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Mean flow scaling in a spanwise rotating channel
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Since the early work of Johnston [Johnston, Halleent, and Lezius, J. Fluid Mech. 56,
533 (1972)], the mean flow scaling in a spanwise rotating channel has received much
attention. While it is known that the mean velocity near the pressure, turbulent side follows
a linear scaling U = 2�y + C at high rotation speeds, the functional dependence of C
on the Reynolds number and the rotation number has been an open question. Here, U is
the mean velocity, � is the constant rotating speed in the spanwise direction, and C is a
constant. In this work, we show that C+ = log(l+

� )/K , where the superscript + denotes
normalization using wall units at the pressure side; l� = uτ,p/2� is a rotation-induced
length scale; K is a constant and K ≈ κ , where κ is the von Kármán constant; and uτ,p is
the wall friction velocity at the pressure side.

DOI: 10.1103/PhysRevFluids.5.074603

I. INTRODUCTION

Turbulence is often encountered in rotating frames of reference, e.g., over oceans, around
windmills, and in turbomachines, where the reference frames in question revolve with the earth
and man-made rotating devices [1–4]. The flows are responsible for the transport of water vapor,
the generation of lift and drag, and the mixing of fuel and oxidizer in the above contexts. Effects of
these flows at practically relevant conditions are difficult to compute accurately by means of direct
numerical simulations or wall-resolving large-eddy simulations due to the cost requirement [5], and
therefore engineers often have to rely on empirical relations, e.g., the law of the wall, to compute
wall friction using velocity information at an off-wall location.

The law of the wall, also referred to as the universal logarithmic law of the wall, was proposed in
the early 1930s by Prandtl and von Kármán [6,7]. It asserts that the mean velocity increases linearly
with the logarithm of the distance from the wall, i.e., U + = 1/κ log(y+) + B, where U is the mean
flow velocity at a wall-normal distance y, the superscript + indicates normalization by wall units, κ

is the von Kármán constant [8,9], and B is another constant. The logarithmic law of the wall relates
wall-shear stresses to velocities at off-wall locations and is useful for wall modeling in a nonrotating
reference frame [10–12], but its predictive power is partly lost if the flow is in a rotating device, e.g.,
in a spanwise rotating channel [13–15].

Figure 1 shows a sketch of a spanwise rotating channel. In addition to the dimensions of
the channel, the flow is controlled by two nondimensional numbers, i.e., the rotation number
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FIG. 1. Left: A sketch of flow in a spanwise rotating channel. � is the system rotation speed. x, y, and z are
the streamwise, wall-normal, and spanwise directions. In a computational study, a periodic condition is often
imposed in the streamwise direction. The domain size is Lx × Ly × Lz in the streamwise, wall-normal, and
spanwise directions. δ is the half-channel height. Right: Contours of instantaneous streamwise velocities on
two x-z planes that are y/δ ≈ 0.02 from both walls. The flow near the pressure side remains turbulent, but the
flow near the suction side is laminar. The flow is at a global friction Reynolds number Reτ = 180 and a friction
rotation number Roτ = 20, where uτ is the global friction velocity. Details of the direct numerical simulation
can found in Ref. [17] and the references cited therein.

Roτ = 2�δ/uτ and the friction Reynolds number Reτ = uτ δ/ν, where � is the rotation speed, δ

is the half-channel height, ν is the kinematic viscosity, and uτ is the global friction velocity and
is defined as uτ = √

δ fx/ρ, with fx = −dP/dx being the driving body force and ρ being the fluid
density. For a spanwise rotating channel, the pressures at the two walls are different due to the
Coriolis force, leading to a pressure side and a suction side. We define friction velocities at the two
walls and denote them as uτ,p and uτ,s. These two friction velocities are not necessarily the same

and they are related to the global friction velocity as uτ =
√

(u2
τ,p + u2

τ,s)/2 [16,17].
Johnston et al. [18] showed that, for a channel that rotates about its spanwise axis at a reasonably

high speed, the mean flow near the pressure side follows a linear scaling, i.e.,

U = 2�y + C, (1)

where C is a constant when given Roτ and Reτ . Equation (1) is a counterpart of the conventional
universal logarithmic law of the wall, but because the function dependence of C on Roτ and Reτ is
not known, Eq. (1) does not have the same predictive power as the universal logarithmic law of the
wall.

Since the early work of Johnston et al. [18], the scaling of the mean flow has been extensively
studied, both experimentally [19–21] and computationally [16,22–24]. Nakabayashi et al. [19] con-
ducted dimensional analysis and concluded that the mean velocity at a distance y from the pressure
side is a function of the wall-unit-scaled distance from the wall yuτ,p/ν, the friction Reynolds
number Reτ , and the Coriolis parameter Rc = �ν/u2

τ ≡ Roτ /2Reτ . The authors considered data at
low rotation numbers (Roτ < 0.3) and low Reynolds numbers (Reτ < 310) and argued that system
rotation only adds a minor correction to the universal logarithmic law of the wall, where both κ

and B may vary as Reτ and Rc. Later, by analyzing the wind tunnel data from the University
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TABLE I. Friction Reynolds numbers and rotation numbers evaluated using quantities at the pressure side
for the cases shown in Fig. 2(d). The data may also be found in Ref. [26].

Reb Reτ,p Roτ,p Reb Reτ,p Roτ,p Reb Reτ,p Roτ,p Reb Reτ,p Roτ,p

5000 130 80.9 10 000 186 112.5 20 000 265 158.3 31 600 670 56.5
5000 144 62.6 10 000 207 86.7 20 000 370 81.0 31 600 988 28.8
5000 170 44.0 10 000 249 60.4 20 000 501 47.8 31 600 1445 9.82
5000 211 28.4 10 000 325 37.0 20 000 677 26.6 31 600 1505 0
5000 258 17.4 10 000 416 21.6 20 000 851 15.3
5000 310 7.21 10 000 535 8.37 20 000 964 9.29
5000 326 2.29 10 000 544 0 20 000 1107 2.73
5000 297 0 20 000 1000 0

of Melbourne, Nickels and Joubert [25] proposed a rotation correction to the logarithmic law of
the wall, i.e., U + = 1/κ ln y+ + βRc(y+ − 35) + 5, where, β ≈ 9.7 is a constant. However, the
dependence of C on Ro and Re remains an open question.

The work addresses this open question. The proposed mean flow scaling is compared to the
available direct numerical simulation (DNS) data in the literature [17,26,27]. The data cover a global
Reynolds number range from Reτ = 180 to about Reτ ≈ 1500 and a rotation number range from
Roτ = 0 to Roτ ∼ O(100). (note that the flow relaminarizes at Roτ = Reτ .) The rest of the paper is
organized as follows. We present the mean flow scaling in Sec. II. The arguments that lead to this
scaling are presented in Sec. III. Concluding remarks are given in Sec. V following a discussion of
the results in Sec. IV.

II. MEAN FLOW SCALING

The flow at the suction side is laminarlike at a high rotation number (see Fig. 1) and the mean
flow there is parabolic. We focus on the flow at the pressure side. We define a rotation-induced
length scale as follows:

l� = uτ,p/2�. (2)

By definition, l+
� ≡ l�/(ν/uτ,p) = Reτ,p/Roτ,p. From y = l�/κ to O(δ), the mean flow at the

pressure side follows Eq. (1), and the constant C is

C+ ≡ C

uτ,p
= 1

K
log(l+

� ) = 1

K
log

(
Reτ,p

Roτ,p

)
, (3)

where thesuperscript + denotes normalization by the wall units at the pressure side, and the constant
K ≈ κ . Equation (3) is the main conclusion of this paper.

Next, we compare Eq. (3) to data. Mean flow data are extensively available in the literature
[22,26–29], and a number of data sets were contributed by the authors of this work [17]. In Figs. 2(a)
and 2(b), we compare Eqs. (1) and (3) to data at Reτ = 180 and Roτ = 0 to Roτ = 130. For slowly
rotating channels, the mean flow will not be very far from the conventional universal logarithmic
law of the wall, and the linear scaling Eq. (1) applies to only a limited part of the flow. For rapidly
rotating channels, the mean flow follows the linear scaling Eq. (1) in an extended wall-normal
distance range from y = l�/κ to a distance above which the flow is laminarlike. In Fig. 2(c), we
compare Eq. (3) to the DNS channel at Reτ = 180, and in Fig. 2(d), we compare Eq. (3) to the DNS
channel at bulk Reynolds numbers Reb from 5000 to 31 600. The data follow Eq. (3) closely.

These results show that Eq. (3) provides the scaling of C for a wide range of Reτ and Roτ . In the
following, we provide arguments for the scaling in Eq. (3) and discuss implications of Eq. (3).
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FIG. 2. (a, b) Mean velocities in spanwise rotating channels. Flows are at a constant global friction
Reynolds number Reτ = 180. Normalization is by the global friction velocity uτ and the half-channel height,
which are kept constant. The flow is laminarlike at the suction side (near y/δ = 2). The dashed lines correspond
to Eqs. (1) and (3). Details of the DNS are reported in Ref. [17]. (c, d) The constant C as a function of the
rotation length scale l�. Normalization is by wall units at the pressure side. Each data point represents one
DNS. (c) Channel flow at Reτ = 180 and various rotation numbers. We show lines for two K values, 0.38
and 0.33. (d) Channel flow at five bulk Reynolds numbers and different rotation numbers [26]. The friction
Reynolds numbers and the rotation numbers evaluated using quantities at the pressure side are tabulated in
Table I. Again, we show predictions for two K values, 0.38 and 0.33. Here, “log” is natural log.

III. A MIXING-LENGTH MODEL

We present a mixing-length-type model which gives rise to the scaling in Eqs. (1) and (3). First,
we briefly review Prandtl’s mixing-length model.

A. Prandtl’s mixing-length hypothesis

Prandtl’s mixing-length hypothesis is a classical model of high Reynolds number wall-bounded
turbulence in nonrotating frames of Ref. [6]. The model closes the following mean momentum
equation [see Ref. [30], Eq. (7.8)]:

0 = d

dy

[
−〈uv〉 + ν

dU

dy

]
− 1

ρ

d〈P〉
dx

. (4)
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Nickels & Joubert [25]

FIG. 3. (a) Mixing length lm in a spanwise rotating channel. lm scales as κy up to a wall-normal distance
y = l�/κ , above which the mixing length stays constant, lm = l�. (b) Mean flow in a rotating channel at a
friction Reynolds number Reτ = 1213 and a Rotation number Roτ = 11.7 (bold line) [26]. Normalization is
by the wall units at the pressure side. The thin solid line corresponds to the linear law of the wall, i.e., Eqs. (1)
and (3), with K = 0.33. The dashed line is at y = l�/κ . The augmented logarithmic law in Ref. [25] is shown
in red and is U + = 1/κ ln y+ + βRc(y+ − 35) + 5, where β = 9.7. The inset shows the mean velocity in a
linear scale. Here, “log” is natural log.

Prandtl argues that, at high Reynolds numbers, a constant stress layer emerges at wall-normal
distances 1 � y+ and y � δ, where the Reynolds shear stress is a constant, i.e.,

−〈uv〉 = const, (5)

where u and v are the velocity fluctuations in the streamwise and wall-normal directions. Per the
mixing-length hypothesis, the Reynolds shear stress may be modeled as the product of an eddy
viscosity, νT , and the mean velocity gradient, dU/dy, i.e., −〈uv〉 = νT dU/dy. Prandtl further
argued that the eddy viscosity νT can be modeled as the product of the square of a mixing length,
lm, and the mean velocity gradient, i.e., νT = l2

mdU/dy, where the mixing length may be thought of
as the size of the eddies at the wall-normal distance y. For a nonrotating channel flow, the mixing
length is

lm = κy, (6)

and the above arguments give rise to the well-known logarithmic law of the wall in a layer within
which the viscous stress is negligible. While this is not the focus of this study, the basic assumption
of the attached eddy hypothesis, i.e., the eddies in the logarithmic layer scale as their distances from
the wall, follows from Prandtl’s mixing-length model.

B. A mixing-length model for flow in spanwise rotating channels

Spanwise rotation leads to a mean Coriolis force in the wall-normal direction, which is balanced
by the wall-normal pressure. The mean momentum equation is otherwise unchanged. Equation (4)
is the mean flow equation, and Eq. (5) is the equation for the constant stress layer. In order to identify
the law of the wall, we need to model the Reynolds shear stress. We follow Prandtl and resort to a
mixing-length-type model.

Rotation forces the system at a scale l�. Consequently, rotation limits the mixing length to l�.
This length scale competes with the scale of wall-attached eddies, i.e., κy. The end result is a mixing-
length scale as shown in Fig. 3(a), where the mixing length lm increases as κy up to a wall-normal
distance y = l�/κ , above which the mixing length stays a constant l�, i.e.,

lm = min[κy, l�], l� = uτ,p

2�
. (7)
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The mixing length is a continuous function of y, hence the transition from lm = κy to lm = l�
occurs at yc = l�/κ , where κyc = l�. Because spanwise rotating channel flow is a different flow
than regular channel flow, the constant κ is not necessarily equal to the classical value 0.38 [8].

Invoking the above mixing-length model, the mean flow equation for y > yC becomes

(
uτ,p

2�

dU

dy

)2

= τw,p/ρ ≡ u2
τ,p, (8)

where the subscript p indicates quantities evaluated at the pressure side. The above equation gives
rise to the linear scaling in Eq. (1). By requiring the mean velocity to be continuous at y = l�/κ and
the flow to be laminar at the limit of l+

� = 1 [17,29], we get Eq. (3), with K = κ . Hereon, we do not
differentiate between K and κ .

It follows from the above discussion that Eq. (3) is a result of velocity continuity at y = l�/K .
Hence, for the purpose of Eq. (3), we only require the mixing-length model be valid for y �
l�/κ , rather than for all wall-normal distances where U = 2�y + C. As y = l�/κ is within the
wall-normal distance range that would normally be considered in the logarithmic layer, we could
safely say that the mixing-length model here bears the same merit as the mixing-length model for a
nonrotating plane channel.

For flows at high Reynolds numbers and high rotation numbers, the mixing-length model
suggests a two-layer structure: the mean flow is logarithmic below y = l�/κ and linear above. This
is confirmed in Fig. 3(b). In Fig. 3(b), we have also shown the augmented logarithmic law of the
wall in Ref. [25]. Since the law of the wall in Ref. [25] is intended for flow in a slowly rotating
reference frame (and therefore the comparison shown here is not a fair one), it is expected that it
does not capture the mean flow behavior.

While it is not the focus of this work, the mixing-length model suggests that the sizes of the eddies
scale as their distance from the wall at distances y < l�/κ and as a constant at distances y > l�/κ .
However, as the currently available low (to moderate) Reynolds DNS data does not allow us to probe
the spatial organization of the linear-layer eddies as, e.g., in Refs. [31–34] for the logarithmic-layer
eddies, in this paper, we refrain from making further physical interpretations of the mixing length.

C. Extent of the linear layer and range of model applicability

We discuss at what rotation numbers and Reynolds numbers Eqs. (1) and (3) are valid. The
linear layer emerges as the mixing-length transitions from being proportional to the wall-normal
distance to a constant. For a nonrotating channel, the mixing length is approximately κy up to a
wall-normal distance of y/δ ≈ 0.2δ. In order for the abovementioned transition to take place, the
rotation-induced length scale must be such that l� � 0.2δ, which leads to 5 � Roτ,p. On the other
hand, the flow relaminarizes for rotation numbers higher than Roτ,p = Roτ ≈ Reτ (the flow regains
symmetry after it relaminarizes). Hence the law of the wall in Eq. (1) is relevant for flows such that

5 � Roτ,p, Roτ,p = Roτ � Reτ . (9)

Next, we discuss at what wall-normal heights Eqs. (1) and (3) are valid. Per the mixing-length
model, the linear law starts at

ys = l�/κ. (10)

The end location of the linear law was previously discussed in Ref. [17] and is

ye/δ = u2
τ,p/u2

τ − Roτ /Reτ . (11)

Above this height, the flow is laminarlike. Figure 4 shows the mean profiles compensated by the
logarithmic scaling. The profiles deviate from the logarithmic scaling at approximately ys = l�/κ ,
as expected.

074603-6



MEAN FLOW SCALING IN A SPANWISE ROTATING …

FIG. 4. Mean profiles compensated by the near-wall logarithmic scaling. The data are the same as in
Fig. 2(a). The dashed lines correspond to ys = l�/κ for each case. Per the mixing-length model, the logarithmic
scaling ends at ys and the linear scaling starts at ys. Here, “log” is natural log.

IV. DISCUSSION

In this section, we discuss a few implications of Eq. (3).

A. Wall modeling

Knowledge of mean flow scaling can be leveraged for large-eddy simulation (LES) wall
modeling.

In a wall-modeled LES, the near-wall grid size scales with the local boundary-layer height, and
the near-wall turbulence is not resolved by the grid. As a result, the canonical no-slip condition no
longer applies, and a wall model will have to be used to supply the LES equations with a proper
wall boundary condition [11]. A commonly used approach is to invoke the law of the wall and relate
the wall shear stress to the near-wall LES velocity [35–39]. For flows in spanwise rotating channels,
the conventional universal logarithmic law of the wall loses partly its predictive power, and Eqs. (1)
and (3) will need to be employed. It follows that, for a rapidly rotating channel, with l�/κ < 	, the
wall shear stress in a spanwise rotating channel can be modeled as

τw,p/ρ =
[
κ (U − 2�y)

log(l+
� )

]2

. (12)

Here, 	 is the grid spacing in the wall-normal direction. We test Eq. (12) by comparing the measured
wall shear stresses to the right-hand side of Eq. (12) in Fig. 5, using data from Ref. [26]. We use
data at three representative rotation numbers, Roτ = 11.7, 34.6, and 67.4, and one bulk Reynolds
number, Reb = 31 600. The computed values are fairly close to the DNS values if using velocity
information at distances y/δ � 0.1, which is typically where the first off-wall grid is in wall-modeled
LES.

B. Friction Reynolds number and bulk Reynolds number

The mean flow information can be used to compute the friction Reynolds number from the bulk
Reynolds number and vice versa.

Following the above discussion, the mean velocity in a spanwise rotating channel follows Eqs. (1)
and (3) near the pressure side and is laminarlike near the suction side. We neglect the viscous
sublayer and the logarithmic layer at the pressure side, both of which occupy only a small part of

074603-7



YANG, XIA, LEE, LV, AND YUAN

FIG. 5. τw,wm is the wall shear stress computed according to Eq. (12). We use velocity data at three
representative rotation numbers, Roτ = 11.7, 34.6, and 67.4, and one bulk Reynolds number, Reb = 31 600
[26]. The dashed lines are at y/δ = 0.1 and 0.25. In a wall-modeled LES, the first grid point typically locates
at y ≈ O(0.1δ) [40], and the third grid point at y ≈ O(0.25δ) [36].

the domain at high rotation numbers. We assume that the mean flow follows Eq. (1) from y = 0 to
ye/δ = u2

τ,p/u2
τ − Roτ /Reτ , above which the mean flow is parabolic:

U = a(y − 2δ)2 + b(y − 2δ), (13)

where U = 0 at y = 2δ per the no-slip condition. Define uτ,s to be the friction velocity at the suction
side; it follows that −νdU/dy|y=2δ = u2

τ,s and

b = −u2
τ,s

ν
. (14)

Because the flow is laminarlike at the suction side, the streamwise momentum equation reduces to

− 1

ρ

dP

dx
+ ν

d2U

dy2
= 0, (15)

which leads to

a = 1

2ν

1

ρ

dP

dx
. (16)

If we enforce the following constraints: first, the mean momentum conservation, i.e.,

u2
τ,s + u2

τ,p = 2u2
τ ; (17)

second, the velocity continuity at ye, i.e.,

2�ye + C = a(ye − 2δ)2 + b(ye − 2δ); (18)

and third, the definition of the friction velocity, i.e.,

u2
τ = − 1

ρ

dP

dx
δ, (19)

depending on if the friction Reynolds number or the bulk Reynolds number is known, we can
compute the bulk Reynolds number (bulk velocity) from the friction Reynolds number (friction
velocity) from Eqs. (13)–(19) and vice versa. The equations are implicit, but the solution converges
within a few iterations (if using the built-in fsolve function in MATLAB). In Fig. 6(a), we compare
the model-predicted bulk velocities to DNS for flows at a fixed friction Reynolds number, i.e.,
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FIG. 6. (a) Predicted bulk velocities (lines) and DNS data (symbols) as functions of the global rotation
number for flows at a fixed friction Reynolds number Reτ = 180. The dashed line is at Roτ = 6 (Roτ,p ≈ 5),
above which we consider as rapid rotation. (b) Predicted global friction Reynolds numbers (line) and DNS
data (symbols) as functions of the global rotation number for flows at a few fixed bulk Reynolds numbers. The
dashed line is at Roτ = 6 (Roτ,p ≈ 5).

Reτ = 180, and in Fig. 6(b), we compare the model-predicted friction Reynolds numbers to DNS
for flows at a few fixed bulk Reynolds numbers. The data follow the model predictions closely.

C. The physics behind a constant mixing length

Per the mixing-length model, rotation forces the system at a constant length scale l�, leading
to a constant mixing length. A constant mixing length was previously used to model the wake
region of a wall-bounded flow [30], where the flow is conventionally regarded as not being forced
at any scale. In the light of the recent works [41,42], flow in the wake layer is affected by the
nonturbulent freestream, which “forces” the flow at a constant length scale O(δ). Considering the
present mixing-length model and these recent works, we think the physics about the constant mixing
length in the wake layer may need to be revised.

D. Slowly rotating channels

The mixing-length model gives rise to a logarithmic mean flow for y < l�/κ and a linear mean
flow for y > l�/κ . By requiring the mean flow to be continuous at y = l�/κ , we get Eq. (3). For
rapidly rotating channels at a high Reynolds number, i.e., for y = l�/κ in the constant stress layer,
the above procedure works well (see Fig. 7, the purple line). However, for slowly rotating channels,
where l� = uτ,p/2� is comparable to δ and y = l�/κ is in the wake layer, the above procedure may
not work well (see Fig. 7, the yellow line). As sketched in Fig. 7, positive deviations from Eq. (3)
are expected at small Roτ . This expectation bears out in Fig. 8, where we show the compensated
plots of the lines in Figs. 2(c) and 2(d).

In addition to deviations at low rotation numbers, i.e., at high l� values, deviations are also
found at high rotation numbers, i.e., at low l� values. This limit of very rapidly rotating channels is
discussed in Ref. [17], and for very rapidly rotating channels such that l+

� = 1, C+ = 0 and Eq. (3)
must hold. Hence deviations from Eq. (3) at fast rotation may just be a result of uncertainties in the
data and our postprocessing. (Note that the grid resolutions in Refs. [17,26] are different.)

E. Further remarks on the mixing-length model

The conventional logarithmic law of the wall can be obtained from the mixing-length model [6],
the attached eddy hypothesis [43], dimensional analysis [30], and analytical analysis of the turbulent
kinetic energy equation [44]. Likewise, the mixing-length model in Sec. III is, by no means, the only
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FIG. 7. A sketch of the mean flows in a rapidly rotating channel (the purple line) and a slowly rotating
channel (the yellow line). Here, “log” is natural log.

model that gives rise to U = 2�y + C. Zhang et al. [45] showed that by neglecting the viscous force
and the pressure force and tracking a fluid parcel, i.e.,

du

dt
= 2�

dy

dt
, (20)

one can conclude that the mean flow in a two-dimensional three-component spanwise rotating
channel is U = 2�y + C, shedding light on the mean flow behavior in a three-dimensional spanwise
rotating channel. Brethouwer [26] examined the Reynolds stress equations and concluded from his
DNSs that at wall-normal distances where U = 2�y + C, the production term balances the Coriolis
force term, i.e.,

−〈u′v′〉dU

dy
+ 2�〈u′v′〉 ≈ 0, (21)

which directly leads to U = 2�y + C. Nakabayashi and Kitoh [19] conducted dimensional analysis
and argued that rotation dominates in the core region and therefore

dU

dy
= A�, (22)

which also leads to dU/dy ∼ �. Nonetheless, the above works did not discuss the scaling for C,
which is the focus of this work.

FIG. 8. Compensated plots. The symbols are the same as those in Figs. 2(c) and 2(d). Here, “log” is natural
log.
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That being said, among the models and theories that give rise to the conventional logarithmic
law of the wall, Prandtl’s mixing-length model sees the most use in turbulence modeling. LES wall
models [10,11], Reynolds averaged Navier Stokes (RANS) models [46,47], and canopy models
[38,48] all rely on the mixing-length model (to some extent). Hence, in this paper, we have focused
our discussion on the mixing-length model and its predictions.

V. CONCLUSIONS

Since the early work of Johnston et al. [18], the mean flow scaling in a spanwise rotating channel
has received much attention. While it is well known that U = 2�y + C, the scaling of C as a
function of the Reynolds number and the rotation number has been an open question. In this work,
we show that

C+ = 1

K
log(l+

� ) = 1

K
log

(
Reτ,p

Roτ,p

)
.

Here, the superscript + represents normalization using wall units at the pressure side, K is a constant
whose numeric value is very close to the von Karman constant, � is the rotation speed, and log is
natural log.

In addition to confirming the above scaling in data, we discussed a few implications of the mean
flow scaling. First, the mean flow information can be used for LES wall modeling of spanwise
rotating channels [49]. Second, the knowledge of the mean flow could be used to relate the bulk
Reynolds number and the friction Reynolds number. Third, we argue that a constant mixing length
suggests “forcing” at a constant length scale. Last, it is worth mentioning that the identified
mean flow scaling may also be relevant to Taylor-Couette flow [50,51], which is left for future
investigation.
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