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Lift induced by slip inhomogeneities in lubricated contacts
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Lubrication forces depend to a high degree on elasticity, texture, charge, chemistry,
and temperature of the interacting surfaces. Therefore, by appropriately designing surface
properties, we may tailor lubrication forces to reduce friction, adhesion, and wear between
sliding surfaces and control repulsion, assembly, and collision of interacting particles.
Here, we show that variations of slippage on one of the contacting surfaces induce a lift
force. We demonstrate the consequences of this force on the mobility of a cylinder traveling
near a wall and show the emergence of particle oscillation and migration that would not
otherwise occur in the Stokes flow regime. Our study has implications for understanding
how inhomogeneous biological interfaces interact with their environment; we also propose
a method of patterning surfaces for controlling the motion of nearby particles.
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In many physical processes, the flow of small particles such as cells, colloids, bubbles, and fibers
occurs near soft, porous, and rough walls. The induced lubrication forces [1] on these particles
depend on the elasticity, texture, and chemistry of the nearby wall. These forces may dominate over
both bulk (e.g., Stokes drag) and surface (e.g., van der Waals and electrostatic) forces and therefore
determine single-particle motion and collective behavior.

The simplest configuration to characterize hydrodynamic particle-wall forces is that of an
infinitely long circular cylinder traveling parallel to a rigid flat wall. At low Reynolds numbers, a
rigid cylinder will experience zero wall-normal (lift) force and therefore move at a constant distance
from the wall [2]. This is due to the time-reversal symmetry of the Stokes equations. However, if one
of the interacting surfaces is soft, the moving particle will be repelled from the wall [3] as a result
of the broken symmetry of the fluid pressure in the thin gap [4–9]. This elastohydrodynamic lift
mechanism increases the gap thickness and reduces wear and friction between the sliding surfaces
[10–12]. It underlies exotic particle trajectories such as oscillations, Magnus-like effect, stick-slip
motion, and spinning [13,14]. Soft lubrication also underpins surface rheology [15–17] that is used
to characterize the viscoelasticity of complex surfaces.

Besides softness, another ubiquitous feature of surfaces in biology and technology is surface
inhomogeneities. For example, the surface of a Janus particle is divided into two halves with dif-
ferent chemistries (hydrophobic-hydrophilic) or texture (rough-smooth). This provides the particle
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FIG. 1. Two lubrication models. (a) 2D solid cylinder moving near a flat wall with a transition from slip
(blue) to no slip (gray). (b) 2D cylinder half-coated with a slip region and moving near a wall. [(c), (d)] Sketches
of cylinder trajectories for the two systems with δ0 = 0.05r, � = 1.79δ0 and cylinder density ρc = 8.77ρ.
The particle experiences a small rotation that is not visually observable. (e) Gap thickness vs the transverse
displacement of the cylinder. Inset shows the trajectory over a larger spatial extent.

with unique capabilities including self-assembly into complex structures [18] and self-propulsion
[19]. More generally, interfaces in living tissues (cell walls, blood vessels, cartilage, epithelia) vary
in chemical and mechanical composition due to inhomogeneous distribution of cells and proteins.
In technological applications, inhomogeneous surfaces arise as a consequence of manufacturing
imperfections and wear, but also from surface patterning to control liquid transport [20] or heat
transfer [21]. Despite this ubiquity, there has been no investigation of the full set of lubrication
forces arising from particle-wall interaction when the properties of one of the contacting surfaces
vary.

In this Rapid Communication, we study lubrication forces when slippage [22] properties change
along the contacting surfaces. We consider a model of spatially varying slip length � at either
the surface of a flat wall or the surface of a cylinder [Figs. 1(a) and 1(b)]. Here, � is defined
as an effective property of the interface at some coarse-grained level. The slip length can be
considered as a mesoscopic model emerging from small-scale features such as surface charges
[23], wall roughness [24], superhydrophobicity [25], liquid infusion [26], and temperature or solute
concentration gradients [27,28].

Using analytical and numerical treatments, we demonstrate that surface inhomogeneities give rise
to particle trajectories such as oscillations, migration, and propulsion. Underlying these phenomena
is a normal lift force that arises from spatial variations in surface slippage. To illustrate this, consider
the two configurations in Figs. 1(c) and 1(d). Both cases involve a cylinder of radius r located a
distance δ0 from a flat wall and immersed in a fluid with viscosity η and density ρ. We assume small
Reynolds number, Re = ρV r/η � 1, where V is the characteristic velocity of the cylinder.

Figure 1(e) (blue) shows the trajectory of the cylinder falling freely under gravity next to a wall
that has a single slip transition. The trajectory is obtained from numerical simulations of Stokes
equations coupled to Newton’s equation of motion for the cylinder (see the Supplemental Material
[29]) with density ratio between cylinder density and fluid density ρc/ρ = 8.77. For this test, gravity
force is included in the Newton’s equation of motion. As the cylinder passes the transition line, it
migrates away from the wall a distance �, which is comparable to δ0. In contrast, a wall with homo-
geneous slippage produces zero lift force (and consequently no wall-normal motion) on a cylinder
[30]. Therefore, the lift arises here from the sudden change in slip length at the wall. By carrying
out an expansion in the dimensionless slip length L = �/δ0, we will show that the lift force per
unit length of the cylinder scales as Fz ∼ ηV ‖ε−1L at the transition line and that � ∼ �, where ε =
δ0/r � 1. Importantly, this lift force can be comparable in magnitude to other lubrication forces.
For instance, for a red blood cell traveling near glycocalyx [31], variations of the slip length as
small as a few nanometers induce a lift force comparable to the elastohydrodynamic one (≈0.1 pN)
caused by glycocalyx deformation [32].
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FIG. 2. Cylinder trajectories induced by variation of slippage. (a) Cylinder with density ratio ρc/ρ = 8.77
falling near a wall that alternates between slip (blue) and no slip (gray). (b) Neutrally buoyant cylinder (ρc/ρ =
1) rotating above a slip-to-no-slip transition. (c) Neutrally buoyant Janus cylinder (ρc/ρ = 1) rotating next
to a wall. Right column (ii) shows the gap thickness as a function of the transverse displacement. For all
configurations, δ0/r = 0.05 and L = 1.79.

Figure 1(e) (red) shows the trajectory of a Janus cylinder with density ρc = 8.77ρ falling near
a flat wall [Fig. 1(d)] under the influence of gravity. We observe a persistent normal drift along
the trajectory, since the transition from slip to no slip is now located on the traveling cylinder
itself, thus constantly inducing a wall-normal force. Scaling estimates, that will be obtained below,
indicate that � ∼ xc�/lc, where lc = √

2δ0r is the lubrication contact length and xc is the transverse
displacement. As � becomes larger than r, one expects a saturation of normal migration, since
lubrication forces become negligible in the bulk. Nevertheless, as shown in the inset of Fig. 1(e),
the effect holds for δ substantially larger than r.

The coupling of rigid-body motion to slippage inhomogeneities can result in unexpected particle
dynamics (Fig. 2). In the following, we will study in detail these motions using lubrication theory
and scaling laws. At low Reynolds numbers, the force per unit length, F = (Fx, Fz ), and torque per
unit length, T , on the cylinder are linearly related to the velocity V = (V ‖,V ⊥) and the angular
speed � of the cylinder. This is expressed by the symmetric resistance matrix [33],⎡

⎣Fx

Fz

T

⎤
⎦ = −η

⎡
⎣ f ‖

x − f ⊥
x r f ω

x
− f ‖

z f ⊥
z −r f ω

z
rt‖ −rt⊥ r2tω

⎤
⎦

⎡
⎣V ‖

V ⊥
�

⎤
⎦, (1)

where f ⊥
x = f ‖

z , t‖ = f ω
x , and t⊥ = f ω

z . Assuming a small gap, ε = δ0/r � 1, we explain below the
procedure to determine the elements of the resistance matrix for the cylinder translating parallel to
the wall with a slip-to-no-slip transition [Fig. 3(a)(ii)].

We nondimensionalize the variables as

x = lc X, z = δ0 Z, h = δ0 H, u = V ‖ U, w = ε1/2V ‖
√

2
W, p = lcηV ‖

δ2
0

P,
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FIG. 3. Analytical resistance coefficients for both model systems (ε = 0.05). In the inset (i), the coefficients
with noˆrefer to configuration (ii) and the ones withˆrefer to (iii).

where u,w are, respectively, the transverse and normal components of the fluid velocity and p is the
fluid excess pressure with respect to the atmospheric one. The cylinder surface is approximated as
h(x) = δ0 + x2/(2r). Inserting the dimensionless variables into the continuity and Stokes equations
and neglecting O(ε) terms, we obtain

∂X P = ∂ZZU, ∂Z P = 0, ∂XU + ∂ZW = 0. (2)

In the laboratory frame of reference, the boundary conditions are

W |Z=0,H = 0, U |Z=H = 1, U |Z=0 = L∂ZU |Z=0S. (3)

The horizontal velocity at the wall U |Z=0 (3) accounts for slippage and is modeled through a Navier
boundary condition. Moreover, S equals one for X < 0 and zero for X > 0, where X = 0 is the
location of the transition from slip to no slip. The solution of Eqs. (2) and (3) is a combination
of Couette and Poiseuille flows (see the Supplemental Material [29]). From that solution, the fluid
stress is projected onto the cylinder surface to obtain

f ‖
x =

√
2ε−1/2

∫ ∞

−∞
(2XP + ∂ZU )dX , f ‖

z = 2ε−1
∫ ∞

−∞
PdX , t‖ =

√
2ε−1/2

∫ ∞

−∞
∂ZUdX . (4)

Figure 3(a)(i) shows the elements [Eq. (4)] of the resistance matrix as a function of dimensionless
slip length. When �/δ0 → 0, only the drag coefficient ( f ‖

x ) is nonzero, in agreement with the results
for no-slip surfaces [2]. For larger �/δ0, we note the emergence of nonzero elements related to lift
force ( f ‖

z ) [as observed in Fig. 1(e)] and torque t‖.
Figure 3(b)(i) shows the elements (denoted by the ˆ symbol) of a Janus cylinder that translates

parallel to a wall. We again observe the emergence of off-diagonal terms of the resistance matrix for
� ≈ δ0; in particular, the lift force ( f̂ ‖

z ) causing the constant normal migration shown in Fig. 1(e).
The complete set of elements for both model systems is reported in Fig. 3. Note that due to the
Lorentz reciprocal theorem [33] there is a symmetry between the two model systems.

To understand in detail the lift-induced mechanism of slip-to-no-slip transitions, we study the gap
pressure for three different slip lengths. Figure 4(a) shows the pressure distribution for a moving
cylinder over an inhomogeneous wall [trajectory in Fig. 1(c)]. The no-slip solution maintains an
antisymmetric distribution (red). The introduction of a finite slip length breaks this symmetry (blue
and black), as the gap pressure necessary to accelerate the flow through the gap (with varying
thickness) is increased over the slippery section (X < 0). Figure 4(b) shows the gap pressure of the
wall-parallel moving Janus particle [trajectory in Fig. 1(d)]. Here, the induced lubrication pressure
needs to accommodate both the varying gap thickness and the varying fluid shear in the gap, which
results in a pressure peak over the slippery section of the Janus cylinder. Note that due to the
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FIG. 4. Pressure distributions in four configurations and for three slip lengths, L = 0 (red), L = 1 (blue),
and L = ∞ (black).

symmetry between the two configurations the distributions in Figs. 4(a) and 4(b) are the mirror
of those in Figs. 4(c) and 4(d), respectively.

We now explain the trajectories in Fig. 2 using the components of the resistance matrix. In
Fig. 2(a), a slip-to-no-slip transition pushes the cylinder away from the wall [Fig. 1(c)], whereas a
no-slip-to-slip transition produces a negative Fz, pulling the cylinder toward the wall. The long-term
net migration away from the wall [Fig. 2(a)(ii)] is partially due to the fact that the push force is
slightly larger than the pull force for each period due to different gap thicknesses during the pull
and push events (see the Supplemental Material [29]).

The second example involves a rotating neutrally buoyant cylinder [Fig. 2(b)]. When the
cylinder is released above a slippage transition on the wall, we observe a migration in x and z
directions [Fig. 2(b)(ii)]. The resistance coefficients in Figs. 3(b) and 3(c) explain this behavior.
The imposed rotation produces a lift force (Fz ∼ ηr� f ω

z > 0) and a negative transverse thrust
(Fx ∼ −ηr� f ω

x < 0). However, as the cylinder migrates away from the wall, we have V ⊥ > 0,
which leads to a positive transverse thrust (Fx ∼ ηV ⊥ f ⊥

x > 0). The V ⊥-generated thrust dominates
over the �-generated thrust, such that the cylinder moves in the positive x direction.

The final example involves a rotating neutrally buoyant Janus cylinder [Fig. 2(c)]. The cylinder
undergoes a spiralling motion that results in positive transverse propulsion and positive wall-normal
migration. We explain the motion in stages A–E depicted in Fig. 2(c). In A, the cylinder migrates
upward since f̂ ω

z > 0. It simultaneously migrates to the left since, due to the short exposure, V ⊥ is
relatively small and we have |V ⊥ f̂ ⊥

x | < |r� f̂ ω
x |. In B, the cylinder has rotated such that no slippage

remains in the gap. Therefore, a lift force is no longer generated and the wall-normal drag force
f̂ ⊥
z hinders further upward migration. Stages C and D are the mirror of A and B, respectively.

Consequently, we observe a migration in the negative z and positive x directions. As the cylinder
reaches stage E, it has experienced a net translation in the positive x direction and a small net
migration away from the wall from its initial position A. This is due to the difference in the
magnitude of fluid stresses in the gap when slip (B) and no-slip (D) surfaces face the wall.

Finally, we turn to scaling analysis to estimate the normal displacement induced by the lift
force. We first consider cylinder motion over inhomogeneous wall. We focus on the instant where
a cylinder is located above the transition from slip to no slip on the wall [Fig. 1(a)]. We assume
no rotation, constant transverse, and wall-normal velocities V ‖ and V ⊥, and negligible inertial
effects (see the Supplemental Material [29]). A wall-normal force balance yields η f ‖

z V ‖ = η f ⊥
z V ⊥,

corresponding to the magnitude of the lift and drag components, respectively. By carrying out an
expansion in L � 1 of f ‖

z and f ⊥
z , we can approximate the two coefficients using leading-order

terms as

f ‖
z 
 4�r/δ2

0 and f ⊥
z 
 −3

√
2π (δ0/r)−3/2. (5)
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By assuming that the lift force approximately acts over lc, we have

V ‖ = lc/τ and V ⊥ = �/τ, (6)

where τ is the time it takes to traverse lc, and � is the displacement from the wall. Inserting these
estimates in the wall-normal force balance yields � ∼ �. This is in agreement with numerical results
shown Fig. 1(c), where we observe � ≈ δ0 for � ≈ δ0. For a Janus cylinder [Fig. 1(b)], there is no
fixed time over which the displacement occurs, because the transition point travels along with the
cylinder. Therefore, we expect a displacement ≈� for each lc traversed. This yields

� ∼ �xc/lc, (7)

where xc is the distance traversed along the wall. Next, we consider the scaling law for neutrally
buoyant cylinder migration due to imposed rotation. We start with the slip-to-no-slip transition
on the wall [Fig. 2(b)(i)]. Let us define the net migration over one revolution of the cylinder. We
estimate the cylinder angular velocity as � ∼ π/τ2 and wall-normal velocity as V ⊥ ∼ �/τ2, where
τ2 is the time it takes for the cylinder to do one revolution. We make use of the wall-normal force
balance again, which yields f ω

z ηr� = f ⊥
z ηV ⊥. The force coefficients are again approximated with

a leading-order term from Taylor series expansion for L � 1, i.e.,

f ω
z 
 2�r/δ2

0 and f ⊥
z 
 −3

√
2π (δ0/r)−3/2. (8)

Inserting all the expressions for force coefficients and cylinder velocities in the force balance yields

� ∼ �

√
r

δ0
. (9)

Interestingly, the leading-order scaling estimate for rotating cylinder provides a displacement which
decays as the gap thickness is increased. This is a physically intuitive result, since the lubrication
force from the wall is expected to decay as the gap thickness increases. This qualitatively explains
the net migration away from the wall, observed for patterned inhomogeneous wall [Fig. 2(a)],
although the scaling law for single slip-to-no-slip transition at the leading order does not contain
gap thickness dependence. We would like to note that it is possible to include a higher order effect
also in single slip-to-no-slip transition to capture the gap thickness effect (see the Supplemental
Material [29]). However, we have found that for the translation above the inhomogeneous wall
the wall-normal displacement dependence on the gap thickness is much weaker compared to the
rotation above the slip-to-no-slip transition. Finally, we consider the rotating Janus particle located
above a homogeneous wall. As the Janus particle rotates, the interaction between the surface
inhomogeneity and the solid wall will vary over time. To obtain a scaling law, we simplify this
process by dividing it up in two steps. In first, the orientation of the Janus particle is such that
there is a positive wall-normal force and particle moves away from the wall. In the second step, the
orientation of the Janus particle is turned by angle π (or is mirrored) compared to the first step, and
consequently there is a negative wall-normal force and particle moves toward the wall. Both of these
steps we model using the instant where the slip-to-no-slip transition of the Janus particle is located
closest to the wall. We estimate the cylinder angular velocity as � ∼ π/τ3 and wall-normal velocity
as V ⊥ ∼ �/τ3, where τ3 is the time it takes the Janus particle to turn by angle π . We employ
the wall-normal force balance, which yields f̂ ω

z ηr� = f̂ ⊥
z ηV ⊥. Taylor series expansion (see the

Supplemental Material [29]) for the coefficients of the Janus particle gives

f̂ ω
z 
 4�r/δ2

0 and f̂ ⊥
z 
 −3

√
2π (δ0/r)−3/2. (10)

Inserting all the expressions in the force balance yields the same displacement estimate as for
rotating cylinder above the inhomogeneous wall, Eq. (9),

�1 ∼ �

√
r

δ0
, (11)
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TABLE I. Scaling laws for lift force (Fz) and wall-normal displacement (�) for ST wall or Janus particle.
The imposed motion is either wall parallel velocity or rotation. For the latter, the displacement shown is for
one revolution.

Motion Lift force Displacement

ST wall V ‖ Fz ∼ ηV ‖ε−1L � ∼ �

Janus V ‖ Fz ∼ ηV ‖ε−1L � ∼ �xc/lc

ST wall � Fz ∼ ηr�ε−1L � ∼ √
r/δ0�

Janus � Fz ∼ ηr�ε−1L � ∼ �
√

r/δ0

(
1 − 1√

1+�r1/2δ
−3/2
0

)

but this time it is only for the first step or first half-revolution of the Janus particle. For the second
step, the estimate can be obtained exactly the same way while remembering that the wall-normal
force is negative due to change of surface inhomogeneity orientation, i.e., f̂ ω

z 
 −4�r/δ2
0 . This gives

us a negative displacement estimate for the second step

�2 ∼ −�

√
r

δ1
, (12)

where starting gap thickness is different compared to the gap thickness at the beginning of
the rotation δ0. The starting gap thickness for the second step can be obtained by adding the
displacement of the first step to the initial gap thickness, which yields

δ1 = δ0 + �1 = δ0 + �

√
r

δ0
. (13)

Finally, the estimate for Janus particle displacement away from the wall over one revolution can be
obtained by summing up displacements from both steps as

� = �1 + �2 ∼ �

√
r

δ0

⎛
⎝1 − 1√

1 + �r1/2δ
−3/2
0

⎞
⎠. (14)

Since slip length, radius, and gap thickness all have positive values, the term �r1/2δ
−3/2
0 is positive

and the net displacement of the Janus particle over one revolution is positive, which agrees with our
numerical results [Fig. 2(c)], in which we observe a net drift away from the wall. Table I summarizes
the scaling estimates of wall normal displacement for both systems in Figs. 1(a) and 1(b).

To conclude, we have used numerical simulations, analytical results, and scaling arguments to
describe how objects with spatially inhomogeneous slippage may encounter nontrivial emergent
forces and torques. In the presence of small slippage inhomogeneities, our scaling estimate suggests
that the lift force, Fz,slip, has to be considered alongside other lubrication forces. For instance,
using atomic-force microscopy, the elastohydrodynamic force was reported [34] to be Fz,EHD ∼ nN.
Considering the same experimental setup, but with a rigid substrate exhibiting an ≈1-nm slip
inhomogeneity, we obtain Fz,slip ∼ nN, i.e., the same order of magnitude as for the soft substrate
[35].

Such slippage inhomogeneities may arise from small variations in surface preparation, localized
defects, or cleaning processes, and this slippage has the potential to modify the observed wall-
normal force. For example, in the experiments of a traveling Janus particle near a wall [36], varia-
tions of contact angle up to 10◦ on the same substrate were reported. Finally, our numerical results
for both gravity-driven and other type of configurations show how nontrivial particle trajectories
can spontaneously emerge from slippage inhomogeneities. Note that the scaling estimates derived
in this work are not specific to the particular type of driving force applied to the moving particle; it
could be gravity, electromagnetic, or other type of force. The developments presented in this paper
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open up interesting opportunities for the design of interfaces to control and influence nearby particle
motion, as well as to reduce friction and wear. It also provides a foundation to explore more realistic
situations found in nature and especially in biology.
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