frequency at which the limit cycle
saturates. The stable modes with growth rates at around −30 s−1 appear due to the entropy wave
at the outlet and are spaced approximately every 2 Hz. The pressure mode shapes of the three most
unstable eigenvalues are shown in Fig. 4. For the modes at 371 and 566 Hz, the largest pressure
fluctuations occur at the neck, while at 627 Hz the largest pressure fluctuations occur at the inlet and
the neck.

IV. EIGENVALUE SENSITIVITY TO GEOMETRIC MODIFICATIONS

In order to stabilize this configuration, we need to know how each eigenvalue changes when the
geometry changes. Consider, for example, a small increase, δA, in the area of one of the ducts. This
causes a change in the steady base flow and in the fluctuating flow [see Eqs. (6)]. Each of these
shifts the eigenvalue. The shift is given by

δω =
(

∂ω

∂AB
+ ∂ω

∂AP

)
δA. (11)

In this context ∂ω/∂AB is the sensitivity of the eigenvalue to the changes in the base flow, and
∂ω/∂AP is the sensitivity due to the changes induced by the fluctuating flow. Each sensitivity can

083902-7



JOSÉ G. AGUILAR AND MATTHEW P. JUNIPER

FIG. 4. Modulus of the pressure fluctuations of the three most unstable eigenvalues.

be separated into a frequency sensitivity and a growth rate sensitivity:

∂ω

∂A
= 2π

∂ f

∂A
− i

∂λ

∂A
. (12)

The sensitivities of the eigenvalue to each geometric parameter are derived using a Lagrangian
formulation [37]. In this approach, the adjoint or costate equations are derived first. Then the
sensitivities are obtained by solving the optimality conditions. The geometric parameters considered
in this paper can induce modifications in both the base flow and the fluctuating flow. Therefore
two different sets of adjoint equations are required (see, for example, Marquet et al. [19]). These,
together with the optimality conditions, are derived in Appendix B. Further details can be found
in Aguilar et al. [10] and Aguilar [29]. The first set of adjoint equations corresponds to the adjoint
eigenproblem of the fluctuating flow, which inputs the steady base flow and outputs the adjoint
global modes. The adjoint global modes are used to compute the sensitivity of the eigenvalue to
modifications in the fluctuating flow ∂ω/∂AP. The second set of adjoint equations corresponds to
the adjoint base flow, which inputs the base flow and the global modes of the direct and adjoint
eigenproblems and outputs the adjoint base flow variables. The adjoint base flow variables are used
to compute the sensitivity of the eigenvalue to modifications in the steady base flow ∂ω/∂AB. This
term, often neglected in thermoacoustic analyses, can be as large as the first one.

As shown in Sec. III B, the system has six unstable eigenvalues, each of which has a different
sensitivity to a given geometric change. For the optimization procedure we require a single cost
function, and in this paper we sum the growth rates of the unstable modes. The sensitivity of this
cost function is shown in Fig. 5 for modifications acting through the fluctuating flow (top) and those
acting through the steady flow (bottom). From this figure we observe that the sensitivities due to
the fluctuating flow and steady flow have similar orders of magnitude, although in many regions
they act in opposite directions. Furthermore, with the exception of the areas used to define the FTF,
the regions with a large magnitude in one type of sensitivity have small magnitudes in the other
type of sensitivity. In summary, the growth rate is sensitive to all geometry changes and there is
no systematic trend. This confirms that thermoacoustic oscillations are sensitive to small design
changes and reveals why a human designer, using intuitive design rules, would struggle to exploit
them.

Next we calculate the sensitivity of the cost function (the sum of the unstable growth rates)
to changes in areas, lengths, and mean radii, as shown in Fig. 6. The first observation is that
the sensitivity to the last two ducts, which define the bluff body shape, are an order of magnitude
larger than those due to the rest of the geometry. This is because they affect the FTF, and the
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FIG. 5. The sensitivity of the growth rate (summed over the six unstable modes) to changes in duct areas.
The top figure is the contribution from changes to the fluctuating flow. The bottom figure is the contribution
from changes to the steady flow. The sensitivity to the final two ducts of the bluff body, which both affect the
FTF [Fig. 2(a)], are indicated by blue and orange arrows in the inset figure.

FIG. 6. The sensitivity of the growth rate (summed over the six unstable modes) to changes in duct areas
(top), duct lengths (middle), and duct mean radii (bottom). The figures show the sum of the fluctuating flow
and steady flow contributions. The sensitivity to the final two ducts of the bluff body, which both affect the
FTF [Fig. 2(a)], are indicated by blue and orange arrows in the inset figure.
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thermoacoustic system is particularly sensitive to the FTF. The area and length sensitivities of these
ducts are negative, which implies that an increase in these parameters will be stabilizing. The second
observation is that, with the exception of these two ducts, the length and mean radius sensitivities
are two orders of magnitude smaller than the area sensitivities. This is because a change in area
causes a change in the base flow, while a change in the length or mean radius does not. The second
most influential factor is the area of the neck. From Fig. 6 we can estimate the changes required to
stabilize the burner: an increase in the angle of the bluff body as given by α in Fig. 2(a); a reduction
in the neck area and an increase of the combustion chamber area; shortening of the plenum’s length;
and an enlargement of the combustion chamber.

V. STABILIZATION WITH AN OPTIMIZATION ROUTINE

The sensitivity analysis in the previous section provides gradient information that can be used
in a gradient descent optimization algorithm. In this section we define a cost function, describe an
optimization routine, and show the results from this combination.

A. Cost function, constraints, and parameters

We wish to converge to a system in which all eigenvalues decay in time and therefore set an
objective growth rate λo to be negative for all eigenvalues. Then, if Nω is the number of eigenvalues
that have growth rates larger than λo and if X is the vector containing all the geometric parameters
that define the combustor, i.e., X = [ro1 , ro2 , ..., ri1 , ..., L1, ...]T , then our cost function is

J (X ) = 1

2

Nω∑
j=1

[λ j (X ) − λo]2. (13)

This is a measure of the total distance between the targeted eigenvalues and the objective growth
rate. Notice that if an eigenvalue lies below λo it is not included in the cost function. This means
that if, during an iteration, a stable mode becomes unstable, the cost function will not take that
contribution into account until the following iteration.

In order to minimize the cost function we use a conjugate gradient method [38] in which the
gradient of J is computed from the adjoint-based sensitivities. Performance is increased if all
the parameters have similar magnitudes. Here, rather than rescaling the parameters, we simply use
the inner radii ri, outer radii ro, and lengths L instead of the areas A, mean radii R, and lengths L.
In each iteration, once the descent direction has been computed, the length of the step is set to be
the negative of the gradient. This can be very large (because eigenvalues are often very sensitive
to geometry changes), so we also ensure that the parameters do not change by more than a given
percentage (denoted �Xm), which is enforced with a backtracking procedure. Further details about
the implementation can be found in Aguilar [29].

The conical sections of the plenum and bluff body are modeled by 50 or 20 short, straight ducts.
Instead of allowing each of these ducts to change individually, we constrain the section to remain
conical. The radii and lengths of these ducts are therefore determined just by the inlet radius, outlet
radius, and length of the conical section. Figure 7 shows these conical sections (blue), the geometric
parameters that are allowed to change (black), and the geometric parameters that are fixed (in red).
The fixed parameters are the mass flow rate at the inlet; the inner radius representing the fuel line
ri1 , in order to avoid variations in the fuel supply; the effective length from injection to the base of
the flame; and the outlet pressure.

B. Optimization routine

For the optimization routine we use an objective growth rate of λo = −5 s−1. The routine can
work with quite large step sizes, but in order to show the trajectories of the eigenvalues as they are
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FIG. 7. Geometric parameters used in the optimization routine. The parameters in black are allowed to be
updated. The parameters in red are kept constant. The blue lines denote regions that are constrained by adjacent
parameters.

stabilized (Fig. 9), we constrain the maximum parameter change to be �Xm = 0.1% and �Xm =
0.5%. We stop the algorithm when the cost function becomes smaller than 0.02.

For a given shift in growth rate, longer wavelength oscillations require larger geometric changes
than shorter wavelength oscillations. We therefore start by stabilizing the low frequency (i.e., long
wavelength) oscillations. First we stabilize all the modes below 500 Hz, without regard to the
remaining modes. We do this with a local cost function JL(X ). Then we include all the modes
up to 1000 Hz with a total cost function JT (X ). The values of the cost functions at every iteration
are shown in Fig. 8 and show straightforward behavior. The local cost function always decreases,
while the global cost function oscillates when only part of the frequency range is being considered
and then reduces rapidly when the entire range is considered. By comparing the black and red lines,
one can see that, as expected, the process requires fewer iterations if �Xm is bigger. The trajectories
of the eigenvalues in the complex plane (Fig. 9) from their initial positions (red dots) to their final
positions (white diamonds) also show straightforward behavior.

Figure 10 compares the initial configuration (black) with the optimized configuration (red). As
expected, due to the high sensitivity to the geometric parameters, all of the modes can be stabilized
by small changes to the geometry. For a given parameter X , we define the relative change as X̃ =
X/X0 − 1, where the subindex 0 denotes the initial value. The relative change in the magnitude of the
optimization parameters defined in Fig. 7 are shown in Table II. The most prominent changes are in

FIG. 8. Cost functions as a function of iteration, N , for small steps (�Xm = 0.1%) and large steps (�Xm =
0.1%). The left figure shows the local cost function (JL), which is that minimized in the optimization algorithm.
This is initially the square of the sum of the growth rates of all the modes with frequencies below 500 Hz and
subsequently (for N > 22 or N > 120) the square of the sum of the growth rates of all the modes below
1000 Hz. The right figure shows the total cost function (JT ), which is the square of the sum of the growth rates
of all the modes below 1000 Hz.
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FIG. 9. Trajectories of the complex eigenvalues during the optimization process shown in Fig. 8 for �Xm =
0.1%. The round markers show the initial eigenvalues, colored red if unstable and white if stable. The white
diamonds show the eigenvalues at the end of the optimization process, when they have all been stabilized. See
movie in the Supplemental Material [39].

the neck and the bluff body, which are the regions with highest sensitivity in the initial configuration.
To stabilize the system, the neck reduces its radius by 22%. This modifies the mean flame front and
therefore the FTF (Fig. 11). In detail, the neck reduction increases the bulk velocity in the dump
plane, which decreases the flame time delay. However, it also increases the flame angle α to 61◦,
which lengthens the flame and increases the flame time delay. The former effect outweighs the latter
and the time delay reduces, as seen by the shallower gradient of the phase line in Fig. 11(b). It is
worth noting that most of the changes were correctly predicted by the single sensitivity analysis in
Sec. IV.

VI. DISTURBANCE ENERGY BALANCE DURING THE OPTIMIZATION PROCESS

The optimization process works and, from a practical point of view, can be considered as a
black box. Nevertheless, it is interesting to analyze the optimization process from a physical point
of view in order to determine the mechanisms that are being exploited in order to stabilize all the
eigenvalues. For this we calculate the balance of the disturbance energy over a cycle for all of
the modes as they are stabilized. We begin by introducing the one-dimensional disturbance energy
equation [40–42]:

∂E

∂t
+ ∂W

∂x
= D + Dn, (14)

FIG. 10. Plot of the unstable initial (black) and stable final (red) configurations of the longitudinal
combustor for the optimization process with �Xm = 0.1%.
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TABLE II. Relative changes of the geometric parameters that define the longitudinal combustor for the
case with �Xm = 0.1%.

Area Area Bluff Combustion
Inlet increase Plenum decrease Neck body chamber

r̃o1 = −0.0316 – r̃o2 = 0.0134 – r̃o3 = −0.2151 – r̃o4 = 0.1070
r̃i1 = 0.0000 – – – – r̃i2 = −0.2237 –
L̃1 = −0.0007 L̃2 = −0.0034 L̃3 = −0.0015 L̃4 = −0.0045 L̃5 = −0.0005 L̃6 = 0.2093 L̃7 = 0.0010

where

E = 1

2

p′2

ρ̄c̄2
+ 1

2
ρ̄u′2 + ρ ′ūu′ + 1

2

ρ̄T̄ s′2

c̄p
, (15)

W = p′u′ + p′ ρ
′

ρ̄
ū + ρ̄ūu′2 + ρ ′ū2u′ + ū

Rg
p′s′ − ūT̄ ρ ′s′, (16)

D = ū

Rg
s′ ∂ p′

∂x
− ūT̄ s′ ∂ρ ′

∂x
, (17)

Dn =
[
ρ̄ū

(
T ′

T̄

)
− (ρ̄u′ + ρ ′ū)

]
s′ d T̄

dx
− ū

Rgp̄
s′ p′ d p̄

dx
+ ūT̄

ρ̄
s′ρ ′ d ρ̄

dx
+ q′ T

′

T̄
− q̄

(
T ′

T̄

)2

, (18)

where q is the rate of heat release per unit volume. Here we separated D from Dn because, within
each duct, the mean quantities are uniform ( d ¯[ ]

dx = 0) and q′ = q̄ = 0. The terms in Dn are therefore
zero. The contribution of the mean flow gradient and the heat sources enter the disturbance energy
balance through the jump conditions between ducts, which will be considered below. We proceed by
integrating Eq. (14) over the volume Vi of the ith duct and over the period of a given mode T = 1/ f .
Using the divergence theorem we obtain

Ěi − Ě0i + W̌outi − W̌ini = Ďi, (19)

where
(i) the term Ěi − Ě0i ≡ ∫Vi

E (t0 + T ) − E (t0) dVi is the change in energy in the ith duct over
one cycle;

(ii) the terms W̌outi ≡ ∫ t0+T
t0

AiWout dt and W̌ini ≡ ∫ t0+T
t0

AiWin dt correspond to the ratio of work
done by the flow in the ith duct on its outlet and inlet boundaries, respectively; and

FIG. 11. Diagrams of the initial (black) and final (red) flame fronts and the initial (black) and final (red)
flame transfer functions for the optimization process with �Xm = 0.1%.
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FIG. 12. Disturbance energy balance for the mode that starts at 371 Hz during the optimization process
with �Xm = 0.1%. The top plot shows the disturbance energy growth (red), growth rate (blue), and frequency
(orange) at each iteration. The growth rate and frequency have been normalized with respect to their initial
values. The bottom plot shows the disturbance energy balance over one cycle Eq. (22) at each iteration. In this
waterfall plot each iteration consists of three bar plots and a red line (see inset). The yellow bar shows the
work done by the flame. The purple bar shows the work done at the outlet. The green bar shows the work done
by the convection of entropic disturbances, which changes sign when the growth rate changes sign. The total
disturbance energy growth over a cycle is the sum of these and is shown by the red round marker.

(iii) the term Ďi ≡ ∫ t0+T
t0

∫
Vi

D dVi dt corresponds to the fraction of energy of the ith duct
generated or dissipated by convection of entropic disturbances.

Area changes and heat sources (i.e., jump conditions) correspond to regions where the mean flow
quantities change. To compute their contribution to the disturbance energy balance we examine the
terms that correspond to the ratio of work done by the flow on the boundaries of adjacent ducts.
Consider, for example, a simple configuration with a flame that is located between two ducts. By
summing Eq. (19) for i = 1 and i = 2, the corresponding energy balance for the system is given by(

Ě1 − Ě01

)+ (Ě2 − Ě02

)+ (W̌out1 − W̌in1

)+ (W̌out2 − W̌in2

) = Ď1 + Ď2. (20)

After dividing by the total energy at the beginning of the cycle, the equation can be rewritten in
physically descriptive terms as

Ě − 1 = W̌outlet − W̌inlet + W̌flame + Ď. (21)

Here
(i) Ě ≡ (Ě1 + Ě2)/ĚT0 and Ď ≡ (Ď1 + Ď2)/ĚT0 ,
(ii) ĚT0 ≡ Ě01 + Ě02 represents the total energy at the beginning of the cycle,
(iii) W̌outlet ≡ −W̌out2/ĚT0 represents the ratio of work done by the outlet boundary on the flow,
(iv) W̌inlet ≡ −W̌in1/ĚT0 represents the ratio of work done by the inlet boundary on the flow,
(v) W̌flame ≡ −(W̌out1 − W̌in2 )/ĚT0 represents the ratio of work done by the flame on the flow.

This follows from the fact that the perturbation variables (ρ ′, u′, p′, s′) in the integral of W̌out1 and
W̌in2 can be expressed in terms of perturbation fluxes (m′, f ′

x, e′). Then, using the fluctuating part of
Eq. (6c), specifically when substituting the energy jump condition e′

2 = e′
1 + Q′, the dependency of

W̌flame on Q′ becomes evident.
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FIG. 13. As in Fig. 12 but for the mode starting at 566 Hz.

A similar approach can be performed for the area changes. Then for the studied configuration,
Eq. (21) becomes

Ě − 1 = W̌flame + W̌outlet − W̌inlet + W̌ac + Ď, (22)

where W̌ac is the work done by all the area changes in the configuration.
In Figs. 12 and 13 we show the disturbance energy balance for the modes that start at 371 and

566 Hz, respectively. Corresponding figures for the other modes are available in the Supplemental
Material [39]. [In Appendix C we show that the fraction of disturbance energy retained is exactly
Ě = exp(2λ/ f ).] The contributions to the energy balance due to the changes in area and the inlet
boundary are negligible compared to the rest of the terms and are omitted from the figures for
clarity. At the start of the optimization routine, the modes are unstable and the energy growth,
Ě − 1 (red line), is positive. The flame, W̌flame > 0, acts as a strong source of disturbance energy,
while the work done at the outlet boundary, W̌outlet, and the convection of entropy disturbances, Ď,
are weak sinks. The optimization algorithm renders both of these modes stable by greatly decreasing
W̌flame while simultaneously slightly increasing the work done at the outlet boundary W̌outlet. The
terms in Ď are only relevant when there are entropy waves in the system. For our configuration the
entropy waves are only prominent in the last duct (i.e., after the flame). The sign of the convection
of entropy disturbances, Ď, is always opposite to that of Ě − 1. The energy balances for the other
modes (Supplemental Material [39]) show the same behavior at the end of the optimization process
when they all become stable.

FIG. 14. Plot of the unstable initial (black) and stable final (red) configurations for the optimization routine
where only the lengths are allowed to change, except for L6.

083902-15



JOSÉ G. AGUILAR AND MATTHEW P. JUNIPER

FIG. 15. Original unstable configuration (black) vs stable configuration (red) obtained using a genetic
algorithm.

For each mode the algorithm exploits the same physical mechanism to reduce W̌flame. This is
to make the heat release rate fluctuations occur in (or close to) quadrature with the temperature
fluctuations. It achieves this for all modes simultaneously, mainly by altering the FTF and slightly
by altering the mode shapes. In other words, although the heat release rate from the flame remains
as sensitive to acoustic perturbations as it was in the original configuration, the timing of the heat
release rate is such that it does no more than a small amount of work on the acoustic modes, and
this work is sufficiently small to be dissipated through the boundaries.

VII. DISCUSSION

At the end of Sec. V we mention that the geometry changes obtained through the optimization
routine are similar to those predicted by the initial sensitivity analysis. This is, however, not always
the case. A counterexample can be found where we allow the lengths of all the elements except L6

to vary while keeping all the radii constant (L6 is the length of the bluff body shown in Fig. 7). As
shown in Fig. 14, all the lengths need to be substantially altered in order to stabilize this combustor,
and these alterations are not in the directions indicated by the initial sensitivity from Fig. 6. The
initial sensitivity is not sufficient in this case because the eigenvalues are not very sensitive to the
lengths (with the exception of L6). Large length changes are therefore required and, as these changes
are implemented, the sensitivities evolve away from their initial values. On the other hand, the
eigenvalues are very sensitive to parameters that affect the FTF, such as L6 and the duct radii. The
system can therefore be stabilized with only small changes to these parameters. The fact that the
required geometry changes are small means that the sensitivities remain close to their initial values
during the optimization process. This explains why the geometry changes obtained through the
optimization routine are similar to those predicted by the initial sensitivity analysis.

Many stable designs, such as that in Fig. 14, can be achieved by modifying the cost function or
the gradient descent algorithm. For simple burner geometries, such as the one used in this paper,
gradient free algorithms can also be used, although these are more expensive than gradient descent

FIG. 16. Original unstable configuration (black) and unstable configuration (blue) obtained using the
conjugate gradient algorithm but without changing any of the parameters controlling the bluff body or
combustion chamber.
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FIG. 17. Original unstable configuration (black) and most unstable configuration (blue) obtained using the
conjugate gradient algorithm setting λo = 200 s−1.

algorithms. An example of a stable burner obtained using a genetic algorithm is shown in Fig. 15.
This approach initializes the geometry at random within a given parameter space (for this problem
the parameters were bounded to within 10% of their initial values). Therefore the method usually
produces solutions that require larger changes than those obtained using adjoint methods. Given that
the adjoint methods are quicker and identify smaller geometry changes than gradient-free methods,
they are likely to be preferred in practice. The most robust stable design can be found through
uncertainty quantification on the eigenvalues [43], but this is out of the scope of this study.

Finally, we discuss two important scenarios, first when the method breaks and second the most
unstable scenario. The method breaks when the algorithm is not allowed to change the most
influential parameters. For example, if the bluff body, the neck radii, and the combustion chamber
radii are fixed, the algorithm cannot change the FTF. It then changes the plenum radii and the lengths
of all sections but becomes trapped in a local minimum in which some of the eigenvalues are still
unstable. This result is shown in Fig. 16.

On the other hand, it is interesting to see the most unstable configuration closest to our starting
configuration. This scenario may be appropriate when trying to study self-excited cases in an
otherwise stable combustor. To achieve this we change the objective growth rate to λo = 200 s−1 and
use the same algorithm. We find that the most unstable configuration we can find, shown in Fig. 17,
is only slightly more unstable than our starting configuration. This is because we had selected a
particularly unstable starting configuration.

VIII. CONCLUSIONS

In this paper we examine the thermoacoustic stability of a longitudinal combustor with several
unstable modes. We perform eigenvalue sensitivity analysis using the adjoint equations in order
to identify the sensitivity of all the unstable modes to all the geometric parameters of the model.
This process is computationally efficient because we use the adjoint equations rather than a finite
difference method. For the combustor in this paper we find that sensitivities due to changes in the
base flow have similar magnitudes to sensitivities due to changes in the fluctuating flow. This shows
that, as in hydrodynamic stability, the influence of base flow changes cannot necessarily be ignored
in thermoacoustics. We also find that, as expected, the parameters that affect the flame transfer
function (FTF) are particularly influential.

We then embed the adjoint-based gradient information inside an optimization algorithm in order
to stabilize all of the modes in the combustor. The algorithm easily stabilizes all six modes with
only small geometric changes. These geometric changes are the same as those that are predicted by
considering a single calculation on the unstable configuration. This shows that design decisions
based on eigenvalue sensitivity analysis are useful even before they are embedded within an
optimization routine.

Tracking the balance of disturbance energy over a cycle reveals that the optimization process
works by reducing the work done by the flame, while also increasing the work done through
the downstream boundary. By the end of the routine it has achieved this for every mode. It is
encouraging that, even for a configuration with six unstable modes, it is possible to find a similar
configuration that has no unstable modes. This tallies with the observation that thermoacoustic

083902-17



JOSÉ G. AGUILAR AND MATTHEW P. JUNIPER

instability has been eliminated from all operational gas turbines and rocket engines with small
design changes, albeit sometimes after lengthy redesign.

The network model used in this paper deliberately mirrors that used by a large gas turbine
manufacturer so that it can be implemented in industry. The current study is for the longitudinal
mode of a long thin combustor and will be adapted next to azimuthal and longitudinal modes of
an annular combustor. Industrial combustors have other constraints, such as lowering combustion
emissions and being able to relight at high altitudes. These constraints, in the form of geometric
constraints, can be embedded within the optimization algorithm described above. We have found
that there are many possible stable configurations, so it is likely that a stable configuration can be
attained even when other constraints are introduced.
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APPENDIX A: FLAME TRANSFER FUNCTION

The flame transfer function (FTF) used in this paper is the constant time delay FTF detailed in
Xiaochuan Yuan et al. [44]. The FTF is obtained using the G-equation (level set) method to track
two flame fronts in a uniform flow, as shown in Fig. 2(a). The only difference between the FTF
shown in Xiaochuan Yuan et al. [44] and the one used in this paper is that we included the turbulent
flame speed model by Lipatnikov and Chomiak [45]:

St = Su

[
1 + 2.1

(
ut

Su

)2
] 1

2

, (A1)

with turbulent velocity ut = 0.28 m/s chosen in order to match the flame length as reported in
Balachandran [31].

There are a few caveats in this modeling approach. First, a constant flow field inclined at an
angle θ does not conserve mass on a cylindrical coordinate system. A better approach would be to
use the potential flow described by a spherical source as in Graham [46] and Semlitsch et al. [47].
In this paper we use the inclined flow model in order to retain an analytical FTF. Second, turbulent
modeling of a flame front via the G equation requires the consideration of stochastic fluctuations
[48], which are not considered in the proposed FTF. The derived FTF is laminar, and the turbulent
flame speed is only included as a correction factor to match experimental results.

APPENDIX B: ADJOINT EQUATIONS AND OPTIMALITY CONDITIONS

In this Appendix we derive the adjoint equations and optimality conditions for the network
model. We begin by recasting the governing equations. First we consider B(G) = 0 to be the
vector of steady base flow equations, jump conditions, and boundary conditions equated to zero,
whose solution determines the base flow G = {ū, p̄, ρ̄, ...} in the entire system. Next we consider
P({ω; ρ̂, û, p̂}, G) = 0 to be the vector of fluctuating flow equations, jump conditions, and boundary
conditions whose solution depends on the steady flow variables G and determines the global mode
{ω; ρ̂, û, p̂}.

1. Adjoint equations

To obtain the continuous adjoint equations we create a Lagrangian functional. Considering [·, ·]
as an appropriate inner product, the functional in its most general form is given by

L ≡ ω − [q̂+, P({ω; ρ̂, û, p̂}, G)] − [G+, B(G)], (B1)
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where the eigenvalue ω is taken as the cost function, and q̂+ is a vector of adjoint variables (Lagrange
multipliers) associated with the fluctuating flow equations, G+ is another vector of adjoint variables
associated with the steady flow equations.

Ducts are governed by spatially varying functions, for example a(x) and b(x). Thus the
corresponding inner product is given by

〈a(x), b(x)〉 ≡
∫ x1

x0

a(x)∗b(x) dx, (B2)

where ∗ represents complex conjugation, and x0 and x1 represent the duct inlet and outlet positions.
Jump conditions and boundary conditions are defined locally at positions x0 or x1 by single valued
functions, for example, c and d . Hence the corresponding inner product is given by

{c, d} ≡ c∗d. (B3)

To determine the sensitivity functions of the eigenvalue following a Lagrangian approach [37],
any first variation of the Lagrangian with respect to a variable ξ must equate to 0 for any arbitrary
perturbation δξ :

∂L
∂ξ

δξ ≡ lim
ε→0

(L(ξ + εδξ ) − L(ξ )

ε

)
= 0. (B4)

For our problem there are four sets of variables of interest. Vanishing the derivatives of L in Eq. (B1)
with respect to the

(1) Adjoint variables (components of vectors q̂+ and G+), corresponds to the trivial case
since they return the already known perturbation P({ω; ρ̂, û, p̂}, G) = 0 and base flow equations
B(G) = 0;

(2) Fluctuating variables (ρ̂, û, p̂), returns the adjoint fluctuating equations, used to compute the
sensitivities of the eigenvalue to changes in the unsteady flow;

(3) Base flow variables G, returns the adjoint base flow equations, used to compute the
sensitivities of the eigenvalue to changes in the steady base flow; and

(4) Eigenvalue ω, returns the normalization condition.

2. Adjoint fluctuating equations

To compute the adjoint fluctuating equations we examine the first inner product of the Lagrangian
functional Eq. (B1).

a. Straight ducts

For a straight duct, the relevant components of vector P in Eq. (B1) are given by Eqs. (3).
Their corresponding adjoint variables (components of vector q̂+) are given by the spatial functions
[ρ̂+(x), û+(x), p̂+(x)]T , respectively. The resulting adjoint perturbation equations are

iω∗ρ̂+ + ū
d ρ̂+

dx
= 0,

iω∗ρ̄û+ + ρ̄ū
d û+

dx
+ ρ̄

d ρ̂+

dx
+ γ̄ p̄

d p̂+

dx
= 0, (B5)

iω∗ p̂+ + ū
d p̂+

dx
+ d û+

dx
= 0.

The associated boundary terms are

[(ρ̂+∗
ū)δρ̂ + (ρ̂+∗

ρ̄ + û+∗
ρ̄ū + p̂+∗

γ̄ p̄)δû + (û+∗ + p̂+∗
ū)δ p̂]x1

x0
= 0, (B6)

where the δ symbol preceding the perturbation variables indicates that the boundary terms should
vanish for any value of the perturbation variable. These terms are used to compute the jump

083902-19



JOSÉ G. AGUILAR AND MATTHEW P. JUNIPER

conditions and to set the adjoint boundary conditions. Equations (B5) can be decoupled into two
adjoint acoustic waves with amplitudes A+

+ and A+
−, which propagate downstream and upstream,

respectively, and one convective wave with amplitude A+
E . The corresponding mode shapes are given

by

ρ̂+(x) = −c̄2A+
E eik0x, p̂+(x) = A+

+eik+x + A+
−eik−x + A+

E eik0x, û+(x) = c̄(A+
+eik+x − A+

−eik−x ).
(B7)

b. Jump conditions

For jump conditions that are governed by the mass, momentum, and energy fluxes we define the
following adjoint perturbation fluxes that depend on the side i of the jump condition:

f̂ +
i ≡

⎡
⎢⎣

f̂ +
mi

f̂ +
xi

f̂ +
ei

⎤
⎥⎦ =

⎡
⎣ 1

Ai

[
ρ̂+

i − ūiû
+
i + ( 1

2 (γ̄i − 1)ū2
i + c̄2

i − (γ̄i − 1)h̄i
)
p̂+

i

]
1
Ai

[û+
i − (γ̄i − 1)ūi p̂

+
i ]

1
Ai

(γ̄i − 1) p̂+
i

⎤
⎦. (B8)

Similarly, for jump conditions governed by mass and energy fluxes together with entropy conserva-
tion the following adjoint perturbation fluxes are defined:

ŝ+
i ≡

⎡
⎢⎣

ŝ+
mi

ŝ+
si

ŝ+
ei

⎤
⎥⎦ =

⎡
⎢⎣

1
Ai

[
ρ̂+

i − ( 1
2 ūi + h̄i

ūi

)
û+

i + c̄2
i p̂+

i

]
1

Rg
[ p̄iūi(γ̄i − 1) p̂+

i − p̄iû
+
i ]

1
Ai

( û+
i

ūi

)
⎤
⎥⎦. (B9)

Area increase. The components of the vector P are given by the fluctuating components of
Eqs. (6a). Their corresponding adjoint variables are given by the numbers â+ = [a+

m, a+
x , a+

e ]T ,
respectively. The relationship between adjoint variables at the area increase and those defined in
the ducts is given by â+ = f̂ +

2 . The adjoint jump conditions for an area increase are given by

f̂ +
1 = f̂ +

2 + φ̂+
[(

h̄1 − ū2
1

2

)
(γ̄1 − 1) − 2c̄2

1 ,
c̄2

1

ū1
+ (γ̄1 − 1)ū1 , −(γ̄1 − 1)

]T

, (B10)

where

φ̂+ = A2 − A1

A1

(
ū1

c̄2
1 − ū2

1

)
f̂ +
x2

.

Area decrease. The components of vector P are given by the fluctuating components of Eqs. (6b).
Their corresponding adjoint variables are given by the numbers b̂+ = [b+

m, b+
s , b+

e ]T , respectively.
The relationship between adjoint variables at the area decrease and those defined in the ducts is
given by b̂+ = ŝ+

2 . The adjoint jump conditions for an area decrease are given by

ŝ+
1 = ŝ+

2 . (B11)

Heat source. The components of vector P are given by the fluctuating components of Eqs. (6c).
The corresponding adjoint variables are given by the numbers ĉ+ = [c+

m , c+
x , c+

e ]T , respectively. The
relationship between adjoint variables at the heat source and those defined in the ducts are given by
ĉ+ = f̂ +

2 . The adjoint jump conditions for a heat source are given by

f̂ +
1 = f̂ +

2 − Q̂+[h̄1(γ1 − 1) − c̄2
1 − 1

2 ū2
1(γ1 + 1) , γ1ū1 , −(γ1 − 1)

]T
, (B12)

where

Q̂+ = ηhr
FTF∗(

c̄2
1 − ū2

1

) f̂ +
e2

. (B13)
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c. Boundary conditions

To obtain the adjoint boundary conditions for the fluctuating flow, we begin by recasting the inlet
and outlet boundary conditions Eqs. (8) and (9) in terms of fluctuating variables (instead of wave
amplitudes):

p̂(1 − Rc) + ρ̄c̄û(1 + Rc) = 0, (B14)

where Rc = Rci at the inlet and Rc = Rco at the outlet.
Inlet boundary condition. The component of vector P is given by Eq. (B14). The corresponding

adjoint variable is b+
i . The relationship between the adjoint variables at the boundary condition and

those defined in the ducts is given by b+
i = 1/(ρ̄c̄(1 + R∗

ci ))(ρ̄ρ̂+ + ρ̄ūû+ + γ̄ p̄p̂+). The adjoint
inlet boundary condition is given by

A+
+ − 1

R∗
ci

(
1 − M̄

1 + M̄

)
A+

− = 0. (B15)

Outlet boundary condition. The component of vector P is given by Eq. (B14). The corresponding
adjoint variable is b+

o . The relationship between the adjoint variables at the boundary condition and
those defined in the ducts is given by b+

o = −1/[ρ̄c̄(1 + R∗
co)](ρ̄ρ̂+ + ρ̄ūû+ + γ̄ p̄p̂+). The adjoint

outlet boundary condition is given by

A+
−eik−Lt − 1

R∗
co

(
1 + M̄

1 − M̄

)
A+

+eik+Lt = 0. (B16)

d. The adjoint eigenvalues

The adjoint problem evolves backwards in time. It is solved by shooting from the outlet towards
the inlet in the network model. The adjoint eigenvalues are the complex conjugate of the direct
eigenvalues. Hence, once we know a direct eigenvalue, we use its complex conjugate to shoot
through the network and obtain the adjoint global mode {ω∗; ρ̂+, û+, p̂+}, which is used to compute
the optimality conditions.

e. The normalization condition

Eigenvalue sensitivity analysis requires the direct and adjoint variables to be normalized. The
normalization condition is obtained with the derivatives with respect to the eigenvalue of all of the
frequency-dependent terms in the Lagrangian functional Eq. (B1). In its most general form it is
given by

i(〈ρ̂+, ρ̂〉 + 〈û+, ρ̄û〉 + 〈p̂+, p̂〉) +
{

ĉ+
e ,−Q̄

∂FTF

∂ω

û

ū

}
+
{

b̂+
o ,

∂Rco

∂ω
(−p̂ + ρ̄c̄û)

}
= 1. (B17)

3. Adjoint base flow equations

To derive the adjoint base flow equations we are interested in both inner products of Eq. (B1).

a. Straight ducts

For a straight duct, the relevant components of vector B are given by Eqs. (2). The cor-
responding adjoint variables (components of vector G+) are given by the spatial functions
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[R+(x),U +(x), P+(x)]T , respectively. The resulting adjoint base flow equations are given by

ū
dR+

dx
= −iω∗û∗û+ +

(
ρ̂+ + ūû+ − p̂+ p̄

d γ̄

d ρ̄

)
dû∗

dx︸ ︷︷ ︸
∇M

, (B18a)

ρ̄
dR+

dx
+ ρ̄ū

dU +

dx
+ γ p̄

dP+

dx
= ρ̂+ d ρ̂∗

dx
+ ρ̄û+ dû∗

dx
+ p̂+ d p̂∗

dx︸ ︷︷ ︸
∇F

, (B18b)

dU +

dx
+ ū

dP+

dx
=
(

γ̄ + p̄
d γ̄

d p̄

)
p̂+ dû∗

dx︸ ︷︷ ︸
∇E

, (B18c)

where d γ̄ /d ρ̄ = −d γ̄ /dT̄ [ p̄/(ρ̄2Rg)] and d γ̄ /d p̄ = d γ̄ /dT̄ [1/(ρ̄Rg)]. The corresponding bound-
ary terms are

[(R+ū)δρ̄ + (R+ρ̄ + U +ρ̄ū + P+γ p̄)δū + (U + + ūP+)δ p̄]x1
x0

= 0. (B19)

As seen in Eqs. (B18), the adjoint base flow equations require knowledge of the adjoint perturbation
variables. Hence, once the fluctuating adjoint problem is solved, we proceed to solve for the adjoint
base flow equations, whose solutions are given by

R+(x) = R+(x1) −
∫ x1

x

∇M

ū
dx, (B20a)

P+(x) = P+(x1) −
∫ x1

x

−ρ̄∇M + ū∇F − ρ̄ū2∇E

γ̄ p̄ū − ρ̄ū3
dx, (B20b)

U +(x) = U +(x1) −
∫ x1

x

ρ̄∇M − ū∇F + γ̄ p̄∇E

γ̄ p̄ − ρ̄ū2
dx. (B20c)

b. Jump conditions

For modules governed by mass, axial momentum, and energy fluxes, we define the following
adjoint base flow fluxes, which depend on side i of the jump condition:

F+
i ≡

⎡
⎣F+

mi

F+
xi

F+
ei

⎤
⎦ =

⎡
⎣ 1

Ai

(
R+

i − ūiU
+
i + [c̄2

i − h̄i(γ̄i − 1) + 1
2 (γ̄i − 1)ū2

i

]
P+

i

)
1
Ai

[U +
i − (γ̄i − 1)ūiP

+
i ]

1
Ai

(γ̄i − 1)P+
i

⎤
⎦+

⎡
⎢⎣JMi

JXi

JEi

⎤
⎥⎦, (B21)

where Ji = [JMi , JXi , JEi ]
T are functions of the fluctuating variables (direct and adjoint). They

depend on the type of jump condition and are given by

Ji = (a+
mBmi + a+

x Bxi + a+
e Bei

)
[ p̂∗

i , ρ̂
∗
i , û∗

i ]T , (B22)

where a+
m, a+

x , and a+
e should be replaced according to the relevant jump condition and considering

�i = γ̄i p̄i − ρ̄iū2
i , and

fc = [h̄i(γ̄i − 1) − c̄2
i − 1

2 ū2
i (γ̄i + 1), γ̄iūi, −(γ̄i − 1)

]T
,
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the B matrices are given by

Bmi = 1

�i

⎡
⎣0| fc| − ρ̄i

ūi

⎛
⎝ fc +

⎡
⎣c̄2

i − ū2
i

0
0

⎤
⎦
⎞
⎠
⎤
⎦, (B23)

Bxi = 1

�i

⎡
⎣0|2ūi fc| − 2ρ̄i

⎡
⎣c̄2

i − ū2
i

0
0

⎤
⎦
⎤
⎦, (B24)

Bei = 1

�i

⎡
⎣ γ̄i

γ̄i − 1
fc

∣∣∣∣
(

h̄i − c̄2
i

γ̄i − 1
+ 3

2
ū2

i

)
fc

∣∣∣∣− ρ̄i

ūi

⎛
⎝(h̄i − ū2

i

2

)
fc + (c̄2

i − ū2
i

)⎡⎣ū2
i

0
1

⎤
⎦
⎞
⎠
⎤
⎦ · · ·

+ �

�i

⎡
⎣−M̄2

i fc + (1 − M̄2
i

)⎡⎣h̄i + ū2
i

2
0

−1

⎤
⎦
∣∣∣∣∣∣
ū2

i

γ̄i
fc − c̄2

i − ū2
i

γ̄i

⎡
⎣h̄i + ū2

i
2

0
−1

⎤
⎦
∣∣∣∣∣∣0
⎤
⎦, (B25)

with

� = dcp(T̄i )

dT̄i

(γ̄i − 1)T̄i

Rg
.

For modules governed by mass and energy fluxes together with entropy conservation we define
the following adjoint base flow fluxes:

S+
i ≡

⎡
⎢⎣S+

mi

S+
si

S+
ei

⎤
⎥⎦ =

⎡
⎢⎣

1
Ai

[
R+

i − ( 1
2 ūi + h̄i

ūi

)
U +

i + c̄2
i P+

i

]
1

Rg
[ p̄iūi(γ̄i − 1)P+

i − p̄iU
+
i ]

1
Ai

(U +
i

ūi

)
⎤
⎥⎦+

⎡
⎣KMi

KSi

KEi

⎤
⎦, (B26)

where Ki = [KMi , KSi , KEi ]
T is given by

Ki = (b+
mCmi + b+

s Csi + b+
e Cei

)
[ p̂∗

i , ρ̂
∗
i , û∗

i ]T . (B27)

Again b+
m, b+

s , and b+
e should be replaced according to the relevant jump condition and considering

βi = c̄2
i − ū2

i and

gc = 1

ρ̄i

[
−
(

h̄i + 1

2
ū2

i + c̄2
i

)
, − m̄ic̄2

i

Rg
, 1

]T

, (B28)

the matrices C become

Cmi = 1

βi

⎡
⎣0|gc| − ρ̄i

ūi
(gc) − 1

ūi

⎡
⎣c̄2

i − ū2
i

0
0

⎤
⎦
⎤
⎦, (B29)

Csi = c̄p(T̄i )

m̄iβi

⎡
⎢⎢⎣ γ̄i

c̄2
i

gc + 1 − M̄2
i

ρ̄i

⎡
⎢⎢⎣

γ̄i
m̄i(γ̄i − 1)

Rg
0

⎤
⎥⎥⎦
∣∣∣∣∣∣−gc − 1

ρ̄i

⎡
⎣c̄2

i − ū2
i

0
0

⎤
⎦
∣∣∣∣∣∣0
⎤
⎥⎥⎦ · · ·

+
dc̄p(T̄i )

dT̄i

m̄ic̄p(T̄i )βi

⎡
⎢⎣−γ̄i

⎛
⎜⎝gc + c̄2

i − ū2
i

ρ̄i

⎡
⎢⎣

1
m̄i

Rg
0

⎤
⎥⎦
⎞
⎟⎠
∣∣∣∣∣∣∣c̄

2
i

⎛
⎜⎝gc + c̄2

i − ū2
i

ρ̄i

⎡
⎢⎣

1
m̄i

Rg
0

⎤
⎥⎦
⎞
⎟⎠
∣∣∣∣∣∣∣0
⎤
⎥⎦, (B30)

083902-23



JOSÉ G. AGUILAR AND MATTHEW P. JUNIPER

Cei = 1

βi

⎡
⎢⎣ γ̄i

γ̄i − 1
gc

(
h̄i − c̄2

i

γ̄i − 1
+ 3

2
ū2

i

)
gc − ρ̄i

ūi

(
h̄i − ū2

i

2

)
gc − 1

ūi

(
c̄2

i − ū2
i

)⎡⎢⎣ū2
i

0
1

⎤
⎥⎦
⎤
⎥⎦ · · ·

+ �

βi

⎡
⎢⎣ −gc − c̄2

i − ū2
i

ρ̄i

⎡
⎢⎣

1
m̄i

Rg
0

⎤
⎥⎦ c̄2

i

γ̄i

⎛
⎜⎝gc + c̄2

i − ū2
i

ρ̄i

⎡
⎢⎣

1
m̄i

Rg
0

⎤
⎥⎦
⎞
⎟⎠ 0

⎤
⎥⎦. (B31)

Area increase. The relevant components of vector B are given by the steady quantities of
Eq. (6a). The corresponding adjoint variables are given by the numbers A+ = [A+

m, A+
x , A+

e ]T . The
relationship between adjoint variables at the area increase, and those defined at the duct is given by
A+ = F+

2 . The jump conditions are given by

F+
1 = F+

2 + �+
[(

h̄1 − ū2
1

2

)
(γ̄1 − 1) − 2c̄2

1 ,
c̄2

1

ū1
+ (γ̄1 − 1)ū1 , −(γ̄1 − 1)

]T

, (B32)

where

�+ = A2 − A1

A1

(
ū1

c̄2
1 − ū2

1

)
F+

x2
.

Area decrease. The relevant components of vector B are given by the steady quantities of Eq. (6b).
The adjoint variables are given by the numbers B+ = [B+

m, B+
s , B+

e ]T . The relationship between
adjoint variables at the area decrease, and those defined at the duct are given by B+ = S+

2 . The jump
conditions are given by

S+
1 = S+

2 . (B33)

Heat source. The components of vector B are given by the steady quantities of Eqs. (6c). The
adjoint variables are given by the numbers C+ = [C+

m ,C+
x ,C+

e ]T . The relationship between adjoint
variables at the heat source and those defined at the duct is given by C+ = F+

2 . The jump conditions
are given by

F+
1 = F+

2 + Q̂+ û∗
1

ū1

(
1 − ū1

FTF∗
∂FTF∗

∂ ū1

)[
h̄1(γ̄1 − 1) − c̄2

1 − 1

2
ū2

1(γ̄1 + 1) , γ̄1ū1 , −(γ̄1 − 1)

]T

· · ·

+
[
ηhr

(
FTF∗ û∗

1

ū1
f̂ +
e2

+ F+
e2

)
, 0 , 0

]T

. (B34)

c. Boundary conditions

The adjoint base flow boundary conditions depend on the type of base flow properties fixed at
the inlet or outlet of the configuration.

Inlet boundary condition. At the inlet of the configuration the mean mass flow rate m̄ and
the mean temperature T̄ are fixed. These are the components of vector B in Eq. (B1). Their
corresponding adjoint variables are given by B+

im
and B+

iT
. The relationship with the adjoint variables

defined in the ducts is given by

B+
im

= 1

A
(R+ + ūU + + c̄2P+), B+

iT
= ρ̄Rg

[
U + + ūP+ − b+

i

c̄

2

(
1 + d γ̄

dT̄

T̄

γ̄

)
û∗(1 + R∗

ci )

]
.

(B35)
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0 321 4

FIG. 18. A duct (highlighted in gray) with an area increase at the inlet and an area decrease at the outlet.
The dotted lines represent other jumps or boundary conditions.

The corresponding inlet boundary condition is

U +
(

p̄

ρ̄
− ū2

)
+ ūP+

(
p̄

ρ̄
− c̄2

)
− b+

i c̄û∗(1 + R∗
ci ) = 0. (B36)

Outlet boundary condition. At the outlet the mean pressure p̄ is fixed. This is the only component
of vector B in Eq. (B1). The corresponding adjoint variable is given by B+

op
, and its relationship with

the adjoint variables defined in the duct is given by

B+
op

= −U + − ūP+ − b+
o

[
∂R∗

co

∂ p̄
( p̂∗ + ρ̄c̄û∗) + û∗(1 + R∗

co)
c̄

2

(
1 + d γ̄

dT̄

T̄

γ̄

)]
. (B37)

The outlet boundary condition is set by

R+ = −b+
o

ū

[
∂R∗

co

∂ρ̄
( p̂∗ + ρ̄c̄û∗) − û∗(1 + R∗

co)
c̄

2

(
1 + d γ̄

dT̄

T̄

γ̄

)]
, (B38a)

P+ = P+
0 , (B38b)

U + = 1

ρ̄ū

(
−ρ̄R+ − γ̄ p̄P+ − b+

o

∂R∗
co

∂ ū
( p̂∗ + ρ̄c̄û∗)

)
. (B38c)

Here P+
0 is used to denote the initial guess and eventually the formal solution of the adjoint base

flow problem.

4. Optimality conditions

The optimality conditions provide the derivatives of the eigenvalue with respect to the geometric
parameters. They are obtained through the following steps:

(1) Compute the direct global mode {ω; ρ̂, û, p̂}.
(2) Compute the adjoint global mode {ω∗; ρ̂+, û+, p̂+}.
(3) Solve the adjoint base flow problem to obtain P+, R+, U +.
(4) Normalize using Eq. (B17).
(5) Obtain the first variation of the Lagrangian with respect to the parameter of interest.
The geometric parameters such as areas, lengths, and mean radii enter the Lagrangian of a

complex network nontrivially. Therefore we briefly discuss how to compute the sensitivities for
each of them.

a. Area

A change in area induces variations in the perturbation equations (P) and in the base flow
equations (B). Therefore we consider the contributions of each of them separately and then add
them together. An area variation affects the jump conditions at the duct inlet and at the outlet (see
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Fig. 18). Thus setting the derivative of the Lagrangian with respect to the area to zero gives

∂L
∂A

δA = 0 ⇒ δω

δA
=
(

δω

δA

∣∣∣∣
P

+ δω

δA

∣∣∣∣
B

)
inlet

+
(

δω

δA

∣∣∣∣
P

+ δω

δA

∣∣∣∣
B

)
outlet

. (B39)

For the duct highlighted in Fig. 18, we consider that the flow variables at the duct inlet are
given by subscript 1 and the variables just before the duct inlet are given by subscript 0. The area
sensitivities at the duct inlet are given by(

δω

δA

∣∣∣∣
P

)
inlet

= − {â+
m, ρ̄1û1 + ρ̂1ū1} − {â+

x , p̂1 + ρ̂1ū2
1 + 2ρ̄1ū1û1 − p̂0

} · · ·

−
{

â+
e ,

γ̄1ū1

γ̄1 − 1
p̂1 + ρ̄1

(
h̄1 + 3

2
ū2

1

)
û1 + ū1

(
h̄1 − c̄2

1

(γ̄1 − 1)
+ ū2

1

2

)
ρ̂1

}
,(

δω

δA

∣∣∣∣
B

)
inlet

= − {A+
m, ρ̄1ū1} − {A+

x , p̄1 + ρ̄1ū2
1 − p̄0

}−
{

A+
e , ρ̄1ū1

(
h̄1 + 1

2
ū2

1

)}
.

We consider that the flow variables at the duct outlet are given by subscript 2 and the variables just
after the duct outlet are given by subscript 3. The area sensitivities at the duct outlet are given by(

δω

δA

∣∣∣∣
P

)
outlet

= −{b̂+
m,−(ρ̄2û2 + ρ̂2ū2)} · · ·

−
{

b̂+
e ,−

[
γ̄2ū2

γ̄2 − 1
p̂2 + ρ̄2

(
h̄2 + 3

2
ū2

2

)
û2 + ū2

(
h̄2 − c̄2

2

(γ̄2 − 1)
+ ū2

2

2

)
ρ̂2

]}
,(

δω

δA

∣∣∣∣
B

)
outlet

= −{B+
m,−(ρ̄2ū2)} −

{
B+

e ,−
[
ρ̄2ū2

(
h̄2 + 1

2
ū2

2

)]}
.

b. Length

In a given network model, the axial position of a jump condition or boundary condition is
determined by the sum of the ducts’ length that appears before that jump or boundary, i.e.,
x = L1 + L2 + · · · + Ln. To compute the local value of the perturbation variables at those locations,
the axial position is required. Hence, to compute the sensitivity to a variation in a duct’s length,
we need to include all of the perturbation variables that used that length to compute its local value.
Thus, setting the derivative of the Lagrangian with respect to the length to zero gives

∂L
∂L

δL = 0 ⇒ δω

δL
=

N∑
i=1

δω

δLi
, (B40)

where N is the number of jump conditions that appear after the desired duct length plus one that
represents the outlet boundary condition, and δω/δLi represents the sensitivity of the length at a
single location.

For example, consider that position 4 in Fig. 18 represents the acoustic reflection coefficient
boundary condition. Let the subscript L represent a derivative of a perturbation variable or a
perturbation flux with respect to L, i.e.,

p̂L = ∂ p̂

∂L
= A+ik+eik+x + A−ik−eik−x.

Then the sensitivity of the eigenvalue to variations of the highlighted duct’s length is given by

∂ω

∂L
= δω

δLj
+ δω

δLb
,
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where

δω

δLj
= − {b̂+

m, m̂L3 − m̂L2

}− {b̂+
s , ŝL3 − ŝL2

}− {b̂+
e , êL3 − êL2

}
,

δω

δLb
= − {b̂+

o , p̂L4 (1 − Rco) + ρ̄c̄ûL4 (1 + Rco)
}
.

c. Mean radius

For this configuration the sensitivities of the mean radius are only relevant at two locations: the
outlet duct and the ducts whose mean radius influence the FTF. For the outlet duct the sensitivity is
given by

δω

δR
= −

{
b+

o ,
∂Rco

∂R
(−p̂ + ρ̄c̄û)

}
, (B41)

recalling that the radius in Eq. (10) is given by r = A/(2πR). For the mean radii affecting the FTF,
letting Ri, i = 1, 2 be the mean radius of the two relevant ducts, their sensitivities are given by

δω

δRi
= −

{
c+

e ,
∂FTF

∂Ri

û

ū

}
. (B42)

APPENDIX C: FRACTION OF DISTURBANCE ENERGY RETAINED IN A CYCLE

In this Appendix we show that the fraction of disturbance energy retained over a cycle is

Ě ≡
∫

V
E (t0 + T ) dV/

∫
V

E (t0) dV = e2λ/ f . (C1)

We begin with the disturbance energy density defined in Eq. (15):

E (t ) = 1

2

p′2

ρ̄c̄2
+ 1

2
ρ̄u′2 + ρ ′ūu′ + 1

2

ρ̄T̄ s′2

c̄p
, (C2)

which can be recast as

E (t ) = qT Mq, (C3)

where qT = [p′, u′, ρ ′, s′]. Recall that p′(x, t ) = Re{ p̂(x)eiωt } such that q = Re{q̂(x)eiωt }. Then∫
V E (t0 + T ) dV∫

V E (t0) dV
=
∫

V Re{q̂(x)T eiω(t0+T )} M Re{q̂(x)eiω(t0+T )} dV∫
V Re{q̂(x)T eiωt0} M Re{q̂(x)eiωt0} dV

. (C4)

Using the definitions ω = 2π f − iλ and T = 1/ f ,

eiω(t0+T ) = eiω(t0 )ei(2π f −iλ)/ f = eiω(t0 )eλ/ f . (C5)

The term eiω(T ) = eλ/ f is real and independent of the volume, therefore∫
V E (t0 + T ) dV∫

V E (t0) dV
=
∫

V Re{q̂(x)T eiωt0}eλ/ f M Re{q̂(x)eiωt0}eλ/ f dV∫
V Re{q̂(x)T eiωt0} M Re{q̂(x)eiωt0} dV

= e2λ/ f . (C6)
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