PHYSICAL REVIEW FLUIDS 5§, 083101 (2020)

Elastohydrodynamical instabilities of active filaments, arrays, and carpets
analyzed using slender-body theory

Ashok S. Sangani®!>* and Arvind Gopinath ®:

' Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244 USA
2Department of Bioengineering, University of California, Merced, California 95343 USA

® (Received 11 March 2020; accepted 23 July 2020; published 27 August 2020)

The rhythmic motions and wavelike planar oscillations in filamentous soft structures
are ubiquitous in biology. Inspired by these, recent work has focused on the creation
of synthetic colloid-based active mimics that can be used to move, transport cargo, and
generate fluid flows. Underlying the functionality of these mimics is the coupling between
elasticity, geometry, dissipation due to the fluid, and active force or moment generated by
the system. Here, we use slender-body theory to analyze the linear stability of a subset
of these—active elastic filaments, filament arrays and filament carpets—animated by
follower forces. Follower forces can be external or internal forces that always act along the
filament contour. The application of slender-body theory enables the accurate inclusion of
hydrodynamic effects, screening due to boundaries, and interactions between filaments. We
first study the stability of fixed and freely suspended sphere-filament assemblies, calculate
neutral stability curves separating stable oscillatory states from stable straight states, and
quantify the frequency of emergent oscillations. The results from the slender-body theory
differ from that obtained using an approximate theory used often in the literature to study
dynamics of filaments, referred to as the resistance force theory, in which the tangential
and normal components of the fluid traction at a point on the filament are proportional to
the tangential and normal components of the velocity of the filament. Next, we examine
the onset of instabilities in a small cluster of filaments attached to a wall and examine how
the critical force for onset of instability and the frequency of sustained oscillations depend
on the number of filaments and the spacing between the filaments. Our results emphasize
the role of hydrodynamic interactions in driving the system toward perfectly in-phase or
perfectly out-of-phase responses depending on the nature of the instability. Specifically,
the first bifurcation corresponds to filaments oscillating in-phase with each other. We
then extend our analysis to filamentous (line) array and (square) carpets of filaments and
investigate the variation of the critical parameters for the onset of oscillations and the
frequency of oscillations on the interfilament spacing. The square carpet also produces
a uniform flow at infinity and we determine the ratio of the mean-squared flow at infinity
to the energy input by active forces. We conclude by analyzing the bending and buckling
instabilities of a straight passive filament attached to a wall and placed in a viscous stagnant
flow—a problem related to the growth of biofilms, and also to mechanosensing in passive
cilia and microvilli. Taken together, our results provide the foundation for more detailed
nonlinear studies on elastohydrodynamical instabilities in active filament systems.
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I. INTRODUCTION

The emergence of rhythmic movements and oscillations in single or arrayed elastic filamentous
structures is a common motif in biology. Striking examples are the graceful wavelike beating of
distinct frequencies and wavelengths observed in eukaryotic flagella and cilia—organelles found
in animal sperm, algae, protozoa, and in respiratory and reproductive tracts [1-7]. Many of the
spatiotemporal patterns observed are often planar or near-planar; furthermore, even qualitative
aspects of the oscillations are strongly affected by the presence of boundaries and the type of
fluid surrounding the cilia [8—10]. Detailed and innovative experiments have revealed aspects of
mechanisms by which different axonemal components are integrated and work together [11-22].
Despite the large body of revealing experimental work, the regulatory apparatus that sets the timing
and amplitude of the wavelike motions of oscillations in single and multiple cilia remain mysterious
[20,23-32].

Inspired by these, various reconstituted or synthetic filamentous systems have been proposed that
utilize three ingredients—elasticity of the filament, activating forces or torques, and dissipation to
produce sustained oscillations. For instance, active filamentous self-assembling structures are seen
to form [33,34] when ATP is added to cellular extracts comprising of a mixture of microtubules and
kinesin motors. Addition of ATP initiates activation of the motors resulting in bundling; the bundled
filaments are then observed to oscillate synchronously and sometimes, when arrayed in a spaced
line, also form metachronal waves [33,34]. Similarly oscillating active filaments are observed in
motility assays where elastic filaments (microtubules or actin filaments) interact with molecular
motors grafted on a surface (dynein or myosin) (see Ref. [35] and references therein).

Nonbiolgical approaches use field activated or responsive colloidal beads or particles [36-43]
as basic building blocks to synthesize swimmers. Dreyfus et al. [36] have used paramagnetic
beads connected together using springlike biotin-strepdavidin bonds; this elastic “filament” can
be activated by external magnetic fields. Sasaki et al. [37] report the directed motion of colloidal
particles and cater-pillar like motion of self-assembled colloidal chains in a nematic liquid crystal
matrix using electrohydrodynamic convection rolls. Dai et al. [39] demonstrate how programmable
photosynthetic swimmers can be made by using self-electrophoresis to propel Janus nanotrees.
Nishiguchi et al. [40] have demonstrated oscillations in chains of self-propelled asymmetrical
colloidal Janus particles fueled by an AC electric field. Further variations incorporating light [41],
chemical fields [42], and ultrasound [43,44] to animate elastically connected colloid chains have
opened up new avenues to create bioinspired swimmers.

The active mechanism in cilia originates from the sliding forces generated as molecular motors
interact with the elastic backbone of the cilium. Synthetic constructed swimmers described in the
previous paragraph, while mimicking the oscillatory features of cilia and flagella, however, exploit
a different, simpler and controllable, mechanism. In these, the coupling of elasticity and external
fields results in what are termed follower forces, i.e., actively generated forces that are always along
the local tangent and directed toward the same end of the filament. When these active filaments are
subject to geometric constraints and prevented from moving freely, the combination of elasticity
and activity can yield nonlinear buckling instabilities. The addition of a dissipative mechanism such
as fluid drag provides a pathway for these instabilities to result in stable, periodic oscillations.

Recent studies have employed continuum equations and stochastic discrete agent-based models
to investigate the emergence and stability of such oscillations in various settings [35,45-52]. Due
to the nonconservative nature of the follower force, the equations governing the evolution of the
filament shape and associated boundary conditions are not self-adjoint and therefore do not lend
themselves to the usual energy minimization approaches to buckling [35,47,50,53,54]. To analyze
the stability of the filament, one must therefore study the full dynamical response.

Resistive force theory (RFT) theory, which assumes that the hydrodynamic drag per unit length
at a point on the filament is proportional to the velocity of the element at that point, provides a
simple and intuitive way to account for fluid drag on a filament. This approach to modeling the drag
employs a linear but anisotropic force-velocity relationship; however, hydrodynamic interactions
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between different parts of the moving filament are not taken into account. Still, due to the simplicity
inherent in combining RFT with equations for the elastic deformation of the filament, this is a widely
employed method to study the elastohydrodynamic dynamics of slender filaments. For example,
Johnson and Brokaw [55] and Ramia et al. [56] used RFT to analyze the role of hydrodynamics
in the swimming of microorganisms. More recently, Fily et al. [35] examined the stability of
a straight, slender elastic filament pushing a viscous cargo and subjected a follower force, i.e.,
an external force acting along its length. Using a one-dimensional elastic filament model, linear
stability theory, and fully nonlinear computations, they studied the onset of each buckling instability,
characterized each buckled state, and mapped out the phase diagram of the system. Fily et al.
showed that when one of the end of filament is pinned or experiences significant translational
but little rotational drag from cargo attached to it, it buckles into a steadily rotating coiled state.
When it is clamped or experiences both significant translational and rotational drag from its cargo,
it buckles into a periodically beating, overall translating state with the transition to the periodic state
occurring via the classical Hopf-Poincare-Andronov bifurcation [57]. Their linear stability analysis
was further supported by direct numerical simulations of slightly deformed filaments and consistent
with previous Brownian dynamics simulations [45,46] and analytical results for clamped filaments
without viscous cargo [47,51]. In related work, also employing RFT, Ling ef al. [50] examined the
stability of a filament attached to a (virtual) plane wall and acted upon by a follower force. Here, the
filament was allowed to also buckle out of plane thereby opening up the possibility of instabilities
to a three-dimensional rotating state. These investigators found that the filament first undergoes a
bifurcation with a nonplanar spinning in a locked curvature. At higher magnitudes of the force, a
second bifurcation leads to an in-plane oscillation of the filament.

Ignoring hydrodynamic interactions between different parts of the filament, however, under-
estimates viscous drag effect. Errors may be further amplified in the case of filament-sphere
aggregates or filaments attached to walls where the no-slip condition on the sphere or at the wall
may need to be accounted for more carefully. Additionally, RFT does not provide a framework to
treat hydrodynamic interactions between multiple filaments and hence cannot analyze the onset of
collective behavior in these systems. There thus exists a need to incorporate a more general manner
of incorporating nonlocal and multifilament hydrodynamic interactions.

The purpose of the present study is to address this gap in the current theories by using slender-
body theory (SBT) to determine more accurate criteria for the stability of single elastic filaments or
filament arrays and carpets attached to a sphere or a wall. While RFT provides the correct asymptotic
estimate, of O[log(1/¢)], € being the ratio of the filament radius to its length (the aspect ratio), for
the viscous drag or traction acting on the filament, in practice its accuracy is limited because of
the weak logarithmic dependency of this leading term. To obtain more accurate dynamics of the
filaments it is necessary to solve the integral equation for the fluid traction and account for the
hydrodynamic interactions. These include interactions between different parts of the same filament,
interactions between the filament and a boundary, and interfilament interactions. Finally, results
from the slender-body-based theory can be used to estimate of the accuracy of the predictions from
RFT-based analyses.

We should note that the detailed hydrodynamic calculations using slender-body theory for a
single active filament subjected to a sliding-control-based model for active moments in cilia have
been carried out recently by Chakrabarti and Saintillan [30]. The present study complements this
related work in two crucial and distinct ways. First, active ingredient in our systems is a tangentially
directed follower force rather than active moments. Second, we analyze and present results for the
stability of multifilament systems such as clusters, arrays and carpets.

We first consider in detail the sphere-filament assembly and obtain results for the magnitude
of the follower force at which the Hopf bifurcation occurs and the frequency of the sustained
oscillations at the onset of bifurcation. It is found that both these quantities vary considerably with
the ratio of the sphere radius to the filament length when the sphere-filament assembly is freely
suspended. The variations, however, are very small when the sphere is held fixed. Next, we examine
the behavior of finite number of filaments attached to a wall and examine how the critical load and
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the frequency of sustained oscillations depend on the number of filaments and the spacing between
the filaments. For multifilament systems, we find that, although the number of modes of oscillations
is equal to the number of filaments, the mode in which all filaments oscillate in-phase with each
other occurs at the least load. In other words, all filaments oscillate with the same frequency and
in-phase with each other, at least at the first bifurcation from the straight filaments. Following this,
we consider a line array of filaments and determine the frequency of oscillations as a function
of interfilament spacing. Finally, we consider a square array of filaments attached to a wall and
determine, once again, the frequency and the magnitude of the load at the bifurcation. The array
produces a uniform flow at infinity and we determine the ratio of the mean-squared flow at infinity to
the energy input by active forces. Our work generalizes the approach to sphere-filament assemblies
(fixed or free), as well as to multiple interacting filaments arranged in a linear array or a square
carpet. These geometries are relevant to applications of the synthetic soft swimmers currently being
developed. Besides being of theoretical interest, our analysis will provides a point of departure for
nonlinear analysis of spatiotemporal patterns in active filament systems.

The slender-body formalism is quite general and can be used to study passive elastic filaments
deformed by imposed fluid flows or for a prescribed model of filaments subjected to active
moments. Recent studies [58,59] have addressed flow driven deformation in the context of biofilm
deformation. In particular, Guglielmini et al. [59] have examined the problem of stability of a
straight filament placed in a viscous stagnant flow. Their linear stability analysis showed two
bifurcations, the first one corresponding to bending of the filament while the latter one to buckling.
These investigators also used the simple RFT for their linear as well as weakly nonlinear analyses.
We carry out analysis using the slender-body theory allowing for the presence of the wall and
thereby provide more accurate estimates for the onset of these two bifurcations.

The organization of the article is as follows. In Sec. II, we consider the sphere-filament assembly.
To avoid having to use excessive discretization necessary to resolve the blunt end, we restrict the
analysis to filaments that have rounded ends. In Sec. III, we present results for the filaments attached
to a wall. Finally, in Sec. IV we consider the case of stability of a filament placed in a quadratic
compressional flow near a wall. We conclude in Sec. V by summarizing our results, and suggesting
future avenues for exploration.

II. INSTABILITIES OF AN ACTIVE SPHERE-FILAMENT ASSEMBLY

A. Slender-body theory

The geometry of the sphere-filament assembly is as illustrated by the schematic in Fig. 1. The
elastic thin filament we consider has length ¢ and is comprised of a linearly elastic material with
Young’s modulus E. The radius of the filament is assumed to be uniform and equal to €€ with e < 1
except near the end. Furthermore, we assume the filament to be inextensible and unshearable. This
allows us to analyze the spatio-temporal deformations using a reduced dimensional form of the
Kirchoff-Love equations for the bending of a thin filament [51,52,60]. One end of the filament is
attached to a rigid sphere of radius a = A¢. Unless specified otherwise in the text, we shall use
nondimensional variables, with distances nondimensionalized by the length £ of the filament, forces
by the net active force f,£, velocities by f, /(8w 1), and time by 87 uf/ f,. Here, f, is the magnitude
of the active force per unit length acting along the axis of the filament that acts as indicated in
Fig. 1(b). The assembly is embedded in and moves through an incompressible, Newtonian fluid
with shear viscosity .

To specify the shape of the filament relative to the sphere, and the motion of the aggregate, we
first define a reference sphere-fixed coordinate system with its origin at the center of the sphere and
defined by unit vectors e;, e, and e; as shown in Fig. 1. The unit vector e; is directed along the
line joining the center of the sphere with X, the point on the surface where the filament is attached.
Next, we choose a base state where the filament is straight and aligned along the e; direction.
Since filament cross-sections in the undeformed state are circular and the rod is unshearable and
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(a) (b)

M(s+ds)
s=1

FIG. 1. (a) Schematic of the sphere-filament assembly (not to scale) that illustrates the geometry of the
system, and orientation of relevant vectors. Material cross-sections along the filament are parametrized by an
arc-length coordinate s. As one traverses the filament centerline, the set (n, p) rotates around the tangent axis.
(b) Schematic showing the active follower forces — f,t, and viscous traction f acting on an infinitesimal length
of the filament. Moments acting at s and s + ds are indicated.

inextensible, initially circular cross-sections remain circular. Averaging across the cross-section
allows us to treat the filament as an elastic curve (the centerline of the filament) x..(s) with locations
(cross-sections) parametrized by the arc-length coordinate s measured along the centerline of the
filament. The attachment point to the sphere is chosen as the location corresponding to s = 0. The
other end of the filament s = 1 is a free end with force and torque free conditions. In the following
and subsequent discussions, derivatives with respect to the arc-length are denoted by primes for
ease of notation. At each point on the centerline, x.(s), we affix a localized coordinate frame
defined by the orthonormal triad [n(s, ¢), p(s, 1), t(s, t)] where t(s, ¢) is the local tangent vector
along the centerline of the filament and the mutually orthogonal unit vectors n and p lie on the
plane normal to the tangent and in the directions of principal axes of inertia of its cross section.
(Note that the unit vector t should not be confused with scalar + which denotes time.) In our case,
since the cross-section remains circular, there is freedom in choosing these unit vectors. We specify
that for the straight filament n(s, t) = e,, p(s,?) = e3 and t(s,t) = e;. The localized coordinate
frame at s + ds is obtained by an infinitesimal rotation of the coordinate frame at s. The deformed
state of the axis of the filament is then determined by [51,60]

Qr(s,1) = kp(s, )N+ kp(s, 1) p+,(s,t)t, and t' =QF xt, (D
which provides information on the rate at which the triad rotates along the filament. The components
of 2 are related to the classical Frenet-Serret definitions for the curvature ksg(s) and torsion tsg(s)

by [61]
/céF = Kf + K?, TSp = K — |:tan1 (ﬁ>] . )
kp
Components of the deformation in the plane perpendicular to t may be extracted using
txt =@ — kit =rx,n+k,p=Q - (I—tt), 3)

where I is the identity tensor. The orientation of the orthonormal vectors (n, p, t) along the filament
at every location s is defined relative to the sphere-fixed (e, e,, e3) triad in terms of angles 6 and x
(both functions of s and ¢, cf. Fig. 1):

n = —sinf e; +cosfcos y e, + cosh sin x es, 4)
p = —siny e+ cosy es, 5)
t =cosf e; +sinfcos x e+ sinfsin x es. (6)
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Thus, for the deformed filament, as we traverse the centerline from clamped end to the free end, the
set (n, p) rotates around the tangent axis. The resulting rate of rotation (in space) serves to specify
curvatures and torsions. Equations (4)—(6) yield the curvature vector that captures both the bending
and direction of the filament at s and is related to «, and «, defined earlier in Eq. (1) by

t' =6'n+sindy'p. 7

The shape of the filament is completely fixed in the body frame once 6(s,t) and x(s,t) are
determined. At each cross section of the filament total force F and moment M exerted by the
hydrodynamic force and the follower force are responsible for bending that deforms the filament. Let
B = mE(** /4 be the bending modulus of the filament. We then define the dimensionless number

wEttet
4

For a filament of given length and stiffness, increasing B may be interpreted as increasing the
magnitude of the active force and thus modifying the balance between the imposed active follower
force and passive restoring elastic force at each crossection of the filament. The moment M at each
cross-section is related to the curvature vector introduced in Eq. (1) via Hooke’s law. Ignoring twist,
and thus the contributions from component «,,, the effective internal moment has the form

M=8"(kcn+k,p)=p"" (txt) 9)

On balancing moments across an infinitesimal element of the filament, we obtain

gl = (Ll =B (8)

dM
ﬁ + tXFeXt =0. (10)

Here, F**'(s) is the total force acting on the filament from a position s measured along the centerline
of the filament to the end of the filament. Since the force per unit length is scaled by the magnitude of
the active force, the active force equals —t. Denoting the nondimensional hydrodynamic traction—
the force per unit length exerted by the filament motion on the fluid—by f we can then write

1
Fe’“(s):/ (—f —t) ds. (11)

Note that F*' is the area-averaged force and is comprised of both an axial force (tension) and a
normal force (shear). Combining Egs. (8)—(11) and using p - (txF*') =n - F*' and n - (txF*') =
—p - F*', we obtain

BM' = p[0” — cos B sinB(x')*]1+n(—26"x  cosd —sinOx"). (12)
Substituting Eqs. (11) and (12) into Eq. (10) gives
n-F* = 710" — cosOsinO(x)?],
p-F = B '[sinfx" + 20'x' cos 0]. (13)

Differentiating above expressions with respect to s, we obtain the dual set
1
n-f+ 810" —cos20x*0' —sin20x'x") + (0't — cos 0 x'p) - / f+t)ds=0 (14)

and

p-f4 B [x"sind 4+ 3x"6 cosd + 2(0" cos6 — 0" sin6)x']

1
+(x’sin0t+cosen)-/ f+t)yds=0. (15)
P
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Equations (14) and (15) are Volterra integral equations of the second kind for the normal components
of the hydrodynamic forces and are therefore better suited for numerical analysis than Eq. (13),
which is an integral equation of first kind for f. The unknown function yet to be determined is the
hydrodynamic traction f. This function and the translational and rotational velocities of the sphere
are to be determined by applying the no-slip condition on the surface of the filament, force and
torque balances on the sphere-filament assembly, and the moment balance on the filament written
in the form of Eqgs. (14) and (15).

We shall use the method outlined by Higdon [62,63] to determine the velocity field and forces
on a sphere-filament assembly. The velocity of the fluid satisfies the Stokes equations of motion for
a low Reynolds number, incompressible flow. Since the filament is slender (¢ < 1), the velocity at
any point x in the fluid outside the assembly or on the surface of the assembly can be expressed
in terms of a line distribution of singularities of Stokes equations of motion along the axis of the
filament [62,63]:

1 1
i) = 1) + /0 F($)Gulx, y(s)] ds + /0 d,(5)D[x. y(s)] ds. (16)

Here, d; is the source-dipole strength, y(s) is the position vector of a point on the centerline of the
filament at the arc-length s (scaled) from the base, and u] is the velocity induced by the motion of
the sphere. G;;(x, y) is the Green’s function, i.e., the velocity induced at x due to a unit point force
applied to the fluid at y in the presence of a sphere. It consists of two parts: G;; = G + G;‘j“ where
G} corresponds to the fluid velocity in the absence of the sphere and is given by

G;?f(x,y)=81+r’—§’, r=x-y, (17)
r r
and G;’,“ is the velocity due to an image system within the sphere that renders G;; = 0 for all x on
the surface of the sphere and at infinity. The reader is referred to Higdon [63] for the expression
for GIT". D;; is the velocity induced by the source-dipole and equals V2G;;. The velocity induced
by a line distribution of point force normal to the filament axis induces nonuniform velocity on the
surface of the filament. Inclusion of the source-dipole term with d; = €*(f; — t;t¢ fi)/2 is necessary
to offset this nonuniform distribution. Note that d; is O(€?) and hence the velocity it induces is
significant only near its singularity. The term u] in Eq. (16) corresponds to the velocity induced by

the translational and rotational motion of the sphere:

s = 2au oy (L 4 ) 55 (12 A ] 4 e, (18)
u. = — f il — e _— —_— €;j j—
, e AN AT Ix|? ARE

where U; and ; are, respectively, the (scaled) translational and rotational velocities of the sphere.

Since the Green’s function we have chosen vanishes at the surface of the sphere, the no-slip
condition for the sphere is automatically satisfied. We need to satisfy only the no-slip boundary
condition on the filament surface. Since X is the filament base (cf. Fig. 1), the position vector along
the centerline of the filament is given by

X.(s,1) = Xo(t) + /S t(s', 1) ds'. (19)
0

A point on the surface of that element, where the no-slip condition is applied, is given by
X =x. +e(@n+awp), o +a;=1. (20)

As mentioned earlier, the addition of the source dipole term (d;D;;) in Eq. (16) ensures that the
velocity induced at the filament surface is nearly independent of the choice of o and «,. We
therefore need to satisfy the no-slip condition at only one point on the surface. We chose «; = 1 and
o = 0 in all our numerical analyses.
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The velocity of the fluid is evaluated in the body-fitted coordinate system with the unit vectors e;
rotating with an angular velocity €2;. The velocity on the surface of the filament is given by

Sdt S do d
u[x(s)]:U—l—Qxx(s)—i—/ —ds:U—i—Qxx(s)—i—/ n—+psin9—X ds. (21)
o dt 0 dt dt
To close the set of equations, we impose the conditions that sum of the active and hydrodynamic

forces and torques on the sphere-filament assembly must vanish. This yields the dimensionless
constraint equations

3 ! Yiy;
ZAU,- + e fi + (¢ — c,)fjW +t|ds=0, (22)
0
1 A3
A3Qi+€,’jk/ yj|:tk +fk< y |3>:| ds =0, (23)
0
where
3A A3 3A A3
a=\—5ot>73) a=\—7—"575) (24)
2yl 2lyl 4ly|  4lyl

Here, the terms involving ¢, and ¢, arise from the image forces inside the sphere that are required
for satisfying the no-slip boundary condition on the sphere. Likewise, the term f;A3/|y| appearing
inside the integral in Eq. (23) is the torque contribution from the image system inside the sphere
[63].

B. Numerical scheme and boundary conditions

For numerical simulations, we divide the filament into N equal elements and approximate f; by a
constant for each element. The force per unit length exerted by the kth element on the fluid is denoted
by f ]k and the center of the kth element by y’g. The integral in Eq. (16) was evaluated in two parts.
The contribution from G7} f; and D;7d; from the kth element to a midpoint x' on the surface of the
Ith element was evaluated using the exact expression given by Higdon [63] while that from Glm fi
was evaluated using a three-point Gaussian quadrature formula. Finally, the contribution from Dlm
required computing the Laplacian of Glm We used a six-point difference formula for evaluating 1t
but found that the results computed w1th 1t were essentially the same as those obtained by neglecting
the term altogether for € = 0.01 or smaller, the cases examined in the present study.

We use trial functions to express the filament shape that are shown in Fig. 2,

K K
0(s.) =Y ca)Ou(s), x(s.) =Y dn(t)Oy(s), (25)
n=1 n=1
with
cos A, 4 cosh A, . .
®,(s) = cos(A,s) — cosh(X,s) — | ———— ] [sin(A,8) + sinh(A,s)], (26)
sin A,, — sinh A,,
where A, are the roots of the equation cosA + (coshA)~! = 0. These trial functions are chosen

such that the boundary conditions 6(0) = x(0) =0 and 6’(1) = 6"(1) = x'(1) = x”(1) = 0 are
automatically satisfied. Note that setting 6 and yx to be zero at the base of the filament, i.e., at s = 0,
is equivalent to fixing the slope at the end, that is clamping the filament to the sphere.

The boundary conditions at s = 1 are deduced from Eq. (13) by taking F**'(1) = 0 while those
at s = 0 are the consequence of choosing the body-fitted coordinates in which the x; axis passes
through the sphere center and the filament base and not allowing the filament to twist. The functions
in Eq. (26) are the derivatives of the displacement functions used earlier [50,51] in the analysis of
filaments attached to a wall. Figure 2 shows the first four trial functions.
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FIG. 2. Trial functions ®,(s) used for the shape of the filament. The first four functions corresponding to
n=1,2,3, and 4 are shown.

Application of the no-slip and moments balance conditions on each element and the overall
force and torque balances yield a total of SN + 6 equations in 3N + 2K + 6 unknowns - f]’.‘ (k=
1,2,...,N, j=1,2,3)c,and dy, (k =1,2,...,K)and U; and Q;. In numerical simulations one
can choose K < N to suppress undesirable oscillations in the filament shape due to higher-order trial
functions and solve the resulting unknowns in the least square error sense. For the linear stability
analysis carried out in the present study, we took K = N and solved the appropriate eigenvalue
problem.

C. Base states

We begin our discussion of results by considering first the simple case of steady flows induced
by the translational and rotational motion of the filament-sphere assembly. This is the appropriate
base state to consider prior to onset of instabilities and the results will be useful in the approximate
resistance force theory.

Higdon [63] has discussed in detail the order of magnitude of errors involved in the slender body
theory used in the present study. This involves estimates of the magnitude of errors due to finite
curvature of the filament, due to variation in f; with s, and due to end effects, particularly near the
end of the filament attached to the sphere. For straight filaments, the error in f is O(e?) for the points
away from the either end of the filament. Higdon mentioned that if the free end of the filament is
blunt, then an error of O(1) will occur in the computed values of f for elements close to the end,
a case examined in detail by Tuck [64]. The results showing the effect of the shape of the filament
end or the convergence of the results with increasing discretization were not presented by Higdon
[63]. In what follows, we first illustrate the failure of the theory as described above in determining
fi near the blunt end. We shall then consider the case where the filament end is rounded and show
that the theory in the present form is adequate for rounded ends. The detailed calculations for the
rounded end have been also carried out by a different numerical method by Johnson [65].

Figure 3(a) shows the results for traction as a function of scaled arc-length position s when the
assembly is acted upon by an active follower force of unit magnitude acting along the axis of the
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FIG. 3. (a) f1/U, for the longitudinal motion of the sphere-filament assembly with ¢ = 0.01 and A = 0.2.
The results obtained with N = 15 are indicated by open squares (blue, online); with N = 40 by open circles
(red, online); and with N = 40 and the regularization scheme by a (blue) dashed line. (b) f;/U; for the
longitudinal motion of the sphere-filament assembly with € = 0.01, A = 0.2, and rounded end. The results
obtained with N = 15 and uniform filament radius are indicated by open circles (black) while those with
N =40 and € (s) as given by Eq. (27) are indicated by the solid (red) line. The filament shape used for the
latter is indicated by the dashed curve for ¢;.

filament. The scaled radius A = a/¢ of the sphere equals 0.2, and the slenderness ratio € equals
0.01. The wake effect of the sphere reduces the traction on the elements close to the surface of the
sphere. Therefore, the traction increases with s. The numerical results, however, do not converge
with increasing N, the number of elements used in the calculations. In fact the results obtained with
N = 40 show considerable fluctuations near the end s = 1 even though the translational velocity of
the assembly does not change noticeably as N is increased from 15 to 40. The fluctuations can be
suppressed by using a regularization scheme described below.

First, we note that Eq. (16) is an integral equation of first kind for f;. It is well known
that such equations are generally ill-posed in the sense that they often lead to noisy results
because the unknown f; is entirely inside the integral. It is also known that fluctuations can be
suppressed by regularizing the integral equation; in other words by introducing extra terms that
penalize fluctuations. We used a Tikhonov regularization scheme [66,67] and added a small term
e(fi — (5/N)*d?f;/ds*) to the right-hand side of Eq. (16). The constants (viz. € and 5) used here
were chosen so that the fluctuations near the free end of the filament are suppressed without
sacrificing significantly the accuracy of the computed results as judged by comparing the results
obtained with those obtained without regularization for points that are away from the free end. A
central-difference formula was used for estimating the second-order derivatives for all the interior
points while the backward or forward difference formulas were used, respectively, for the elements
near the free and attached ends. The results thus obtained are also shown in Fig. 3(a). We observe
that while the regularization scheme suppresses the observed fluctuations in the force density, it still
does not produce results that converge for the force density near the end. This second problem arises
because our numerical scheme does not account for the no-slip condition on the surface of the blunt
end at s = 1. In fact, the velocity at (1 4+ A, 0, 0) will be infinite unless f; approaches zero at s = 1.
Our numerical scheme only satisfied the boundary condition on the sides of the filament and ignored
the no-slip condition on the end plane at s = 1 that caps the filament. To resolve this it is necessary
to make element length comparable to € at least near the end and not apply the force density all
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the way to the end of the filament. In practice, however, the filament ends are typically not blunt,
and therefore added computational effort required to treat blunt end is not worthwhile. The analysis
simplifies greatly if one allows instead a rounded end which would ensure that f; — 0 as s — 1.
We therefore considered a case of the filament that is rounded near the end s = 1 according to

(s — Sc)z
€(s) =€ for s <s. and €r(s) =¢€|1 — ﬁ for s > s, 27
— 5,

with the cutoff length s. = 0.95 [cf. Fig. 3(b)]. For such a rounded filament the traction distribution
converges and gives f; — 0 as s — 1. Note that two modifications to the scheme outlined earlier
must be made when the filament radius is nonuniform. In determining the velocity induced at a point
on the /th element due to force and dipole distributed over the kth element, the dipole strength must
be determined by multiplying by e}(sk) instead of €2 and the velocity must be evaluated at a distance
€7(s;) instead of € from the center of the /th element. The results obtained with the aforementioned
regularization scheme and with N = 40, which is sufficiently large to obtain reasonably converged
results, are shown in Fig. 3(b). We see that the traction reaches a maximum near s = 0.95 and
this maximum roughly equals the results for the straight filament obtained with N = 15 that were
presented in Fig. 3(a). Therefore, to obtain reasonably accurate results for ends rounded for s >
0.95, it is sufficient to use the original scheme with constant € and N = 15.

Figure 4(a) shows the drag coefficient C(s) = f;/U, for four different values of A; here, the
assembly translates parallel to its long axis, i.e., in a direction along the filament axis. The shadow
effect increases with the increase in A and this leads to smaller values of C) for larger spheres.
Figure 4(b) shows the translational velocity of the sphere-filament assembly for a unit applied force
for two different values of €. The solid lines in that figure correspond to an approximate fit given by

o 174 LI I R(A_l 28
l_|:4+ln(1/e)—c11+C2A:| =[4+ e )} ’ (28)

with the constants c¢; and ¢, obtained by a regression analysis to equal, respectively, 0.79 and 9.62.
This formula provides estimates to within 1% accuracy for all the results we computed with N = 15
for A varying from 0.03 to 5 and for € equal to 0.01 and 0.001. Note that R (e, A) may be regarded
as the resistivity of the filament to its motion along the filament length.

Figure 4(c) shows the results for the drag coefficient C, (s) = f,/U, for the case when the sphere-
filament assembly is translating normal to its axis. As expected, the drag coefficient is seen to be
greater than that for the motion along the filament axis. The ratio of C, /C} varies both with s and A.
For example, for A = 1, the ratio C, /C} approximately equals 3 at s = 0.8 and 7 at s = 0.2. Such
a large variation in the ratio is not too surprising as the drag along the axis is significantly reduced
near the sphere compared with that for the normal motion. The variation in this ratio is smaller for
A = 0.1 for which it equals about 1.8 at s = 0.8, and 2.3 at s = 0.2. As seen in Fig. 4(d), our results
for U,, for A > 0.03 and € = 0.01 and 0.001, agree well, within 1%, with those obtained by the
following fit:

v, = |4 1/2 LI I R(A_l 29
2 T i ta Traal —|a TREA] 29

with ¢3 = 0.34 and ¢4 = 3.74. Equations (28) and (29) show that the net resistance to motion in
each case is the sum of the resistances by the sphere and the filament. Once again, R, (€, A) may
be regarded as the resistivity of the filament for its transverse motion. Finally, we have also carried
out calculations for the case when the sphere-filament assembly is acted upon by a unit torque
along the x3 axis around the center of the sphere. The results for the rotational velocity of the
sphere-filament assembly for € = 0.01 and 0.001 for A > 0.03 agree within 3% accuracy with the
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FIG. 4. (a) Local drag coefficient, C; = f,/U,, for the longitudinal motion of the sphere-filament assembly
with € = 0.01. (b) The translational velocity U, of the sphere-filament assembly acted upon by the total
force of unit magnitude along the filament axis. The open circles (red, online) and stars (blue, online) are
the computed results for, respectively, ¢ = 0.01 and 0.001. The lines represent the approximate fit given by
Eq. (29). (c) Local drag coefficient, C; = f,/U,, for the transverse motion of the sphere-filament assembly
with € = 0.01. (d) The translational velocity U, of the sphere-filament assembly acted upon by a force of
unit magnitude perpendicular to the filament axis. The open circles (red, online) and stars (blue, online) are
the computed results for, respectively, € = 0.01 and 0.001. The lines represent the approximate fit given by
Eq. (28).

following expression:

=[A% + Rs(e, )], (30)

3 _ 43 -1
93:[A3+ A+1°-A 1 }
6(In (1/€) —cs5) 1+ c6A

with ¢s = 0.42 and c¢ = 0.60. The effects of shadowing are reflected in the A dependence of
R], Rz, and R3.

D. Linear stability analysis

The sphere-filament assembly in the base state that we just examined can become unstable to
disturbances that perturb the shape of the filament and deform it. Specifically, the combined effect
of the viscous resistance (to both translation and rotation) due to the sphere and the compressive
active follower force can make the filament susceptible to buckling instabilities. Here, we explore
this possibility and compute parameter values for which this instability is seen.
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We begin by examining the effect of small perturbations to the shape of the filament that makes
it deviate from its straight shape. We note that the active force is purely axial and along —t and
deformations initially in the absence of noise are expected to be planar in any plane containing
the tangent vector. Let the angles 6 and x defined in Egs. (4)—(6) be small, say of O(n) where
€ < n < 1. Terms involving x always appear together with those involving 6 in the governing
equations and therefore do not contribute to the linearized equations up to O(n). Our linear stability
analysis is therefore necessarily limited to small deformations of the filament in the x;-x, plane. We
point out, however, that equations in Sec. Il A can describe the full nonlinear evolution of initially
curved shapes which we leave for a future study.

In the small deformation limit, the traction on the filament and velocity of the sphere can be
expanded in powers of n with the leading-order base state corresponding to the motion of a straight
filament acted upon by a force of unit magnitude along the negative x; axis. This base state was
already examined in detail in Sec. II C. We shall denote the traction and the velocity corresponding
to this base state by the superscript (0) and the small perturbation quantities without any superscript.
The displacement of the filament along the x, axis is then denoted in this small deformation limit
by

N N s
w(s, t) = / o(s', t)ds = ZCn(t)/ O,(s)ds'. (31)
0 — 0

The governing equations for the perturbation quantities are essentially the same as before with minor
differences, as described below. The moment Eq. (14) now reads

1
fH=—Bo" - 9’[1 — s+ / fl(o)(s)ds}, (32)
and the no-slip condition for the x,-component reduces to

Jw ©

u = Ur = (A +5) = —— — s, t)f (33)

(s,€,0)

The derivative in the last term on the right-hand side of the above equation is evaluated on the
surface of the element at s, which corresponds to x, = € as we have taken oy = 1 [cf. Eq. (20)] in
our base-state computations.

Next, we assume that all O(n) perturbation variables may be written as exp(pt) multiplied by
time-independent functions consistent with classical linear stability analysis. For example, we write

N
0 = exp(pr) [Z cn®n<s)] (34)

n=1

We seek conditions for which the real part of p is greater than zero to establish the criterion for the
onset of linear instability of the base state.

To determine p, we first use the force and torque balance on the assembly to solve for U; and €2;
in terms of f;. Since we are only considering the two-dimensional motions, we set f3 = Uz = Q| =
2, = 0 and solve for U,, Uy, and 23 in terms of f(s) and f>(s). Their values are substituted in the
no-slip conditions u; to determine f; in terms of f,. The moment Eq. (32) is next used to solve for f,
in terms of the constants C, using Eq. (25). Substituting next for f| and f; in the no-slip condition
for u, in Eq. (33) leads to an eigenvalue problem for determining p in the form of a generalized
eigenvalue matrix equation AC = pBC where A and B are N x N matrices and C is the vector of
trial function coefficients C,. Solving this eigenvalue equation gives N possible values of p.

In the problems involving filaments attached to the wall to be considered in the next section, or
a sphere that is held fixed, the only modification that is required is that the base state traction and
the corresponding velocity are zero. Finally, we note that for the case of a single filament attached
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FIG. 5. Results from the linear stability analysis of the slender-body equations for the sphere-filament
assembly. (a) Critical values of the nondimensional active force, 8, above which sustained oscillations occur
as a function of scaled radius A = a/! of the sphere. Filled circles (red, online) and stars (blue, online)
correspond to a freely suspended sphere-filament assembly with € equal to, respectively, 0.01 and 0.001 while
the black squares correspond to the sphere held fixed and € = 0.01. Curves/lines are shown to guide the eye.
(b) Frequency of sustained oscillations w as a function of A at the critical value of 8. Circles (red, online) and
stars (blue, online) correspond to freely suspended sphere with € equal to, respectively, 0.01 and 0.001 while
the squares (black, online) correspond to the sphere held fixed and € = 0.01. Circles (red, online) and stars
(blue, online) correspond to freely suspended sphere-filament assembly with € equal to, respectively, 0.01 and
0.001.

to a sphere it is not necessary to solve for U; and f; as the problem for determining them decouples
from that for determining C,, and f;.

For small 8 all eigenvalues are real and negative indicating that the straight filament is stable
to small perturbations when § is less than, say, 8¢ whose value depends on A. For § > B;(A), at
least one pair of eigenvalues is complex indicating that the filament will undergo oscillations whose
amplitude will decrease with time as the active energy is dissipated away due to viscous drag. Fily
et al. [35] refer to the critical value S¢ as the flutter point. As g is further increased, the real part of
the complex pair increases, eventually becoming zero at 8 = S;(A) with further increase leading to
positive real parts for the pair. Thus, for 8 > B, small amplitude perturbations yields oscillations
that grow rather than decay with time. This instability where the real component of a complex
conjugate eigenvalue pair with nonzero imaginary parts turns positive corresponds to the classic
Hopf bifurcation. We shall focus on the onset of these sustained oscillations. At the critical value of
B, one pair of complex conjugates, for fixed values of € and A, turns purely imaginary i.e., p = fiw.
We shall refer to w as the frequency of oscillations.

Figures 5(a) and 5(b) show ; and w as functions of the radius A of the sphere and €. For A > 0.3,
the variations in B; and w are relatively small. The frequencies for ¢ = 0.01 are about 30% lower
than those for € = 0.001 and the critical values of B, are also lower but only slightly (about 1-2%).
However, B, increases steeply as A is decreased and the increase is greater for € = 0.01. In fact,
for A = 0.05 the critical value g for € = 0.01 (not shown in the figure) is 371, which is more than
double that for € = 0.001 (8; = 152). The frequency, on the other hand, always remains smaller for
€ = 0.01 than for € = 0.001. The sharp increase in the stability of the straight filaments at smaller
values of A can be understood in terms of the main terms driving the instability, viz., the quantities
inside the parentheses on the right-hand side of Eq. (32) which consists of the sum of 1 — s, which
arises from the active force, and the integral of the base state force f](o). The former is the active
compressive force that is the source of bucking instability while the latter, which is induced by
the motion of the assembly, acts to suppress the instability. This latter force is proportional to the
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FIG. 6. Summary of results from two versions of the RFT-based minimal formulation described in the
Appendix. The first version (Set I, dashed curves) ignores shadowing effects with parameters given by
Eq. (A13) in the Appendix. The second version (Set II, solid curves and symbols) accounts for them in an
approximate way with parameters given by Eq. (A14) in the Appendix. Here, red corresponds to € = 1072
and blue to € = 1073, (a) Critical value of 8 for the onset of instability at which a single real eigenvalue or a
complex conjugate pair crosses the real axis. We note that for set II that incorporates the effect of shadowing in
an approximate manner, the critical value monotonically decreases with A for both values of the aspect ratio.
For set I, however, this curve for € = 1073 does not follow this trend. (Inset) Focusing on set I, we find that
the critical value of 8 for instability is nonmonotonic in A for € € (7 x 1073, 1073). (b) Plotting the imaginary
component of the critical eigenvalue(s) for both sets I and II shows that the nonmonotonic nature arises due to a
change in the nature of the bifurcation. For set I, there is a range of A for which the critical eigenvalue is a single
eigenvalue with zero imaginary component. In this parameter range the bifurcation is a divergence bifurcation
(DB) and the emergent solutions are not oscillatory solutions. For set II, however, instability is always due to a
complex conjugate pair and thus the bifurcating branch is a oscillatory solution. (Inset) Close-up of the small
A region showing the qualitative differences between the two models.

velocity of the assembly, which in turn is approximately inversely proportional to the radius of the
sphere. As a consequence, for smaller A, a section of the filament close to the sphere is under net
compression while that near the free end is under tension. For € = 0.001, the drag force is smaller
and this leads to smaller 8; compared to that for ¢ = 0.01 at same A.

Also shown in Figs. 5(a) and 5(b) are the results for the case when the sphere is held fixed and
prevented from rotating and translating. In the limit A — oo, this would correspond to the active
filament attached to a rigid wall. In this case, the base state force density f vanishes. Unlike the
freely suspended sphere, variations in both w and B, with A are relatively small. B, varies from
72.3 at A = 0.05 to 73.3 for A = 0.8 and the frequency w varies from 20.8 at A = 0.05 to 20.3 at
A = 0.8 for € = 0.01. The results for € = 0.001 are only slightly different: critical 8, values are,
respectively, 74.2 and 74.9 for A = 0.05 and 0.8, and the corresponding frequencies are 33.4 and
32.9.

Figures 6(a) and 6(b) summarize results obtained by using two versions of RFT [Appendix,
Egs. (A7)-(A12)] corresponding to two sets of parameters—Set I [Eq. (A13)] and Set II [Eq. (A14)].
Set 1 captures the extra drag and torque due to the sphere on the filament, but does not account for
hydrodynamic screening of flows due to the spherical surface. To see if this could be improved
upon, we used the results presented in Sec. II D that incorporated shadowing effects for a steadily
moving straight assembly [Egs. (28)—(30)] to obtain parameters for a second variant of the RFT
(Set I). In this second model, while the effects of the sphere on the filament drag are incorporated
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to some extent, we still do not impose the actual no-slip boundary conditions on the finite sphere.
Furthermore, and importantly, the effect of the base state fluid flow field on the traction along the
moving aggregate is ignored. Thus, in both these simple models, the compressing force along the
filament increases linearly from the free end s = 1 to the end s = 0 where it is attached to the sphere.

We first discuss the predictions from the minimal version of RFT without shadowing [set I,
dashed curves in Figs. 6(a) and 6(b)]. We find that, for € = 1072 (red), the critical value of S
for the onset of instability decreases with A for the range shown. The critical eigenvalues are a
complex conjugate pair and the instability corresponds to a Hopf bifurcation yielding oscillatory
solutions with well-defined frequencies. The critical § values compare favorably with the exact
slender-body estimates [Fig. 5(a)]; the frequency dependence on A is qualitatively similar. For
the smaller slenderness ratio ¢ = 103 (blue), however, we observe qualitative and quantitative
differences. Specifically, the critical 8 curve is no longer monotonically decreasing with increasing
A. Further information about the reason for this difference is obtained by examining the imaginary
component of the critical eigenvalue(s). For A in the range 0.03 to 0.088, the base state exhibits
two critical points. The first point corresponding to the lower value of g arises due to a single real
eigenvalue crossing the real axis. The bifurcation is thus a simple divergence bifurcation (DB) with
small disturbances growing exponentially until nonlinear effects limit the amplitude. The second
critical point—seen at a higher value of B—corresponds to the Hopf-bifurcation. For A outside this
region, only the Hopf bifurcation exists. Thus, the predictions of the minimal resistive force theory
are qualitatively and quantitatively different from the slender-body predictions.

A possible reason for the lack of the DB solutions in the slender-body theory is the boundary
condition imposed on the angle 9 at s = 0. To check if this is indeed the case, we next analyzed the
predictions from the corrected theory (set II) that incorporates shadowing effects, albeit in a highly
simplified form. Our linear stability results are plotted in Figs. 6(a) and 6(b) (filled symbols and solid
curves). We find that incorporating shadowing removes the DB branch—thus for both values of e,
the straight assembly becomes unstable to oscillatory solutions consistent with the predictions of the
slender-body theory. The critical values of § are also closer to the predictions of the slender-body
theory. At the same time, the magnitude of the imaginary part of the critical eigenvalues exhibits
qualitative differences from the slender-body predictions. Specifically, instead of the nonmonotonic
form of the curves in Fig. 5(b), the predicted curves [solid curves and filled symbols in Fig. 6(b)]
are monotonic. To conclude, we find that incorporating shadowing in the manner we did allows
us to match slender-body predictions in terms of the type of instability and the critical values of
B. However, qualitative differences remain in terms of the emergent frequency of the oscillatory
solutions.

Since the derivative of the real part of the pair of complex conjugate eigenvalues at 8 = f; is
nonzero and dissipation provides a mechanism to prevent the uncontrolled growth of the amplitude
of the oscillations, we expect stable and sustained oscillations for 8 > f;. Close to the critical point,
0 < (B — Bs)/Bs < 1 the eigenfunctions corresponding to the critical eigenvalue pair control the
shape of the filament deformations. The filament displacement w(s, t) (i.e., the x,(s) component of
the filament centerline) may be determined from the real and imaginary parts of the eigenfunctions
corresponding to this complex pair. The result can be expressed (to within a multiplicative constant)
according to

w(s, 1) = W(s)cos[wt — 2w p(s)], 35)

where the phase angle ¢(s) is chosen to equal zero at s = 0 and W (s) is the amplitude. Figure 7
shows displacement as a function of s over one periodic cycle for the case of a fixed sphere with
A = 0.8 and for the freely suspended sphere with A = 0.05. Figures 8(a) and 8(b) show amplitudes
and phase angles as functions of s for several different cases. The results for freely suspended
and fixed spheres are almost identical for A = 0.8. Both amplitude and phase angle monotonically
increase with s for these cases. For freely suspended sphere with A equal to 0.3, or smaller, both
amplitude and phase angle go through a maximum at an intermediate value of s.
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FIG. 7. Displacement w(s, t )—to within a multiplicative constant—of the filament as a function of arc-
length position s for various times. (a) fixed sphere with A = 0.85; (b) freely suspended sphere with A = 0.05.

III. FILAMENTS ATTACHED TO A WALL

We now consider the problem of determining stability of one or more filaments attached to a
wall. Each filament is acted upon by a follower force as in the previous section but in addition to
hydrodynamic interactions among different parts of the same filament and the wall, we also have
to take into account hydrodynamic interactions among different filaments. We shall analyze three
cases: (i) a small cluster (2—6) of filaments in a line; (ii) a line array of filaments; and (iii) a square
array of filaments.

A. Green’s functions for the wall-filament geometry

Consider first a single filament attached to a rigid nonmoving, no-slip wall positioned on the
plane x; = 0. The Green’s function must now satisfy the no-slip condition at the wall. Accordingly

(a) (b)
1 035
03¢
0.8
z 025}
% 0.6 = 02}
S <
£ o4 g 015}
| 3
5 £ 01}
0.2
0.05r
0 = 0k . " . "
0 02 04 0.6 0.8 1 0 02 04 0.6 0.8 1
Arc-length position, s Arc-length position, s

FIG. 8. Here we show the (a) amplitude, and (b) the phase angle ¢(s), for the following cases: the freely
suspended sphere with A = 0.05, open squares (blue, online); A = 0.1, open circles (red, online); A = 0.3,
open diamonds (cyan, online); and A = 0.8, stars (green, online). The fixed sphere with A = 0.8, is shown as
the solid black line.
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we write G;; = Gj7 + G;T with the latter given by [68,69]

i1 i8] 3sis Si 2 (3i 3si81 P
Gk, y) = | (5 8 = 2h(5 — ) — 202 (S — 5 _ UG=D. 3
yoey {—(% ) pen(e) Son(ie — e by - By (=23, O

where h = y; and s; = x; — yi-m with yﬁm = y; — 2hd;;. These equations provide a foundation that we
will build on to address the hydrodynamically mediated emergent instabilities of multiple interacting
filaments. Thus, for case (i) of finite number of filaments, the velocity of the fluid is obtained by
simply carrying out integration over all the filaments (« here denoting the filament index),

N 1 Nt 1
ux) =3 /O G Ix ¥ () ds + Y /0 42 (D3 1x, ¥ (s)] s, 37)
a=1 a=1

where Ny is the total number of filaments and y*(s) is the position vector of a point along the
centerline of the filament «. The source dipole strength d7 is related to the force coefficient f7* in
the same manner as for the case of the sphere.

For case (ii), corresponding to a line array of filaments, the sum over « in Eq. (37) is extended to
infinity (—N; < o < Ny with Ny — 00) and f]‘?‘ is independent of «. It can be shown that G;;(x, y)
decays as h?/r? for j =1 and as h/r> for j =2 or 3, where r = |x —y| and & = y;. Therefore,
the sum over N; in Eq. (37) decays as 1/N? for j = 1 and as 1/N; for j = 2, 3. We computed the
sum over « for three different values of Ny and the results were subsequently fitted according to
a polynomial A* + B*/N? + C*/N} for j = 1 and to A* + B*/N; + C* /N for j = 2,3 to obtain
estimate for an infinite array of filaments. It was found that calculations done with Ny equal to 10,
20, and 30 provided sufficiently accurate estimate for A*, which corresponds to the extrapolated
estimate for the array of infinite number of filaments.

The case (iii), corresponding to a square array of filaments that we term a carpet due to the
two dimensional coverage of the surface, requires a different expression for the Green’s function.
The Green’s function that is spatially periodic in the plane parallel to the wall is derived by Ishii
[71] and Sangani and Behl [70]. We write G;; = Gipj + ijflm with Gipj corresponding to the velocity

induced by an array of point forces in a plane parallel to x; = 0 in an unbounded fluid and G?, i
corresponding to the flow induced by its image system in the presence of a wall at x; = 0. As shown
by Sangani and Behl [70],

P _—) — ¥ 0°3 38
Gli(x,y) = 2v;(r), vy = Vi8;; — FrrT (38)
Here, r = x —y, and ¥{ and W are related to the planar periodic functions W and W5,
2
W=, — <_”)|r1| and Wi =W, — <1)|r? , (39)
T 3t

with 7 being the area of a unit call of the periodic array. The functions W; and W, decay
exponentially for large |r| so that v;; increases linearly with r; at infinity fori = j =2, 3,

2
vij — —(T)|”1|(5i_/ —816j1) as |r| — oo. (40)
In other words, the velocity induced by point force components parallel to the plane of the array

increases linearly at large distances from the plane. It can be shown that the no-slip boundary
condition at the wall x; = 0 can be satisfied by taking

. vy 2297 o
Glpjim x.y) = —2v;; +4h 3;‘,‘/, +2h axijél’wr o . ( ] =1) an
—2uj — 4hgt +4h(8; 5k — Sugt) = 2W 5 (j=12.3)
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with the functions in the above expression evaluated at s; = x; — y; + 2h§;;. Sangani and Behl [70]
have described three methods for evaluating the functions W, and W,. We used their method I which
involves a sum over reciprocal lattice vectors of the periodic array. This sum converges very slowly
for small |r|. To overcome this problem, we carried out the sum only for reciprocal vectors with
magnitude less than 40/D, D being the size of the array, and approximated the remaining sum by
an integral that was evaluated analytically. This analytical integration is possible because, for the
case of a straight filament, we only need to evaluate the integral for the special case r, = r; = 0. For
r1 = 0, Sangani and Behl have recommended using their method II which uses Ewald’s summation
technique to obtain fast convergence. We found that for 7; < 0.05D the asymptotic formulas given
by these investigators for small r provided adequate accuracy and therefore it was unnecessary to
use this Ewald’s summation-based technique. Note that the linearly increasing part of the velocity
induced by an array of point forces of magnitude f; is canceled by their image forces so that the
velocity due to an array of point force at a distance y; from the wall and its images approaches a
constant value equal to 8wy, f>/7 at infinity. Therefore, the flow induced by an array of filaments
has the asymptotic behavior

. o 3T ! . .
u — u;” = - yi(s)fi(s)ds as x; —> o0 (i=23). 42)
0

B. Results: Collective instabilities of a small number of filaments

We first discuss results for the instability of a single filament attached to a wall. The dynamics
of a single filament attached to a wall are similar to that attached to a fixed sphere. This is not
surprising since the wall is effectively a nonmoving sphere with A — oo. The value of the critical
load, B, for Hopf bifurcation varies from 72.18 for € = 0.02 to 75.65 for ¢ = 0.0001 while the
frequency at the onset of instability varies from 16.21 for € = 0.02 to 45.24 for € = 0.0001. The
following expressions are approximate fits of the numerical results for € in this range:

o= 78<1 025 )
hsle) = In(1/e)—055)
w(€) = 5.41n (1/€) — 4.5. 43)

We note that the buckling tendency of the filament due to the imposed follower force is aided by the
hydrodynamic drag. Filaments with smaller € provide smaller hydrodynamic drag and therefore the
required critical load for their instability is greater, i.e., 8, increases as € is decreased. The frequency
of the oscillations increases as the hydrodynamic drag is decreased.

It is illustrative to compare the values obtained here with previous analyses of the instability of
a clamped filament subject to compressional follower forces using closed form analytical equations
[35] and discrete Brownian dynamics simulations [45]. These previous studies differ from the
present study in two main aspects. First, the filament is clamped at a point—that is, the wall is
virtual and hence cannot affect the hydrodynamic drag on the moving filament. Second, the drag on
the filament is calculated using local resistivity theory. Fily et al. [35] calculated the critical g for
instability to be approximately 76.2. A slightly higher value of about 78 was estimated by Chelakkot
et al. [45] in the weak (but finite) noise regime. Both these values are in good agreement with
the values calculated here suggesting that the onset of instability for the single filament problem
is controlled primarily by the buckling elastic instability and that the small hydrodynamic drag
offered by the filaments affects the critical load only slightly. The effect of hydrodynamic drag is
more significant on the frequency of the oscillations at the onset. Since the base state has no flow and
no drag (and hence, no influence of the wall), this is to be expected. Note that, the analysis by De
Canio et al. [47] is for a point follower load model with the follower force concentrated at the free
end rather than being distributed along the filament; the estimated critical value of Sy is therefore
different. In terms of frequencies, the simplified analysis of Fily et al. [35] provides the frequency
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at onset that approximately follows w(e) =~ 5.21n (1/€) that compares well with the slender-body
result of Eq. (43).

We now turn to the more interesting case of dynamics of finite number (N; > 1) of filaments
attached to a wall. If N is the number of trial functions used in the expansion for 6(s), then the total
number of eigenvalues to be determined is N;N. For sufficiently small 8, all eigenvalues are real and
negative. As S is increased there will be N pairs of eigenvalues that will become complex indicating
Nr modes of oscillations. The results discussed below were all obtained for filaments with e = 0.01.

We first fix the spacing D = 0.3 and study the variation in B, with N¢. For Ny = 2, the real part of
one pair of complex conjugates becomes zero at 8 approximately equal to 72.5 while the real part
of the second pair of eigenvalues becomes zero at 8 = 77. The corresponding imaginary parts, or
the frequencies are, respectively, 24.1 and 15.1. The amplitudes and phase angles as functions of s
for the two filaments are identical at the onset of instability, i.e., at 8 = 72.5, indicating that both
filaments oscillate in-phase with each other in this mode. The second mode at B = 77 also gives
identical amplitudes for both filaments but their phase angles are apart exactly by m, indicating
that this mode corresponds to the two filaments oscillating completely out-of-phase with each other.
Since the first mode becomes unstable at the lower value of 8, we expect the filaments to oscillate
in-phase with each other, at least near the onset of the instability of straight filaments. The variation
in the critical load and frequency with D was also studied and the results are shown in Figs. 9(a)
and 9(b). These results can be rationalized in terms of the effect of the second filament on the
resistivity of a filament. The flow induced by the second filament that is oscillating in-phase with a
filament decreases the hydrodynamic resistivity and this leads to lower critical load for the onset of
instability and increased frequency of oscillations. This is similar to the effect of decreasing € for a
single filament, cf. Eq. (43).

For Ny = 3 and for D = 0.3, there are three modes of instability corresponding to 8 equal to
71.5 (first), 76.1, and 77.4 (last) with the respective frequencies of 26.9, 17.5, and 14.3. Once
again, the lowest § mode corresponds to all three filaments roughly in-phase with each other with
the amplitude for the middle filament slightly higher than the other two. For the second mode,
the amplitude of the middle filament is essentially zero while the two other filaments oscillate
completely out-of-phase with each other. Finally, for the third mode, the first and third filaments
are in phase with each other with their phase angles differing from the middle one by 7. The
amplitude of oscillations of the middle one is significantly higher than the other two. Once again
since the mode corresponding to the smallest S for the onset of instability corresponds to all
filaments oscillating in-phase with each other, we expect this to be observed in practice.

Even more complex modes are observed for larger values of Ny but in all cases the first mode
to become unstable is the one corresponding to all filaments oscillating in-phase with each other
while their amplitudes may differ. The critical values of § and the emergent frequencies of the first
unstable mode are shown as a function of spacing D as well as as a function of Nt in Figs 9(c) and
9(d). Also shown on the same figures are the critical values of 8 (for oscillatory instability) and the
corresponding frequency for the last pair of complex eigenvalues. We note that the first unstable
value (corresponding to the lowest value of ) decreases with N; at fixed spacing (here D = 0.3);
the associated frequency of oscillations increases with Ny. The trends reverse for the last mode.

We conclude this section by looking at the amplitudes and phase angles of these destabilizing
eigenmodes. We choose to focus on Ny = 4 case. Figure 10 illustrates the results for Ny = 4 for
which there are four pairs of complex eigenvalues. The first mode to become unstable at § = 70.7
with w = 28.8 corresponds to, once again, all filaments oscillating in-phase with each other. The
amplitudes of the two filaments in the middle are greater than for the other two. Slight differences
seen among the middle ones are an artifact arising from boundary conditions being applied at x, —
y, = € on each filament, which breaks the symmetry. The second mode to become unstable, at
B =75.2 with v = 19.6, corresponds to the first two filaments oscillating completely out-of-phase
with the other two while the amplitude of the first and fourth filaments are greater than those of
the middle ones. The third mode (not shown), to become unstable at 8 = 76.9 with w = 15.7,
corresponds to the first and fourth filaments having the same phase angles but completely out of
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FIG. 9. (a) Numerical results for the instability modes for two filaments (N; = 2) attached to a wall. (i) The
first (circles, blue-online) and second (squares, red-online) critical values of 8 at which oscillatory instabilities
emerge are plotted as a function of the spacing D between the filaments. The first mode corresponds to the
two filaments oscillating in-phase with each other, and the second mode corresponds to the out-of-phase
oscillations. (ii) The frequencies of the emergent oscillatory solutions corresponding to these two modes.
(b) Numerical results for more multiple filaments. The number of independent modes equals the number of
filaments. Critical value of B, (i) and the corresponding frequency w (ii) at criticality as a function of the
number of filaments. There are N, critical modes and only the results for the first ones that occur as 8 is
increased from zero and the last ones are shown. The first mode corresponds to the mode in which all filaments
oscillate in phase with each other. The interfilament spacing D is 0.3 and € = 0.01.

phase with the two middle filaments. The amplitudes of the outer ones are greater for the middle
two filaments. Finally, the fourth mode, to become unstable at § = 77.5 with w = 13.9, corresponds
to the first and third filaments in-phase with each other and completely out-of-phase with the other
two. In this mode, the center filaments oscillate with a greater amplitudes than the filaments at the
ends.

C. Instabilities in line arrays and square carpets of active filaments

Next, we present results for periodic arrays of filaments attached to a wall. Figures 11(a)
and 11(b) show the critical value of 8 at which the straight filaments become unstable and the
corresponding frequency of filament oscillations at the onset of instability as functions of the
spacing D between the filaments. It is seen that the doubly periodic square array becomes unstable
at smaller values of 8 than for the row of filaments having the same spacing and that the frequency
of oscillations is higher for the square array than for the line array. Figures 11(c) and 11(d) show the
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FIG. 10. Amplitudes (to within a constant) and phase angles (divided by 2m) as functions of arc-length
s for four hydrodynamically interacting filaments. The distance between the filaments is 0.3 and € = 0.01.
Panels (a) and (b) correspond to the first mode to become unstable while panels (c) and (d) correspond to the
second mode to become unstable. The other two modes that become unstable at even larger values of B are not
shown. In panel (a) the lower two curves correspond to the two outer filaments while the upper two (almost
indistinguishable) curves correspond to the middle two filaments; in panel (c), the lower two curves correspond
to the middle two filaments.

results for the amplitude (to within a multiplicative constant) and the phase angle [cf. Eq. (35)] for
few selected cases of square and line arrays of filaments. Although the frequency of oscillations and
the critical B for the onset of instability vary considerably among these cases, we see that their wave
pattern is essentially the same, and, in fact, not very different from that for a single filament attached
to a fixed sphere with A = 0.8. We also note that, in all these cases, the phase angle variation with
s is nearly linear suggesting that these waves may be easily misinterpreted as traveling waves even
though our analysis suggests that the waves at the onset of instability are by nature standing waves
that must satisfy the appropriate boundary conditions at s = 0 and 1.

For the case of square arrays—we term these as carpets in keeping with the literature on ciliary
carpets—the oscillating filaments will induce flow at infinity as given by Eq. (42). Let us determine
the magnitude of this velocity compared to the power input by the active force. To leading order
in small amplitudes, the velocity along the x; axis of the filament and the force component f(s)
are zero and therefore the power input is entirely determined by the x, component of the applied
follower force (—t) and the velocity of the filament. The x, component of the former equals —6
while the latter equals dw/d¢. Therefore, the power input by the active force on the filaments per
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FIG. 11. Shown are (a) B, and (b) the oscillation frequency w as functions of the interfilament spacing D.
Closed circles (green, online) correspond to a square array while stars (blue, online) correspond to a row of
filaments in the plane of oscillation. The result for a single filament attached to a wall is indicated by the (red)
solid line. (c) Amplitude (to within a constant) and (d) phase angle (divided by 2r) as functions of s for square
and line arrays of filaments at the onset of instability. The solid lines are for a square array with D = 0.3; the
dashed lines for a square array with D = 0.7; the open (red, online) circles and (red, online) stars represent the
results for line arrays with spacing equal to, respectively, 0.3 and 0.7.

unit area of the square array is given by

1! dw
P(t) = ——/ 0(s, 1) — ds. (44)
T 0 al

Although the flow at infinity is sinusoidal and hence averages to zero over a cycle, the square of the
velocity is not. We therefore present the results for the ratio

URY)

E— {(u®) ) (45)

(P)

where the angular brackets denote average over one cycle of oscillation. E may be regarded as the
efficiency of an array of filament in producing the flow at infinity. Note that P is nondimensionalized
by f2 /(8 ut) while u% is nondimensionalized by f2/(871)? and therefore E defined above must
be multiplied by €/(87 1) to convert it into a dimensional quantity. Figure 12 shows E as a function
of the interfilament spacing D in square arrays. We observe that E varies considerably with D with
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FIG. 12. Mean squared flow generated at infinity divided by the mean power input per unit area from the
active force acting on the filaments in a periodic array.

smaller D giving higher induced flow. This result is based on power input per unit area. The number
of filaments per unit area increases as 1/D? which increases more rapidly with the decrease in D
than the increase in E implying that the magnitude of the velocity induced per filament decreases
with the decrease in D.

IV. PASSIVE FILAMENT IN A STAGNATION POINT FLOW

In the previous sections, we studied the dynamics and instabilities of elastic filaments subject to
follower forces with hydrodynamic interactions arising due to emergent time-dependent behavior
of the system. The slender-body formalism is, however, more general and can be used to study
passive elastic filaments deformed by imposed fluid flows. Recent papers [58,59], and in particular
Guglielmini ef al. [59], have examined in detail the stability of a straight filament placed in a
compressive, viscous stagnation point. Their analysis used the leading-order slender-body theory
without accounting for wall effects or the change in resistivity with the position of a point on a
filament. The formalism presented in earlier sections (Secs. II and III) is easily extended to treat
this problem; we therefore briefly reexamine this problem. Incorporating hydrodynamic interactions
with the wall and analyzing the ensuing more accurate slender-body theory allows us to obtain more
accurate estimates for the onset of the instabilities. The method outlined below may also be used to
analyze the elastohydrodynamic deformation of passive arrays and filaments in biological settings
such as motion sensing otoliths, stereocilia in ears, and lubricating filamentous aggrecan brushes
[72,73].

We consider a straight elastic filament of length £ and aspect ratio € attached the origin with the
wall located at the plane x; = 0. The filament is subject to a quadratic extensional flow given by

ufo = Eo[ — (x%/Z) 8i1 + Xx1x2 3,‘2]. (46)

The filament is not acted upon by an active follower force, and so the instability of the straight
filament in this case is entirely due to the viscous stresses acting on the elastic filament due to the
quadratic extensional flow. After scaling the velocity components by Ey¢?, the critical parameter in
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FIG. 13. Displacements for the two instabilities for the straight filament with € = 0.01 attached to a wall
placed in a compressive extensional flow. Displacement as a function of s at the onset of bending instability at
B = 122 is shown in (a) and that at the onset of the buckling instability at 8 = 1400 in (b).

the problem can be identified as the parameter 8 = 87 uEo£> /B, where B is the bending stiffness as
introduced in Sec. II with 87 uEy¢? acting as an effective scale for the force per unit length.

The velocity at a point in the fluid is given by Eq. (16) with u] replaced by u?°. The linear
stability of the straight filament is investigated by first solving for the base state corresponding
to this flow for a straight filament and then analyzing the equations for small deformations of
the filament. The linearized equations and boundary conditions for the perturbation quantities due
to slight deformation of the filament can be cast as an eigenvalue problem with the eigenvalues
corresponding to the growth rates for the filament deformation.

The numerical scheme we implemented divided the filament into N elements and thus matrix
to study is an N x N matrix with N eigenvalues. As f is increased from zero, we find that one of
the eigenvalues first becomes positive at 8 = B, that depends on €. All other eigenvalues remain
real and negative. Guglielmini et al. [59] referred to this instability as the bending instability. For
€ = 0.01, our computations gave 8, = 122. As B is further increased a second eigenvalue becomes
positive at 8 = 1396. On increasing the value of g to = B, = 1400, we find that these two
eigenvalues become equal (while remaining positive). Further increase in 8 results in these two
eigenvalues becoming a pair of complex conjugates with a positive real part. This instability was
referred to as the buckling instability by Guglielmini ez al. [59]. Figure 13 shows the displacement
corresponding to these two instability modes at 8 equal to 122 and 1400. Note that for the
latter, since the eigenvalues at the critical point equal 0.076, the displacement is proportional to
exp(0.076t )W (s).

To compare our results with those of Guglielmini et al., we convert their results presented in
terms of the parameter they use 7 related to 8 used here by n = B/[21n (1/€)]. Their analysis gave
n equal to 9.2 for the bending instability and 250 for the buckling instability. This corresponds
to B equal to, respectively, 84.7 and 2303 for ¢ = 0.01 used in our computations. The former is
about 30% lower than our estimate of 122 while the latter is greater by about 64% our estimate of
1400.

It is interesting to enquire if this discrepancy can be reconciled by modifying their leading order
estimate of the hydrodynamic resistivity by simply adding an O(1) constant. In this case, absent
any active follower forces, the key quantity responsible for the instability of the filament to the
compressive extensional flow is the tension induced by the base state flow given by

1
T(s)=— / £(s)ds. 47)
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FIG. 14. The tension force 7' (s) on the filament with € = 0.01 attached to a wall in the presence of
a compressive extensional flow. The numerical results are indicted by filled circles (red, online) while the
approximate values given by Eqs. (48) and (49) are represented by, respectively, the dashed and the solid lines.

Here, flo is the x; component of the drag force per unit length due to the base flow. In the analysis
presented in Guglielmini et al. [59], f = s /[4log(1/€)], and therefore the tension is given by

(s —1)
24In(1/e)’

Our numerical results for very small €, equal to 0.0001, showed that the computed results for T (s)
are in excellent agreement provided that we modify the above expression by adding an O(1) constant
so that T (s) is well approximated by

TG = L[S ! 49
0= 5l mam=T3) “

for sufficiently small €. Figure 14 shows a comparison of the numerical results for 7' obtained by
solving the integral equation for f(s) with the above two approximations. We observe that the
modified form of the tension 7 (s) provides a significantly better match to the computed values even
for € as large as 0.01 and fully accounts for the effect of the wall.

Figures 15(a) and 15(b) show a comparison of the computed values of f, and B, as functions
of € with the estimates predicted by Guglielmini ez al. [59]. We find that significant discrepancy
is observed even if we account for a better estimate of 7 (s) by including the above O(1) constant.
In fact, including the O(1) constant only worsens the agreement. The solid lines shown in Fig. 14
represent the fits of the computed results by adjusting both the O(1) and O[In (1/¢€)] coefficients:

Br~31.3[In(1/e) —0.55], B, =~ 560.0[In(1/€)— 2.00]. (50)

It is not clear why the coefficients of In (1/€) obtained by fitting the numerical results are
significantly different from the ones obtained by Guglielmini et al. [59]. The discrepancies may
arise from two sources of approximation. First, it is possible that the form we used for fitting the
numerical results, i.e., assuming that the correction to the leading log(1/€) term is an O(1) constant,
may not be adequate for fitting the results as it may be followed by a nonneglible term of, say,
O[1/1n (1/€)] that our fitting procedure does not take into account. We also note that our linearized
problem involved the term 9u9/dx, arising from the effect of the base flow on a slightly deformed
filament that that has no counterpart in the simplified analysis of Guglielmini et al. [59]. Therefore,

T(s) = (48)
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FIG. 15. Critical values of 8 as a function of € for the onset of (a) bending and (b) buckling instabilities
for a filament attached to a wall placed in a compressive extensional flow. The numerical results are indicated
by the filled circles while the dashed lines correspond to the result obtained by Guglielmini et al. [S9] who
used leading order approximation for the resistivity. The dotted lines correspond to the prediction obtained by
adding O(1) constant to their leading log(e) terms. The solid lines corresponding to the fit to the numerical
results are given by Eq. (50).

a second probable reason for the discrepancy is that, whereas our analysis accounts for the no-slip
boundary condition for the u; component by including both the velocity induced by the base flow
and the imposed flow (viz. u5° = x;x;), the analysis based on simple RFT by Guglielmini et al. [59]
only accounts for the latter.

V. SUMMARY AND PERSPECTIVES

In conclusion, we used slender-body theory to analyze the linear stability and the hydrodynamic-
mediated stable states in active elastic filaments, filament arrays and filament carpets driven
by follower forces. The application of slender-body theory enables the accurate inclusion of
hydrodynamic effects, screening due to boundaries, and interactions between filaments. Our
results emphasize that shadowing or screening effects cannot be captured accurately by the RFT.
Specifically, for the case of a freely suspended sphere-filament assembly that mimics synthetic
swimmers, the more accurate slender-body-based analysis provides results that differ qualitatively
from the RFT predictions. The extension to multiple interacting filaments—a small cluster, a linear
array or a square carpet—is straightforward in our framework. Our analysis allowed us to investigate
the variation of the critical parameters for the onset of oscillations as the frequency of oscillations
on elastic, geometric and activity parameters. The square carpet also produces a uniform flow at
infinity and we determined the ratio of the mean-squared flow at infinity to the energy input by
active forces.

Taken together, our results provide a foundation for more detailed nonlinear analysis of possible
spatiotemporal patterns in active filament systems. Three possible extensions to further theoretical
and numerical analysis are evident. The first concerns the nonlinear evolution of the planar oscilla-
tory patterns and the study of interaction between multiple modes of instability post bifurcation and
emergent nonlinear, large-amplitude synchronized solutions. In addition to fully stable nonlinear
solutions, continuation techniques adapted for time integrators such as the slender-body model
analyzed in this paper, can identify unstable solutions in both two and three dimensions, as done
previously for instabilities in flowing liquid crystal suspensions and in related polymeric processes
[74,75]. Second, our slender-body model provides a convenient framework to extend current studies
that are focused on applications of Kuramoto theory to interactions between rotating colloids [76,77]
to hydrodynamically interacting filament clusters and arrays. The third extension, which is the focus
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of our current work, is analyzing three dimensional fully nonlinear solutions such as helical waves,
relaxation oscillations and rotating states as seen in recent work analyzing the buckling driven
instabilities of prestressed active filaments [78].

APPENDIX: MINIMAL RESISTIVE FORCE THEORY (RFT)-BASED MODEL

The equations governing the spatiotemporal dynamics of filaments deforming under the action
of compressive follower forces and subject to local drag given by resistive force theory (RFT)
have been derived and presented in earlier work [35] on gliding motor assays. There were no
singularity distributions to determined since RFT uses only local drag coefficients and does not
include hydrodynamic interactions between different parts of the moving assembly. Within the
framework of this theory, since inertia is absent, the net velocity of translation is obtained by
enforcing that the net active force on the aggregate balances the net viscous drag from the
fluid. Similarly, the net sum of the active and viscous torque on the assembly is zero (cf. ESM
in Ref. [35]).

In Ref. [35] the translational and rotational drag coefficients of the head of the swimmer was
allowed to vary independently to account for variations in geometry as well as possible degrees of
freedom due to attachment modalities. Here, we specialize the model to a tightly coupled sphere-
filament assembly restricted to move in the x-y plane. The geometry is the same as introduced
in the main text, Sec. II. The filament-sphere assembly comprises of a cylindrical slender elastic
filament with length ¢, radius €£ (¢ < 1), and bending modulus B. The filament is attached to a
virtual sphere (point cargo) that exerts a drag equivalent to a sphere of radius A¢. The assembly
moves in a Newtonian fluid of viscosity p due to the action of follower forces of (line) density f,.
Variables are made nondimensional in the same manner as in Sec. II. Additionally, we denote the
(dimensional) viscous drag coefficients (per length) for movement along and normal to the local
centerline, respectively, by & and & .

Treating the filament as an elastic line and restricting deformations to two dimensions, we note
that the state and shape of the filament is completely determined by its tension 7 (the area averaged
tangential stress), and the angle 6. The tension here combines the active and hydrodynamic traction
forces and is the magnitude of the effective force introduced in Eq. (11) in Sec. II. Combining
force and torque balances on a differential element of the deforming filament along with geometric
constraints, and simplifying the equations for the case at hand (details in Ref. [35]), we find the
deformed shape to be governed by the coupled nonlinear equations

1
ﬂT// + (8//9/)/ _ ; 0/(_9/// + ,BTQ/) — O, (Al)

_0//// + (lgTel)/ + y Gl(ﬂT/ + 9//9/ _ ﬂ) — ﬁ(;_[_l“)g’ (AZ)

where we have denoted 96/dr by 6 and derivatives with respect to arc-length s by primes.
Equations (Al) and (A2) feature three dimensionless parameters y =&, /€ and 8 = f€3/B and
the aspect ratio parameter € through the exact form of &, .

The evolution of the filament’s shape and position is completely specified by solving Egs. (A1)
and (A2) subject to boundary conditions. The tail is free, i.e., at s = £ the filament is fully
unconstrained, allowing us to write

0'(1,t)=0"(1,1)=T(1,t) =0. (A3)

At the head, s = 0, we consider an attached sphere that acts as a point viscous load. Let the viscous
resistance to translation by the head be ¢ and the viscous resistance of the head to rotation be ¢.
These forces and torques exerted by the (virtual) sphere act on the filament at the attachment point
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s = 0. Defining ¢ = ¢# /(£,¢) and &g = ¢} /(€1£3), we find the boundary conditions to be

0'(0,1) = (rP(EL /8T )0(0, 1), (A4)
{6”’(0, t)—0"(0,1) = ¢B T, 1)0'(0, 1), (AS)
y¢BT'(0,1) — BT (0, 1) = y¢[B —6'(0,)8”(0, 1)]. (A6)

The base state—i.e., the stable configuration under weak loading—corresponds to a filament
that is straight and subject to follower forces. The sphere-filament assembly therefore translates at
constant speed with orientation 6, and tension 7j,

Oo(s) =0, (A7)

To(s) = [y¢ /(L +yOls = D). (A8)

Linear stability of this base state is studied by examining the eigenspectrum of the linear equation

ﬂ(g—l)®+®””=ﬂ< ré )(s—1)®”+[/3< ré )(7/+1)—yﬁ}®’, (A9)

8 1+y¢ 1+ y¢
subject to
0=0'(1,1) = 0"(l,1), (A10)
©'(0,1) = &rB (é—l)G(O, 1), (A11)
8t
£@®"(0,1) — ©"(0,1) = ¢ B Tr(0, 1)®'(0, t). (A12)

Two sets of parameters were analyzed in this linear stability analysis. In the first—Set [—we
ignore the physical presence of the sphere and therefore ignore shadowing effects. The drag
coefficients characterizing the normal and tangential resistances to the motion of the filament thus
decouples from the sphere size A. Furthermore we ignore viscous resistances due to the rotational
motion of the filament. These assumptions are found to be quite accurate in modeling the motion of
active motor-filament aggregates in motility assays. It is important here to emphasize that in both
these minimal models (sets I and II), the base state velocity field is ignored. The fluid velocity field
does not enter Eqgs. (A1)-(A14). The base state for the tension—viz Ty(s) is thus a linear function
of position, s along the filament, and is not affected by the sphere. For the first set (set I), we set
parameters following

6 3
y=E /=2 (= % = Al (/e),

_ 8mpd® g0 1
W= gy, — A (Snu> T 2in(1/e) (AL3)

For the second set of parameters—Set II—we utilize results from our slender-body analysis that
incorporate the first effects of shadowing [Egs. (28)-(30)]. To simplify matters and maintain
consistency with the model derived in Ref. [35] we here assume that the resistance to the rotational
motion of the aggregate about the sphere center can be encapsulated in the rotational resistance of
the sphere. Thus, for this set we use

_Ra(e,A) 3 A A3+ Ra(e, A) £
"TREA T T AR T T Rae.A)
where R(e,A), Ra(e,A), and R (e, A) are obtained from Egs. (28)—(30).

) = Ry(e, A), (Al14)
8T
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The eigenvalue problem corresponding to Eqs. (A6)—(A12) was solved using a standard second-
order scheme finite differences scheme with 51 grid points chosen in the discretization of the spatial
coordinate s. Care was taken to ensure that the boundary conditions were implemented consistently
(see the discussion in ESM [35]). For each set (I or II), substituting ® = A(s) exp (pt) yields the
resulting matrix equation whose eigenspectrum was checked. Eigenvalues with positive real parts
Re[p] greater than a tolerance Tol = 10~ were identified and associated critical value of 8 [equal
to Bs(A, €)] and their imaginary components Im[p] (if this was a complex conjugate pair) were
noted. For an oscillatory instability, the frequency of oscillations at onset is then given by w =
abs{Im[p(B;)1}.

Results are shown in Figs. 6(a) and 6(b) for both sets I and II. We note that two modes of
instability are observed. The first is a single real eigenvalue crossing the real axis corresponding
to a so-called Divergence Bifurcation (DB, in the notation of Ref. [35]). The second is when
when a real part of a complex conjugate pair goes from being negative to being positive; this
bifurcation is termed Hopf-Poincare bifurcation ([57] HB, in the notation of Ref. [35]). DB
bifurcations in this case eventually lead to the assembly steadily rotating with the filament adopting
a shape without inflection points (as seen from fully nonlinear solutions [35]). HB bifurcations
meanwhile are associated with oscillatory, flutter instabilities with the filament adopting a sequence
of oscillatory shapes characterized by a clear amplitude and frequency. The net active force propels
the sphere-filament assembly and enables global translation.
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