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Linear and nonlinear mechanisms within a forced plane wall jet
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The plane wall jet (PWJ) was used as a model flow field to study the linear and nonlinear
mechanisms within complex wall-bounded flows. Large-scale, large-amplitude forcing
was used to introduce a “tracer” flow scale into the unforced base flow and the resulting
embedded mechanisms were studied. The PWJ had a nominal Reynolds number Re j =
bVj/ν = 5965 and was forced acoustically at a Strouhal number St = f f b/Vj = 3.4×10−3

and the resulting flow field was characterized at various downstream locations (x/b � 162)
using hot-wire anemometry. Here, b is the PWJ exit slot width, Vj is the nominal PWJ
exit centerline velocity, ν is the kinematic viscosity, and f f is the forcing frequency. The
forcing increased the outer length scale δ (increased spreading rate of the PWJ) along with
a decrease in the outer velocity scale Um and an increase in the local Reynolds number.
The self-similarity of the mean streamwise velocity profile of the forced and unforced
flow, respectively, was unaltered by the forcing, but the momentum in the wall region and
the friction velocity were reduced along with a large increase in the streamwise turbulence
in the wall region. The linear response of the PWJ to the forcing resulted in flow structures
that have strong similarities to the naturally occurring structures of the unforced flow,
both in the inner boundary layer and in the outer free-shear layer. A comparison of the
energy spectra of the forced and unforced flow showed that the recipient scales, of the
excess energy from forcing, were primarily the large scales in the wall region, with the
specific scale of these recipient structures being that of the outer free-shear structures. At
the upstream locations this energy transfer was primarily in the form of a forward cascade,
while at downstream locations the transfer was in the manner of an inverse cascade. The
nonlinear interaction between the large scales in the flow and finer scales was also found to
be enhanced by the forcing. The spectra also suggested that the forcing isolated the energy
transfer mechanism within the flow where the input energy was supplied at the forcing
frequency. These observations led to the interpretation that the natural energy transfer
mechanism within a PWJ is to transfer energy from the boundary layer coherent structures
to the larger outer free-shear layer structures. The implications of these observations to
modeling such complex wall-bounded flow fields, particularly considering the on-going
work on the linear dynamics of the Navier-Stokes equation, were also discussed.

DOI: 10.1103/PhysRevFluids.5.074604

I. INTRODUCTION

A plane wall jet (PWJ) is formed when fluid from a two-dimensional nozzle exits into either
quiescent fluid or an external costream, while the ensuing flow develops along a solid boundary or
wall. The resulting shear flow thus has similarities to a free-shear layer in its outer extremities while
the inner flow, constrained by the wall, has similarities to canonical boundary layers [1], namely,
the zero-pressure gradient boundary layer and the fully developed channel flow. As an engineering
flow field a PWJ is seen commonly in heating/cooling applications [2], for example, in the film
cooling of turbine blades [3] and of internal electronics. It is encountered as well in the boundary
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FIG. 1. A schematic highlighting the salient features of a PWJ velocity profile.

layer development of multielement airfoils [3,4]. The PWJ also has structural similarities to flows
with a post-reattachment recovery region [5]. A number of past studies have focused on the mean
turbulence statistics of the PWJ [3,4,6–10], while a few studies have emphasized the embedded
structures [1,2,11–13].

Some characteristics of the PWJ are singular and motivate the present paper. The PWJ encap-
sulates boundary-layer-like flow structures as well as free-shear-like flow structures [1,11]. These
structures are not restricted to their respective flow regions, but overlap with each other while also
interacting with each other [1,2]. Further, within the PWJ the turbulence is produced at specific
wall-normal regions, with turbulent transport playing a significant role in moving this turbulence to
other flow regions where it is eventually dissipated [2,14]. Together, these characteristics result in
a complex flow field which has proven challenging to model [15], due to the embedded dynamics,
both linear as well as nonlinear. The present paper seeks to study these mechanisms, primarily from
the view of scale energy transfer, with implications for modeling complex wall-bounded flows such
as the PWJ. A brief background of these characteristics of the PWJ is now expanded upon along
with an introduction to the present paper.

The PWJ has a streamwise mean velocity profile that reaches a maximum Um at some distance
zm from the wall as shown in Fig. 1. The outer free-shear-like flow (z > zm) and the inner
boundary-layer-like flow (z < zm) of the PWJ, as stated, are not merely superimposed on each other
but the resulting flow encapsulates an overlap region with interactions between the two layers. This
interaction is observed right from the onset of turbulence in the transitional region. Naqavi et al. [14]
carried out a direct numerical simulation (DNS) of a PWJ up to a streamwise distance of x/b = 43.
Here, x is streamwise ordinate while b is the PWJ exit slot height (see Fig. 1). They showed that the
outer layer transitions via the inviscid Kelvin-Helmholtz (K-H) instability, where the characteristic
spanwise K-H roller eddies eventually break down into smaller, complex structures. The inner wall
layer transitions through a viscous process, under the influence of the outer layer, in a manner similar
to bypass transition. This interaction between the outer free-shear layer structures and the near-wall
turbulence is a structural feature of the PWJ which persists from the onset of turbulence into the
fully turbulent region resulting in a single interacting flow field [1,2,13].

At further downstream distances, using a theory based on the asymptotic invariance principle
George et al. [16] showed that at finite Reynolds number scaling solely based on viscous scales
(ν/Uτ , Uτ ) or outer scales (δ, Um) cannot collapse the mean velocity or Reynolds stresses in the
inner or outer region. Here, ν is the kinematic viscosity, Uτ = √

τw/ρ is the friction velocity, δ =
zm/2 is the wall-normal location in the outer free-shear layer where the streamwise mean velocity
is half the maximum velocity Um (see Fig. 1), τw is the wall shear stress, and ρ is the fluid density.
The implication to this scaling behavior then is that there exists an overlap region between the inner
and outer region, for all finite Reynolds numbers, a zone in which mixed scaling is applicable. In
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their large-eddy simulation (LES) study Dejoan and Leschziner [2] refer to this overlap region as
the interaction region or zone. In this interaction region, where the outer structures overlap with the
inner boundary layer, the turbulence kinetic-energy production is low. This region also lies between
two peaks in the production, one in the inner wall layer and the other in the outer free-shear layer
[2,12,14]. Naqavi et al. [14] showed that the inner wall layer budget of the turbulence kinetic energy
and the Reynolds stresses, in both the spanwise and streamwise direction, were in general agreement
with canonical boundary layers. However, there is an interaction between the inner and outer layers
through triple velocity correlations. This interaction acts to transport turbulence energy from the
outer layer to the inner one. The pressure-strain correlation then works to transfer this excess energy
into the spanwise direction in the wall layer.

Two-point correlations reveal that the outer layer motions are large-scale, backward leaning
structures [1,13]. Flow visualizations also reveal that these structures are associated with large-scale
anticlockwise rotation [1]. On the other hand, the structures in the near-wall region are consistent
with the forward leaning coherent motions seen in canonical boundary layers. The instantaneous
snapshots from LES simulations also showed near-wall “streaky” structures consistent with struc-
tures associated with the near-wall cycle of canonical boundary layers [17]. Gnanamanickam et al.
[1], using instantaneous particle image velocimetry fields and flow visualizations, showed that the
near-wall region contains flow features that are consistent with packets of hairpin vortices similar
to those seen in canonical wall boundary layers. The picture that then emerges is that the PWJ is
an example of wall turbulence where, not surprisingly, the inner wall layer has structural features
similar to canonical boundary layers. However, this inner wall layer is developing in the presence of
energetic, large-scale, outer free-shear layer structures combined with an interaction between these
two layers including embedded turbulent transport.

Motivated by these flow characteristics, the PWJ is used here as a model flow field to study
the encapsulated mechanisms (both linear and nonlinear) within complex wall bounded flows,
through the introduction of a specific “tracer” large scale. The approach followed is similar to that
of McKeon and coworkers, who studied the nonlinear interactions within a zero-pressure gradient
boundary layer through the introduction of synthetic, large-amplitude large scales [18–23]. Their
synthetic scale was introduced via a dynamic surface roughness. The boundary layer responds to
this forcing in a linear manner through streamwise modes at the forcing wavelength. Additionally,
nonlinear interactions occur between triadically consistent wave numbers, as dictated by the
nonlinear term in the Navier-Stokes equation, to distribute the excess energy from forcing.

As part of the present paper, the PWJ is altered through acoustic perturbations in the settling
chamber of the incoming jet. This approach has been followed by Wygnanski and coworkers where
studies of an acoustically perturbed PWJ were carried out [11,12]. Katz et al. [11] carried out a
parametric study of a forced PWJ, without an external stream, over a range of Reynolds numbers
(Re j = bVj/ν = 3000 to 30 000) and Strouhal numbers (St = f f b/Vj = 3.4×10−3 to 18.3×10−3).
Here, Vj is the PWJ exit centerline velocity and f f the forcing frequency. They determined that
the production in the near-wall region was reduced by the forcing with a concomitant reduction in
wall shear stress exceeding 30%. In an associated study Zhou et al. [12] acoustically perturbed a
PWJ in the presence of an external stream. The PWJ Reynolds number was Re j = 6900 while the
forcing was at a single Strouhal number of St = 9.5×10−3. The forcing frequency f f was chosen to
be the predominant frequency in the wall region of the unexcited PWJ at a downstream location of
approximately x/b = 100. The forcing caused the turbulence intensity at the PWJ exit centerline to
increase from 0.7 to 5%, indicative of large-amplitude perturbations. They determined that the wall
shear stress was reduced by about 7% between streamwise distances x/b = 100 and 200. There
was also a significant increase in the near-wall streamwise turbulence intensity near the surface
when x/b < 100 which reduced at further downstream distances. At further downstream distances
there was an increase in streamwise turbulence intensity away from the wall. They interpreted these
two observations as a transfer of energy from the wall outwards. This contrasts with the recent DNS
based observations where the natural mechanisms within a PWJ transferred outer large-scale energy
to the near-wall region.
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FIG. 2. A schematic highlighting the key features of the experimental facility and setup (not to scale).

Schober and Femholz [24] also studied a forced PWJ at a Reynolds number Re j = 10 000. They
used a still wire at the PWJ exit to break up the outer large scales which reduced the wall shear stress.
They also used an oscillating wire (estimated Strouhal number St = 74.6×10−3) which enhanced
the outer layer structures with an associated reduction in wall shear stress. Together these studies all
point to significant changes to the flow upon forcing, caused by changes in the internal mechanisms
of the PWJ.

The present paper specifically considers large-scale (St = 3.4×10−3), large-amplitude perturba-
tions to the PWJ developing without an external stream at a nominal Reynolds number Re j = 5965.
The present paper is not a parametric study but a detailed study focused on the response of the
PWJ to a single forcing frequency f f . Here, in contrast to the work of Zhou et al. [12], the forcing
streamwise wavelength λ

f
x (based on Taylor’s frozen hypothesis) was chosen to be large scale, in

that for all streamwise distances considered x/b � 162, λ
f
x > 2δ. It is sought to isolate (and track)

the internal dynamics of the flow when an excess of energy is supplied at the forcing frequency.
The context in which we present this paper is to understand the role of linear and nonlinear
energy-transfer mechanisms within complex wall turbulence, with the long term goal being the
ability to model and control these flow fields.

The paper is arranged as follows. First, the experimental approach is presented. A characteriza-
tion of the forced flow is then presented, focusing on the changes to the mean turbulence statistics.
The linear forcing response is then discussed, followed by changes to the energy spectra. Finally,
the effect of forcing on the scale interactions within the flow is discussed, followed by a discussion
on the implications of the present paper to current efforts at modeling wall turbulence. The paper is
then concluded with a summary of key observations.

II. EXPERIMENTAL APPROACH

Measurements were conducted in a PWJ facility a schematic of which is shown in Fig. 2. Only
a brief description of the facility is presented here and readers are referred to prior work [1] for
a more detailed description. Air from a centrifugal blower passes through a series of filters and
screens before entering a plenum settling chamber fitted with a speaker, to acoustically force the
flow. From the plenum, air passes through a honeycomb section followed by a two-dimensional
contraction channel of ratio 16:1 and exits through a rectangular nozzle. The nozzle height b =
5 mm with an aspect ratio of 128. Past the jet exit, a 127-mm-long sandpaper strip (60 grit) is
installed across the span of the facility which trips the flow. The trip was used to isolate the wall
layer transition, as far as possible, from the outer layer structures and the imposed forcing. Past
the exit the flow develops along a 3.66-m-long test section. The entrainment of the flow into the
test section is conditioned using screens and honeycombs as shown in Fig. 2. The nominal jet exit
Reynolds number Re j = 5965.
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TABLE I. Experimental parameters of the HWA measurement campaign. Here the symbols used are as
follows: x, streamwise location; b, PWJ exit height; Re j = Vjb/ν, PWJ exit Reynolds number; Vj , PWJ exit
velocity; ν, kinematic viscosity; Um, maximum mean velocity; Uτ , friction velocity; z0, point nearest to the
wall used to calculate the friction velocity; Reτ = Uτ δ/ν, friction Reynolds number; δ, outer length scale;
ν/uτ , viscous length scale; Cf j , friction coefficient based on the PWJ exit velocity; l , length of the hot-wire
sensing element; T , the sampling time; d , hot-wire sensor diameter; �T = 1/ fs, sampling period; fs = 20 kHz,
sampling frequency; and fc = U 2

τ /3ν, maximum flow frequency [25]. The superscript + is used to denote
nondimensionalization using inner scales. The superscript ∗ indicates the forced cases.

x/b Re j Vj Um δ Uτ z+
0 Uτ /ν Reτ Cf j l+ l/d TUm/δ �T + fc

(ms-1) (ms-1) (cm) (ms-1) (μm) (kHz)

50 5902 17.83 5.90 3.47 0.3833 4.20 40 868 9.24 ×10−4 25 200 40755 0.4801 3.2
50* 5896 17.81 5.36 4.28 0.3580 43 999 8.08×10−4 23 200 30040 0.4184 2.8
75 5933 17.85 4.81 4.77 0.3325 4.26 46 1038 6.94×10−4 22 200 33290 0.3607 2.4
75* 5929 17.84 4.50 5.88 0.3132 49 1204 6.17×10−4 20 200 25244 0.3201 2.1
110 5994 17.98 4.18 6.77 0.2700 4.02 56 1199 4.46×10−4 9.8 216 25967 0.2425 1.6
110* 5994 17.98 3.85 8.17 0.2495 61 1332 3.85×10−4 9 216 19787 0.2045 1.4
137 6020 18.06 3.73 8.11 0.2471 4.20 62 1315 3.73×10−4 9 216 22068 0.2002 1.3
137* 6020 18.06 3.43 9.93 0.2293 67 1489 3.23×10−4 8.9 216 16568 0.1728 1.2
162 5972 18.00 3.62 9.46 0.2261 4.10 68 1396 3.08×10−4 8 216 18354 0.1669 1.1
162* 5992 18.00 3.31 11.08 0.2038 75 1481 2.57×10−4 8.1 216 14314 0.1355 0.9

Measurements were conducted using single hot-wire anemometry (HWA). The hot-wire sensors
had a nominal diameter d ≈ 2.5 μm and the aspect ratios of the sensors for all measurements were
ensured to be l/d ≈ 200 to minimize attenuation [25]. The overheat ratio of the HWA sensor was
1.8. Wall-normal measurements were carried out at streamwise distances x/b = 1 to 162. A linear
magnetic encoder was used to track the motion of the hot-wire sensor at a resolution of ≈1 μm.
At each streamwise location measurements were carried out at 75 wall-normal positions. The first
15 points were equidistant from each other (≈13 μm) and are nominally in the very-near-wall
region (z+ < 15). These points are used to calculate the wall shear stress or friction velocity. A more
detailed description of the wall shear stress measurement technique, which is based on a near-wall
curve fit, is given in Gnanamanickam et al. [1]. Past these equidistant locations, measurements were
carried out at 60 logarithmically spaced wall-normal positions. Table I summarizes the measurement
parameters for all measurements presented. The wall shear stress and subsequently the friction
velocity Uτ were measured by curve fitting the near-wall mean streamwise velocity U , between
wall-normal locations z+ ≈ 4 and 10, as described in Gnanamanickam et al. [1]. The measurement
location closest to the wall for each data set is also shown in Table I.

At each wall-normal measurement station, measurements were first carried out on the unforced
PWJ. Following this, a pulse wave with a width of 1 ms at the forcing frequency ( f f =12 Hz,
St = 3.4×10−3) was fed to the speaker, through an amplifier, to generate the forcing input. This
pulse wave was also used as the reference signal while calculating the phase-locked velocity fields
presented in a subsequent section. Measurements were then carried out at this wall-normal location
for the case of the forced flow. Following this the speaker was turned off and the hot-wire sensor was
traversed to the next wall-normal location and the process was repeated at subsequent wall-normal
locations. The entire process including the data acquisition was automated.

III. RESULTS

The following conventions are followed while comparing the forced and the unforced flows. Red
lines and symbols are used to depict forced quantities while black lines and symbols are used to
represent unforced quantities. To carry out comparisons between various streamwise locations most
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FIG. 3. Instantaneous velocity of the forced flow at the PWJ exit (x/b = 1) centerline (top). The corre-
sponding input signal to drive the speaker, in the settling chamber, is also shown (bottom).

quantities are nondimensionalized using jet exit conditions; i.e., the length scale is the PWJ jet exit
width b and the velocity scale is the nominal PWJ exit centerline velocity Vj . Normalizations based
on inner and outer scaling are also used where appropriate. The superscript zero is used to indicate
unforced quantities while the asterisk superscript is used to indicate forced quantities.

Through the course of the following discussion three wall-normal locations, at each streamwise
station, are used to highlight keys changes to the flow field. These wall-normal locations are
(i) z+ ≈ 15, (ii) z+ ≈ 60, and (iii) z ≈ 0.6δ0. In figures, these locations are highlighted using line
styles as described in the caption of Fig. 8(a). The region around the nominal wall-normal location
z+ ≈ 15 is referred to as the near-wall region. The wall-normal locations z+ ≈ 15 and 60 are less
than zm, the location of the maximum mean velocity Um. The wall-normal region that contains both
these wall-normal locations, i.e., z < zm, is broadly referred to as the wall region. The wall-normal
region around z ≈ 0.6δ0 is then broadly referred to as the outer region (for the outer free-shear
region). To convert Fourier components f of the velocity field into a streamwise wavelength λx the
outer velocity scale of the unforced PWJ is used, i.e., λx = Um/ f .

A. Forcing response at the PWJ exit

An acoustic excitation was used to introduce a large-scale, large-perturbation forcing into the
flow field. A portion of the forced velocity signal at the PWJ exit (x/b = 1) centerline is shown in
Fig. 3 (top). The speaker was located in the settling chamber (see schematic of Fig. 2). Hence, the
flow passes through a honeycomb section and the contraction past the location of actuation. Thus,
the instantaneous velocity shown in Fig. 3 is the result of the forcing, combining the effects of the
actuation passing through the honeycomb and contraction. For the purpose of this paper the goal
was in generating a flow field with energetic large scales at the forcing frequency, which the spectra,
presented in subsequent sections, show has been achieved. The driving input signal to the speaker
is also shown in Fig. 3 (bottom) for reference. At the PWJ exit centerline, the forcing increased
the turbulence intensity from 0.7 to 1.8%, while in the outer shear layer it increased from 11.1
to 18.2%. At the wall-normal location closest to the wall (z ≈ 100 μm) the forcing increased the
turbulence intensity from 4.3 to 9.8%. Figure 3 shows that the introduced forcing has a distinct
large-scale component while the changes in turbulence intensity establish that the forcing is a large
perturbation to the base flow.
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FIG. 4. (a) Comparison of the streamwise mean velocity profiles nondimensionalized using outer scales at
x/b = 75 ( ), 110 ( ), and 162 ( ) respectively. The shaded region highlights the nominal
logarithmic region of the unforced flow at x/b = 110. (b) Outer length scale δ ( ) with values represented
on the right y axis and velocity scale Um ( ) with values represented on the left y axis, as a function of
streamwise distance. Black lines and symbols are used to represent unforced quantities whereas red lines and
symbols are used to show forced quantities.

B. Turbulence statistics

The PWJ has been shown to have a self-similar streamwise mean velocity profile past the initial
transitional stage downstream of the exit [6]. Typical self-similar velocity profiles of the unforced
flow at various downstream locations are shown in Fig. 4(a). Figure 4(a) also compares the velocity
profile of the unforced PWJ with that of the forced one, in outer scaling. The forcing results in a
velocity profile that is still self-similar while considering the forced and unforced flow individually.
The forced flow also shows similar outer scaling behavior as the unforced PWJ. Also seen is a
limited logarithmic region (shaded region) for both the forced and unforced flow in the wall region,
below the location of the maximum velocity Um. This logarithmic region was observed to increase
in extent with increasing downstream distance (not shown here for brevity). Figure 5 shows the
streamwise development of the mean velocity profiles of both the forced and the unforced flows. A
closer view of the streamwise velocity and the turbulence intensities, showing the region around
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FIG. 5. Development of the streamwise mean velocity ( ) and turbulence intensity ( ) profiles
of unforced and forced flow. Also shown are the respective developments of the shear-layer thickness δ

( ). Black lines are used to represent unforced quantities whereas red lines are used to show forced
quantities. Figures 20 and 21 in Appendix A show zoomed-in profiles of the mean streamwise velocity and
turbulence intensity, respectively.
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FIG. 6. (a) Streamwise turbulence intensity (TI) profile at x/b = 137. The vertical lines indicate wall-
normal locations z+ ≈ 15 ( ), z+ ≈ 60 ( ), z ≈ zm ( ), and z ≈ 0.6δ0 ( ), respec-
tively. The total TI ( ) along with its large-scale component ( ) and small-scale component
( ) are shown. The filled symbols mark the inner peaks of the total TI ( ), large-scale TI ( ), the
small-scale TI ( ), respectively. The unfilled symbols mark the outer peaks of the total TI ( ), large-scale TI
( ), and small-scale TI ( ), respectively. (b)–(d) The variation of the inner and outer peaks as a function of
streamwise distance corresponding to (b) the total TI, (c) the large-scale TI, and (d) the small-scale TI peaks,
respectively. While comparing forced and unforced quantities black lines and symbols are used to represent the
unforced quantities whereas red lines and symbols are used to show forced quantities.

Um, is reproduced in the Appendix A for clarity. In both cases, as the PWJ develops downstream the
maximum mean velocity Um decreases and the outer length scale δ increases. At a fixed streamwise
location, the effect of forcing is to reduce the outer velocity scale which is the maximum mean
velocity Um, while increasing the outer length scale δ. This trend is observed at all streamwise
locations considered. This variations of Um and δ as a function of streamwise distance, for both the
forced and the unforced cases, are shown in Fig. 4(b). The spreading rate of the PWJ when forced
increased from dδ0/dx ≈ 0.105 to dδ∗/dx ≈ 0.123 indicating a 17% increase, as evident from the
diverging lines of constant δ in Fig. 5. It is noted that one standard deviation in determining δ was
estimated to be ±0.61 mm. Together the increase in δ and the reduction in Um resulted in an increase
in the local Reynolds number Rem = Umδ/ν, upon forcing.

The typical streamwise turbulence intensity profile in the fully developed region (at x/b = 137)
is shown in Fig. 6(a). The streamwise turbulence intensity profile of the PWJ has two peaks. The
inner peak in the near-wall region is associated with near-wall structures whereas the outer peak is
associated with the outer free-shear layer structures with some overlap of scales. The streamwise
development of the streamwise turbulence intensity profiles is also shown in Fig. 5. The variations
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in magnitudes of the inner and outer peaks are shown in Fig. 6(b). As expected, both the peaks
gradually reduce in the magnitude as the PWJ develops downstream in the case of the forced and
unforced PWJ. In the case of the unforced PWJ the inner peak is always smaller in magnitude than
the outer peak for all streamwise locations considered. On average, the outer peak in the unforced
PWJ is approximately 16.6% larger than the inner peak. However, in the case of the forced PWJ,
the inner peak is higher in magnitude than the outer peak; i.e., the forcing increases the inner peak
by ≈52.8% across all streamwise locations considered. There is also a slight but not as substantial
increase in the magnitude of the outer peak in the case of the forced PWJ (≈4.6% on average across
all streamwise locations). This indicates that the forcing response of the PWJ appears to primarily
affect the inner wall layer, increasing the streamwise turbulence intensity substantially.

The total turbulence intensity profile indicates the turbulence activity integrated across all wave-
length components. To get a clearer view of the forcing response, Fig. 6 also shows the turbulence
intensity profiles at x/b = 137 decomposed into its large-scale and small-scale components. Here,
large scales are defined as scales with streamwise wavelength λx > 2δ0. The choice of λx = 2δ0

as the cutoff wavelength was made to be consistent with past work, where the implications of this
choice are discussed [1]. This cutoff wavelength is chosen with the understanding that some leakage
between scales is inevitable due to the extremely energetic outer large scales in the flow, their
intrusion into the wall region, and the modest friction Reynolds numbers under consideration. It is
noted that the precise choice of the cutoff wavelength does not affect the qualitative conclusions that
follow from separating flow scales into large scales and small scales. In all subsequent discussions,
where the flow is separated into large scales and small scales, a spectral cutoff filter was used to
separate the large scales from the small scales. The large scales are seen to be primarily responsible
for the larger outer peak in the unforced PWJ. A peak in the small-scale intensity is also seen in
the outer free-shear layer. On the other hand, in the inner wall layer, a peak in both the large-scale
and small-scale turbulence intensity is observed. In the case of the unforced PWJ, these two peaks
contribute almost equally to the turbulence intensity. In the case of the forced PWJ there is virtually
no change in the small-scale turbulence intensity due to forcing. However, there is an increase in the
large-scale intensity across the entire flow layer. This increase is maximum around the wall-normal
location z+ ≈ 60. This location lies within the logarithmic region of the mean velocity profile
[see Fig. 4(b)].

The differences between the forced and the unforced PWJ at other streamwise locations are well
represented by the described behavior at x/b = 137. This is also highlighted in Fig. 6, where the
streamwise variations of the inner and outer peaks separated into a small-scale peak and a large-scale
peak are shown. Across all streamwise locations considered the large scales contribute ≈75.9% to
the outer turbulence intensity peak and ≈65.4% to the inner peak in the case of the unforced PWJ;
i.e., the large scales make a larger contribution towards the outer peak. However, upon forcing,
the large-scale contribution to the outer peak is ≈74% and it is ≈76.2% towards the inner peak.
This highlights that the imposed perturbation is a large-scale forcing with the wall region being the
primary target region.

C. Skin friction coefficient and PWJ momentum

The streamwise variations of the skin friction coefficient Cf j = 2U 2
τ /V 2

j for the unforced and the
forced flows are shown in Fig. 7(a). The forcing reduces the friction coefficient at all streamwise
locations considered. On average the reduction in Cf j is observed to be ≈13.5%. It is noted here that
the reduction in Uτ is combined with an increase in δ. Together these changes to the flow increase the
local friction Reynolds number Reτ = δUτ /ν upon forcing. Numerical values of Reτ are tabulated
in Table I.

At a given streamwise location the PWJ mean momentum Mj is split into its contributions from
the wall region and the outer region as

Mj =
∫ zm

0
U

2
dz +

∫ 2.5δ

zm

U
2
dz. (1)
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FIG. 7. (a) Variation of the skin friction coefficient Cf j = 2U 2
τ /V 2

j ( ) as a function of streamwise
distance. While comparing forced and unforced flows black lines and symbols are used to represent the
unforced quantities whereas red lines and symbols are used to show forced quantities. (b) Variation of the
PWJ momentum as a function of streamwise distance decomposed into its contributions from the wall (z < zm)
and the outer (z � zm) regions. These are nondimensionalized with respect to the total unforced momentum M0

j

as per Eq. (1). The outline around the bars is used to differentiate between the unforced (black) and the forced
(red) flows.

Here, zm is the wall-normal location of the outer velocity scale Um and is used to distinguish the
inner wall layer and the outer free-shear layer. Figure 7(b) shows the PWJ mean momentum as a
function of streamwise location split into its contributions from the inner wall layer (z < zm) and
the outer free-shear layer (z � zm). The forcing increases the total PWJ momentum substantially
when x/b = 75–137. The increased momentum is maximum at x/b = 75 and gradually decreases
as the flow develops further downstream. However, this increase in momentum occurs in the outer
free-shear layer region (z > zm). In contrast the forcing reduces the momentum in the wall region
(z < zm) coincident with the decrease in Um. It is noted here that zm also increases upon forcing
similar to the outer length scale δ. One explanation for the decrease in the wall region momentum is
that the forcing causes the turbulent transport of higher momentum fluid away from the wall region
into the outer free-shear layer. This decrease in the near-wall momentum will also occur when there
is an increase in the entrainment of the external still (low momentum) fluid into the free-shear
layer which is then subsequently transported to the near-wall region. As subsequent sections reveal,
large-scale structures in the flow are energized by the forcing, leading to large-scale mixing in the
flow. Hence, in the presence of large-scale mixing, it is likely that both these processes (transport
of higher momentum fluid away from the wall and external lower momentum fluid towards the
wall) occur simultaneously, leading to a reduction in the mean momentum in the wall region and
subsequently a reduction in the skin friction.

D. Forcing response at x/b = 50

A sandpaper strip was used to trip the inner wall layer in the case of both the forced and the
unforced flow as described in the section focusing on the experimental setup. The streamwise loca-
tion x/b = 50, which is 24b downstream of the sandpaper strip, is past the initial PWJ development
region where the unforced flow becomes two dimensional. As the streamwise location x/b = 50
is the most upstream location, past the initial development phase, we consider this location as the
“initial” forcing location with respect to further downstream locations x/b > 50. The spectrograms
of the unforced and forced flow at x/b = 50 are shown in Figs. 8(a) and 8(b) respectively. Here,
spectrogram refers to the contours of the premultiplied, one-dimensional, streamwise energy spectra
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FIG. 8. Spectrogram at x/b = 50 for the (a) unforced and (b) forced flows as well as the (c) difference
between the two spectra. The vertical lines show the wall-normal locations z+ ≈ 15 ( ) and 60 ( )
and z = 0.6δ0 ( ). (d)–(f) Profiles of the difference in energy spectra at the three highlighted wall-normal
locations. Shown also for reference is the forcing wavelength Vj/ f f b ≈ 295 ( ).

f φuu as a function of wall-normal distance z/b and streamwise wavelength Vj/ f , where f are the
Fourier frequency components of the streamwise velocity fluctuations U ′.

The differences between the two spectrograms are highlighted in the difference plot of Fig. 8(c)
while the differences at the three highlighted wall-normal locations are presented in Figs. 8(d)–8(f).
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FIG. 9. Variation of the phase-locked velocity Uf [see Eq. (2)] over two forcing cycles shown in logarithmic
(top) and linear (bottom) wall-normal coordinates. The streamwise distance increases going from left to right.
The color contours are the magnitude of Uf as indicated by the color bar. The contour level corresponding to
Uf = 0 is also shown. The horizontal lines show wall-normal locations z+ ≈ 15 ( ) and 60 ( )
and z = 0.6δ0 ( ), respectively.

A peak in f φuu at the fundamental forcing frequency f f as well as several higher harmonics are
seen. In the wall region (z+ ≈ 15 and ≈60) four higher harmonics are seen. On the other hand in
the outer region (z ≈ 0.6δ0) only two higher harmonics are seen. Apart from the forcing frequency
and its harmonics, Fig. 8(c) shows that the forcing increases the energy of all flow scales in the
outer extremities of the PWJ (z � 0.6δ0). In the wall region, the increase in energy is limited to
scales larger than Vj/ f b > 102 (or λx = Um/ f > 6δ0) while for smaller scales the forcing decreases
the energy. These changes point to large-scale transport within the forced PWJ upon forcing. The
spectral development of the forced and unforced PWJ is now compared at further downstream
locations x/b = 75–162.

E. Forcing harmonic response

As the imposed forcing was a periodic function, following past studies [21–23,26], the velocity
field was triple decomposed into a mean velocity component U , a periodic phase-locked component
Uf that was phase locked with the imposed forcing, and an unsteady fluctuating component U ′

f :

U (z, t ) = U (z) + Uf (z, t ) + U ′
f (z, t ). (2)

For the rest of this paper, the term phase-locked velocity is used to refer to Uf . The input signal
to the speaker, as part of the forcing (see Fig. 3), was used as the reference signal while carrying
out the phase-locking procedure. Using this reference, an ensemble average in phase θ f of the mean
subtracted velocity field was carried out at each wall-normal location z and a two-dimensional map
of Uf was subsequently calculated. The unsteady component U ′

f then represents the background

turbulent fluctuations about this periodic phase-locked component and the mean velocity field U .
The phase-locked velocity Uf calculated in this manner captured the linear response of the flow, to
the forcing, as well as the higher harmonics.

Figure 9 shows contours of Uf (over two forcing cycles) as a function of downstream distance.
As discussed, Fig. 9 captures the flow response at the fundamental forcing frequency f f , which
is the linear response of the PWJ to the forcing [23]. It also captures some of the nonlinearities
of the response in the form of higher harmonics. A filtered version of Fig. 9 is shown in
Appendix B (Fig. 22) where only the linear response portion of Uf was isolated. Here, prior to
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FIG. 10. Variation of the phase-locked velocity Uf [see Eq. (2)] over two forcing cycles in linear wall-
normal coordinates at x/b = 110. The color levels represent the magnitude of Uf as indicated by the color bar.
The contour level corresponding to Uf = 0 ( ) is also shown. The horizontal lines show the wall-normal
locations z+ ≈ 60 ( ) and z = 0.6δ0 ( ), respectively. The arrows highlight the three distinct flow
features discussed in the text.

the phase-locking procedure the mean subtracted velocity field was bandpass filtered about the
fundamental ( f f ± 0.01Hz) to isolate the linear response. Comparing both figures, it is seen that
the large-scale flow features of Fig. 9 are those of the linear response. Higher harmonics are seen
primarily in the wall region particularly at the upstream locations (x/b < 110). These harmonics are
also highlighted in the discussion of the spectra in a subsequent section.

The linear response at x/b = 110 is shown in Fig. 10 to highlight key elements. At this
streamwise location the periodic response has three distinct features that span the wall-normal
region (highlighted by the three arrows). In the region closest to the wall (z � 0.6δ0) the response is
a forward leaning (positive inclination angle) flow feature. This response flow feature is “attached”
to the wall, in that its footprint extends down to the wall. This inner response also extends well
past zm, the location of the maximum local mean velocity Um. In the outer extremities of the
flow (z � 0.6δ0), two other features are seen. The central flow feature extends to about z ≈ 1.5δ0

while the other feature extends past z ≈ 1.5δ0. The response flow feature spanning the wall-normal
region 0.6δ0 � z � 1.5δ0 shows a negative inclination angle (backward leaning). At this streamwise
location the outermost feature has an inclination angle nearly aligned with the vertical.

Considering the downstream development of the phase-locked velocity Uf , it is evident that
the magnitudes of these response flow features seen in the contours of Uf reduce with increasing
downstream distance. In other words, the energy at the forcing frequency is being depleted as
the flow develops downstream. The three flow features of the linear response, highlighted in
Fig. 10, are observed at all downstream (x/b > 75) locations considered. However, the relative
phase between them changes with downstream distance. Here, relative phase indicates the phase
between any two of the three flow features highlighted in Fig. 10. For example, the relative
phase between the innermost wall response feature and the central one is highlighted as ψ in
Fig. 22 of Appendix B. This change in relative phase indicates that these distinct response features,
as highlighted in Fig. 10, are convecting at different velocities as the flow develops downstream.
For example, the relative phase between the innermost response feature and the central one ψ has
increased as the flow develops downstream (see Fig. 22 of Appendix B). The innermost flow feature
has a constant forward inclination angle. The middle flow feature shows a negative inclination angle
at all streamwise locations. However, the outermost flow feature exhibits a small negative inclination
angle at x/b = 75 and 110 and transitions into a flow feature with a small positive inclination angle
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FIG. 11. Spectrograms of the unforced (top) and the forced (bottom) flows. The streamwise development is
shown from left to right. The vertical lines show the wall-normal locations z+ ≈ 15 ( ) and 60 ( )
and z ≈ 0.6δ0 ( ), respectively. The horizontal line shows the forcing wavelength Vj/ f f b ( ).

at x/b = 162. At the most upstream streamwise location (x/b = 75), the two inner flow features
also appear to be merged into a single flow feature.

It is also highlighted that the strength or magnitude of the innermost response feature, i.e., the
forward leaning attached one, is consistently higher than the outer ones. This is true at all streamwise
locations as indicated by the color contours in Fig. 9. Several recent studies have focused on the
linear response of the Navier-Stokes equation [18,27,28]. In this context, the current paper presents
the linear response of a flow to forcing with an added degree of complexity than canonical wall
turbulence. The linear response in the wall region that is forward leaning and the free-shear layer
response which is backward leaning bear strong resemblance to the structures captured by the two-
point correlations of Gnanamanickam et al. [1] in the respective flow regions of the unforced flow. In
other words, the linear response of the forced PWJ results in flow features that mimic the naturally
occurring structures in the PWJ at the forcing wavelength. The greater strength of the wall layer
linear response when compared with that in the free-shear layer may suggest that the linear gain of
the near-wall structures, at the particular forcing frequency, is higher in the initial flow development
stage close to the PWJ exit (x/b < 50). However, it is cautiously noted that the strength of these
response features, as visualized using a phase averaging process, will be affected by any phase
jitter.

F. Energy spectra

The streamwise spectral evolution of the forced and unforced flow is shown in Fig. 11 in the form
of spectrograms. For reference, the spectra corresponding to Fig. 11 using Taylor’s hypothesis and
the local mean velocity as the convection velocity are shown in Appendix C (Fig. 23). Line plots
of the one-dimensional, premultiplied, streamwise energy spectra at the aforementioned three wall-
normal locations z+ ≈ 15 and 60 and z ≈ 0.6δ0 are shown in Fig. 12 to also aid in the discussion of
the spectra.

The spectrograms of the unforced PWJ are first considered. To highlight key features, the
unforced spectrogram at x/b = 137 is shown in Fig. 13. It is noted that the features of the unforced
PWJ discussed at x/b = 137 are exemplary of all other streamwise locations considered [see also
the spectrogram of Fig. 8(a) at x/b = 50]. At all streamwise locations, the PWJ encapsulates highly
energetic large-scale structures (λx > 2δ0) which span the entire wall-normal extent of the PWJ.
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FIG. 12. Comparison of the streamwise, one-dimensional, premultiplied energy spectra f φuu/V 2
j ( )

at a near-wall location z+ = 15 (top), a logarithmic location z+ = 60 (middle), and an outer location z =
0.6δ (bottom) (corresponds to the locations highlighted in Fig. 11). At the wall layer locations z+ ≈ 15 and
60, the outer unforced spectrum from z ≈ 0.6δ0 ( ) is also plotted for a comparison. The black color
represents unforced quantities while the red color represents forced quantities. The vertical lines show the
cutoff wavelength λx = 2δ0 ( ) and the forcing wavelength Vj/ f f b ( ), respectively. Also shown
are the peaks of the recipient scales λr

x−peak ( ) in the wall layer when x/b � 110.

Note, in Figs. 11 and 12 a line is used to highlight the spatial differentiator wavelength λx = 2δ0

at each streamwise location. Though this large-scale energy resides at all wall-normal locations it
is particularly energetic at two wall-normal regions. At the streamwise location x/b = 137 these
two regions are highlighted as the shaded regions in Fig. 13. The first of these regions lies between
z ≈ 0.01δ0 and 0.12δ0. These are the wall-normal locations nominally spanning the logarithmic
region of the inner wall layer [see Fig. 4(a)]. This region lies below zm, the wall-normal location of
the maximum mean velocity Um. For the rest of this paper the large-scale wavelengths that reside
in this first region are referred to as λn

xi, i.e., λn
xi represents the naturally occurring large scales that

are observed in the PWJ between the wall-normal locations 0.01δ0 � z � 0.12δ0 or the inner wall
region.

The second region where large-scale energy is concentrated is around the wall-normal location
z ≈ 0.6δ. This wall-normal location lies in the outer free-shear portion of the PWJ and for the rest
of this paper these outer large-scale wavelengths are referred to as λn

xo. It is emphasized that λn
xo and

λn
xi are not single wavelengths but a range of energetic large-scale wavelengths, each with a peak

that varies with wall-normal distance (see Figs. 13 and 12). In the case of the unforced PWJ the
concentration of energy is greater in this second outer region when compared with the inner region
for all streamwise locations considered. Further, the wavelength corresponding to the peak in energy
of all wavelengths comprising λn

xo is greater than the peak wavelength of λn
xi, i.e., λn

xo−peak > λn
xi−peak.

Here, λn
xo−peak is the wavelength in the outer region where the large-scale energy is a maximum and

likewise λn
xi−peak is that in the inner region [see Fig. 13(c)].

The forced PWJ is now considered. Apart from the linear response at the forcing frequency,
several higher-order harmonics are seen. The inner wall-normal locations (z+ ≈ 15 and 60) contain
more higher-order harmonics when compared to the outer wall-normal region (z+ ≈ 60) at x/b = 50
(Fig. 12). With increasing downstream distance the nonlinear, higher-order harmonic response dies
out at all wall-normal locations though it prevails to greater downstream locations in the wall region
(z+ ≈ 15 and 60) than in the outer region (z ≈ 0.6δ0). In the outer region (z ≈ 0.6δ0) the higher
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FIG. 13. (a) Spectrogram of the unforced flow at x/b = 137. The circled regions indicate wavelength
extents of the naturally energetic large-scale structures in the inner (λn

xi) and the outer (λn
xo) regions, respectively.

The vertical lines show the wall-normal locations z+ ≈ 60 ( ), z ≈ zm ( ), and z ≈ 0.6δ0 ( ),
respectively. (b) Premultiplied energy spectrum for the wavelength Vj/ f b ≈ 600 ( ) highlighted in figure
(a). The shaded regions illustrate the nominal wall-normal extents of λn

xi (blue) and λn
xo (red), respectively. The

vertical lines show the wall-normal locations of the corresponding inner ( ) and outer ( ) peak
energy values, respectively. The vertical line at z ≈ zm ( ) nominally differentiates the wall region from
the outer region. (c) Comparison of the energy peaks in the wall region at z+ ≈ 60 (blue) and the outer region
at z ≈ 0.6δ0 (red). The vertical lines indicate the peak values for inner λn

xi−peak ( ) and outer λn
xo−peak

( ), respectively.

harmonics have no energy at x/b � 75, though at z+ ≈ 15 and 60 the first harmonic has significant
energy at upstream locations and this energy dies out at x/b = 110. Also seen is that the linear
response at the fundamental forcing frequency f f persists in the wall layer up to x/b = 162 while
in the outer region there is very little energy at f f at streamwise distances x/b � 110.

As the PWJ spreads in extent in the downstream direction the naturally occurring energetic large
scales in the both the inner region λn

xi and the outer region λn
xo are moving to larger and larger scales.

However, the forcing and its energetic linear response are at a single fixed wavelength λ
f
x . Hence, at

the most upstream locations (x/b � 75), λ
f
x is larger than the peak in the naturally occurring large

scales in both the inner and outer regions (λn
xi−peak and λn

xo−peak, respectively). As the PWJ develops
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FIG. 14. Downstream development of the difference in the energy spectra between the forced and unforced
flow [ f (φ∗

uu − φ0
uu)/V 2

j ]. The vertical lines show wall-normal locations z+ ≈ 15 ( ) and 60 ( ) and
z ≈ 0.6δ0 ( ), respectively. The horizontal lines show the cutoff wavelength λx = 2δ0 ( ) and the
forcing wavelength Vj/ f f b ( ), respectively. The numbers on the top left corner of each figure show
the forcing wavelength nondimensionalized with respect to the outer variables at the respective streamwise
location.

further downstream the fixed forcing wavelength λ
f
x (and its linear response at this fixed wavelength)

becomes equal to and then eventually smaller than the peak in the naturally occurring large scales
of both the inner (λn

xi−peak) and outer (λn
xo−peak) regions. This transition occurs earlier in the outer

region when compared to the inner region because, as noted previously, λn
xo−peak > λn

xi−peak.
This arrangement of the naturally occurring large scales relative to the forcing scale allows for

an interesting energy-transfer mechanism in the forced PWJ. Two difference plots are used to aid
in this discussion. Figure 14 shows the difference between the spectrograms of the forced and
unforced flow as a function of downstream distance. Figure 15 shows the difference between the
spectrograms at a given streamwise location and the immediate upstream location. The line plots
of the premultiplied energy spectra at z+ ≈ 15 and 60 and z ≈ 0.6δ0, as shown in Fig. 12, also
allow for a visual comparison of the relative scale sizes of the forced and unforced flow at a given
streamwise location.

The difference between the forced and unforced flow at a fixed streamwise location is first
considered. It is observed that energy at the forcing wavelength λ

f
x is primarily transferred to

the large scales of the flow (λx > 2δ0) that reside at a specific wall-normal region. It is seen that
these recipient scales reside primarily in the logarithmic region of the PWJ. This reinforces the
observations of the turbulence intensity plot of Fig. 6 where the dominant increase in energy is seen
in the large scales that lie below zm. The recipient wavelengths, referred to as λr

x for the rest of this
discussion, move to larger and larger wavelengths with increasing downstream location. Here again,
it is noted that λr

x refers to a range of wavelengths.
Restricting for the moment the discussion to the wall region, at the most upstream locations

x/b � 110, λ
f
x > λn

xi−peak. In this case the energy from λ
f
x and its harmonics are transferred to λr

x

with λr
x spanning wavelengths greater than and less than λ

f
x . Hence the energy at λ f

x is being depleted
to scales larger than itself in the manner of an inverse cascade as well as to scales smaller than itself
through a forward cascade. In the case of the higher harmonics of λ

f
x , the energy transfer is in

the direction of an inverse cascade as the higher harmonics of λ
f
x are smaller than λr

x. At further

074604-17



S. BHATT AND E. GNANAMANICKAM

FIG. 15. Difference of premultiplied energy spectra between a streamwise location and the immediately
preceding downstream location corresponding to both the unforced (top) and forced (bottom) flow. The
vertical lines show the wall-normal locations z+ ≈ 15 ( ) and 60 ( ) and z ≈ 0.6δ0 ( ),
respectively, at the upstream location. The horizontal lines show the forcing wavelength Vj/ f f b ( )
and the cutoff frequency λx = 2δ0 ( ). Here, the axes are nondimensionalized by the respective local
shear-layer thickness δ.

downstream locations x/b � 137, the energy transfer is almost exclusively to scales larger than λ
f
x

indicative of an inverse cascade. In the outer region there is no increase in the large-scale energy
up to x/b = 75 (except at λ

f
x and its harmonics). When x/b � 110 there is a small increase in the

energy of scales larger than λ
f
x again indicative of an inverse cascade.

Considering the small-scale energy λx < 2δ0, at all streamwise distances there is a decrease in
small-scale energy in the forced flow with respect to the unforced flow at wall-normal locations
z � 0.6δ0, whereas at higher wall-normal locations there is an increase in small-scale energy (see
Fig. 14). Particularly in the near-wall region z+ ≈ 15 (see line plots of Fig. 12) the reduction in
energy of the small scales is consistent and more significant.

The difference in energy between streamwise distances (Fig. 15) for the forced and unforced
flow is now considered. A line plot of this difference at the three reference wall-normal locations
is also shown in Fig. 16. In the case of the unforced flow, the energies in the large scales are
increasing concomitant with an increase in downstream direction as the larger scales are getting
larger. Comparing the unforced and forced flows it is clear that the regions of increased energy and
depleted energy are nearly identical (except at the forcing wavelength λ

f
x ). This is highlighted in the

line plot of Fig. 16. It is seen that the regions of increased and decreased energy as the flow develops
downstream are identical in the forced and unforced flow, with the forced flow exhibiting a larger
magnitude of changes attributed to the available excess energy due to forcing. This suggests that
the energy transfer due to forcing follows the natural energy-transfer mechanism within the PWJ.
In other words, the forcing isolates the energy-transfer mechanism within the PWJ due to a single
wavelength, i.e., the forcing wavelength λ

f
x . The forcing and its linear response provide excess

energy at this wavelength; this excess energy then follows the naturally occurring energy-transfer
pathway within the flow. This strengthens the argument that the forcing linear response mimics
naturally occurring scales of the flow at the forcing frequency.

Turning the attention once again to the energy spectra line plots of Fig. 12, a final observation is
made. At plots corresponding to the wall-normal locations z+ ≈ 15 and 60, along with the profiles
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FIG. 16. Line plots of the energy difference shown in Fig. 15 at three wall-normal locations z+ ≈ 15, 60,
and 0.6δ0. Black lines ( ) are used to represent the unforced flow, whereas the red lines ( )
represent the forced flow. Here, the axes are nondimensionalized by the respective to the local shear-layer
thickness δ.

of the premultiplied energy spectra f φuu of both the forced and unforced flow at z+ ≈ 15 and 60, the
unforced spectrum at z ≈ 0.6δ0 is also shown. It is observed that the recipient scale λr

x while residing
primarily in the wall region has a peak that corresponds to the peak of the naturally occurring outer
scales, i.e., λr

x−peak ≈ λn
xo−peak. In other words the excess energy upon forcing is being transferred

to the scales of the size of the naturally occurring outer scales λn
xo, though these recipient scales

primarily reside in the wall region. In the outer regions of the flow (z ≈ 0.6δ0) the line plots of
Fig. 12 show that the effect of forcing at streamwise locations x/b � 110 is to slightly increase the
overall energy in the large scales while in this case the recipient scales are marginally larger than
λn

xo−peak.

G. Scale interactions

In canonical boundary layers the outer larger scales have been observed to interact with the finer
scales through a process of amplitude and frequency modulation [29]. This amplitude modulation
effect is quantified using the amplitude modulation coefficient RAM as given by Mathis et al. [30]:

RAM = ULEL(Us)√
U 2

L

√
EL(Us)2

. (3)

Here, UL and Us are the large-scale and small-scale components of the streamwise velocity,
respectively, while EL is the large-scale component of the envelope of Us calculated using the
Hilbert transform. The cutoff wavelength to separate the large scales from the small scales is
λx = 2δ0. Figure 17 shows the profiles of the amplitude modulation coefficient RAM as a function
of streamwise locations for the unforced and the forced flows. In the case of the unforced flow
the large scales are seen to amplitude modulate the finer scales across the entire layer at all
streamwise locations. In the near-wall region, as the flow develops downstream, this modulation
increases. At x/b = 50, when z+ ≈ 15, RAM ≈ 0.34 in the case of the unforced flow. This increases
to RAM ≈ 0.41 at x/b = 162, indicating a naturally increasing modulation effect in the near-wall
region as the flow develops downstream.
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FIG. 17. Variation of the amplitude modulation coefficient RAM ( ) as the flow develops down-
stream. The black color represents the unforced flow and the red color represents the forced flow. The horizontal
lines highlight the wall-normal locations z+ ≈ 15 ( ) and 60 ( ) and z ≈ 0.6δ0 ( ),
respectively.

The modulation increases upon forcing in the region z � 0.6δ0 at all streamwise locations
considered. However, it remains relatively unaffected in the outer region (z � 0.6δ0), with only
a shift due to the increased spreading of the PWJ. At each streamwise location, at z+ ≈ 15, the RAM

approximately increases by ≈46% upon forcing. This increase is attributed to the more energetic
large scales in the forced flow. The increased large-scale energy at the forcing frequency (the linear
response) and the resulting cascade of the excess energy both cause the increased modulation. This
is highlighted in Fig. 18 where only the modulation effect at the forcing frequency f f is shown for
both the forced and the unforced flow at x/b = 137. It is noted that this figure is exemplary of other
streamwise locations as well. A narrow spectral, cutoff bandpass filter ( f f ± 0.01 Hz) was first used
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FIG. 18. The profiles of the amplitude modulation coefficient (RAM)Band at x/b = 137 showing only the
contribution at the forcing frequency f f . The black color represents the unforced flow and the red color
represents the forced flow. The vertical lines show the wall-normal locations z+ ≈ 15 ( ) and 60
( ) and z ≈ 0.6δ0 ( ), respectively.

074604-20



LINEAR AND NONLINEAR MECHANISMS WITHIN …

FIG. 19. A schematic highlighting the key mechanisms in the forced plane wall jet. Shown are the linear
response, the direction of energy transfer, and the recipient scales.

to isolate the large scales at the forcing frequency. The modulation effect due to this large scale
was then calculated using Eq. (2) where UL was now the bandpass filtered velocity. Comparing the
forced and unforced flow modulation coefficients, the flow structures at the forcing frequency f f

cause (RAM)Band to increase from nearly zero to 0.06 in the near-wall region. We interpret this as the
linear response having a modulating effect on the smaller scales. Chung and McKeon [31] highlight
that the modulation coefficient RAM is also the phase difference between the envelope of the large
scales and the finer scales. In other words RAM is reflective of the relative scale organization within
a flow. Therefore, a positive RAM would indicate that the large scales are in phase with finer scales
and vice versa. Hence, another interpretation of the increase in (RAM)Band is that the flow scale
associated with the linear response organizes the base flow about itself, particularly in the near-wall
region, leading to an increase in (RAM)Band.

IV. DISCUSSION

First, the key observations of the presented works are summarized. An interpretation explaining
these observations is then offered followed by a discussion of the implications. To assist in this
process a schematic highlighting the key mechanisms is shown in Fig. 19. Large-scale, large-
amplitude perturbations were used to force a PWJ. The linear response of the PWJ to the forcing
resulted in flow features with strong similarities to the naturally occurring flow structures in the
PWJ (red structures in Fig. 19). The inner response flow features were forward leaning, showing
similarities to boundary-layer-like structures seen in the wall region of the unforced PWJ. On the
other hand the outer flow features of the linear response were backward leaning like those of the
free-shear layer structures in the outer regions of the unforced PWJ. The energies in the wall
linear response flow features were larger than those of the outer ones at all streamwise locations
considered. It is also noted here that the scale interactions within the forced flow indicated that
the flow structures associated with the linear response had a modulating or organizing effect on the
near-wall flow. The linear response of the flow to the forcing resulted in excess energy, at the forcing
frequency, at a given streamwise location. This excess energy then gets transferred to the other
scales of the flow at further downstream locations. It was observed that depending on the streamwise
location the direction of energy transfer varied, i.e., the excess energy was transferred to scales larger
than the forcing scale (at downstream locations) or vice versa (at upstream locations). This transfer
direction is also highlighted in the schematic of Fig. 19. Despite the direction of energy transfer,
the recipient scales had a peak in the streamwise wavelength that was identical to those of the outer
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shear layer structures (green structures in Fig. 19). From comparing the spectra of the forced and
unforced flow it was observed that, as the flow develops downstream, the scales of increasing and
decreasing energy remain unchanged from the forced and unforced flow. The wall-normal regions
on increasing and decreasing energy also remained unchanged. Only the energy magnitude was
increased in the case of the forced flow, which was expected as the forced flow has more energy.

Based on these observations, the following interpretations or inferences are offered. The excess
energy of forcing resided primarily in the forward leaning wall linear-response flow features. This
excess energy was transferred to the flow scales the streamwise wavelengths of which match those
of the outer free-shear layer structures, which suggests that the energies from the wall response flow
features were transferred to the naturally occurring outer free-shear layer structures. However, the
spectra comparing the forced and unforced flow showed that the wall-normal regions and scales
of increasing and decreasing energy were identical with only the relative energy magnitudes being
different. This then suggests that whatever natural processes or forcing occurred within the forced
plane wall jet also existed in the unforced one. Together these interpretations are combined and it is
argued that the flow features associated with the linear response of the flow mimic the naturally
occurring structures at the forcing wavelength. This in turn leads to the interpretation that the
near-wall structures in a PWJ are naturally transferring energy from the near-wall structures to the
outer free-shear layer structures. Hence, the imposed large-scale, large-amplitude forcing isolates a
naturally occurring energy-transfer pathway within the flow where the excess energy is supplied at
the forcing frequency.

The preceding observations reinforce the view that the PWJ is a complex, wall-bounded flow
characterized by significant turbulent transport and scale interactions. The transfer of energy from
the linear-response structures in the wall-normal to the outer scales indicates that the natural
mechanism within the PWJ is to transfer energy from the near-wall coherent structures to the free-
shear layer coherent structures. This energy transfer between the coherent structures is primarily in
the manner of an inverse cascade as the two-point correlations of the unforced PWJ [1] show that the
free-shear layer structures are larger than the wall-layer structures. However, this transfer between
scales occurs in the wall region, suggesting that the outer free-shear layer structures intrude well
into the wall region.

Several past works have studied the linear dynamics of the Navier-Stokes equation, linearized
about the turbulent mean velocity profile (see the recent review by McKeon [27]). Using the
resolvent framework [32,33], based on the input-output analysis of laminar flows [34], predictions
of the large-scale structures within canonical turbulent boundary layers were made. These resolvent
modes capture well the structural features of the actual flow [33]. In the resolvent framework these
large-scale modes are determined by subjecting the linear portion of the Navier-Stokes equation
to forcing by the flow nonlinearities, the underlying argument being that the linear portion of the
Navier-Stokes equation, constrained by the turbulent mean velocity profile, acts as a highly selective
dynamical system. In a related work, Madhusudanan et al. [35] used the linearized Navier-Stokes
equation, where an eddy viscosity is used in conjunction with the kinematic viscosity, to predict
the large-scale features of a channel flow. Here, following the resolvent framework, stochastic
white-in-time forcing is used to force the linearized Navier-Stokes equation. This approach captured
well the large-scale coherence spectrum when compared with that derived from a DNS.

Following this linear systems based perspective, the linear response of any large-amplitude
forcing of an experimental flow would result in flow eddies that mimic the naturally present ones
in the unforced flow, at the forcing frequency. The present results are thus consistent with this
framework. It is also noted that the mean velocity profile of the PWJ is unaltered by the large-scale
forcing; i.e., it is still self-similar. Hence, as the linear response results in large-scale features that
are similar to the naturally occurring flow features, this supports the view that the shape of the mean
velocity profile is the primary factor that determines the shape of the resulting flow features. In other
words, an unchanged mean velocity profile limits the resulting possible flow structures, or put yet
another way the forcing produces flow features that mimic the existing flow features at the forcing
wavelength.
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In the case of the resolvent approach the nonlinearities in the flow only act to redistribute
the energy between flow scales. This occurs in a triadically consistent manner, as dictated by
the quadratic nature of the Navier-Stokes equation. Particularly, the present paper highlights all
energy-transfer mechanisms within a naturally interacting flow field in which the forcing wave
number always forms one leg of the triad. The present paper then suggests that this redistribution is
expectedly nontrivial and in need of “rules,” which includes the direction of the energy transfer. The
use of an eddy viscosity provides one such set of rules, however this implicitly assumes a forward
energy cascade. This approach would also perform poorly in flows such as the PWJ where there
are regions of low production and energy is transported from one spatial location to another [15].
This is consistent with past work on the PWJ where turbulence models have performed poorly in
modeling the PWJ [15]. Dejoan et al. [15] use a nonlinear eddy viscosity to model the PWJ which
compares well with budgets derived from an LES approach, and perhaps provides a way forward
for modeling flows with internal interactions and transport such as the PWJ.

To summarize, the current paper presents evidence to support the viewpoint that large-scale
features of turbulent flows are described well by the dynamics of the linear portion of the Navier-
Stokes equation. However, the scale interaction dictated by the nonlinearities of the flow is complex
and requires careful treatment, which is the subject of ongoing research. From a flow physics
standpoint, the PWJ is a complex flow field which has at least two types of interacting flow features
which are boundary-layer-like and jetlike. The PWJ naturally supports an interaction between these
two structures. While the wall layer forms stronger structures, as part of the linear response, the
outer shear layer structures then receive this excess energy, supported by the naturally occurring
turbulent transport within the flow. Hence, there is a natural transfer of energy between two types
of coherent structures which has been isolated and highlighted by the forcing. There is yet another
factor that has not been considered, which is the spanwise energy transfer. This transfer is not
insignificant as highlighted by the DNS study of a PWJ [14]. Current work is focused on a particle
image velocimetry based study to characterize this transfer.

V. CONCLUSIONS

A PWJ was subject to large-amplitude forcing at a St = 3.4×10−3 at a nominal Reynolds number
Re j = 5965. The forcing considered was a large-scale input to the flow such that the response
produced was both linear and nonlinear. The following observations and conclusions were made.
The forced PWJ retained a self-similar streamwise mean velocity profile. However, the forced flow
showed an increase in the outer length scale δ and a decrease in the outer velocity scale Um at
all streamwise locations considered. Together these changes result in an increased local Reynolds
number. The streamwise turbulence intensity profile showed a large increase, predominantly in the
wall layer of the flow. These recipient scales in the wall layer were primarily the large scales.
The forcing resulted in a reduction in the friction velocity at all streamwise locations considered.
The wall layer of the forced PWJ showed a reduction in momentum while the overall momentum of
the PWJ increased.

The linear response of the PWJ to the forcing resulted in flow structures that bore strong
similarities to the naturally occurring large-scale features in the unforced flow. These include
boundary-layer-like flow features in the inner wall layer and free-shear-layer-like flow features in the
outer region. This excess energy in the linear response gets transferred to other flow scales driven
by the flow nonlinearities as the flow develops downstream. These recipient scales are primarily
the large scales of the flow which reside in the wall layer. However, the sizes of these scales were
those of the outer free-shear layer. Furthermore, this transfer of energy was either in the manner of
a forward cascade or inverse cascade. This direction of transfer was dependent on the streamwise
location with the forward energy transfer occurring at upstream locations. The spectra showed that
these energy-transfer mechanisms mimic the naturally occurring energy-transfer mechanisms within
the unforced flow. Hence, it is concluded that the forcing isolates an energy-transfer pathway within
the PWJ, where the input energy is at the forcing frequency.
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FIG. 20. Zoomed-in mean streamwise velocity profiles of the unforced ( ) and forced ( )
flow shown in Fig. 5.
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APPENDIX A: ZOOMED-IN STATISTICS

Figures 20 and 21 show zoomed-in profiles of the mean streamwise velocity and turbulence
intensity, respectively.
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FIG. 21. Zoomed-in streamwise turbulence intensity profiles of the unforced ( ) and forced
( ) flow shown in Fig. 5.
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FIG. 22. Variation of the phase-locked velocity Uf [see Eq. (2)] over two forcing cycles shown in
logarithmic (top) and linear (bottom) wall-normal coordinates. The streamwise distance increases going from
left to right. The color contours are the magnitude of Uf as indicated by the color bar. The contour level
corresponding to Uf = 0 is also shown. The horizontal lines show wall-normal locations z+ ≈ 15 ( )
and 60 ( ) and z = 0.6δ0 ( ), respectively. This figure is identical to Fig. 9, except that the velocity
field was filtered to isolate the response associated with the fundamental forcing frequency, filtering out the
higher harmonics. � shows the relative phase between the near-wall response feature and the middle response
feature.

APPENDIX B: FILTERED Uf

A filtered version of Fig. 9 is shown in Fig. 22, where only the linear-response portion of Uf was
isolated.

FIG. 23. Contour maps of the streamwise, one-dimensional, premultiplied energy spectra kxφuu/V 2
j for the

unforced (top) and the forced (bottom) flow conditions. Here, the local mean streamwise velocity is used as
the convective velocity in Taylor’s hypothesis to convert a flow frequency into a wavelength. The streamwise
development is shown from left to right. The vertical lines show the wall-normal locations z+ ≈ 15 ( )
and 60 ( ) and z ≈ 0.6δ0 ( ), respectively. The forcing wavelength U/ f f b ( ) is highlighted
for reference.
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APPENDIX C: ENERGY SPECTRA

For reference, the spectra corresponding to Fig. 11 using Taylor’s hypothesis and the local mean
velocity as the convection velocity are shown in Fig. 23.
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