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Transient shape variation and inner flow field
of a rotating two-lobed liquid droplet
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Levitated liquid droplets are not in contact with containers, and rotating two-lobed
droplets are used for measuring the viscosities of molten material. In order to discuss
the characteristics of two-lobed droplets, the transient shape variation and the inner flow
field of a rotating liquid droplet are simulated numerically in this study. The calculated
two-lobed shapes are shown to agree with the existing experimental and calculated results
obtained under steady-state conditions. It is also shown that the relation between the
maximum deformation and the rotation rate agrees with the experimental results. It is found
that two vortices appear in the two-lobed droplet and the countercurrent flow is formed
in between two lobes. The relation between the maximum deformation and the rotation
rate is affected by the surface tension and the density, and the effect of density becomes
small as the deformation increases. In contrast, the relation between the deformation
parameter based on the minimum diameter and the aspect ratio is not affected by the droplet
properties.
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I. INTRODUCTION

A levitated liquid droplet is used for measuring thermophysical properties of molten materials,
since the levitated material is not in contact with containers or crucibles, and the effect of the
container wall is eliminated for precise measurement. Electromagnetic levitation is one of the
levitation techniques for liquid metal since the Lorentz force compensates the gravitational force
and the temperature is controlled by inductive heating. The surface tension of liquid metals has
been measured [1–3], which can give access to the surface contamination [4]. The effect of
magnetic field also has been discussed [5]. The liquid oscillation characterization can also enable
the measurement of the molten metal properties, whether under standard gravitation conditions
or under microgravity conditions [6,7]. The oscillation frequency has been studied theoretically
[8,9] and numerical simulations have been performed [10,11]. Diamagnetic levitation, in which
the magnetogravitational potential is used to levitate large spherical droplets, has been used to
observe shape oscillations [12,13]. Electrostatic levitation, in which a charged sample is levitated in
between vertically oriented parallel electrodes, also has been used for measuring the properties
of molten materials [14–16]. A heating device is necessary to keep the material temperature
constant for liquid metal, but electrostatic levitation without heating has been used for observing
crystal growth processes [17] and for measurement of organic solvent [18]. Aerodynamic levitation
was proposed to measure the material properties of corium, which is the molten mixture of
nuclear fuels, for numerical simulations of nuclear accidents [19]. The objects levitated by
acoustic forces have been used for exploring chemical and biological processes such as microre-
actors [20] and for manipulating cells and drugs without touching or contaminating them [21].
Large deformation of a droplet due to increasing sound intensity has been studied experimen-
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tally and numerically [22]. The progress and application of acoustic levitation were reviewed
in [23].

The dynamics of levitated or free droplets including shape oscillations has been studied by many
researchers for applications such as measurement of material properties and for understanding
of droplet physics [24]. The surface tension was obtained based on the linear theory [25], in
which the oscillation amplitude was assumed to be small. The oscillation frequency was shown
to decrease with increasing amplitude [26–29] and numerical simulations were performed [30,31].
Nonlinear oscillations with higher-order oscillation modes have been discussed [32–40] along
with the frequency shift. The effect of rotation on the droplet has been studied theoretically and
the stability of equilibrium shape [41,42], the frequency shift [43,44], and the viscous damping
[45] have been discussed. The frequency shift and the viscous damping also have been observed
experimentally [46] and calculated [47–49].

As for the shapes, the droplet evolves from a sphere to an ellipsoid with increasing rotation
rate. The axisymmetric shape becomes unstable and the nonaxisymmetric shape appears, which
is elongated with decreasing rotation rate. The nonaxisymmetric shape then becomes a two-lobed
(dumbbell) shape. The axisymmetric shapes have been discussed theoretically in relation to atomic
nuclei [50]. The equilibrium shapes have been calculated numerically and the axisymmetric, two-,
three-, and four-lobed shapes were shown by taking into account the surface energy and the
rotation energy [51,52]. The bifurcation from axisymmetric to two-lobed shapes was observed
experimentally and compared with the calculated results [53]. The axisymmetric, nonaxisymmetric,
and two-lobed shapes were experimentally studied by solidifying rotating liquid droplets [54].
The deformation of the two-lobed shape was evaluated based on the radius of the central cross
section [55] and the theoretical model for representing the two-lobed shape was discussed [56]. It
was proposed that the transient of two-lobed shape could be used for measuring the viscosity of
molten material with the viscosity range from 0.1 to 100 Pa s [18]. Transient variations including
axisymmetric and two-lobed shapes were studied in relation to the formation of natural tektites [57]
and simulated [58–60].

In this study, the transient shape variation of a rotating droplet is simulated numerically using
the experimental conditions in [18] and the relation between the deformation and the rotation rate
is discussed by comparing with the experimental data. The flow field in the two-lobed droplet is
shown and the effects of viscosity, surface tension, and density are discussed.

II. NUMERICAL CONDITIONS

The flow field including a rotating droplet is simulated using the level set method [61], and the
governing equations and the numerical method are described in Appendixes A and B, respectively.
The numerical conditions are based on the experimental conditions in [18]. In the experiment,
electrostatic levitation was used and the levitated droplet was rotated around the vertical center
axis by the acoustic standing wave in the horizontal direction. The transient shape variation of
the two-lobed droplet was observed by the line sensor and the viscosity was obtained from the time
variation of the minimum diameter which was in the central cross section in between two lobes. The
outline of the simulation region and the rotating droplet is shown in Fig. 1. The simulation region is a
three-dimensional rectangular region with a size of 14.1 × 14.1 × 7.7 mm3, which was determined
by preliminary sensitivity calculations shown in Appendix C. Periodic boundary conditions are
applied on all sides of the simulation region. A spherical droplet with a radius of 2.0 mm is located
in the center of the simulation region. Propylene carbonate (with density ρ, viscosity η, and surface
tension γ of 1206 kg/m3, 0.0026 Pa s, and 0.043 N/m, respectively) and air (ρ = 1.166 kg/m3 and
η = 1.819 × 10−5Pas) are assumed for the inside and outside properties of the droplet, respectively.
A rotation rate of 30 rps is imposed on the droplet initially as a rigid rotation around the vertical
center axis. The droplet Reynolds number, Weber number, and capillary number are initially about
700, 16, and 0.023, respectively. The droplet shape becomes an ellipsoid, then a nonaxisymmetric
shape, and finally a two-lobed shape. The two-lobed droplet is elongated gradually and breaks up.
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FIG. 1. Outline of the simulation region and rotating droplet: (a) initial condition and (b) two-lobed shape.

The number of calculation mesh cells and the grid size are determined in Appendix C so that the
dynamics of the two-lobed droplet is not affected by these numerical conditions. The maximum
Courant number is smaller than 0.1 throughout the calculations.

The resonant angular velocity ω0 =
√

64γ /ρL3
0 is used for nondimensional parameters in the

following section and Appendix C. It is about 188.8 rad/s, and the initial rotation of 30 rps
corresponds to it.

III. RESULTS AND DISCUSSION

A. Shape variation

The calculated shapes of the two-lobed droplet at different timings are shown in Fig. 2, where
the steady-state calculations in [62] are also indicated by dashed lines. The two-lobed droplets
are obtained at nondimensional times of 49.6 and 56.5 in Figs. 2(a) and 2(b), respectively. The
nondimensional rotation rates at these timings are 0.37 and 0.28, respectively. The steady-state
shapes shown by the dashed lines were calculated with rotation rates of 0.3790 and 0.2885,
respectively [62]. The transient but slow process is necessary for the viscosity measurement using
the two-lobed shape. It is shown in Fig. 2 that the present transient results agree with the steady-state
results in terms of the droplet shape and the transient process is sufficiently slow.

The simulation results are compared with the existing experimental results in Fig. 3. The
maximum deformation is plotted against the rotation rate in Fig. 3(a), where the rotation rate is
nondimensionalized by the resonant angular velocity ω0. The maximum deformation is obtained as
the maximum distance between two surface cells, which include the droplet surface, and the rotation
rate is calculated as the time variation of its rotation angle. The maximum deformation oscillates
slightly even after the initial transient, as shown in Fig. 9 in Appendix C, and the calculated rotation
rate also oscillates. Each simulation point shown in Fig. 3 is thus obtained as the average over the
nondimensional time of 0.6. The experimental results with smaller deformation are shown to be
larger than the simulation results in Fig. 3(a). The simulated droplet is under the transient condition

FIG. 2. Two-lobed droplet shape at the nondimensional time of (a) 49.6 and (b) 56.5. The nondimensional
rotation rates at these timings are (a) 0.37 and (b) 0.28. The outlines indicated by dashed lines correspond to
the calculated results for the steady state with a rotation rate of (a) 0.3790 and (b) 0.2885 in [62].
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FIG. 3. Comparison with experimental results: (a) the maximum deformation Lmax/L0 plotted against the
rotation rate ω/ω0 [18] and (b) the deformation parameter L3

min/V plotted against the aspect ratio Lmin/Lmax

[54] along with the calculated results in [54].

and the nonaxisymmetric shape is still affected by the initial condition. The simulation results,
however, agree with the experimental results for large deformation of a two-lobed droplet with the
maximum deformation larger than 1.8.

The deformation parameter L3
min/V is plotted against the aspect ratio of the droplet in Fig. 3(b).

The deformation parameter is a cube of minimum diameter Lmin in Fig. 1, nondimensionalized
by the volume of droplet V. The minimum diameter is the diameter of the central cross section
of a nonaxisymmetric or two-lobed droplet as shown in Fig. 1 and the aspect ratio is defined by
Lmin/Lmax. The experimental data and the calculated results in [54] are also plotted in Fig. 3(b).
Magnetic levitation was used in the experiment, and air flow in the horizontal direction was used
for rotation [54]. The rotating droplet of molten wax was solidified by rapid cooling, and the shape
of solidified droplet, which was an artificial tektite, was measured. The axisymmetric shape was
observed in the experiment for the aspect ratio larger than 0.67, while the nonaxisymmetric shape
was seen for the aspect ratio smaller than 0.67. It was also reported that the two-lobed shape was
observed for the aspect ratio smaller than 0.45. The two-lobed shape was shown to be obtained
theoretically for the aspect ratio smaller than 0.52 [56]. The experimental and calculated results for
the nonaxisymmetric shape in [54] are shown to be larger than the simulation results. The simulated
droplets are still affected by the initial condition as seen in Fig. 3(a). The simulation results are
however found to agree with the experimental and calculated results for the two-lobed shape in
[54].

In this study, the initial rotation is numerically imposed on the spherical droplet, while an
acoustic force and air flows were used in the experiments in Figs. 3(a) and 3(b), respectively,
to rotate the spherical droplet. The calculated results in Figs. 2 and 3(b) were obtained for the
steady-state rotation with specified rotation rates. Although the driving force and the method for
rotation were different, the present simulation was confirmed to reproduce the shape variation of a
rotating two-lobed droplet.

B. Inner flow field

The inner flow field of a two-lobed droplet is discussed here, since the flow condition is
of importance for the viscosity measurement using the two-lobed droplet. The flow field at the
nondimensional time of 57.1 is shown in Fig. 4, where the droplet shape and the velocity vector are
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FIG. 4. Droplet shape and velocity vector at the nondimensional time of 57.1: (a) the flow field in the fixed
coordinate and (b) the flow field in the rotating coordinate.

shown in the horizontal cross section at the vertical midelevation. The nondimensional rotation rate
and the aspect ratio for the two-lobed shape shown in Fig. 4 are about 0.26 and 0.14, respectively,
and the Reynolds number, Weber number, and capillary number are estimated to be about 920, 12,
and 0.013, respectively. The droplet is rotating counterclockwise in Fig. 4 and the rotating flow field
is shown in Fig. 4(a) with the rotation axis at the center of the droplet. The velocity vector shown in
Fig. 4(b) is obtained by subtracting the rotation rate of the droplet from the velocity vector shown in
Fig. 4(a). The flow field shown in Fig. 4(a) thus corresponds to the flow field in the fixed coordinate
and that in Fig. 4(b) to the flow field in the rotating coordinate. The vector scale is four times larger
in Fig. 4(b) to see clearly the flow field. It is found in the inner flow field shown in Fig. 4(b) that
two vortices are formed in the two-lobed droplet. Each vortex is in each lobe and the rotation of the
vortex is counterclockwise for both vortices. The countercurrent flow appears in between two lobes
at around the rotation axis of the droplet. The measurement of viscosity using the rotating two-lobed
droplet is based on a filament rheometer [63,64] and it might be necessary to evaluate the effect of
countercurrent flow in between two lobes.

The transient variations from the nonaxisymmetric shape to the two-lobed shape are shown in
Fig. 5. The velocity vectors in the rotating coordinate are also indicated in Fig. 5. The droplet shape
and velocity vectors in Figs. 5(a), 5(b), 5(c), and 5(d) are obtained at nondimensional times of
34.6, 39.1, 43.6, and 48.1, respectively. A single vortex is seen in Fig. 5(a) and the vortex center
corresponds to the rotation axis of the droplet. The rotation of the vortex is counterclockwise
and the same as that of the droplet. In Figs. 5(b) and 5(c) the vortex is elongated according to
the shape variation and the vortex center is also elongated. Two vortices appear in the two-lobed
shape in Fig. 5(d). It is indicated that the single vortex is elongated and becomes two vortices as
the nonaxisymmetric shape becomes the two-lobed shape (nonaxisymmetric shapes with concave
central parts). The two vortices are thus rotating counterclockwise and the countercurrent flow

FIG. 5. Transient variations of droplet shape and velocity vector at the nondimensional time of (a) 34.6,
(b) 39.1, (c) 43.6, and (d) 48.1.
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FIG. 6. Effect of viscosity: (a) the maximum deformation Lmax/L0 plotted against the rotation rate ω/ω0

and (b) the deformation parameter L3
min/V plotted against the aspect ratio Lmin/Lmax.

appears in between two lobes as shown in Fig. 4(b). The aspect ratios of the droplets are about
0.64, 0.48, 0.38, and 0.30 in Figs. 5(a), 5(b), 5(c), and 5(d), respectively. The relation between the
droplet shape and the aspect ratio shown in Fig. 5 corresponds to the experimental results in [54].

C. Effects of viscosity, surface tension, and density

Sensitivity calculations, in which one parameter is changed and the other numerical conditions
are the same, are performed and the effects of viscosity, surface tension, and density on the
two-lobed droplet are discussed. The effects of viscosity are shown in Fig. 6, where the simulation
cases with viscosities of 0.0013, 0.0026, 0.0039, and 0.0052 Pa s are indicated along with the
experimental results with a viscosity of 0.0026 Pa s. The maximum deformation against the rotation
rate is shown in Fig. 6(a), while the deformation parameter against the aspect ratio is in Fig. 6(b).
The dispersion for the small viscosity case of 0.0013 Pa s is larger than that for other cases in
Fig. 6(a), since the effect of the initial shape oscillation remains for a longer time. The dispersion
for large deformation is however small for other cases, and the effects of viscosity on the maximum
deformation are shown to be small in Fig. 6(a), since the two-lobed shape is observed under
slow transient conditions with gradual elongation. The measurement of viscosity using the rotating
two-lobed droplet is performed under these conditions, and thus the inner flow field shown above
would be important. The deformation parameter in Fig. 6(b) is not affected by the viscosity and all
the cases with different viscosity agree with the experimental and calculated results in [54] for the
two-lobed shape.

The effects of surface tension on the maximum deformation and the deformation parameter are
shown in Figs. 7(a) and 7(b), respectively, where the simulation cases with surface tensions of
0.035, 0.043, 0.052, and 0.060 N/m are indicated along with the experimental results with a surface
tension of 0.043 N/m. The maximum deformation in Fig. 7(a) is shown to be affected by the surface
tension even for large deformation, in contrast to the effect of viscosity shown in Fig. 6(a). It is
found for the same deformation that a higher rotation rate is necessary for higher surface tension.
This indicates that the surface tension is balanced with the elongation due to rotation. The effect
of surface tension should thus be taken into account for the measurement of viscosity using the
rotating two-lobed droplet. The deformation parameter shown in Fig. 7(b) is however not affected
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FIG. 7. Effect of surface tension: (a) the maximum deformation Lmax/L0 plotted against the rotation rate
ω/ω0 and (b) the deformation parameter L3

min/V plotted against the aspect ratio Lmin/Lmax.

by the surface tension and all the cases with different surface tension agree with the experimental
and calculated results in [54] for the two-lobed shape.

The effects of density on the maximum deformation and the deformation parameter are shown
in Figs. 8(a) and 8(b), respectively, where the simulation cases with densities of 800, 1000, 1206,
and 1400 kg/m3 are indicated along with the experimental results with a density of 1206 kg/m3.
The effects of density on the maximum deformation are large for small deformation and small for
large deformation, as shown in Fig. 8(a). It is seen for the same deformation that a higher rotation
rate is necessary for smaller density, since the centrifugal force depends on the density and the
rotation rate. It is noted that the simulation results with different density seem to be converged to

FIG. 8. Effect of density: (a) the maximum deformation Lmax/L0 plotted against the rotation rate ω/ω0 and
(b) the deformation parameter L3

min/V plotted against the aspect ratio Lmin/Lmax.

083607-7



TADASHI WATANABE

the point with the largest deformation. In other words, the maximum deformation is affected by the
density, but the effect of density becomes small as the maximum deformation increases, in contrast
to the effect of surface tension shown in Fig. 7(a). The effect of density should also be taken into
account for the measurement of viscosity using the rotating two-lobed droplet. The deformation
parameter shown in Fig. 8(b) is not affected by the density and all the cases with different density
agree with the experimental and calculated results in [54] for the two-lobed shape. It is thus found
from Figs. 6(b), 7(b), and 8(b) that the relation between the deformation parameter and the aspect
ratio is not affected by the droplet properties.

IV. CONCLUSION

The transient shape variation and the inner flow field of a rotating liquid droplet have been
obtained in this study by solving the Navier-Stokes equations using the level set method. The calcu-
lated two-lobed shapes were shown to agree with the experimental and calculated results obtained
under steady-state conditions [54,62]. It was also shown that the relation between the maximum
deformation and the rotation rate agreed with the experimental results [18]. It was found that two
vortices appeared in the two-lobed droplet, while a single vortex was formed in the nonaxisymmetric
droplet. The vortex in the nonaxisymmetric droplet was elongated and two vortices were formed as
the nonaxisymmetric droplet became the two-lobed droplet. The countercurrent flow was found
in between two lobes. The relation between the maximum deformation and the rotation rate was
affected by the surface tension and the density, and the effect of density became small as the
deformation increased. It might thus be necessary to evaluate the effects of countercurrent flow,
the surface tension, and the density for the viscosity measurement using the two-lobed droplet. In
contrast, the relation between the deformation parameter based on the minimum diameter and the
aspect ratio was not affected by the droplet properties such as the viscosity, the surface tension, and
the density.

The shape variation and the inner flow field of rotating liquid droplets are of importance not only
for the viscosity measurement using the two-lobed droplet but also for the application using levitated
liquid droplets such as in chemical and biological processes, cell and drug manipulations, and tektite
formation. The simulation results obtained in this study would be useful for wide application.

APPENDIX A: GOVERNING EQUATION

The flow field including a rotating droplet is simulated using the level set method [61] and the
numerical model is described briefly here. The flow fields in and around the droplet are described
by the equation of continuity and the incompressible Navier-Stokes equations

∇ · u = 0 (A1)

and

ρ
Du
Dt

= −∇p + ∇ · (2ηD) − Fs, (A2)

where ρ, u, p, and η are the density, the velocity, the pressure, and the viscosity, respectively, D is
the viscous stress tensor, and Fs is a body force due to the surface tension. External force fields used
in the experiments are not simulated in this study since the numerical calculations [51,54,62] did
not take external forces into account and the good agreement with the experimental and calculated
results was shown. The surface tension force is given by

Fs = γ κδ∇φ, (A3)

where γ , κ , δ, and φ are the surface tension, the curvature of the interface, the Dirac delta function,
and the level set function, respectively. The level set function is a distance function defined as the
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normal distance from the interface: φ = 0 at the interface, φ < 0 in the liquid region, and φ > 0 in
the gas region. The curvature of the interface is expressed in terms of φ:

κ = ∇ ·
( ∇φ

|∇φ|
)

(A4)

The density and viscosity are given, respectively, by

ρ = ρl + (ρg − ρl )H (A5)

and

η = ηl + (
ηg − ηl

)
H, (A6)

where the subscripts g and l indicate gas and liquid phases, respectively. In Eqs. (A5) and (A6), H
is the smoothed function similar to the Heaviside function, defined by

H =

⎧⎪⎨
⎪⎩

0 (φ < −ε)
1
2

[
1 + φ

ε
+ 1

π
sin

(
πφ

ε

)]
(−ε � φ � ε)

1 (ε < φ),

(A7)

where ε is a small positive constant for which |∇φ| = 1 for |φ| � ε. The evolution of φ is given by

Dφ

Dt
= 0. (A8)

In order to maintain the level set function as a distance function, reinitialization of the level set
function is proposed by solving the equation

∂φ

∂τ
= sgn(φ0)(1 − |∇φ|), (A9)

where τ is an artificial time and sgn(φ0) indicates the sign of the level set function at the beginning
of the reinitialization procedure. The level set function becomes a distance function (|∇φ| = 1) in
the steady-state solution ( ∂φ

∂τ
= 0) of Eq. (A9). The smoothed sign function proposed for numerical

treatment of reinitialization is used:

sgn(φ0) = φ0√
φ2

0 + ε2
. (A10)

The following equation is also solved to preserve the total mass in time [65]:

∂φ

∂τ
= (A0 − A)(P − κ )|∇φ. (A11)

Here A0 denotes the total mass for the initial condition and A denotes the total mass corresponding
to the level set function. In addition, P is a positive constant for stabilization and 1.0 was used.
In Eq. (A11), τ is an artificial time and the total mass is conserved (A0 = A) in the steady-state
solution ( ∂φ

∂τ
= 0). Equations (A9) and (A11) are additional equations for modification of the level

set function at the new time level.

APPENDIX B: NUMERICAL METHOD

The finite difference method is used to solve the governing equations. The staggered mesh
system is used for spatial discretization of velocities. The convection terms are discretized using
the second-order upwind scheme and other terms by the second-order central difference scheme.
Time integration is performed by the second-order Adams-Bashforth method. The simplified marker
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FIG. 9. Time variation of maximum deformation. The effects of region size are indicated for (a) the
horizontal direction and (b) the vertical direction. (c) Effects of grid size.

and cell method is used to obtain pressure and velocities [66]. The pressure Poisson equation is
solved using the biconjugate gradient stabilized (Bi-CGSTAB) method. The domain decomposition
technique is applied and the mpi library is used for parallel computations, and the block Jacobi
preconditioner is used for the parallel Bi-CGSTAB method [67].

APPENDIX C: CONVERGENCE OF NUMERICAL RESULTS

The maximum deformation Lmax in Fig. 1(b), which is defined as the longest straight line between
two points on the surface in the horizontal cross section at the vertical midelevation, is shown in
Fig. 9. The maximum deformation is nondimensionalized by the initial diameter L0 and the time t
is nondimensionalized by the resonant period T, which is given by 2π/ω0. The effects of simulation
region size are also indicated in Fig. 9. The simulation region size ranges from 12.3 to 14.7 mm in
the horizontal direction in Fig. 9(a) with a vertical size of 7.7 mm and from 5.9 to 8.3 mm in the
vertical direction in Fig. 9(b) with a horizontal size of 14.1 mm. The grid size is fixed at 0.1 mm in
Figs. 9(a) and 9(b) and the number of mesh cells is changed in these sensitivity calculations. The
effects of region size are small enough for 14.1 × 14.1 × 7.7mm3, as shown in Figs. 9(a) and 9(b),
and this size is used in this study. The grid size ranges from 0.097 to 0.105 mm in Fig. 9(c) with the
same number of mesh cells: 141 × 141 × 77. The simulation region size is thus slightly changed in
Fig. 9(c). The effects of grid size are seen at around the nondimensional time of about 30, where the
droplet becomes a nonaxisymmetric shape. The increase in maximum deformation is however not
affected afterward for the two-lobed droplet and the grid size of 0.1 mm is used in this study.

The maximum deformation is unity initially and becomes large and oscillates around the value of
1.2 as shown in Fig. 9 due to the imposed rotation. The value of 1.2 corresponds to the smallest value
for the nonaxisymmetric shape in the experiment as shown in Fig. 3(a) and this value may show an
unstable state for the transition to the nonaxisymmetric shape. The maximum deformation increases
after the nondimensional time of about 25 and the droplet becomes a nonaxisymmetric shape.
The nonaxisymmetric shape gradually becomes the two-lobed shape as the maximum deformation
increases. The two-lobed shape appears at the nondimensional time of about 43 with a maximum
deformation of about 1.8. The two-lobed shape is finally broken up at the nondimensional time of
about 58 in Fig. 9.
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