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Three-dimensional control is considered in the flow past a backward-facing step (BFS).
The BFS flow at Reynolds number Re = 500 (defined with the step height and the
maximum inlet velocity) is two-dimensional and linearly stable but increasingly receptive
to disturbances, with a potential for amplification as the recirculation length increases.
We compute optimal spanwise-periodic control (steady wall blowing/suction or wall
deformation) for decreasing the recirculation length, based on a second-order sensitivity
analysis. Results show that wall-normal velocity control is always more efficient than
wall-tangential control. The most efficient spanwise wavelength for the optimal control
depends on the location: β = 0.6 on the upper wall and β = 1 on the upstream part of the
lower wall. The linear amplification of the optimal control resembles the maximum linear
gain, which confirms the link between recirculation length and amplification potential
in this flow. Sensitivity predictions for blowing/suction amplitudes up to O(10−3) and
wall deformation amplitudes up to O(10−2) are in good agreement with three-dimensional
direct numerical simulations. For larger wall deformation amplitudes, the flow becomes
unsteady. This study illustrates how the concept of second-order sensitivity and the
associated optimization method allow for a systematic exploration of the best candidates
for spanwise-periodic control.

DOI: 10.1103/PhysRevFluids.5.083901

I. INTRODUCTION

The flow over a backward-facing step (BFS) is a quintessential example of a noise amplifier
flow. Any small perturbation initially applied either decays in time or is progressively convected
downstream of the perturbation source, letting the flow eventually return to its base flow con-
figuration. In terms of global linear stability properties, the BFS flow for an expansion ratio of
2 was found globally stable to two-dimensional (2D) perturbations regardless of the Reynolds
number. In contrast, three-dimensional (3D) perturbations periodic in the spanwise direction first
become statically unstable, for Re � 714 [2] (Re � 748 with a short inlet channel [1]), where the
Reynolds number Re = Uinh/ν is defined with the maximum incoming velocity Uin, the step height
h, and the kinematic viscosity ν. Despite their asymptotic decay, 2D perturbations can undergo
large amplification in space and time due to non-normal effects [3], in accordance with the locally
convectively unstable nature of the flow [4,5].

From a practical point of view, the flow over a BFS is of importance since it serves as a
prototype of several nonparallel flows in complex geometries such as in airfoils, cavities diffusers,
and combustors [6–8]. The BFS geometry facilitates the study of both the flow separation and
the flow reattachment, thus incorporating the two most prominent features of separated flows.
While several techniques based on a practical approach exist for flow control in such geometries,
the application of the theory of optimal flow control to separated flows has started only quite
recently.
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Among the empirical flow control approaches, the use of spanwise-periodic structures is
particularly promising. In the context of flow separation, Ref. [9] demonstrated that using arrays
of suitably shaped cylindrical roughness elements, streaks can be artificially forced on the roof of
a generic car model, the so-called Ahmed body, which suppress the separation around the rear end.
More generally, spanwise wavy modulations have been recognized, mainly through an iterative trial
and error method, as an efficient method of control in several flow configurations: for flows past
bluff bodies to regulate vortex shedding [10–14], for circular cylinders [15–19], for rectangular
cylinders [20], and in airfoils [21,22], to name a few.

The effectiveness of steady spanwise waviness to control nominally 2D flows has been rational-
ized through the generalization of linear sensitivity analysis [23,24] to second order. In the case of
spanwise-periodic control of 2D flows, the linear sensitivity indeed vanishes at first order and the
leading-order variation eventually depends quadratically on the 3D control amplitude [25–27]. This
dependence has been already established through the works of Hwang et al. [28], Del Guercio et al.
[29–31], and Tammisola et al. [32]. The control effectiveness relies on two main features: the linear
amplification potential of spanwise-periodic disturbances through amplification mechanisms like
the lift-up mechanism, and the quadratic sensitivity of the flow on the resulting flow modifications.

In this study, we use the reattachment length as proxy for the noise-amplifying potential of
the separated flow in conjunction with a quadratic sensitivity analysis. The significance of the
reattachment location as an indicator of the flow stability has already been substantiated through
the works of Sinha et al. [33] and Armaly et al. [34]. More recently, Boujo and Gallaire [35,5]
investigated the link between recirculation length and stability properties in separated flows. They
found that the reattachment point was highly sensitive to the control, with its sensitivity map deeply
resembling that of the backflow area and recirculation area. Further, these three sensitivity maps
resembled closely that of the optimal harmonic gain, implying that the flow becomes a weaker
amplifier as the recirculation length decreases, i.e., as the reattachment point moves upstream. The
presence of an upper wall and the appearance of a secondary recirculation region on that upper wall
for Re � 275 [1,4] tend to increase the overall spatial amplification. In this paper, we focus on the
primary recirculation region on the lower wall.

In this direction, we aim to exploit the amplification potential of the stable flow in a 3D BFS
to design optimal control strategies, such that the smallest required control amplitude is capable
of influencing the recirculation strength, here quantified by the recirculation length. We thereby
build on the framework of Boujo et al. [36], designed to control optimally the growth rate of
a nominally 2D flow using steady spanwise-periodic perturbations, which we extend here to the
optimal quadratic control of the recirculation length. We derive a second-order sensitivity tensor,
whose scalar product with any small-amplitude control yields the modification in reattachment
location.

Figure 1 shows the optimal spanwise-harmonic control in a BFS of expansion ratio 2. The
geometry is bounded by x ∈ [−5 50] and y ∈ [0 2]. The spanwise width is fixed at z = [0 2π/β]
where β is the wave number of the control. We aim at optimizing the reattachment location using
wall actuation [Fig. 1(a)] or wall deformation [Fig. 1(b)]. The Reynolds number is fixed at Re = 500
throughout the analysis. This ensures that the flow is linearly stable to the steady 3D instability that
occurs at Re = 714 (Re = 748 with a short inlet channel) with spanwise wave number β = 0.9
[1,2].

The paper is organized as follows. Section II describes the problem formulation, the general
expression of the second-order sensitivity tensor, and the optimization procedure used to compute
the optimal control. Section III presents the numerical methods used for the sensitivity analysis
and the optimization, as well as for 3D direct numerical simulations dedicated to validation. Global
stability properties of the 2D uncontrolled flow are discussed in Sec. IV. The optimal wall actuation
and wall deformation for minimizing the lower reattachment location are detailed in Sec. V. We
briefly discuss the limitations of the approach in Sec. VI, before concluding in Sec. VII.
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FIG. 1. Sketches of steady spanwise-periodic control (wave number β) in a backward-facing step: (a) wall
blowing/suction applied on the upper wall and (b) wall deformation applied on the upstream lower wall.

II. PROBLEM FORMULATION

A. Governing equations

Using h, h/Uin, and ρh3 as reference scales for length, time, and mass, we consider a steady 2D
base flow Q(x, y) = (U, P)T (x, y) = (U,V, P)T (x, y) in a domain � of boundary �, that satisfies
the dimensionless incompressible steady Navier-Stokes equations

∇ · U = 0 N (Q) = 0 in �, (1)

U = 0, on �, (2)

with N (Q) ≡ U · ∇U + ∇P − Re−1∇2U, and Re= Uinh/ν the Reynolds number defined with the
maximum incoming velocity Uin, step height h, and kinematic viscosity ν.

If there is a recirculation region, with reattachment occurring on a wall defined by y = yw(x),
then the reattachment location xr is characterized by vanishing wall shear stress,

∂Ut

∂n

∣∣∣∣
x=xr ,y=yw (xr )

= 0, (3)

i.e., vanishing normal derivative of the tangential velocity. For the sake of simplicity, we now focus
on the BFS flow: at the horizontal wall y = 0, the reattachment location reduces to ∂yU (xr, 0) = 0;
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in addition, the flow separates at the step corner xs = 0, so the recirculation length lc = xr − xs is
simply lc = xr .

We assume that a 3D steady control of small amplitude ε is applied on a boundary �c with
actuation velocity Uc(x, y, z), and possibly in the volume with body force C(x, y, z):

∇ · U = 0, N (Q) = εC in �, (4)

U = εUc on �c, (5)

U = 0 on � \ �c. (6)

This 3D control modifies the 2D base flow as

Q(x, y, z) = Q0(x, y) + εQ1(x, y, z) + ε2Q2(x, y, z) + · · · , (7)

where the Qi are solutions of the modified base flow equations at orders ε0, ε1, and ε2:

N (Q0) = 0 in �, U0 = 0 on �, (8)

A0Q1 = (C, 0)T in �, U1 = Uc on �c, U1 = 0 on � \ �c, (9)

A0Q2 = (−U1 · ∇U1, 0)T in �, U2 = 0 on �, (10)

and where A0 is the Navier-Stokes operator linearized about the zeroth-order base flow Q0,

A0 =
[

U0 · ∇() + () · ∇U0 − Re−1∇2() ∇()
∇ · () 0

]
. (11)

The control and the resulting flow modification alter the reattachment location as

xr (z) = xr0 + εxr1(z) + ε2xr2(z) + · · · . (12)

In this expression, xr0 is the reattachment location of the uncontrolled flow Q0,
∂U0

∂y

∣∣∣∣
x=xr0,y=0

= 0. (13)

Similarly, the first-order variation xr1(z) is the reattachment location of the first-order flow
modification Q1, characterized implicitly by a vanishing wall shear stress condition,

∂U1

∂y

∣∣∣∣
x=xr1,y=0,

= 0, (14)

and expressed explicitly as [5,35,37]

xr1(z) = − ∂yU1

∂xyU0

∣∣∣∣
x=xr0,y=0

. (15)

The explicit dependence on z in the notation xr1(z) in (14) and (15) is meant to emphasize that the
reattachment line is modulated in the spanwise direction. When the control is harmonic in z, as
considered in this study, it can actually be shown that Q1 and xr1 are purely harmonic too. As a
result, the first-order variation xr1(z) has a zero mean. In contrast, the second-order variation xr2(z)
has a nonzero mean in general: as detailed in Appendix A, it reads

xr2(z) =
[
− ∂yU2

∂xyU0
+ (∂yU1)(∂xyU1)

(∂xyU0)2
− (∂xxyU0)(∂yU1)2

2(∂xyU0)3

]
x=xr0,y=0

(16)

= xr2,I + xr2,II + xr2,III. (17)

This expression shows that the reattachment location is modified at second order via two effects: xr2,I

depends linearly on the second-order flow modification Q2, and xr2,II and xr2,III depend quadratically
on the first-order flow modification Q1.

083901-4



OPTIMAL SPANWISE-PERIODIC CONTROL FOR …

(a)

2D Sensitivity
U†

0
0.5

1
1.5

2

y

−500

0

500

(b) V †

−4 −2 0 2 4 6 8 10 12 14 16 18 20
0

0.5
1

1.5
2

x

y

−100

0

100

FIG. 2. 2D adjoint base flow (a) U † and (b) V †. Dashed lines indicate lower and upper recirculation regions,
each of them delimited by a wall and a separating streamline (separatrix).

B. Sensitivity of the reattachment length: General expression

We introduce the field SI and the operators SII and SIII such that the second-order variation xr2

can be expressed with scalar products,

xr2(z) = ( SI | U2) + ( U1 | SIIU1) + ( U1 | SIIIU1), (18)

where the three terms of the right-hand side correspond to the three terms of (16) and (17),
respectively, and (· | ·) is the Hermitian scalar product in the domain � defined as (a | b) ≡∫
�

a∗b d�, with the superscript asterisk indicating complex conjugate. For integration along a
boundary �, an angled bracket is used: 〈a | b〉 ≡ ∫

�
a∗b d�. Omitting the notation y = 0, one

identifies from (16) and (17):

SI = −1

∂xyU0(xr0)
δ(xr0)ex∂y, (19)

SII = 1

[∂xyU0(xr0)]2
δ(xr0)(ex∂y)† ⊗ (ex∂xy), (20)

SIII = −∂xxyU0(xr0)

2[∂xyU0(xr0)]3
δ(xr0)(ex∂y)† ⊗ (ex∂y), (21)

where δ(x, y) is the 2D Dirac δ function, and the superscript dagger denotes the adjoint of an

operator defined as (a | Sb) = (S†a | b). Note that SI, SII, and SIII depend only on U0. From (10), Q2

is uniquely determined by Q1, such that the first term of the right-hand side of (18) can be expressed
as

xr2,I = (
SI|−A−1

0 [U1 · ∇U1]
) = (

A†
0
−1

SI|−U1 · ∇U1
) = (U†|−U1 · ∇U1)

= (U1|SI′U1), (22)

where we have introduced the 2D adjoint base flow U†(x, y), defined by

A†
0U† = SI, (23)

with A†
0 the adjoint Navier-Stokes operator. The adjoint base flow, depicted in Fig. 2, depends only

on U0 and is the same adjoint base flow U† as in Refs. [5,37] where it represents the first-order
sensitivity of the reattachment location xr to a steady 2D volume forcing. In the last equality of
(22), we were allowed to introduce an operator SI′ (dependent on U†) because the expression is
quadratic in U1. The second-order variation can therefore be expressed quadratically in any flow
modification U1 via a single operator for second-order sensitivity to flow modification:

xr2(z) = (U1|S2,U1 U1) where S2,U1 = SI′ + SII + SIII. (24)
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Finally, using (9), one can introduce operators for the second-order sensitivity to control, dependent
only on the uncontrolled flow U0, and such that for any control:

xr2(z) = (C|S2,CC) + 〈Uc|S2,Uc Uc〉, (25)

where

S2,C = PT A†
0,C

−1
S2,U1 A0,C

−1P, (26)

and S2,Uc = PT A†
0,Uc

−1
S2,U1 A0,Uc

−1P. (27)

Here P is the prolongation matrix that converts the velocity-only space to velocity-pressure space
such that PU = (U, 0)T and PT Q = U, and A0,C and A0,Uc are defined by the volume-control-only
and wall-control-only versions of (9), respectively:

A0,CQ1 = (C, 0)T in �, U1 = 0 on �, (28)

A0,Uc Q1 = 0 in �, U1 = Uc on �c, U1 = 0 on � \ �c. (29)

C. Simplification: Spanwise-harmonic control

Let us now assume a spanwise-harmonic control of the form

Uc(x, y, z) =
⎛
⎝Ũc(x, y) cos(βz)

Ṽc(x, y) cos(βz)
W̃c(x, y) sin(βz)

⎞
⎠, C(x, y, z) =

⎛
⎝C̃x(x, y) cos(βz)

C̃y(x, y) cos(βz)
C̃z(x, y) sin(βz)

⎞
⎠. (30)

The first-order flow modification is also spanwise-harmonic, of the same wave number β:

Q1(x, y, z) =

⎛
⎜⎜⎝

Ũ1(x, y) cos(βz)
Ṽ1(x, y) cos(βz)
W̃1(x, y) sin(βz)
P̃1(x, y) cos(βz)

⎞
⎟⎟⎠. (31)

The quadratic term −U1 · ∇U1 in (10) is then the sum of 2D terms (spanwise-invariant terms, of
wave number 0) and 3D terms (of wave number 2β), which we denote f2D(x, y) + f3D(x, y, z). As
a result, the second-order flow modification has the same form: Q2D

2 (x, y) + Q3D
2 (x, y, z). Similarly,

the second and third terms in (16), (17) and in (18) have the same form too, and finally the second-
order reattachment location modification reads

xr2(z) = x2D
r2 + x3D

r2 (z), (32)

where

x2D
r2 =

[
−∂yU 2D

2

∂xyU0
+ (∂yŨ1)(∂xyŨ1)

2(∂xyU0)2
− (∂xxyU0)(∂yŨ1)2

4(∂xyU0)3

]
x=xr0,y=0

(33)

= x2D
r2,I + x2D

r2,II + x2D
r2,III. (34)

Because x3D
r2 (z) is harmonic of zero mean, we now focus on the spanwise-invariant component x2D

r2 .
Its expression can be simplified, taking advantage of the specific form (30) of the control:

x2D
r2 = (C̃|̃S2,C̃C̃) + 〈

Ũc

∣∣̃S2,Ũc
Ũc

〉
, (35)

where S̃2,C̃ and S̃2,Ũc
are spanwise-invariant versions of the second-order sensitivity operators (26)

and (27) (see detailed expressions in Appendix B). The advantage of this simplification is that
calculating the sensitivity operators (and, later, finding the optimal control) can be performed with
2D fields and tensors, rather than 3D ones, which greatly reduces the computational cost and
memory requirements.
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FIG. 3. (a) An example of 3D base flow modified by a wall blowing/suction control (using the same control
as in Fig. 8 with ε = 0.003). Streamlines start at (x, y) = (−5, 1.05) at different spanwise positions z. The
isosurface indicates the lower zero streamwise velocity U = 0 (the upper recirculation region is not shown
here). The thick red line indicates the lower reattachment location characterized by a vanishing wall shear stress
∂yU = 0. (b) Decomposition of the reattachment location xr into zeroth-, first-, and second-order components
xr0, xr1, and xr2. The spanwise-averaged reattachment location is xr = xr0 + ε2x2D

r2 .

Figure 3(a) visualizes a 3D flow obtained with spanwise-periodic control. The optimal wall
normal blowing/suction control for β = 1 is applied on the upstream part (x < 0, y = 1) of the
lower wall, with amplitude ε = 0.003 (see Fig. 8 below for the actuation vector). As shown
in the sketch of Fig. 3(b), the reattachment location xr (z) is decomposed into zeroth-order xr0

(uncontrolled), first-order xr1(z) (of zero mean), and second-order xr2. As mentioned earlier, the
second-order component is further divided into a zero-mean 3D part x3D

r2 (z) and a mean 2D part x2D
r2 .

Therefore, the spanwise-averaged reattachment location is

xr = xr0 + ε2x2D
r2 , (36)

which is our control interest. The second-order variation x2D
r2 is now referred to as mean correction.

D. Optimal spanwise-periodic control

In this section, we show how the spanwise-harmonic control can be optimized so as to yield the
largest possible effect on the reattachment location. The formulation is similar to Ref. [36], where
the control was optimized for the largest effect on the linear stability properties (growth rate or
frequency, i.e., real or imaginary part of the complex eigenvalue), except that here all quantities
are real. We describe only the optimization procedure for boundary control Ũc; the derivation for
volume control C̃ is similar.

1. Optimal spanwise-periodic wall actuation

If the recirculation length is to be reduced, the mean correction can be minimized by solving the
following problem:

min
||Ũc||=1

(
x2D

r2

) = min

〈
Ũc

∣∣ 1
2

(̃
S2,Ũc

+ S̃T
2,Ũc

)
Ũc

〉
〈Ũc|Ũc〉

= 1

2
λmin

(̃
S2,Ũc

+ S̃T
2,Ũc

)
. (37)
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This indicates that, for any given wave number β, the smallest (largest negative) eigenvalue of
the symmetric operator 1

2 (̃S2,Ũc
+ S̃T

2,Ũc
) is the smallest (largest negative) mean correction, and the

corresponding eigenvector Uc is the optimal wall control. Similarly, if the recirculation length is to
be increased, the mean correction can be maximized by finding the largest positive eigenvalue and
the associated eigenvector.

2. Optimal spanwise-periodic wall deformation

For open-loop control, deforming the geometry can be more interesting than using a steady
wall velocity actuation. It is possible to compute the optimal wall deformation, noting that an
equivalent wall deformation can be deduced from a given wall blowing/suction control [36]. On
wall boundaries, the velocity should vanish; for a small-amplitude wall-normal deformation εy1,
this condition yields (with a Taylor expansion):

U(y0 + εy1) = U0(y0 + εy1) + εU1(y0 + εy1) + · · ·
= U0(y0) + ε[y1∂yU0(y0) + U1(y0)] + · · · = 0. (38)

Noting that U0(y0) = 0, this gives the relation between wall-normal deformation y1 and equivalent
tangential velocity Uc:

U1(y0) = −y1
∂U0(y0)

∂y
= Uc. (39)

Therefore, considering spanwise-harmonic wall-normal deformations of the form

y1(z) = ỹ1 cos(βz), (40)

the mean correction can now be expressed as

x2D
r2 = 〈

Ũc

∣∣̃S2,Ũc
Ũc

〉 = 〈ỹ1∂yU0(y0)
∣∣̃S2,Ũc

∂yU0(y0)ỹ1
〉

= 〈
ỹ1

∣∣M†S̃2,Ũc
Mỹ1

〉 = 〈
ỹ1

∣∣̃S2,ỹ1 ỹ1
〉
, (41)

where M is a weight matrix accounting for the wall shear stress ∂yU0(y0) of the uncontrolled flow.
Finally, the optimization for wall-normal deformation reads

min
||ỹ1||=1

(
x2D

r2

) = min

〈
ỹ1

∣∣ 1
2

(̃
S2,ỹ1 + S̃T

2,ỹ1

)
ỹ1

〉
〈ỹ1|ỹ1〉 = 1

2
λmin

(̃
S2,ỹ1 + S̃T

2,ỹ1

)
. (42)

III. NUMERICAL METHOD

A. Linear analysis and optimization

The sensitivity analysis and the optimization are conducted using the method described in
Refs. [5,36,37]. The problem is discretized with a finite-element method using FreeFem++ [38]
with P2 and P1 Taylor-Hood elements for velocity and pressure, respectively. Mesh points are
clustered near the reattachment point, yielding a typical number of elements of 1.6 × 105 and 106

degrees of freedom. The uncontrolled base flow (8) is obtained with a Newton method. Eigenvalues
are solved with a restarted Arnoldi method.

At the inlet (x = −5), a Poiseuille flow profile is imposed with maximum velocity Uin = 1, and
a stress-free condition is applied at the outlet (x = 50). At Re = 500, the reattachment location on
the lower wall is xr0 = 10.87 (recall Re = Uinh/ν with h = 1 the step height, and ν the kinematic
viscosity). It is well converged: xr0 = 10.88 on a coarser mesh with 4.5 × 104 elements.

B. Three-dimensional DNSs

Direct numerical simulations (DNSs) are also carried out for validation of the optimization
method, using the open-source code NEK5000 [39]. This parallel code is based on the spectral
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element method where spatial domain is discretized using hexahedral elements. The unknown
parameters are obtained using N th-order Lagrange polynomial interpolants, based on the Gauss-
Lobatto-Legendre quadrature points in each spectral element with N � 6. A third-order backward
differentiation formula (BDF3) is employed for time discretization. For the spatial discretization, the
diffusive terms are treated implicitly, whereas the convective terms are estimated using a third-order
explicit extrapolation formula (EXT3). Since the explicit extrapolations of the convective terms in
the BDF3-EXT3 scheme enforce a restriction on the time step for iterative stability [40], we chose
the time step so as to have a Courant number CFL ≈0.5.

The computational domain and the boundary conditions are in accordance with the specifications
of the BFS used in the sensitivity analysis. Additionally, we impose periodic boundary conditions
in the spanwise direction, where the spanwise width z ∈ [0 2π/β] captures one wavelength for the
purpose of validation. Certain cases employing optimal spanwise modulation required the analysis
of a domain with two wavelengths, z ∈ [0 4π/β]. The domain is discretized with a structured
multiblock grid consisting of 36 200 and 72 400 spectral elements for the spanwise widths 2π/β

and 4π/β, respectively. In both cases, the minimum and maximum distances between the adjacent
grid points are 2.4 × 10−3 (near the step corner and the reattachment point) and 2.2 × 10−1 (at the
outlet), respectively.

IV. LINEAR STABILITY PROPERTIES OF THE 2D UNCONTROLLED BASE FLOW

In this section, we investigate the characteristics of the uncontrolled base flow. The BFS flow
separates at the step corner and reattaches downstream, thus forming a recirculation region. For the
BFS of expansion ratio 2 at Re = 500, there are two recirculation regions: one on the lower wall
developing for x ∈ [0 10.87], and another one on the upper wall for x ∈ [8.7 17.5]. In this section,
we discuss some linear characteristics of the uncontrolled 2D base flow.

A. Global linear stability

We first investigate the eigenvalues of the system. We assume normal mode perturbations q′ =
q̂(x, y) exp(λt + iβ0z) of small-amplitude, complex eigenvalue λ, and real spanwise wave number
β0. We use the subscript 0 to denote the eigenmode wave number (to be distinguished from the
control wave number β). We solve the generalized eigenvalue problem

λ̂q = Ã0q̂ (43)

associated with the linearized equation for perturbations around the uncontrolled 2D base flow, with
no-slip boundary conditions at the walls.

Leading eigenvalues for Re = 500 are shown in Fig. 4 as a function of the spanwise wave number
β0. For the purpose of later comparison, we plot the inverse of the absolute value of λ. For all
wave numbers, the leading eigenvalue has a negative growth rate (stable, decaying modes) and
zero frequency (steady modes, filled circles) except near β0 = 0.4 − 0.5 (oscillating modes, empty
circles). There are two local maxima of 1/|λ| (least stable modes) near β0 = 0.1 and β0 = 1, in line
with the results of Ref. [1] for Re = 450.

Some selected global modes are shown in Fig. 5 for β0 = 0.1, 0.5, and 1. For β0 = 0.1, the
mode is localized around x = 10, near the lower reattachment and upper separation points. For
β0 = 0.5, the mode is largest farther downstream (x > 10), while for β0 = 1 it is localized in the
lower recirculation region x < 10.

B. Optimal 3D steady forcing

For linearly stable flows, it is interesting to investigate what kind of disturbances undergo
the largest amplification. Here we consider in particular a steady spanwise-harmonic forcing f =
f̂ (x, y) exp(iβz) acting on the wall boundaries, and resulting linearly in a steady spanwise-periodic
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FIG. 4. Leading eigenvalue (inverse distance from the origin 1/|λ|) and steady optimal gain G, as a function
of spanwise wave number. Filled circles: steady modes (zero frequency λi = 0); empty circles: oscillating
modes (nonzero frequency). Highlighted wave numbers: see Figs. 5 and 6.

response q = q̂(x, y) exp(iβz) via

Ã0q̂ = B f f̂, (44)

where B f limits active forcing regions to the walls. The linear amplification efficiency can be
measured with a linear gain, for instance, as the ratio of the norms of the forcing velocity and
response velocity:

G = ||̂q||
||̂f|| . (45)

This ratio can be maximized: the linear optimal gain is given by the largest singular value of the
resolvent operator (here with zero frequency) and the optimal forcing is the associated singular
vector [5,41].

The optimal gain for steady wall actuation is shown in Fig. 4 as function of the forcing spanwise
wave number. The maximum optimal gain G = 326 is reached for β = 0.1, the same wave number

(a) β = 0.1

Global mode
0

0.5
1

1.5
2

y

−0.4
−0.2
0
0.2
0.4

(b) β = 0.5

0
0.5

1
1.5

2

y

−0.2

0

0.2

(c) β = 1

−4 −2 0 2 4 6 8 10 12 14 16 18 20
0

0.5
1

1.5
2

x

y

−0.2

0

0.2

FIG. 5. Streamwise velocity of the least stable global eigenmode for (a) β0 = 0.1, (b) β0 = 0.5, and
(c) β0 = 1. In (a) and (c) û is represented (steady modes), while in (b) the real part Re(û) is shown (oscillating
mode).
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FIG. 6. Streamwise velocity [real part Re(û)] of the optimal response to steady forcing for (a) β = 0.1,
(b) β = 0.5, and (c) β = 1.

as the least stable eigenmode. Qualitatively, the optimal gain varies with the spanwise wave number
like 1/|λ| for the leading global mode. This result illustrates the ε-pseudospectral property [42,43].
Some selected optimal responses are depicted in Fig. 6. As expected, the optimal responses for
β = 0.1 and β = 1 are similar to the eigenmodes at the same wave numbers. For β = 0.5, the
optimal response is slightly different from the global mode since the latter has a nonzero frequency
while the response is steady.

V. RESULTS: OPTIMAL CONTROL FOR LOWER REATTACHMENT LOCATION

We now turn our attention to the optimal spanwise-harmonic control: wall actuation
(blowing/suction) in Sec. V A and wall deformation in Sec. V B. All results are given for Re = 500.

A. Optimal wall actuation

Figure 7(a) shows the optimal negative mean correction x2D
r2 as a function of β. Several wall

actuation scenarios are considered:
On the upper wall, with normal velocity Ṽc.
On the upstream lower wall, with normal velocity Ṽc.
On the upstream lower wall, with tangential velocity Ũc.

Recall that 3D velocity controls are defined as (Uc,Vc,Wc)(x, y, z) = (Ũc(x, y) cos(βz),
Ṽc(x, y) cos(βz),W̃c(x, y) sin(βz)). The wall restriction is implemented by modifying the prolon-
gation matrix P.

Wall-normal control Ṽc is most efficient on the upper wall at β = 0.6 and on the upstream lower
wall at β = 1. Wall-tangential actuation Ũc on the upstream lower wall has a much smaller effect
on the reattachment length than normal actuation. This holds for other types of wall controls (not
shown): actuating with normal velocity Ṽc is generally more efficient than with wall-tangential
velocity components Ũc and W̃c.

The individual contributions of terms I, II, and III in (34) are shown in Figs. 7(b) and 7(c) for
normal actuation Ṽc on the upper wall and upstream lower wall, respectively. In both cases, term I (a
linear function of the second-order flow modification) contributes the most on the mean correction,
while terms II and III (quadratic functions to the first-order flow modification) have negligible or
counteracting effects. Control vectors for the upper wall (β = 0.6) and upstream lower wall (β = 1)
are shown in Fig. 8. The control is largest near x = 6 and x = 0, respectively.

The linear gain G for these controls is shown in Fig. 9(a) (solid lines). Here the gain is calculated
as the ratio between the response ||Ũ1|| and the control ||Ũc||. The optimal gain obtained when
maximizing (45) with wall restriction is also shown in Fig. 9(a) (dashed lines). The gains obtained
by maximizing xr2 and G itself are close to each other, except for lowest β values. The corresponding

083901-11



YIM, SHUKLA, GALLAIRE, AND BOUJO

(a)

0 0.5 1 1.5 2

−60,000

−40,000

−20,000

0

5,000

β

x
2
D

r
2

Upper wall, ˜Vc

Upst. lower wall, ˜Vc

Upst. lower wall, ˜Uc

(b) Upper wall, Ṽc
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FIG. 7. (a) Mean correction x2D
r2 induced by the optimal wall blowing/suction minimizing the mean

reattachment length xr (spanwise wave number β, different walls). The individual contributions of the terms I,
II, and III in (34) (their 2D components) on the total mean correction are detailed in (b) for upper wall, Ṽc and
(c) for upstream lower wall, Ṽc controls.

flow modifications Ũ1 and û (not shown) are very similar to each other too. This indicates that the
amplification potential of the system is closely related to the recirculation length xr , as reported in
Ref. [35].

Figure 9(b) shows the spanwise-averaged reattachment location xr computed from 3D DNSs
along with the sensitivity prediction for the reattachment location xr = x0 + ε2x2D

r2 as a function
of the actuation amplitude ε, for the upstream lower wall case. The agreement is good up to ε �
0.001. For this amplitude (equal to 0.1% of the maximum inlet velocity), the optimal control on
the upstream lower wall reduces the reattachment location by 0.55%. For larger amplitudes in the
investigated range, DNS results start to differ due to strong nonlinear effects, but xr continues to
decrease.

B. Optimal wall deformation

We now investigate the optimal wall deformation for minimizing the lower reattachment point.
We focus on the upstream lower wall. The wall deformation is computed using (42), and we apply
to y1 the smoothing filter Fw = 1/{exp[2Ck (x + xS )] + 1}, with Ck = 250 and xS = 0.02, to avoid

(a)

|˜Vc| = 0.5

−5 0 5 10 15

(b)

|˜Vc| = 0.5

−5 0 5

FIG. 8. Optimal control (0, Ṽc, 0) (a) on the upper wall for β = 0.6 and (b) on the upstream lower wall for
β = 1.
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FIG. 9. (a) Linear gain G for steady spanwise-periodic wall blowing/suction: control Ṽc minimizing xr

(solid lines) and control f̂ maximizing G (dashed lines). (b) Mean reattachment location xr as a function of
the control amplitude for upstream lower wall actuation for β = 1. Line: sensitivity prediction; symbols: 3D
DNSs.

singularity at the step corner where ∂yU0 goes to infinity. This amounts to regularizing the sensitivity
(we note that one could also regularize the geometry with a small chamfer at the corner).

Figure 10 shows the effect of the optimal control x2D
r2 as a function of β. The most effective

spanwise wave number is β = 1.1, similar to the wall blowing/suction case, but the efficiency is
much lower (minimum x2D

r2 about 15 times smaller). This is due to the fact that wall deformation is
equivalent to a tangential velocity Ũc, which has a much smaller effect than normal velocity Ṽc on
xr2 (recall Fig. 7). Although less effective, wall deformation on the upstream lower wall still results
in the mean correction x2D

r2 = −3.7 × 103.
Figures 10(b) and 10(c) show the optimal wall deformation y1 and its 2D profile ỹ1 [recall y1 =

ỹ1 cos(βz)]. The wall deformation is maximum just before the step corner, where the flow separates.
The mean reattachment location from 3D DNSs is shown in Fig. 11(a). A good agreement is found
until ε = 0.0075. At this point, xr is decreased to 10.7: a deformation amplitude equal to 0.75%
of the inlet channel and step heights reduces the mean reattachment location by 1.5%. For larger
deformation amplitudes (ε > 0.01), DNS results depart from the sensitivity prediction.

FIG. 10. (a) Effect of the optimal upstream lower wall deformation as a function of spanwise wave number
β. (b) 3D visualization of the optimal upstream lower wall deformation y1 = ỹ1 cos(βz) and (c) 2D profile ỹ1

for β = 1.1.
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FIG. 11. Effect of the optimal wall deformation on the mean reattachment point (a) as a function of ε for
fixed β = 1.1 and (b) as a function of β for fixed ε = 0.005.

Figure 11(b) shows xr as a function of β for a fixed deformation amplitude ε = 0.005. Overall,
sensitivity predictions and 3D DNS results are in good agreement, with a maximum error |xrDNS −
x2D

r |/xrDNS � 0.2% for β = 1.1.
For a larger deformation amplitude ε = 0.015, the flow becomes unstable. Figure 12 shows

an instantaneous flow field with isocontours of spanwise velocity W = ±0.03. Because the
uncontrolled base flow has no spanwise velocity component, W is a good indicator of velocity
perturbations. Those perturbations develop just after the step corner and are sustained in the
region x ∈ [5 40]. From the top view in Fig. 12(b), clear lines of vanishing W are observed at
the nodal points of sin(βz). Chevron patterns appear in the side view in Fig. 12(c). Perturbations
oscillate in time at a fundamental frequency ω = 0.55 (St = 0.088). Boujo, Fani, and Gallaire
[27] reported the destabilizing effect of spanwise-periodic control in parallel shear flow. They
showed that both fundamental β and subharmonic β/2 modes can be excited due to a subharmonic

4π
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z 2π
β

−5 0 10 20 30 40 50

x

(a)

z

(b) Top view

−5 0 10 20 30 40 50
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2π
β

4π
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y(c)
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−5 0 10 20 30 40 50
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2

x

FIG. 12. Isosurfaces of instantaneous spanwise velocity W = ±0.03 for the optimal deformation on the
upstream lower wall, with amplitude ε = 0.015. (a) Oblique view, (b) top view, and (c) side view.
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FIG. 13. (a) Optimal 2D and 3D (β = 1) vertical controls on the upstream lower wall. (b) Leading-order
mean flow modifications (streamwise component). (c) Corresponding wall shear stress on the lower wall.

resonance mechanism [28,44]. In our DNSs with a spanwise domain extended to two control
wavelengths (z ∈ [0 4π/β]), and thus able to accommodate perturbations of wave number as small
as β/2, perturbations do not show any subharmonic component. Instead, only harmonics of nβ

(n = 1, 2, 3, . . .) exist, as observed in Fig. 12(b).

VI. DISCUSSION

Although the optimization procedure finds the most efficient spanwise-harmonic control, the
effect on the mean recirculation length appears relatively small. In light of this observation, it
is worth comparing the optimal 2D and 3D blowing/suction. One can show that the optimal 2D
wall control is equal to the sensitivity to 2D wall control, given by the adjoint stress at the wall
(P†I + Re−1∇U†)n, where (U†, P†) is the adjoint base flow (see Sec. II B) and n the outward unit
normal vector [5,35,37]. Since the tangential component is generally much smaller than the normal
one, we simply consider the sensitivity to 2D normal actuation as the optimal control (0,Vc).

Figure 13 compares the 3D control optimized on the upstream lower wall (β = 1) to its 2D
counterpart, both normalized to 1. The linear response δU to the 2D control is largest and positive
near the lower reattachment point, resulting in a positive wall shear stress ∂yδU at that location,
as expected if xr is to be minimized. Via the spanwise-periodic first-order flow modification U1

(not shown), the optimal 3D control induces a mean second-order flow modification U2D
2 that is

qualitatively similar to δU, resulting in a positive wall shear stress ∂yU 2D
2 , and therefore a negative

xr2,I (we do not investigate xr2,II and xr2,III since they are much smaller, as shown in Fig. 7). Figure 14
shows the same quantities optimized on the upper wall (β = 0.6 for the 3D control) and again a
qualitatively similar wall shear stress. Although U2D

2 is much larger than δU, it must be kept in mind
that 2D and 3D controls of the same amplitude ε yield a 2D modification that scales linearly (∼εδU)
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FIG. 14. (a) Optimal 2D and 3D (β = 0.6) vertical controls on the upper wall. (b) Leading-order mean
flow modifications (streamwise component). (c) Corresponding wall shear stress on the lower wall.

and a 3D modification that scales quadratically (∼ε2U2D
2 ), respectively. Spanwise-periodic controls

should therefore become more efficient for large enough amplitudes, as previously observed for
flow stabilization [27,29–31], and as shown in Fig. 15. In practice, when the control amplitude

10-3
0 0.5 1 1.5 2

-0.2

-0.1

0

FIG. 15. Effect on the reattachment location xr of the optimal vertical 2D control and optimal vertical 3D
control (β = 1) of amplitude ε, on the upstream lower wall.
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FIG. 16. (a) Mean correction x2D
r2 induced by the optimal wall blowing/suction Ṽc minimizing the mean

reattachment length xr (spanwise wave number β, upstream lower wall) for Re = 100, 200, . . . , 700 with the
interval �Re = 100. The thick line indicates Re = 500. (b) Mean reattachment location xr as a function of
the control amplitude for upstream lower wall actuation for β = 1 and Re = 700. Line: sensitivity prediction;
symbols: 3D DNSs.

increases, it may happen that the actual efficiency is limited by deviation from the sensitivity
prediction (Sec. V A) or by the flow becoming linearly unstable (Sec. V B). This can be tested
on a case-by-case basis, once promising control candidates have been identified. In this respect, the
concept of second-order sensitivity and the associated optimization method allow for a systematic
exploration of the best candidates for spanwise-periodic control.

This study has focused on Re = 500. In order to investigate the effect of the Reynolds number,
the optimal control has also been computed for other Reynolds numbers up to Re = 700 (just below
the 3D instability threshold). Figure 16(a) shows the second-order variation x2D

r2 for the optimal
vertical blowing/suction Ṽc on the upstream lower wall. The mean correction reaches a maximum
for a peak wave number that slightly decreases with Re but remains close to β = 1 − 1.5. The largest
mean correction increases exponentially with Re. For instance, at β = 1, the mean correction for
Re = 700 (xr0 = 12.68) is x2D

r2 = −1.35 × 107, which is between two and three orders of magnitude
larger than for Re = 500 (xr0 = 10.88): x2D

r2 = −5.95 × 104. This exponential increase in control
authority is similar to the exponential increase in optimal transient growth [4] and optimal harmonic
gain [5], and can be ascribed to the exponential increase in amplification via a shear mechanism,
itself related to the linear increase in recirculation length (e.g., Ref. [1]). We note that the profile
of the optimal control is very similar at Re = 500 [Fig. 8(b)] and 700 (not shown). Figure 16(b)
shows a DNS validation for Re = 700, β = 1. The effect is indeed much stronger than for Re = 500
[Fig. 9(b)], but higher-order effects appear at a smaller control amplitude.

VII. CONCLUSION

Initially motivated by the link between recirculation length and stability properties in separated
amplifier flows, we have focused on the mean reattachment location as an indicator for the noise
amplifying potential in a 3D backward-facing step of expansion ratio of 2 and fixed Reynolds
number Re = 500. In this context, our goal was to control the reattachment location on the
BFS lower wall with optimal spanwise-periodic control (steady wall blowing/suction or wall
deformation) based on the second-order sensitivity analysis introduced in Ref. [36] for the linear
stability properties of the circular cylinder flow.

A second-order sensitivity tensor for the reattachment location has been derived, such that
modification of the reattachment location is obtained as a scalar product of this tensor and any
arbitrary control. For the specific case of spanwise-harmonic control, the sensitivity tensor was
then further simplified, i.e., made independent of z. When the control is spanwise harmonic, the
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first-order reattachment modification takes the same wave number with zero mean value, while the
second-order modification has a nonzero mean value. Thereby, we have looked for optimal controls
that minimize the second-order mean correction.

For wall blowing/suction, we have shown that tangential control has a negligible influence while
normal control is the most effective. The optimal wave number β depends on the control location:
β = 0.6 is optimal when controlling on the upper wall, and β = 1 when controlling on the upstream
lower wall control. The linear gain for this actuation resembles the optimal gain for 3D steady
forcing, indicating that the amplification potential of the BFS is indeed linked to the recirculation
length, as also observed in Ref. [5]. Three-dimensional direct numerical simulations have validated
the quadratic behavior of the mean reattachment length modification. The sensitivity prediction is
valid until a control amplitude ε � 0.001; for larger amplitudes, DNS results start to deviate from
the quadratic prediction.

Optimal wall deformation has been studied too. We have focused on deformation of the upstream
lower wall, restricting the wall deformation to be null at the step corner. The optimal wall control is
generally less effective than wall optimal blowing/suction, and its optimal wave number is β = 1.1.
DNS validation has shown that the sensitivity prediction is valid until a deformation amplitude
ε � 0.008; beyond that, the optimal control destabilizes the flow.

Finally, the optimal 3D spanwise-periodic control was compared to the optimal 2D control. The
resulting wall shear stress (directly linked to the modification of the reattachment location) is two or
three orders of magnitude larger for 3D controls than for 2D ones. Since 2D and 3D controls depend
linearly and quadratically on the control amplitude, respectively, the 3D control is more efficient for
large enough control amplitudes. In order to determine which of the two controls is best at which
amplitude, additional studies are required once the optimal 3D control has been identified. This
limitation can be tackled if the mean flow modification is taken into account in the optimization, for
instance, with a semilinear approach [45,46].

We have not systematically investigated the stability of the controlled flow. Although the
spanwise-periodic first-order flow modification does not induce any mean variation of xr , it may
still alter the flow stability. Clarifying whether this is the case or not would be possible, for a given
control, using linear stability analysis (Floquet or 3D global) or nonlinear DNSs.
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APPENDIX A: SECOND-ORDER REATTACHMENT LOCATION MODIFICATION

Recall the definition of the reattachment location [5,35,37]:

xr =
∫ ∞

0
H[−∂yU (x, 0)] dx, (A1)

where H is the Heaviside function such that H (θ < 0) = 0 and H (θ > 0) = 1. This expression
yields indeed the reattachment location since the wall shear stress ∂yU (x, 0) is negative in the
recirculation region. Hereafter, we omit y = 0 for brevity. Substituting

U = U0 + εU1 + ε2U2 + O(ε3) (A2)
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into (A1), one obtains

xr =
∫ ∞

0
H[−∂yU0 − ε∂yU1 − ε2∂yU2 + O(ε3)] dx

=
∫ ∞

0

{
H (−∂yU0) − [ε∂yU1 + ε2∂yU2 + O(ε3)]H ′(−∂yU0)

+ 1

2
[ε∂yU1 + O(ε2)]2H ′′(−∂yU0)

}
dx

=
∫ ∞

0
H (−∂yU0) dx

− ε

∫ ∞

0
(∂yU1)H ′(−∂yU0) dx

+ ε2
∫ ∞

0

[
(−∂yU2)H ′(−∂yU0) + 1

2
(∂yU1)2H ′′(−∂yU0)

]
dx + O(ε3). (A3)

The zeroth-order term is the reattachment location xr0 of the uncontrolled flow. The first-order term
xr1 is linear in U1 and is therefore zero when averaging over z. The second-order term contains
derivatives of H , which can be obtained defining G(x) = H[−∂yU (x, 0)] = H (θ ) and using the
relations

G′(x) = d[H (θ )]

dx
= dH

dθ

dθ

dx
= −H ′(θ )∂xyU, (A4)

G′′(x) = d

dx
[−H ′(θ )∂xyU ]

= −H ′(θ )
d

dx

(
∂xyU

) − d[H ′(θ )]

dx
∂xyU

= −H ′(θ )∂xxyU − d2H

dθ

dθ

dx
∂xyU

= −H ′(θ )∂xxyU + H ′′(θ )(∂xyU )2, (A5)

which yields

H ′(θ ) = −G′(x)

∂xyU
= δ(x − xr )

∂xyU
, (A6)

H ′′(θ ) = 1

(∂xyU )2
[H ′(θ )∂xxyU + G′′(x)] = 1

(∂xyU )2

[
δ(x − xr )

∂xyU
∂xxyU − δ′(x − xr )

]
, (A7)

with δ(x) the Dirac δ function. The second-order term thus becomes

xr2 =
∫ ∞

0

[
(−∂yU2)H ′(θ0) + 1

2
(∂yU1)2H ′′(θ0)

]
dx

=
∫ ∞

0

{
(−∂yU2)

δ(x − xr )

∂xyU0
+ 1

2

(∂yU1)2

(∂xyU0)2

[
δ(x − xr )

∂xyU0
∂xxyU0 − δ′(x − xr )

]}
dx

= − ∂yU2(xr0)

∂xyU0(xr0)
+ 1

2

(∂yU1)2

(∂xyU0)2

∂xxyU0

∂xyU0

∣∣∣∣
xr0

+ 1

2

d

dx

[
(∂yU1)2

(∂xyU0))2

]
xr0

= − ∂yU2

∂xyU0

∣∣∣∣
xr0

+ (∂yU1)(∂xyU1)

(∂xyU0)2

∣∣∣∣
xr0

− (∂xxyU0)(∂yU1)2

2(∂xyU0)3

∣∣∣∣
xr0

. (A8)
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APPENDIX B: SIMPLIFICATION OF THE SENSITIVITY OPERATORS

With a spanwise-periodic control of the form

Uc(x, y, z) =
⎛
⎝Ũc(x, y) cos(βz)

Ṽc(x, y) cos(βz)
W̃c(x, y) sin(βz)

⎞
⎠, C(x, y, z) =

⎛
⎝C̃x(x, y) cos(βz)

C̃y(x, y) cos(βz)
C̃z(x, y) sin(βz)

⎞
⎠, (B1)

the first-order flow modification is of the form

Q1(x, y, z) =

⎛
⎜⎜⎝

Ũ1(x, y) cos(βz)
Ṽ1(x, y) cos(βz)
W̃1(x, y) sin(βz)
P̃1(x, y) cos(βz)

⎞
⎟⎟⎠. (B2)

Let us consider the first term xr2,I in (16)–(18). Given the form of Q1, the right-hand side −U1 ·
∇U1 of (10) is the sum of 2D and 3D terms:

f2D(x, y) = −1

2

⎛
⎝(Ũ1∂x + Ṽ1∂y − βW̃1)Ũ1

(Ũ1∂x + Ṽ1∂y − βW̃1)Ṽ1

0

⎞
⎠, (B3)

f3D(x, y, z) = −1

2

⎛
⎝(Ũ1∂x + Ṽ1∂y + βW̃1)Ũ1 cos(2βz)

(Ũ1∂x + Ṽ1∂y + βW̃1)Ṽ1 cos(2βz)
(Ũ1∂x + Ṽ1∂y + βW̃1)W̃1 sin(2βz)

⎞
⎠. (B4)

The spanwise-harmonic forcing f3D(x, y, z) induces a 3D spanwise-harmonic response Q3D
2 (x, y, z)

that yields a zero-mean variation x3D
r2,I (z). By contrast, the 2D forcing term f2D(x, y) induces the 2D

response

Q2D
2 (x, y) =

⎛
⎜⎜⎝

U 2D
2 (x, y)

V 2D
2 (x, y)

0
P2D

2 (x, y)

⎞
⎟⎟⎠ (B5)

that yields a nonzero mean x2D
r2,I. Recalling (22), one can therefore write

x2D
r2,I = (U†|f2D) (B6)

= −1

2

∫∫
U †(Ũ1∂x + Ṽ1∂y − βW̃1)Ũ1 + V †(Ũ1∂x + Ṽ1∂y − βW̃1)Ṽ1 (B7)

= −1

2

∫∫
Ũ1(U †∂xŨ1 + V †∂xṼ1 − βW̃1U

†) + Ṽ1(U †∂yŨ1 + V †∂yṼ1 − βW̃1V
†) (B8)

= (Ũ1 |̃SI′Ũ1), (B9)

where the simplified second-order sensitivity operator

S̃I′ = −1

2

⎡
⎣ U †∂x V †∂x 0

U †∂y V †∂y 0
−βU † −βV † 0

⎤
⎦ (B10)

can be seen formally as a 2D restriction of the operator U† · ∇()T .
Let us now consider the second and third terms xr2,II and xr2,III in (16)–(18). Given (B2), it is

straightforward to show that

x2D
r2,II = (Ũ1 |̃SIIŨ1), x2D

r2,III = (Ũ1 |̃SIIIŨ1), (B11)
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where the simplified second-order sensitivity operators are

S̃II = 1

2[∂xyU0(xr0)]2
δ(xr0)(ex∂y)† ⊗ (ex∂xy), (B12)

S̃III = −∂xxyU0(xr0)

4[∂xyU0(xr0)]3
δ(xr0)(ex∂y)† ⊗ (ex∂y), (B13)

Finally, the mean second-order variation is

x2D
r2 = (

Ũ1

∣∣̃S2,Ũ1
Ũ1

)
where S̃2,Ũ1

= S̃I′ + S̃II + S̃III, (B14)

and the second-order sensitivities to control defined by (35) read

S̃2,C̃ = PT Ã†
0,C̃

−1
S̃2,Ũ1

Ã0,C̃
−1

P (volume-forcing-only Ã0,C̃), (B15)

S̃2,Ũc
= PT Ã†

0,Ũc

−1
S̃2,Ũ1

Ã0,Ũc

−1
P (wall-forcing-only Ã0,Ũc

), (B16)

with

Ã0 =

⎡
⎢⎢⎣

U0∂x + V0∂y + ∂xU0 − D̃ ∂yU0 0 ∂x

∂xV0 U0∂x + V0∂y + ∂yV0 − D̃ 0 ∂y

0 0 U0∂x + V0∂y − D̃ −β

∂x ∂y β 0

⎤
⎥⎥⎦, (B17)

D̃ = Re−1(∂xx + ∂yy − β2). (B18)
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