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Astrophysical simulations of convection frequently impose different thermal boundary
conditions at the top and the bottom of the domain in an effort to more accurately model
natural systems. In this work, we study Rayleigh-Bénard convection (RBC) under the
Boussinesq approximation. We examine simulations with mixed temperature boundary
conditions in which the flux is fixed at the bottom boundary and the temperature is fixed
at the top (“FT”). We aim to understand how FT boundaries change the nature of the
convective solution compared to the traditional choice of thermal boundaries, in which
the temperature is fixed at the top and bottom of the domain (“TT”). We demonstrate that
the timescale of thermal relaxation for FT simulations is dependent upon the initial condi-
tions. “Classic” initial conditions that employ a hydrostatically—and thermally—balanced
linear temperature profile exhibit a long thermal relaxation. This long relaxation is not
seen in FT simulations, which use a TT simulation’s nonlinear state as initial conditions
(“TT-to-FT”). In the thermally relaxed, statistically stationary state, the mean behavior
of an FT simulation corresponds to an equivalent simulation with TT boundaries, and
time- and volume-averaged flow statistics like the Nusselt number and the Péclet number
are indistinguishable between FT and TT simulations. FT boundaries are fundamentally
asymmetric, and we examine the asymmetries that these boundaries produce in the
flow. We find that the fixed-flux boundary produces more extreme temperature events
than the fixed-temperature boundary. However, these near-boundary asymmetries do not
measurably break the symmetry in the convective interior. We briefly explore rotating RBC
to demonstrate that our findings with respect to thermal relaxation carry over to this more
complex case, and to show the power of TT-to-FT initial conditions.

DOI: 10.1103/PhysRevFluids.5.083501

I. INTRODUCTION

Convection is a crucial heat transport mechanism in the atmospheres and interiors of stars and
planets. Numerical simulations are a commonly used tool in studies of geophysical or astrophysical
convection. These studies range from examinations of convection in the simplified Boussinesq
approximation [1–3] to highly complex “dynamo simulations,” which include magnetism and
atmospheric density stratification [4,5]. Regardless of complexity, numerically simulated convection
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is fundamentally driven by some combination of imposed boundary conditions and internal
heating profiles [6]. In studies of Boussinesq convection, the standard choice is to hold constant
the temperature difference across the domain by fixing the temperature at the upper and lower
boundaries. However, a common choice of thermal boundary conditions in astrophysical convection
[7–14] is to fix the flux entering the domain through the bottom boundary and to fix the value of a
thermodynamic quantity (e.g., temperature or entropy) at the top boundary. We are unaware of any
study that has examined the consequences of imposing these “mixed” boundaries that are frequently
favored in astrophysical convection studies.

In this work, we examine how the choice of using “mixed” thermodynamic boundary conditions
affects the evolved nonlinear convective state in the simplest possible model: Rayleigh-Bénard
convection (RBC) under the Boussinesq approximation. In RBC, temperature is the only thermody-
namic quantity, and throughout this work we will adopt the nomenclature of past authors (see, e.g.,
Ref. [15]) and refer to the choice of fixing the flux at the bottom and temperature at the top as “FT”
boundary conditions. We will refer to the common choice of fixing temperature at both boundaries
as “TT” boundaries, and fixing the flux at both boundaries as “FF” boundaries.1

It is generally assumed that, in their statistically stationary states, simulations with FT boundaries
should behave similarly to those with FF boundaries [6,16]. Early studies of FF convection often
focused on flow morphologies, because large-to-infinite aspect ratio convective rolls are linearly
unstable for this choice of boundary condition (see, e.g., Ref. [17]). However, the onset properties
and resultant flow morphologies in FT simulations more strongly resemble TT dynamics [15], in
that both are linearly unstable at a well-defined, finite aspect ratio. Despite these differences near
convective onset, FF and TT boundaries have been shown to exhibit the same scaling of convective
heat transport (quantified by the Nusselt number, Nu) as a function of increased convective driving
(quantified by the Rayleigh number, Ra) [18]. However, FT boundaries introduce complexities into
the convective solution to which neither FF nor TT boundaries are exposed. First, the evolved
mean temperature of a simulation with FT boundaries differs from the initial mean temperature,
and therefore the thermal reservoir of the convective system must evolve (“thermally relax”) over
time [19]. Second, FT boundary conditions are fundamentally asymmetric, and it is unclear if these
asymmetries affect the evolved convective solution.

In this paper, we investigate the thermal relaxation of, and the asymmetries in, RBC with FT
boundary conditions. We also compare relaxed FT solutions to TT solutions. We find that when
classic initial conditions that are in hydrostatic and thermal equilibrium are employed, the thermal
relaxation of FT systems is very long compared to TT systems, in which it is nearly instantaneous.
The thermal relaxation of FT simulations is analogous to a sweep through parameter space in which
dynamics are sampled over a range of values of Ra. We also find that this long thermal relaxation
can be bypassed by constructing smarter initial conditions based on the expected evolved value of
Nu, or by simply using the results of TT simulations as initial conditions for FT simulations. Finally,
FT boundaries create some asymmetries in the convective flows, particularly in the boundary
layers, but these asymmetries do not appreciably change the bulk convective state compared to TT
simulations.

We present these findings as follows. In Sec. II, we describe our simulation setup, numerical
methods, initial conditions, and timescales in the convective systems. In Sec. III, we describe our
findings regarding the time evolution of FT systems. In Sec. IV, we study asymmetries in FT systems
and compare them to TT systems. In Sec. V, we show that these findings carry over to a more
complex system (rotating Rayleigh-Bénard convection) with some interesting implications. Finally,
in Sec. VI, we summarize our findings and briefly describe the implications of this work for the field
of astrophysical convection.

1Note, in Ref. [6], our TT, FF, and FT are, respectively, called RB1, RB2, and RB3.

083501-2



CONVECTIVE DYNAMICS WITH MIXED TEMPERATURE …

II. SIMULATION DETAILS

A. Equations, control parameters, boundary conditions, and numerics

We study incompressible RBC under a freefall nondimensionalization; for details of this
nondimensionalization, we refer readers to our previous work [19]. In Sec. V, we study convection
in the presence of vertical global rotation [20], and we include the Coriolis term in the momentum
equation for generality. The Boussinesq equations of motion are

∇ · u = 0, (1)

∂u
∂t

+
(

ω + 1

Ek Reff
ẑ

)
× u = −∇� + T1ẑ − 1

Reff
∇ × ω, (2)

∂T1

∂t
+ u · ∇T1 + w

∂T0

∂z
= 1

Peff
∇2T1, (3)

where u = (u, v,w) is the velocity, T = T0(z) + T1(x, y, z, t ) is the temperature (where T0 is a
background linearly unstable temperature profile and T1 are the fluctuations around that profile),
� is the reduced kinematic pressure [19], which enforces the incompressibility constraint, and
ω = ∇ × u is the vorticity. The dimensionless control parameters are the Rayleigh (Ra), Prandtl
(Pr), and Ekman (Ek) numbers, defined, respectively, as

Ra = gαL3
z �

νκ
= (Lz uff )2

νκ
, Pr = ν

κ
, Ek = ν

2�L2
z

, (4)

where uff is the freefall velocity, g is the gravitational acceleration, α is the coefficient of thermal
expansion, Lz is the domain depth, ν and κ are, respectively, the viscous and thermal diffusivity,
� is the global rotation frequency, and � is the nondimensional temperature scale (defined below).
These parameters set the freefall Reynolds (Reff) and Péclet (Peff) numbers,

Reff =
√

Ra

Pr
, Peff = Pr Reff, (5)

and throughout this work we hold Pr = 1 so that Reff = Peff. In nonrotating RBC (Secs. III and IV),
we set Ek = ∞.

The extent of our numerical domain vertically is z = [−0.5, 0.5] and horizontally is x, y =
[−	/2, 	/2], where 	 is the aspect ratio. The background temperature profile, T0(z) = 0.5 − z, is
unstable and linearly decreases from a value of 1 to 0 across the domain. The temperature scale, �,
is set by either the temperature jump across the domain [� = �T0 = T0(z = 0.5) − T0(z = −0.5)]
for TT boundaries or by the temperature gradient lengthscale (� = Lz∂zT0) for FT boundaries. We
define respectively a temperature (Ra�T ) and a flux (Ra∂zT ) Rayleigh number for these cases,

Ra�T = gαL3
z �T0

νκ
, Ra∂zT = gαL4

z ∂zT0

νκ
. (6)

We impose respectively TT and FT boundary conditions as

(TT) : T1 = 0 at z = −0.5, 0.5, (FT) : ∂zT1 = 0 at z = −0.5 and T1 = 0 at z = 0.5. (7)

In Secs. III and IV, we study nonrotating convection. For comparison with the literature, we
specify 	 = 2, and these simulations employ no-slip, impenetrable boundaries,

u = v = w = 0 at z = {−0.5, 0.5}. (8)

For this choice of boundary conditions, the critical values of the Rayleigh number and wavenumber
are (Ra∂zT , k) = (1295.78, 2.5519) for FT boundaries and (Ra�T , k) = (1707.76, 3.1163) for TT
boundaries [6]. In our 	 = 2 box, the smallest wavenumber permitted is k = π , and at that
wavenumber the critical values are Ra∂zT = 1357.57 for FT boundaries and Ra�T = 1707.94 for
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TT boundaries, which are slightly larger than the classical onset values. It is reasonable to expect
important differences between FT and TT solutions at low supercriticalities due to the difference in
onset. However, for the supercriticalities of O(105+) studied here, we do not expect this difference
in linear stability to be very important. Many of these simulations are restricted to two-dimensional
(2D) convection by setting ∂y = v = 0.

The rotating cases in Sec. V employ stress-free, impenetrable boundaries,

∂zu = ∂zv = w = 0 at z = {−0.5, 0.5}. (9)

We follow previous work [21] and study three-dimensional (3D) tall, skinny boxes with 	 =
10λc(Ek), where λc(Ek) is the wavelength of convective onset at the specified value of Ek. For the
cases studied here at Ek = 10−6, and for TT boundaries, λc(10−6) ≈ 4.81 × 10−2 and the critical
Rayleigh number is Ra�T ≈ 9.2 × 108.

We utilize the Dedalus2 pseudospectral framework [22,23] to evolve Eqs. (1)–(3) forward in
time. Our 2D simulations use an implicit-explicit (IMEX), third-order, four-stage Runge-Kutta
time-stepping scheme RK443; our 3D simulations use the IMEX, second-order, two-stage Runge-
Kutta scheme RK222 [24]. Variables are time-evolved on a dealiased Chebyshev (vertical) and
Fourier (horizontal, periodic) domain in which the physical grid dimensions are 3/2 the size of the
coefficient grid. The codes used to run the simulations and to create the figures in this work are
available publicly online in Zenodo repositories [25,26].3

B. Output quantities and mapping between temperature nondimensionalizations

Throughout this work, we will measure and report the evolved value of the Nusselt number (Nu).
We define and measure Nu instantaneously as

Nu ≡
〈

wT − Pe−1
ff ∂zT

−Pe−1
ff 〈∂zT 〉

〉
= 1 + Peff

〈wT 〉
−�T

, (10)

where 〈〉 represent a volume average (〈s〉 ≡ ∫∫
s dx dz/	 in two dimensions and 〈s〉 ≡∫∫∫

s dx dy dz/	2 in three dimensions for some scalar quantity s), and �T = 〈∂zT 〉 is the (negative)
temperature difference between the top and bottom plate. In a thermally relaxed, statistically
stationary state [27],

Nu = βLz

�T
, where β

{
< −1 (TT),
= −1 (FT), �T

{= −1 (TT),
∈ [−1, 0) (FT), (11)

and where β is the temperature gradient achieved at the domain boundaries. Nu is therefore the
conversion between a temperature and flux nondimensionalization such that the thermally relaxed
state of any convective solution is characterized by both Ra�T and Ra∂zT according to

Ra∂zT = Nu Ra�T , TTT = Nu TFT, uTT =
√

Nu uFT. (12)

This mapping is presented by Ref. [27] for a diffusion timescale nondimensionalization, and we
have expanded it here for a freefall timescale nondimensionalization.

Throughout this work, we will also measure the evolved Péclet number (Pe) and in Sec. V we
will measure the Rossby number (Ro). These nondimensional quantities are defined as

Pe = 〈|u|〉Peff, Ro = 〈|ω|〉Ek Reff, (13)

where |q| represents the magnitude of the vector quantity q.

2http://dedalus-project.org/
3Simulations were conducted using v1.1.0 (for Nu-based ICs and 3D non-rotating simulations) and v1.0.1

(for all other cases) of our boussinesq_convection github repository [26].
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C. Initial conditions

1. Temperature initial conditions

In FT simulations, the evolved, nonlinear dynamics determine the magnitude of �T . As a result,
the time evolution of FT simulations is sensitive to how well the initial conditions guess the evolved
�T . For this reason, we will study FT simulations that employ three different initial states.

a. Classic ICs. Our first set of initial conditions are the “classic” initial conditions on which the
system was nondimensionalized,

Tc(z) = T0(z) = 0.5 − z. (14)

b. TT-to-FT. As Eq. (12) suggests, and as we will show in Sec. III, the evolved state of each FT
simulation corresponds to an equivalent TT simulation. As a result, we will examine “TT-to-FT”
initial conditions, in which we run a TT simulation through its convective transient to statistical
equilibrium, then use the full evolved nonlinear state as initial conditions for an FT simulation. To
achieve this, we perform these steps:

(i) Run a TT simulation to its statistically stationary state (∼100+ freefall time units). Measure
Nu in that state.

(ii) Re-nondimensionalize from TT to FT according to Eq. (12).
(iii) Restart the simulation with FT boundaries and continue time-stepping.
c. Nu-based ICs. The similarity of TT and FT simulations in the statistically stationary state

suggests that Nu versus Ra scaling laws derived for TT simulations can be expected to hold for FT
simulations. According to Eq. (12), we can rearrange a given scaling law,

Nu = ARaα
�T ⇒ Nu = (

ARaα
∂zT

)1/(1+α)
, (15)

and use this law along with Eq. (11) to predict the evolved temperature jump in an FT simulation,

�T = βLz

Nu
= −(

ARaα
∂zT

)−1/(1+α)
. (16)

Our “Nusselt-based” initial conditions construct an initial temperature profile that is consistent with
the bottom fixed-flux boundary condition but whose initial �T is determined by a specific Nu versus
Ra scaling law. The vertical temperature derivative is

∂TN

∂z
= (∇T )interior − ξ (z)[1 + (∇T )interior]. (17)

We set the initial temperature field by integrating Eq. (17) according to the top (fixed-temperature)
boundary condition. Discontinuous profiles are unstable in our spectral methods, so we utilize a
smooth windowing function, ξ (z), to set the temperature gradient to −1 near the boundaries,

ξ (z) = 1 + 1

2

(
erf

[
z − (0.5 − 2δξ )

0.5δξ

]
− erf

[
z − (−0.5 + 2δξ )

0.5δξ

])
. (18)

Here, δξ = −�T/2 is an estimate of the boundary layer width, and the temperature gradient in the
interior of the domain, (∇T )interior, is determined by setting

∫
∂zTN dz = �T . In this work, we use

the best-fit law of Ref. [18] with A = 0.138 and α = 0.285 when constructing Nu-based ICs.

2. Additional initial conditions

In all cases, we modify the initial temperature profile by specifying the value of T1, rather than
through modifications to the linearly unstable reference profile, T0. We furthermore assume that the
initial temperature profile is in hydrostatic equilibrium, and we solve for � accordingly. We assume
zero velocity in the initial state, except in the case of TT-to-FT simulations, where velocities are
taken directly from the corresponding TT simulation and scaled according to Eq. (12). For classic
and Nu-based ICs, we fill T1 with random white noise whose magnitude is 10−6/Peff, and which
is vertically tapered to zero at the boundaries. We filter this noise spectrum in coefficient space,
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such that only the lower 25% of the coefficients have power; this low-pass filter is used to avoid
populating the highest wavenumbers with noise in order to improve the stability of our spectral
time-stepping methods.

D. Timescales

One result of the mapping in Eq. (12) is that the nondimensional dynamical freefall timescale is a
poor description of the evolved freefall timescale. The velocities in an FT simulation are smaller than
the velocities in a TT simulation by a factor of

√
Nu. As a result, every nondimensional simulation

freefall time unit in a TT simulation samples a factor of
√

Nu more dynamics than a time unit in
an FT simulation. We therefore define the evolved freefall time, τff, ev = √

Nu (for FT simulations)
or τff, ev = 1 (for TT simulations). To ensure accurate comparisons, we measure flow statistics over
multiples of τff, ev rather than over multiples of the nondimensional time units.

The thermal energy reservoir of our 3D Cartesian systems and the rate of change of this reservoir
due to conduction at the boundaries are derived from volume-integrals of the temperature and
vertical fluxes,

E =
∫∫∫

V
T dx dy dz = 	2

∫ z=0.5

z=−0.5
T dz,

dE

dt
= −

∫∫∫
V

∇ · Fcond dx dy dz = −	2Fcond,z

∣∣∣∣
z=0.5

z=−0.5

,

(19)

where Fcond = −Pe−1
ff ∇T is the conductive flux whose z-component is Fcond,z, and where

∫
T dz =

�T/2 in RBC. The thermal relaxation time of an RBC experiment is therefore

τth = �E

dE/dt
with �E = E (t = ∞) − E (t = 0). (20)

In the case of TT boundary conditions, we expect �E = 0, as the initial and final state have the
same �T . The goal of our “Nu-based” and TT-to-FT initial conditions is to create FT systems in
which �E ≈ 0, creating a system with a negligible relaxational timescale.

For the case of classic ICs in an FT system, �T (t = 0) = −1 and �T (t = ∞) = −Nu−1, and
the temperature gradient at the bottom boundary is fixed at a value of −1. The thermal relaxation
timescale is therefore

τth, FT-classic = Peff
Nu−1 − 1

∂zT (z = 0.5) + 1
∼

√
Ra Pr

|∂zT (z = 0.5)| − 1
, (21)

where the final expression is for the large Ra case in which Nu−1 � 1. The magnitude of the
temperature derivative achieved at the top boundary is initially very large [|∂zT (z = 0.5)|early >

Nu(t = ∞); see, e.g., Fig. 1 b in Ref. [19]], but it decreases throughout the evolution of a simulation,
making it difficult to estimate the true thermal relaxation time. However, it is reasonable to assume
that the evolutionary timescale lies within the window

√
Ra Pr Nu−1 � τth, FT-classic �

√
Ra Pr. In

practice, we find that our nonrotating simulations equilibrate in ∼2.5
√

Ra Pr/Nu nondimensional
time units (see Sec. III A), and our rotating simulation equilibrates in ∼(2/3)

√
Ra Pr/Nu time units

(see Sec. V).

III. RESULTS: HOW INITIAL CONDITIONS INFLUENCE EVOLUTIONARY TIMESCALES

A. Classic initial conditions: Long thermal relaxation

In Fig. 1, we compare the time evolution of the temperature field of a classic-IC FT simulation
with Ra∂zT = 4.83 × 1010 to two TT simulations with Ra�T = 1010 and 109, respectively. As shown
in the top four panels, we see the expected convective roll solution in both TT simulations (top
row) and at early and late times in the FT simulation (bottom row). Interestingly, we find highly

083501-6



CONVECTIVE DYNAMICS WITH MIXED TEMPERATURE …

FIG. 1. Upper four panels: Snapshots of the temperature anomaly in two TT simulations (top row) and in
an FT simulation with Ra∂zT = 4.83 × 1010 at early and late times (bottom row). Left two panels: Dynamics
in a TT case at Ra�T = 1010 and early in the FT simulation when Ra�T ≈ 1010. To first order, both cases
have similar flow structures: a large convective cell and plumes that break apart into small turbulent eddies.
However, in the FT case, the temperature anomaly of the cold plume is much larger than the hot plume,
which does not appear on this color scale. Right two panels: Dynamics in a TT case at Ra�T = 109 and in the
relaxed state of the previously pictured FT simulation with Ra�T ≈ 109. The relaxed FT simulation is visually
indistinguishable from its comparable TT simulation. Note that Ra�T is a measured output quantity for the FT
simulation at two different times in its evolution. Bottom four panels: Probability distribution functions (PDFs)
of the full temperature field in each of the four dynamical panels pictured above. The black vertical line shows
the median value, and the gray outline shows the 68% confidence interval, or where the cumulative distribution
function (CDF)’s value ranges from 0.16 to 0.84. Top row: In both TT simulations, the temperature field has a
mean value at T = 0.5 and a symmetric distribution around that peak with extrema at the fixed values of the
boundaries. Bottom left: At early times in the FT simulation, the modal value of the PDF constantly moves
left (toward the cold fixed-temperature boundary). Bottom right: At late times, the temperature PDF from the
cold fixed-temperature value (on the left) to the modal value is indistinguishable from the TT PDF, but from
the mode to the fixed-flux boundary there is a large tail characterized by low-probability, hot elements.
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asymmetrical dynamics at early times in the FT simulation (bottom left), in which the temperature
anomaly in the cold plume is much greater than in the warm plume. This excess cold material slowly
fills the domain and mixes, reducing the temperature difference between the top and bottom plates
from �T = −1 to �T = −Nu−1 in the relaxed state. In this relaxed state, the supply of warm fluid
from the bottom plume and cold fluid from the top plume come into balance, and the FT dynamics
(bottom right) are indistinguishable from the TT dynamics (top right).

In the bottom four panels, we examine these temperature fields statistically by displaying their
probability distribution functions (PDFs). To create these PDFs, we sample the full simulation
temperature field once every evolved freefall time, τff,ev, over the span of 500τff,ev. We interpolate the
(unevenly spaced) vertical Chebyshev grid points onto an evenly spaced grid before histogramming
the flow values into 200 bins and creating the PDFs.

We find that this statistical analysis of the simulations tells the same story as the dynamical
images shown above. The temperature field in both of the TT simulations (top row) is dominated
by the modal temperature of 0.5 in the bulk; a smaller fraction of the domain is filled with equal
portions of hotter/colder material (mostly contained in the plumes), and the temperature field is
rigidly bounded by the fixed-temperature boundary values. The story is more complex for the
FT simulation. At early times (lower left), the FT simulation is characterized by two features: an
extreme tail (to the left) that characterizes the cold plume at the upper boundary, and a migrating
modal temperature that shifts from the right (hotter) to the left (cooler) as cold material mixes in the
interior. At late times (lower right), the FT simulation’s PDF is indistinguishable from the TT PDF
between the cold fixed-temperature boundary and the modal value. From the modal value toward
warmer temperatures, we find that the hot fixed-flux boundary is capable of producing more extreme
temperature events than an equivalent fixed temperature boundary and results in a more extended
PDF tail. This long tail is explored further in Sec. IV B.

In the left panels of Fig. 2, we examine the time evolution of scalar quantities from the FT
simulation shown in Fig. 1 (orange lines), and we compare it to the TT simulation with Ra�T = 109

(purple lines). Simulation time is shown in nondimensional freefall units on the x-axis; the latest
time displayed for each simulation, tfinal, is subtracted for direct comparison of the relaxed states.
Traces of Ra�T and Ra∂zT are shown in the top-left panel. In the FT simulation, Ra�T relaxes to
its final value over thousands of simulation time units, and this final value is the input value of the
equivalent TT case. In comparison, Ra∂zT for the TT case instantaneously reaches its final value,
which is the input value for the FT simulation. This discrepancy in evolution timescales, where TT
simulations evolve quickly and FT simulations evolve slowly, is also seen in the equilibration of Nu
(middle panel) and Pe (bottom panel).

The right panels of Fig. 2 show that the relaxation of Ra�T in FT simulations is akin to a
sweep through Ra�T parameter space. The orange (Ra∂zT = 4.83 × 1010, as on the left) and yellow
(Ra∂zT = 2.61 × 109) lines show the evolution of FT simulations, and the arrows give the sense of
time in the simulations. For comparison, we plot results from TT simulations (purple circles) and the
reported results of Ref. [28] (black crosses). The purple circles filled with orange and yellow circles
are comparison TT simulations for the relaxed states of the FT simulations. The top-right panel is a
scaling plot for Nu versus Ra�T compensated by the best fit reported in Ref. [18]. The bottom-right
panel is a scaling plot of Pe versus Ra�T compensated by the expected scaling [2]. We find that
FT simulations carry marginally more flux (higher Nu) and are more turbulent (higher Pe) than
comparable TT simulations as they relax through this parameter space. By binning Ra�T (t ), Nu(t ),
and Pe(t ) into ten bins over the evolution of our FT simulations, we can quantify the path through
parameter space that our FT simulations trace out. By performing a least-squares fit to these data, the
best-fit paths for Ra∂zT = 4.83 × 1010 are Nu = 0.0618 Ra0.322

�T and Pe = (5.73 × 10−2) Ra0.597
�T . At

Ra∂zT = 2.61 × 109, our best-fit paths are Nu = 0.0845 Ra0.310
�T and Pe = (4.05 × 10−3) Ra0.739

�T . By
comparison, the best-fit scaling laws for our TT cases are Nu = 0.141 Ra0.282

�T (very similar to the law
reported in Ref. [18]), Pe = (0.303) Ra0.516

�T (for Ra�T � 109), and Pe = (2.41 × 10−2) Ra0.64
�T (for

Ra�T < 109). These heightened values of Nu and Pe suggest that the dynamics do not immediately
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FIG. 2. Left three panels: Time traces of scalar quantities in a classic-IC FT (orange, Ra∂zT = 4.81 × 1010)
and TT (purple, Ra�T = 109) simulation are shown. All traces have been averaged over a rolling window of
100 simulation time units to increase the clarity of the evolutionary trend. We display evolutionary traces of
Ra (top, normalized by Ra�T of the TT simulation) as well as Nu (middle) and Pe (bottom), both of which
are normalized by their mean values measured over the last 500 freefall times of the TT simulation (reported
in Appendix A). Right two panels: Compensated scaling plots of Nu (upper) and Pe (lower) vs Ra�T . Nu vs
Ra is compensated by (0.138Ra0.285

�T ), the best-fit reported by Ref. [18]. Pe vs Ra is compensated by a Ra1/2
�T

law, the anticipated scaling of Pe [2]. The orange trace is the time evolution of the FT case from the left
panels with the arrows showing the sense of time. The yellow trace shows the evolution of an FT case with
Ra∂zT = 2.61 × 109. Purple circles are the measured values of Nu and Pe in our TT simulations (reported in
Appendix A); error bars show the standard deviation of the sample mean and are smaller than the marker in all
cases. The purple circles filled in with yellow and orange are the TT comparisons for the evolved states of the
two FT cases. Black crosses show comparison TT simulations as reported by Ref. [28].

“forget” the higher-Ra�T state that they recently time-stepped through on their way to achieving
thermal relaxation.

Achieving thermal relaxation in classic-IC FT simulations is computationally costly for two
reasons: (i) the turbulent dynamics at the large initial Ra�T require more spectral modes to resolve
than the equilibrated state (compare the left and right dynamics in Fig. 1), and (ii) thousands of
freefall times must pass during relaxation (see Fig. 2). For example, for the cases displayed in
the left panels of Fig. 2 with a modest Ra�T = 109, the shown evolution of 104 time units of
the FT simulation cost ∼4.5 × 105 cpu-hours, while the TT equivalent case cost only 5.6 × 104

cpu-hours—nearly an order of magnitude difference. FT simulation dynamics evolve slowly during
thermal relaxation, and these images, PDFs, and traces demonstrate the importance of waiting for
thermal relaxation to be achieved when conducting an FT simulation. In practice, in this work,
we find that the thermal relaxation of FT simulations with classic ICs takes ∼2.5

√
Ra∂zT Pr Nu−1

simulation freefall time units.

B. TT-to-FT and Nu-based ICs: Rapidly equilibrated FT simulations

1. TT-to-FT

Figures 1 and 2 demonstrate that the statistically stationary states of FT and TT simulations are
similar in a qualitative sense and in their volume-averaged flow statistics. It should therefore be
possible to use results from a TT simulation to quickly reach the relaxed state of a comparable
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FIG. 3. Left three panels: Time traces (in units of τff,ev) of scalar quantities, which have been averaged
over a rolling time window of 25τff,ev, are shown for a simulation with Ra�T = 109, which starts with TT
boundary conditions and then is switched to FT boundary conditions with Ra∂zT = 4.83 × 1010. The time of
the change of boundary conditions is denoted by the vertical black line. Top panel: The evolution of Ra is
shown; Ra∂zT /(4.83 × 1010) is shown as a dashed-dot line, while Ra�T /109 is shown as a solid line. The mean
values of the temperature gradient (middle panel) and temperature (bottom panel) at the bottom boundary
are also shown. In the TT initial state, the temperature is held constant at a value of 1, and the temperature
derivative fluctuates around a value of Nu. In the FT final state, the temperature derivative is held constant at a
value of −1 and the temperature value fluctuates around a value of Nu−1. Right four panels: PDFs are shown
that compare TT-to-FT dynamics (black PDFs) to dynamics from the classic-IC FT case from Fig. 2 (green
PDFs). We display the temperature field (upper left), enstrophy (upper right), nonlinear convective enthalpy
flux (bottom left), and vertical velocity (bottom right).

FT simulation, saving up to an order of magnitude in computational cost. We show the results
of using our TT-to-FT initial conditions procedure in practice in Fig. 3. In the left three panels, we
display the temporal behavior of (top) Ra, (middle) the flux at the bottom boundary, and (bottom) the
temperature at the bottom boundary. We take the full evolution of the Ra�T = 109 TT simulation
shown in Fig. 2, then change its boundary conditions to FT at Ra∂zT = 4.83 × 1010. The change
from TT to FT boundaries occurs at the time denoted by the thin vertical line. Unlike in the FT case
displayed in Fig. 2, there is no thermal rundown in the FT state, due to the rapid relaxation achieved
during the TT portion of the simulation.

In the right four panels of Fig. 3, we compare PDFs of flow fields in this TT-to-FT simulation
and the comparable classic FT simulation. Shown are PDFs of the temperature field (upper left),
enstrophy (upper right), convective flux (lower left), and vertical velocity (lower right). In Table I,
we display the first four moments of each of these distributions,

μ(A) ≡
∑

i

Ai P(Ai ) �A, σ (A) ≡
√∑

i

[Ai − μ(A)]2P(Ai )�A,

S (A) ≡ 1

σ (A)3

∑
i

[Ai − μ(A)]3P(Ai )�A, (22)

K(A) ≡ 1

σ (A)4

∑
i

[Ai − μ(A)]4P(Ai )�A,
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TABLE I. The first four moments, as defined in Eq. (22), of each of the PDFs shown in Fig. 3 are displayed
below for the TT case with Ra�T = 109 and all FT cases with Ra∂zT = 4.83 × 1010.

Quantity BCs ICs μ σ S Ke

T/�T TT Classic 5.00 × 10−1 7.11 × 10−2 −1.53 × 10−2 1.71 × 101

FT Classic 5.07 × 10−1 7.37 × 10−2 7.31 × 10−1 2.40 × 101

FT TT-to-FT 5.08 × 10−1 7.34 × 10−2 7.18 × 10−1 2.40 × 101

FT Nu-based 5.06 × 10−1 7.36 × 10−2 7.63 × 10−1 2.40 × 101

ω2/�T TT Classic 3.99 × 102 4.73 × 102 5.87 × 101 6.68 × 103

FT Classic 9.30 × 102 4.79 × 102 8.13 × 101 1.76 × 104

FT TT-to-FT 6.37 × 102 5.02 × 102 6.56 × 101 8.69 × 103

FT Nu-based 6.94 × 102 4.84 × 102 7.27 × 101 1.20 × 104

wT/(�T )3/2 TT Classic 1.46 × 10−3 1.63 × 10−1 5.14 × 10−2 5.85 × 10−2

FT Classic 1.53 × 10−3 1.69 × 10−1 3.28 × 10−2 −8.19 × 10−2

FT TT-to-FT 1.51 × 10−3 1.67 × 10−1 3.63 × 10−2 1.29 × 10−1

FT Nu-based 1.50 × 10−3 1.70 × 10−1 4.37 × 10−2 1.95 × 10−1

w/(�T )1/2 TT Classic −3.11 × 10−5 3.25 × 10−1 1.64 × 10−2 −1.16 × 10−2

FT Classic −3.80 × 10−5 3.33 × 10−1 1.75 × 10−3 −1.48 × 10−1

FT TT-to-FT 2.66 × 10−5 3.29 × 10−1 −1.21 × 10−3 7.89 × 10−2

FT Nu-based 2.41 × 10−5 3.35 × 10−1 1.08 × 10−2 1.37 × 10−1

where A is a flow quantity, P(A) is the PDF of A, μ is the mean, σ is the standard deviation, S
is the skewness, K is the kurtosis, �A is the spacing between the discrete PDF bins, and i is the
index of the bin. We specifically report the excess kurtosis, Ke = K − 3, to show how the K of our
PDFs differs from the kurtosis of normal distributions. The PDFs of all FT simulations agree well
regardless of initial conditions, suggesting that all initial conditions do achieve a similar statistically
stationary state.

We consider the classic-IC FT simulation to be in its evolved, relaxed state once a rolling
temporal average of �T over 200τff,ev converges to within 1% of its final value. We run our
classic-IC FT simulations for at least 1000τff,ev past this point to ensure that the simulations
are converged, and we gather statistics from the latest, most converged simulation times that are
available. TT-to-FT and Nu-based IC FT simulations are only evolved for 1000τff,ev, and we gather
statistics from the second half of these simulation.

2. Statistical comparison of BCs and ICs

From the moments of the PDFs presented in Table I, we conclude that FT and TT simulations
are indistinguishable outside of their temperature fields. The temperature PDF of the TT simulation
unsurprisingly has a mean of 0.5, a S close to zero (no asymmetry between upflows and downflows),
and an appreciable Ke (the tails, which primarily sample the plumes, are more important than they
are in a normal distribution). The FT temperature PDF, on the other hand, has a mean slightly larger
than 0.5, a small but noticeable S (suggesting asymmetries between the F and T plates), and more
Ke (implying more extreme plumes). It is also interesting that, in all cases, the vertical velocity, w,
and the vertical heat transport, wT , demonstrate PDFs whose tails are well-described by normal
distributions.

The moments presented in Table I are not perfectly identical for all of the different FT cases, but
we expect that this is due to the randomness of the turbulent motions in our simulations and our
relatively short (500τff,ev) statistical sampling window. If we were to run each of these simulations
for multiple thermal diffusion times, and gather PDF statistics over thousands of freefall times,
we would expect to find precisely the same distribution for each case. However, each of the PDF
moments for different FT cases agree to within a few percent (or are roughly zero), so we are
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satisfied that our modest sampling windows are sufficiently long to meaningfully compare our
various simulations.

3. Nu-based ICs

The time evolution of FT simulations with Nu-based ICs is similar to the time evolution of TT
simulations with classic ICs, with a few small differences. The interior temperature gradient [∇interior

in Eq. (17)] is slightly positive at high Ra, which means that the interior is marginally thermally
stable while the boundary layers are thermally unstable. During the convective transient, plumes
from the boundaries eat away at this interior stratification over a few tens of freefall timescales,
after which the interior is well mixed and a classic roll solution is achieved. This behavior is
quite different from classic ICs, in which the full domain is initially unstable and a roll solution
is obtained immediately after the onset of nonlinear convection. Regardless, the time required for
the temperature field to reach statistical equilibrium is a few tens of freefall times rather than a few
thousands of freefall times for classic ICs. Per Table I, the evolved states of FT simulations with
Nu-based ICs and classic ICs are very similar.

C. Discussion of 2D results

We note briefly that Nu-based and TT-to-FT ICs are only two of many ways of accelerating the
thermal relaxation of an FT simulation. We discuss other mechanisms, and explore one in detail, in
our previous work [19]. We note, however, that the TT-to-FT setup described here is likely the least
complicated mechanism for achieving rapid relaxation in a simplified RBC setup that we are aware
of. The successful degree with which this mechanism reproduces the evolved dynamics suggests
that thermal relaxation occurs in two parts:

(i) Changes to the simulation energy reservoir.
(ii) Restratification of the experiment.
The thermal energy reservoir of TT simulations does not change between the initial and final

state. The rapid relaxation of TT simulations, as well as FT simulations with Nu-based and TT-
to-FT ICs, therefore suggests that experimental restratification occurs rapidly in RBC. The long
rundown of classic-IC FT experiments on display in Fig. 2 is entirely due to the energy reservoir
(the temperature jump across the domain) drifting over time.

As a final note, we find that measures of the velocity field (e.g., the kinetic energy and Pe) take a
few hundred freefall timescales to relax to their final value in TT and FT (Nu-based IC) simulations
in two dimensions at high values of Ra�T � 108.67. This velocity field relaxation happens despite
instant thermal relaxation of the temperature field for these simulations. We find that the kinetic
energy increases by less than a factor of 2 from its initial posttransient value to its final value in the
statistically stationary state.

D. 3D verification of 2D results

It would be prohibitively expensive to time-step through the thermal relaxation of a 3D classic-IC
FT simulation, even for our least turbulent Ra�T ≈ 108 case. We anticipate that the transient state
would require a spectral coefficient resolution of �5123 for adequate resolution, a factor of 64
times more coefficients than our comparable 2D case at 2048 × 1024. This 2D case cost 1.21 × 105

cpu-hours, so we estimate that a comparable 3D case would cost O(10 million) cpu-hours. We
found in previous work [19] at lower Ra∂zT that 3D classic-IC FT cases exhibited the same thermal
rundown as 2D cases. Here, we will focus on 3D comparisons of FT and TT simulations in the
statistically stationary state through the use of TT-to-FT initial conditions.

We find that equilibrated FT and TT simulations are analogous in a volume-averaged sense: mea-
surements of Nu (31.4 for TT, 31.9 for FT) and Pe (1.78 × 103 for both) are nearly indistinguishable
between the two cases. As in two dimensions, we find no difference between the PDFs of evolved
quantities such as the nonlinear transport (wT ) between TT and FT simulations, but we do find
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FIG. 4. Top six panels: Snapshots of the temperature anomaly are shown for select slices through the 3D
TT simulation at Ra�T = 108 (left column) and the TT-to-FT simulation at Ra∂zT = 3.1 × 109 (right column).
The top and bottom rows, respectively, show horizontal slices 1% of the domain depth away from the top and
bottom boundaries, while the middle row shows a vertical slice at y = 0. The y = 0 vertical slice intersects
the two horizontal slices at the location indicated by the dashed green line. Visually, TT and FT dynamics are
indistinguishable aside from the warm upflows near the bottom boundary. From left to right, we display PDFs
for the full 3D domain, the upper boundary layer slice at z = 0.49, the vertical slice at y = 0, and the bottom
boundary layer slice at z = −0.49. The extreme temperature events that stand out visually near the bottom
boundary layer can be clearly seen in all PDFs except for the one near the upper boundary.

differences between the evolved temperature fields (T ). In Fig. 4, we show dynamical slices of T
from 3D TT and FT simulations. Near the top boundary and in the interior, the TT and FT dynamics
are quite similar. However, near the bottom boundary, the warm upflows in FT simulations are hotter
relative to their counterparts in TT simulations.

At the bottom of Fig. 4, we compare PDFs of the full temperature field to PDFs of the temperature
field in each of the shown slices (near the top boundary layer, a vertical slice of the interior,
and near the bottom boundary layer). The PDF of the temperature field over the full volume of
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FIG. 5. (a)–(c) We compare time- and horizontally averaged profiles from an FT (orange) and TT (purple)
simulation at Ra�T = 109. Shown are the (a) temperature, (b) temperature in upflows (solid) and downflows
(dashed), and (c) enthalpy (solid) and conductive (dashed) fluxes. The boundary-layer regions are separated
from the bulk by thin vertical lines and are examined in more detail in the right six panels (d)–(i). Displayed
are the (d)–(f) bottom boundary layers and the (g)–(i) top boundary layers. The insets show the % difference
between the FT and TT solutions. There are slight (a few %) differences between the two cases near the bottom
boundary, but otherwise the two cases are nearly the same to within ∼1%.

these simulations shows the same features as in two dimensions (see Fig. 1). Interestingly, we
find that within the upper boundary layer, the two cases have indistinguishable temperature fields,
with temperature events ranging from the fixed boundary temperature (T = 0) to the temperature
achieved in the interior (T = 0.5�T ) occurring with equal probability. However, near the bottom
boundary, the FT case instead exhibits a slightly larger number of neutral events (T = 0.5�T ) in
addition to extreme temperature events (T � �T ). We find that the PDF of the temperature field
of a vertical slice through the domain at y = 0 is nearly identical to the PDF of the full-domain
dynamics for the FT simulation, but that there are noticeable differences between these two PDFs
for the TT simulation. The differences between the full-volume and y = 0 PDFs in the TT case are
due to the fact that our sampling window occurs while plume-launching sites are clustered around
y = 0 more frequently than one would expect from a random distribution of plume-launching sites.
Over an infinite amount of time, these two PDFs should converge, but this demonstrates that it is
important to be cautious when taking statistics from a 2D slice of a 3D simulation.

IV. RESULTS: EVOLVED STRUCTURE, DYNAMICS, AND ASYMMETRIES
IN FT SIMULATIONS

A. Evolved structure

In Fig. 5, we compare the time- and horizontally averaged profiles of the temperature and fluxes
in the evolved FT and TT cases presented in Fig. 2. Time averages are taken over 500τff,ev, sampled
once every 0.1τff,ev. In the three left panels, we display profiles of (top) the mean temperature,
(middle) the mean temperature in upflows (solid) and downflows (dashed), and (bottom) the
convective enthalpy flux (Fenth = wT , solid) and the vertical conductive flux (Fcond = −Pe−1

ff ∇T ,
dashed). Most of the interesting structure is in the boundary layers, located between the sides of the
plots and the thin vertical black lines. Zoomed-in plots of the bottom and top boundary layers are
shown in the middle and right columns, respectively. Insets show the percentage difference between
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FIG. 6. Left panel: PDFs of temperature measurements of a TT-to-FT (orange, Ra∂zT = 9.51 × 1011) and
TT (purple, Ra�T = 1010) simulation are displayed. The right tail of the distribution (near the hot fixed-flux
boundary for the FT case) shows that fixed flux boundaries achieve more extreme temperature events than
fixed temperature boundaries. Middle panel: A snapshot of the temperature anomaly in the FT simulation.
Zoomed-in views of the regions outlined in black boxes are shown in the right two panels. Near the top (fixed
temperature) boundary, the temperature anomaly at the root of the plume vanishes, but this does not happen
near the bottom (fixed flux) boundary, allowing for more extreme instantaneous values.

the FT and TT solutions. In the flux panels (bottom row), we do not plot the percentage difference
in the conductive flux, as this quantity is undefined in the bulk of the interior where that flux is zero.
The conductive flux of the two cases agrees to within a few % in the boundary layers, and the FT
and TT cases differ by no more than 0.0025 in the plotted units in the interior. Here, we define the
boundary layers as the heights above or below which conduction carries 95% of the flux. By this
definition, the boundary layer depth is ∼0.024 at Ra�T = 109, and we show three times this depth
in the zoomed-in panels.

We find good (∼1%) agreement between the FT and TT temperature profiles and enthalpy
fluxes throughout the full depth of the domain, with slightly larger differences near the bottom
boundary where the boundary conditions differ. When we split the temperature profile into upflows
and downflows, we find that FT upflows (downflows) are slightly warmer (cooler) than their TT
counterparts at the hot, bottom boundary. These (rather interesting) differences are illustrated in
Fig. 4, and they are explored further in the next section (see also Fig. 6). However, these differences
do vanish in the interior and do not seem to affect the convective dynamics appreciably.

B. Asymmetries induced by mixed boundary conditions

We now study in more detail the asymmetries introduced into a solution by FT boundaries. We
run a TT and TT-to-FT simulation at Ra�T = 1010 and Ra∂zT = 9.51 × 1011, respectively. In Fig. 6,
we examine the dynamical nature of the asymmetries that the FT boundaries introduce into the
simulation near the fixed-flux boundary. In the left panel, we plot PDFs of the temperature fields of
the two cases. These PDFs agree remarkably well near the mean and for cold temperatures (near the
fixed temperature boundary), but diverge in the tail of the PDF for hot temperatures where T/�T �
0.8, where the boundary conditions differ. Interestingly, there are no temperature fluctuations that
exceed the specified boundary values in the convective domain for TT simulations. However, the
FT PDF has a much longer tail and the FT solution achieves fluid parcels that are hotter than the
average bottom boundary value by more than 50%. To understand how this is possible, we examine
a snapshot of the FT simulation’s temperature anomaly in the middle panel. We have outlined a
portion of a cold plume near the upper (fixed-temperature) boundary and a portion of a hot plume
near the lower (fixed-flux) boundary, and these regions are magnified in the rightmost panels. The
fixed-temperature upper boundary suppresses the temperature anomaly at the upper boundary and
regulates the temperature minima that can be achieved. The fixed-flux lower boundary does no such
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suppression and allows for extreme temperature values to be achieved in the plume-launching area,
thus allowing for the asymmetry in the tails of the temperature PDF.

We note briefly that these asymmetries do not seem to affect mean or volume-averaged quantities
in these simulations appreciably (see the agreement between FT and TT in Figs. 2 and 5). However,
the fact that fixed-flux boundaries produce a wider temperature distribution with more extreme
values may be important in some astrophysical studies. We explore this further in the discussion in
Sec. VI.

V. RESULTS: ROTATING RAYLEIGH-BÉNARD CONVECTION

Rotating convection is an excellent testbed for our TT-to-FT method. In rotating convection, as
Ra increases at a fixed value of the Ekman number (Ek), flows transition from the rotationally
constrained to the rotationally unconstrained regime. The scaling of Nu versus Ra changes
drastically between these two regimes, and is some blend of the two in the intermediary, marginally
constrained regime. Furthermore, the precise scaling law attained in the rotationally constrained
regime differs as Ek changes, and these scaling laws are less straightforward and well-understood
than their non-rotationally-constrained counterparts [3,29–36]. As a result, the power law used for
Nu-based ICs would have to be a complex function of Ek, Ra, and boundary conditions for rotating
RBC. However, TT-to-FT should work generally for all parameters, so long as a TT simulation can
be performed. Here we explore the parameter space that the classic-IC FT simulation explores as
it thermally relaxes and demonstrate that the TT-to-FT approach leads to rapid convergence for a
rotating simulation.

We now study 3D rotating RBC with Ek = 10−6. These simulations employ stress-free boundary
conditions that allow for the generation of mean flows such as large-scale vortices (LSV) [21,37–
42]. We study a TT case at Ra�T = 2.75 × 109, and a classic-IC FT case at Ra∂zT = 2.1 × 1010

(the supercriticality of the TT case is ∼3). We then take the TT case, do a TT-to-FT simulation, and
compare the results of the TT-to-FT simulation to the classic-IC FT case.

In the left three panels of Fig. 7, we compare the time evolution of a classic-IC FT and TT
case. The top left panel shows the evolution of Ra∂zT and Ra�T . Even in the presence of strong
rotation, the TT simulation immediately equilibrates, but the FT case takes thousands of freefall
times to achieve thermal relaxation. In the middle panel, we show the evolution of Ro; the evolved
flows in both simulations exhibit rotationally constrained dynamics with Ro ≈ 0.1, but the flows
in the FT simulation relax to this state from an initially unconstrained state (Ro ≈ 1). This implies
that the thermal relaxation process can walk through the parameter space of flow balances (e.g.,
the balance between Inertial and Coriolis forces) in addition to the Ra�T parameter space. In the
bottom panel, we display the evolution of Pe over time. Strangely, the peak value of Pe occurs
a few hundred freefall times after the convective transient. After achieving this peak value, Pe
monotonically decreases toward its relaxed state. We find that the thermal relaxation of this case
takes ∼(2/3)

√
Ra∂zT Pr/Nu nondimensional freefall time units.

In the upper right panel of Fig. 7, we plot Nu versus Ra for rotating simulations. Select TT
cases are plotted as cyan circles with purple outlines (where the cyan color denotes the value of
Ek = 10−6 according to the color bar). The evolution of the FT case in the left panels is shown
as a thick orange line with a cyan interior, and the black arrows show the direction of time. The
TT case that corresponds to the FT case is a purple star with a cyan interior. We have additionally
included some literature data from numerical simulations (circles) and experiments (diamonds) as
reported in the Appendix tables of Ref. [43]. These experiments were conducted in a cylindrical
geometry at a different Pr, and they are not meant to be one-to-one-comparable, but are meant to
guide the eye to the nature of the parameter space of rotating convection. The solid black line is the
best-fit line for rotationally unconstrained simulations with Ra � 1010 from Ref. [43]. As expected,
the scaling of Nu versus Ra is steep in the rotationally constrained regime [3,32], which these
simulations trace through. We find that at values of Ra�T � 8 × 109, scaling laws start to flatten
toward the unconstrained regime. The FT simulation at all times when Ra�T < 8 × 109 traces
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FIG. 7. Left three panels: Time traces of scalar quantities in a classic-IC FT (orange, Ra∂zT = 2.1 × 1010)
and TT (purple, Ra�T = 2.75 × 109) simulation are shown. All traces have been averaged over a rolling
window of 50 freefall time units to increase the clarity of the evolutionary trend. Top panel: Ra, normalized
by the input Ra�T of the TT simulation. Middle panel: Ro evolution of both simulations; the bulk flow of
the FT simulation transitions from a marginally rotationally unconstrained state to a constrained state, while
the TT simulation is always rotationally constrained. Bottom panel: Pe evolution of the simulations is shown,
normalized by the mean value measured over the last 500 freefall times of the TT simulation. Upper right panel:
Parameter space of Nu vs Ra�T in rotating convection. Circular and diamond data points are, respectively,
simulations and experimental data points from Ref. [43]. The color of the data points signifies the Ekman
number of the points, and gray diamonds are nonrotating. Data from our Ek = 10−6 FT experiment are
shown as a thick orange line with a cyan interior, where the black arrows give the direction of time. Some
TT simulations are shown as purple circles with a cyan interior, and the TT case, which corresponds to the
relaxed state of the FT simulation, is shown as a star. Bottom right panels: Snapshots of the vertically integrated
z-component of the vorticity from the FT simulation. At early times (left panel), a powerful large-scale vortex
with positive vorticity develops. This vortex slowly decays and becomes a vortex pair (middle panel), as seen
in Ref. [21]. In the converged state, we see oscillatory behavior between this vortex pair behavior and jets
(right panel). The TT case exhibits the oscillatory behavior between vortex pairs and jets throughout its whole
evolution. The three vertical black lines in the left panels signify the times at which these snapshots are taken.

out Nu = (1.08 × 10−18) Ra2
�T and Pe = (4.26 × 10−20) Ra2.4

�T . The TT simulations with Ra�T <

8 × 109 trace out Nu = (9.36 × 10−17) Ra1.79
�T and Pe = (4.78 × 10−19) Ra2.27

�T . As in Fig. 2, the FT
scaling laws are once again steeper than the comparable TT laws.

In the bottom right three panels of Fig. 7, we plot the vertically integrated vertical vorticity in
the simulation at three different times. In the left panel, a dominant LSV that is aligned with the
global rotation dominates the simulation at early times. Over thousands of freefall times, this LSV
evolves into a long-lived vortex pair, displayed in the middle panel. Finally, in the evolved state, this
vortex pair solution begins to oscillate with domain-wide jets, such as those displayed in the right
panel. We find that the TT solution shows this oscillatory behavior between vortex pairs and jets
immediately and throughout the full 5000 freefall timescales of evolution that we simulated.

We suspect that the strange behavior of Pe in the bottom left panel can be explained by the
evolution of the dominant flow structures over time. At early times, the initially large value of Ra�T

in the FT case drives the displayed dominant LSV. This powerful driving injects energy into the
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LSV, causing Pe to grow. As Ra�T and convective driving decrease over time, the LSV saturates
and then starts to wind down, leading to the “bump” in the Pe trace.

We performed a TT-to-FT simulation starting from the evolved state of the TT simulation, and
its time evolution matched that seen in Fig. 3. There was no long thermal evolutionary timescale. In
the equilibrated classic-IC FT simulation, we measured Nu = 7.90 ± 0.01, Pe = 1.70 × 103, and
Ro = 0.115 ± 0.006. In the TT-to-FT simulation, we measured Nu = 7.83 ± 0.01, Pe = 1.65 ×
103, and Ro = 0.114 ± 0.005. These Ro measurements are indistinguishable, Nu measurements are
within 1% of each other, and Pe measurements are within 3% of each other, representing excellent
agreement.

The difference in computational cost between classic-IC FT simulations and the TT/TT-to-FT
simulations is even more striking here than in our previous examples. The TT simulation shown
in the left panels of Fig. 7 only cost 2.2 × 103 cpu-hours to run 5000 freefall times. The TT-to-FT
simulation cost an additional 1.28 × 103 cpu-hours to run 1000τff,ev. By comparison, the cost of the
FT simulation shown in the same panels was roughly three orders of magnitude larger—2.3 × 106

cpu-hours. The TT and TT-to-FT simulations had a coefficient resolution of 1283. The classic-IC
FT simulation’s initial resolution required to resolve the convective transient was 512 × 3842

coefficients. We reduced the resolution to 256 × 3842 after 100 freefall times, and then later to
128 × 3842 after ∼3.3 × 103 freefall times. At each of these times, we found that lowering the
horizontal coefficient resolution of the simulation did not reproduce the simulation solution with
fidelity. This suggests that small-scale turbulent velocity structures—which are injected by the
vigorous transient and perhaps associated with the LSV—are long-lived throughout the thermal
evolution of the simulation.

VI. CONCLUSIONS AND DISCUSSION

In short, we find that simulations with mixed thermal boundary conditions can experience a long
thermal relaxation that is not experienced by simulations with two fixed-temperature boundaries;
furthermore, to first order, mixed thermal boundary conditions do not introduce important asymme-
tries into the solution.

In this paper, we have studied the time evolution of Rayleigh-Bénard convection (RBC) under
two different formulations of the thermal boundary conditions: “FT” boundaries, where the flux is
fixed at the bottom and temperature is fixed at the top, and “TT” boundaries, where temperature is
fixed at the top and bottom. In the case of FT boundaries, we studied three different sets of initial
conditions and examined both the nature of thermal relaxation and the equilibrated, statistically
stationary state. Through studying this relaxation and the relaxed states, we come to the following
conclusions:

(i) Thermal relaxation in RBC has two components: (a) changes in the energy reservoir and
(b) changes in the stratification. We find that the long relaxation of classic-IC FT simulations is
due to changes in the energy reservoir; this reservoir is roughly constant in TT simulations and FT
simulations with Nu-based or TT-to-FT ICs due to the lack of evolution of the temperature difference
between the boundaries. The rapid evolution of all of our simulations other than the classic-IC FT
simulations suggests that RBC thermally restratifies itself instantaneously.

(ii) Dynamical measurements taken during thermal relaxation may be misleading. Dynamics
during the relaxation are more turbulent than in the evolved state, and exhibit evolving flow balances
in the equation of motion (as quantified by, e.g., the Rossby number). This is principally a concern
in systems like classic-IC FT simulations, which can have very long thermal relaxation timescales
compared to dynamical times.

(iii) The thermal relaxation process of a classic-IC FT simulation performs a sweep through
Ra�T parameter space. We find that convective heat transport (the Nusselt number) and turbulent
velocities (the Péclet number) are elevated above classic scaling laws along these parameter space
sweeps.
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(iv) Great computational expense achieving thermal relaxation in an FT simulation can be
avoided by using the evolved state of a TT simulation as a “better” set of initial conditions for
an FT simulation, or by constructing an initial state that is characterized by a temperature difference
similar to the evolved one.

(v) Despite minor asymmetries near the boundaries, we find no meaningful difference between
the mean state of FT and TT simulations.

We now describe some lessons that should be applied from this work to astrophysical convection,
and we comment on some open areas of research. Throughout this work, we have made the
assumption that convection is only “interesting” in its final, fully equilibrated state. In nature,
convection is not always in an equilibrium state. For example, in the late stages of the lifetimes
of stars, some core burning regions have sufficiently short lifetimes that they likely do not come into
thermal relaxation [44,45]. The use of classic-ICs with FT boundaries that we have here considered
to be a “bad” choice may help in understanding these transient lifetime stages. However, for most
convective studies where the lifetime of the natural convective system is much larger than its
Kelvin-Helmholtz timescale (the time it would take for an astrophysical body to radiate its full
gravitational potential energy given its current luminosity [46]), it is essential to study relaxed
convection, and our results point toward the importance of either choosing good initial conditions
(TT or TT-to-FT simulations) or running simulations to thermal relaxation.

One question which our study of RBC is not able to address is, how long does it take for a
complex convective system to restratify? Our fully convective domains restratified instantaneously,
but it is likely that mixed convective-and-stably-stratified domains [11,13,47,48] should have
regions that are not turbulently mixed by convection, which could also have long relaxation
timescales. It would be extremely helpful for future studies to examine relaxational timescales in
systems in which the energy reservoir is fixed, but where convection does not effectively mix the
whole domain. Fortunately, clever techniques (e.g., those we explored in Ref. [19]) can likely be
used to rapidly restratify atmospheres in such simulations.

RBC is fundamentally symmetrical, but many natural convective processes occur in density-
stratified domains in which the symmetries of the problem are broken. In the present study, we
observed that flux boundaries produce more extreme thermodynamic events than temperature
boundaries. In studies of overshooting convection, it is possible that plumes produced by a flux
boundary layer could launch further into a stable layer than plumes produced by a temperature
boundary. Some authors have aimed to quantify the nature of overshooting plumes from a convective
region into a stable region [11,48], and it is unclear if different choices of boundary conditions could
change the observed distribution of overshooting plumes observed there.

Some of the most complex astrophysical convection experiments aim to understand self-
consistently evolving magnetic dynamos in rotating, spherical, magnetohydrodynamic domains
[49–52]. These dynamo simulations involve large numbers of time steps through many freefall
timescales in order to study the generation and evolution of magnetic fields and mean flows. We
found in our classic-IC FT rotating simulation that the unrelaxed state generated a mean flow (a
LSV, Fig. 7) that was much more intense and large-scale than the eventual flows that developed in
the relaxed state. If we had terminated our FT rotating simulation too early, we would not have seen
the eventual destruction of this LSV or the later oscillatory behavior between jets and vortex pairs.
Many dynamo simulations are performed in highly turbulent regimes at the cutting edge of what is
achievable using modern computational resources. As a result, time-stepping through thousands of
freefall timescales is not possible in these simulations. It is therefore crucial that dynamo simulations
be set up in such a manner as to avoid large changes to the system’s energy reservoir such as those
that we observed and studied here.

In conclusion, we note that our results here should provide astrophysical convection simulations
with reason for optimism. Some problems that we encounter (e.g., long thermal rundown in classic-
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IC FT simulations) can be completely avoided through a careful understanding of the numerical
system being solved.

The Python scripts and data used to create all figures in this work are availabile online in a
Zenodo repository [25]. The Python scripts which we used to run our Dedalus simulations in this
work are additionally available online in a Zenodo repository [26].
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