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Particle motion nearby rough surfaces
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We study the hydrodynamic coupling between particles and solid, rough boundaries
characterized by random surface textures. Using the Lorentz reciprocal theorem, we derive
analytical expressions for the grand mobility tensor of a spherical particle and find that
roughness-induced velocities vary nonmonotonically with the characteristic wavelength of
the surface. In contrast to sedimentation near a planar wall, our theory predicts continuous
particle translation transverse and perpendicular to the applied force. Most prominently,
this motion manifests itself in a variance of particle displacements that grows quadratically
in time along the direction of the force. This increase is rationalized by surface roughness
generating particle sedimentation closer to or farther from the surface, which entails a
significant variability of settling velocities.
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Particle sedimentation in low-Reynolds-number flows represents a fundamental problem in
physics and fluid dynamics and has been studied over decades due to its relevance for natural
and technological applications. These range from the separation of multicomponent systems on
the microscale [1,2] to macroscopic geological phenomena [3]. Confining geometries omnipresent
in natural environments and microfluidic devices, however, significantly alter the sedimentation pro-
cess due to long-range hydrodynamic interactions [4–7]. Unlike planar surfaces, these boundaries
display a large variety of structured and rough topographies with random heterogeneities, which
modify the surrounding flow fields [8–12] and hydrodynamically impact nearby particle motion
[13,14]. Understanding the physical mechanisms underlying the interactions of the particles with
these boundaries lays the foundation for the design of novel particle separation methods [15–17] and
tools for the noninvasive measurement of surface properties reminiscent of microrheology [18,19].

A rigid spherical particle that sediments nearby a vertical planar wall does not translate
perpendicular to the wall and thus keeps a constant distance to it [20,21]. This behavior, however,
changes drastically for spheroidal particles and slender rods, whose anisotropic shape generates
intricate tumbling behavior [22,23], and in the presence of fluid inertia [24,25] or near elastic
boundaries [26], which can both induce a lift force and generate particle migration away from the
surface. The impact of complex surface shapes has only been studied for particles suspended in
shear flow near periodic surfaces that can induce motion across streamlines [14,27,28]. Despite its
ubiquity, however, the hydrodynamic coupling between sedimenting particles and rough surfaces
with random features remains an open question at the interface of low-Reynolds-number flows and
statistical physics.

Here, we study hydrodynamic interactions between a sphere and a textured surface and provide
an analytic expression for the particle mobility. We employ our theory to elucidate the motion of a
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FIG. 1. (a) Side view of a sphere with radius a near a vertical rough wall Sw , characterized by the shape
function H (x, y), a wavelength λ, and amplitude εa. In response to an external force F = Fe (parallel to S0),
the sphere translates and rotates with velocities U and �, respectively. The sphere is located at rS and at a
distance h relative to S0. (b) Top view of the sphere and the rough surface (grayscale indicates a height map),
where x, y are the coordinates spanning S0. Here, F is oriented at an angle ϕ relative to the surface structure
and e, e⊥, and ez denote the unit vectors along, transverse, and perpendicular to F.

sedimenting sphere near a rough surface with random features and find that the velocities depend
nonmonotonically on the characteristic wavelength of the surface. In contrast to sedimentation near
a planar wall, the particle translates perpendicular and transverse to the applied force. Our study
reveals that these hydrodynamic interactions generate a variability in settling velocities and thereby
induce a variance of the particle displacements along the force direction that displays a quadratic
increase at long times. We further relate the particle mobility to the spatially dependent diffusivity
of a Brownian particle.

Model. We consider the motion of a spherical particle with radius a in an incompressible flow
of a viscous fluid nearby a rough surface, Sw, in three dimensions (3D) [Fig. 1]. The quasisteady
fluid velocity u(r) and pressure fields p(r) are described by the continuity and Stokes equations,
∇ · u = 0 and ∇ · σ = 0, with stress field σ = −pI + μ(∇u + ∇uT ) and viscosity μ. In the
comoving frame of reference that is attached to the sphere, the no-slip boundary conditions (BCs)
are u = � ∧ r on Sp and u = −U on Sw and S∞, which denotes the bounding surface at infinity. The
instantaneous translational and rotational velocities of the sphere, U = U(rS, h) and � = �(rS, h),
depend on its distance from the wall, h = h(t ), its position, rS = rS (t ), relative to the underlying
surface, which determines the particle velocities locally, and time t .

We describe the small height fluctuations of the textured surface by z = εaH (x, y), where H (x, y)
denotes the shape function and εa the surface amplitude with dimensionless parameter ε � 1.
Assuming that the surface amplitude is smaller than the particle-wall distance, εa � h, we expand
the velocity field in ε, u = u(0) + εu(1) + O(ε2). Equivalently, we express the translational and
rotational velocities of the sphere by U = U(0) + εU(1) + O(ε2) and � = �(0) + ε�(1) + O(ε2).
Using the method of domain perturbation, we express the no-slip BC at the rough surface Sw in
terms of a Taylor expansion about z = 0 (surface S0). The expansion enables us to consider the
zeroth- and first-order problems separately with BCs, u(0) = −U(0), and

u(1) = −U(1) − aH (x, y)
∂u(0)

∂z

∣∣∣∣
z=0

on S0, (1)

which contains a roughness-induced slip velocity [8–10] dictated by the zeroth-order flow and the
surface shape.

Then the zeroth-order problem with flow field u(0) corresponds to a sphere moving near a planar
wall which has been elaborated analytically in terms of a bispherical representation [29–32]. The
first-order correction to the fluid flow, u(1), encodes details of the rough surface. It obeys the Stokes
and continuity equations with BCs: u(1) = �(1) ∧ r on Sp, u(1) = −U(1) on S∞, and Eq. (1). In
creeping flow, the total force and torque exerted on the particle are zero. Here, the applied force F
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and torque L are balanced by the hydrodynamic force and torque of the zeroth-order problem, F(0)
H =∫

Sp
n · σ (0)dS and L(0)

H = ∫
Sp

r ∧ (n · σ (0) )dS, where the normal vector n is directed away from Sp.
Consequently, the sphere in the first-order problem is force and torque free, which determines its
roughness-induced velocities.

Particle mobility. We develop an analytic theory for the mobility of a sphere near a rough wall
by employing the Lorentz reciprocal theorem, which relates two Stokes flow problems that share
the same geometry but have different boundary conditions [33,34]. We introduce as the auxiliary
problem, û, σ̂, the flow generated by a moving sphere near a planar wall. The Lorentz reciprocal
theorem relates it to the first-order problem with velocity field u(1) and stresses σ (1) via∫

Sp,S0,S∞
n · σ (1) · û dS =

∫
Sp,S0,S∞

n · σ̂ · u(1) dS. (2)

Since the first-order problem is force and torque free, the left-hand side of Eq. (2) vanishes. We insert
the BCs of the main and auxiliary problems into Eq. (2) and note that by the divergence theorem
the hydrodynamic force on the sphere in the auxiliary problem obeys F̂H = − ∫

S0,S∞
n · σ̂ dS. Thus,

Eq. (2) simplifies to

F̂H · U(1) + L̂H · �(1) =
∫

S0

aH (x, y)n · σ̂ · ∂u(0)

∂z

∣∣∣∣
z=0

dS. (3)

Due to the linearity of the Stokes equations and the rigid boundaries of the particle and the
wall, the particle velocities must be coupled linearly to the applied force and torque via the grand
mobility tensor M, (U,�)T = M · (F, L)T [33]. Its components encode the coupling between the
translational and rotational velocities with the forces and torques, MUF and M�L, respectively, and
between the rotation and force (translation and torque), M�F (MUL). We further expand the mobility
tensor in terms of the small roughness parameter ε, M = M(0) + εM(1) + O(ε2), where M(0) is the
mobility of a sphere near a planar wall and M(1) corresponds to the roughness-induced mobility.
Since the velocity field and stresses are linear in the forces and torques, we arrive at the general
form for the grand mobility tensor [see Supplemental Material (SM) [35]]

M = M(0) − ε

∫
S0

aH (x, y)K dS + O(ε2), (4)

which accounts for the influence of surface topography. The coupling tensor K can be assumed
known as it depends on the zeroth-order problem only. The grand mobility tensor represents an exact
result up to second order in ε determined by the (arbitrary) surface shape and the instantaneous
position of the sphere, M[rS (t ), h(t ); H]. The linearity of the Stokes equations and the rigid
boundaries entail that M is symmetric and positive definite [36].

We note that the analytical theory is valid for low-Reynolds-number flows and small surface
roughness with Re � ε � 1. For Re ∼ ε our theory needs to be modified to account for inertial
effects “in the spirit of Saffman” that could generate migration away from the wall [24].

Subsequently, we investigate the sedimentation of a sphere in response to a force F near a
random, rough wall. We use the exact bispherical representation of the fluid flow u0 to calculate
the coupling tensor K and evaluate the velocities, U = MUF · F and � = M�F · F, via numerical
integration. We validated our analytical solutions for a periodic surface with a boundary integral
method that captures the full surface shape (see SM [35]).

Roughness-induced velocities. We describe the random rough wall by a statistical framework
[37]. The surface shape is modeled as a superposition of N × N Fourier modes with random
amplitudes αnm, βnm,

H (r0) = 1

N

N∑
n,m=1

αnm sin
(
kn

m · r0
) + βnm cos

(
kn

m · r0
)
, (5)
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FIG. 2. Variance of the translational, 〈(U − 〈U〉)2〉, and rotational velocities, 〈(� − 〈�〉)2〉, with respect to
(a) the distance h/a with λ/a = 2 and (b), (c) the wavelength λ/a. (b) and (c) show the variances for different
particle-surface distances, h/a = 0.1, 0.5. Here, U‖ denotes the settling velocity of a sphere near a planar wall
and we have used N = 50 in Eq. (5). The variances are shown for the velocities along (‖), transverse (⊥), and
perpendicular (z) to the force direction, F = Fex .

where r0 ∈ S0, kn
m = (kn, km)T with k j = 2π j/(λN ), and wavelength λ. The amplitudes are

statistically independent, random normal variables with zero mean and unit variance. The height
fluctuations vanish on average, 〈H〉 = 0, and display a variance, 〈(εaH )2〉 = (εa)2, where 〈·〉 is the
average over all surface realizations.

The applied force, F = Fe, is directed parallel to S0 but can be oriented with respect to the surface
structure [Fig. 1(b)]. Then roughness-induced velocities are decomposed into components parallel,
transverse, and perpendicular to it, U(1) = U (1)

‖ e + U (1)
⊥ e⊥ + U (1)

z ez with e⊥ = ez ∧ e and similarly
�(1). They are determined by the local geometry of the underlying random surface and therefore we
are interested in average quantities. Since the velocities depend linearly on the surface shape, the
average velocities remain independent of the roughness and reduce to that of a sphere near a planar
wall, 〈U〉 = U(0) = U‖e and 〈�〉 = �(0) = �(0)e⊥, where �(0) is related to U‖. The settling velocity
decreases for decreasing h/a due to the wall-induced extra hydrodynamic drag and is obtained
via the balance of gravitational and hydrodynamic forces, U‖ ∼ ln(a/h)−1 (for h/a � 1) [20]. The
sphere rotates to balance the hydrodynamic torque arising from the presence of the wall [21].

The velocity fluctuations due to the surface roughness become apparent in the variance of
the translational velocities, which grows quadratically to leading order in ε, 〈(U − 〈U〉)2〉 =
ε2〈(U(1) )2〉 + O(ε3) (see SM [35]). They are determined by the particle-wall distance h/a and
wavelength of the surface λ/a. The translational velocity fluctuations decay roughly eight orders
in magnitude for 0.1 � h/a � 10 [Fig. 2(a)], which indicates that for increasing h/a transport is
governed by the average wall contribution. We note that the velocity fluctuations transverse to the
force are smaller than perpendicular to it. The variance of the rotational velocities, 〈(� − 〈�〉)2〉 =
ε2〈(�(1) )2〉 + O(ε3), decays even faster and remains most pronounced for rotation around e⊥.

Most prominently, the variances of the perpendicular, 〈(U (1)
z )2〉, and transverse velocities,

〈(U (1)
⊥ )

2〉, display a maximum at a characteristic wavelength λmax [Fig. 2(b)]. This nonmonotonic
behavior can be rationalized as for λ � λmax the surface area closest to the particle contains several
heterogeneities with steep slopes that smear out roughness-induced flows and therefore the velocity
fluctuations perpendicular and transverse to the force vanish. In contrast, for λ � λmax the particle
experiences the presence of a smooth wall as the surface slope becomes negligible and thus the
roughness-induced velocities decrease. We also find that λmax for h/a = 0.5 is ∼2 times larger
than for h/a = 0.1, because larger flows are required to transmit information of the roughness to a
particle that is located further away and these are generated in larger cavities.

Differently, the velocity fluctuations along the force, 〈(U (1)
‖ )2〉, saturate for large λ, where the

surface appears almost flat [Fig. 2(b)] but is shifted a small amount closer to or farther away from the
sphere. Then the settling velocity of a sphere near a wall that is εa closer to or farther away, provides
an upper bound of the variance [U‖(h/a ± ε) − U‖(h/a)]2 ∼ (εa/h)2U‖(h/a)2 (for h/a � 1).
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FIG. 3. (a) Variance of the displacements, 〈[
r(t ) − U(0)t]2〉, for different wavelengths λ/a, h(0)/a =
0.2, ε = 0.1, and F = Fe = F (cos π/4, sin π/4, 0)T . Over the simulation horizon the sphere has translated
∼60 × a along the force. Results are obtained by averaging over 103 trajectories along different surface
realizations [i.e., Eq. (5) with random αnm, βnm (N = 20)]. Error bars remain smaller than the symbol size.
Inset: Variance parallel (‖), transverse (⊥), and perpendicular (z) to the force for λ/a = 2. (b), (c) Distributions
of the displacements at subsequent times ti (blue, red, and black correspond to the smallest, intermediate, and
largest ti) for λ/a = 2. (b) 
h and (c) 
r⊥ relative to 
r‖ − 〈
r‖〉 with 〈
r‖〉 = U‖ti. The ellipses enclose
95% of the displacements.

The rotational velocity fluctuations display nonmonotonic behaviors where 〈(�(1)
⊥ )2〉 saturates

towards a plateau at large λ [Fig. 2(c)], which can be explained by the same physical mechanisms
as introduced before. However, 〈(�(1)

‖ )2〉 exhibits a bimodal shape with a local minimum at
intermediate λ, where the flow reflected from nearby surface bumps prevents the sphere from
rotating.

Particle sedimentation near a rough wall. We calculate particle trajectories by numerically
integrating the equation of motion, ṙ(t ) = U = U(0) + εU(1), where r = (rS, h)T = r‖e + r⊥e⊥ +
hez. We note that lubrication forces prevent the particle from touching S0. The system displays
two characteristic timescales: the time the sphere requires for (1) τλ = λ/U‖ passing by a surface
bump of wavelength λ along the force direction and (2) τ = a/〈(εU(1) )2〉1/2 to move its radius
due to hydrodynamic coupling with the surface texture. We find that by averaging over many
surface realizations the particle displacement near a rough wall reduces to that near a planar wall,
〈
r(t )〉 = U(0)t with 
r(t ) = r(t ) − r(0).

The impact of surface roughness becomes apparent in the variance of the displacements
[Fig. 3(a)], which increases quadratically at short times t � τλ as the sphere sediments by the first
surface heterogeneity, 〈[
r(t ) − U(0)t]2〉 � 〈(εU(1) )2〉t2. This regime is followed by a superdiffu-
sive regime at t ∼ τλ, which reflects that while sedimenting near the textured surface the particles
move around and up or down the underlying obstacles. By inspecting the individual contributions
[Fig. 3(a) inset], we find that the mean-square displacement (MSD) for the perpendicular motion,
〈[
h(t )]2〉, saturates towards a plateau at long times, t � τλ. This result indicates that transport
towards and away from the wall is confined within a fluid layer near the surface, which is determined
by h(0) and λ. This response means that the fundamental requirement of reversibility in Stokes flow
is preserved. The MSDs in the transverse direction, 〈[
r⊥(t )]2〉, exhibit a plateau at intermediate
times which indicates that subsequent obstacles bring the particle back to its initial position, so that
over the simulation horizon the particle has merely displaced ∼0.02a away from it. This could be
due to the periodic nature of the surface structure, which causes, e.g., trajectories around obstacles
that display fore-and-aft symmetries.
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FIG. 4. (a) Schematic of a sphere diffusing near a rough surface. (b) Variance of the roughness-induced
diffusivities, 〈(D(1)

i j )2〉, as a function of λ/a for h/a = 0.1, 0.5 (solid/dashed lines). The diffusivity in bulk is
Dfree = kBT/(6πμa).

At long times, t � τλ, the variance exhibits again a ballistic increase [Fig. 3(a)]. The direct
contribution due to transverse and perpendicular motions is negligible, yet, due to that motion,
the settling velocity changes and contributes to the variance of the displacements. Although all
particles have started at the same distance h(0), due to the underlying surface structure, some
particles sediment on average at a distance h� � h(0) closer to the surface and others farther away
h� � h(0), so that they display slower, U(0)(h�) � U(0)[h(0)], or faster settling velocities, U(0)(h�) �
U(0)[h(0)]. Thus, particles that are closer to the surface displace less than average displacements

r‖ � 〈
r‖〉 while others sediment a longer distance than average, 
r‖ � 〈
r‖〉 [Fig. 3(b)]. Our
simulations show that these effects generate a distribution of particle displacements along the force
direction of width ∝t2. Moreover, particles that sediment closer to the surface displace farther along
the direction transverse to the force [Fig. 3(c)]. Yet, the transverse displacements remain rather small
for the times considered, |
r⊥| � 0.1a.

Remark on diffusion. We note that the hydrodynamic mobility of the sphere is related to the
diffusivity of a Brownian particle via the Stokes-Einstein relation D = kBT MUF , where kB denotes
the Boltzmann constant and T temperature. While a planar wall leads to a well-characterized
anisotropic diffusion, where diffusion perpendicular to it is impeded more strongly than parallel
motion [38], a rough surface generates additional, complex spatial dependence of the diffusivities
[Fig. 4(a)]. The fluctuations of the roughness-induced diffusivities, 〈(D(1)

i j )2〉 = (kBT )2〈[(M(1)
UF )i j]2〉,

along the principal axes, parallel [(xx), (yy)] and perpendicular to the surface (zz), increase with λ

and saturate towards a plateau [Fig. 4(b)]. The rough surface generates correlated motion encoded in
the off-diagonal components [(xy), (xz), (yz)] that vary nonmonotonically with λ. The underlying
physics has been rationalized earlier. For random rough surfaces diffusivities parallel to the surface
coincide 〈(D(1)

xx )2〉 = 〈(D(1)
yy )2〉 and thus 〈(D(1)

xz )2〉 = 〈(D(1)
yz )2〉.

Conclusion. We have presented an analytical expression for the mobility of a sphere near a
textured surface and studied particle sedimentation near a random, rough wall. Our results show
that hydrodynamic interactions between the particle and the surface roughness induce particle
translation perpendicular and transverse to the force at velocities that depend nonmonotonically
on the wavelength of the surface. This motion generates a quadratic increase in the variance of the
displacements at long times along the force direction, as particles closer to the surface sediment
significantly slower than particles that are farther away. These results are reminiscent of earlier
predictions on force-induced dispersion of Brownian particles in heterogeneous media [39], yet
they rely on different mechanisms, i.e., hydrodynamic interactions of non-Brownian particles with
random, rough surfaces.

Our findings relate statistical transport features of sedimenting non-Brownian particles to the
random nature of nearby surface structures that are produced by hydrodynamic coupling. We
anticipate that our predictions will allow the noninvasive inference of surface properties by
monitoring the transport of particles near rough surfaces, in the same spirit as particle suspensions
have been used to quantify the effect of slip heterogeneities in channels [40] or diffusivities of
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Brownian tracers have provided measures of surface slippage [41,42]. Specifically, measurement of
the particle displacements or quantitative extraction of its velocity fluctuations encode information
about the characteristic wavelength and amplitude of the surface structure. The roughness-induced
mobilities hold for arbitrary surface shapes, which include other random rough surface models or
grooved, periodic structures. The latter could serve as input for novel particle separation methods
[43] that harness the nonmonotonic behavior of particle velocities near textured walls.

Furthermore, our predictions for the particle diffusivities can be employed to explore diffu-
sion near corrugated substrates [38] and thereby draw a connection to coarse-grained theories
[44,45]. Our theory can immediately be extended to derive roughness-induced velocities of
microswimmers and thus elucidate the hydrodynamic effect of textured surfaces on active transport
[46–49].
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