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Particle-laden flow in a vertical channel was simulated using a Reynolds-averaged
Navier-Stokes two-fluid model including a Reynolds-stress model (RSM). Two sets of
cases varying the overall mass loading were done using particle sizes corresponding to
either a large or small Stokes number. Primary and turbulent statistics extracted from
counterpart Eulerian-Lagrangian and Eulerian-Eulerian anisotropic-Gaussian simulations
were used to inform parameters and closures applied in the RSM. While the behavior at
the center of the channel compared well with the other simulations, including the transition
from fully developed turbulent flow to relaminarization to cluster-induced turbulence as
the mass loading increased, the behavior close to the wall deviated significantly. The
primary contributor to this difference was the application of a uniform drag coefficient,
which resulted in the RSM overpredicting the fluid-phase turbulent kinetic energy close
to the wall. When considering small Stokes particles, the RSM at greater mass loadings
reproduced the transient clustering observed in the other models. This was not observed
using larger particles.
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I. INTRODUCTION

Particle-laden flows can be found in countless natural and man-made systems. Successful
modeling helps in building an understanding of the underlying physical mechanisms behind the
behavior observed. In an industrial context, a model is a useful tool in process design, optimization,
troubleshooting, and scale-up applications. In this work, focusing on particle-laden vertical channel
flow not only offers a direct analog to industrial processes such as circulating fluidized beds, it
also provides an opportunity to obtain general insight on capturing the interaction of particle-laden
flow and wall boundaries. There are a wide variety of approaches to modeling particle-laden
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systems, including direct numerical simulation (DNS), Eulerian-Lagrangian (EL) simulation, and
two-fluid Eulerian-Eulerian simulation (EE). The challenge in choosing, building, and applying
these modeling techniques is not only to be able to successfully resolve the particle-fluid phenomena
present, but also to accomplish it at a scale relevant to the real-world application with reasonable
computational times [1,2].

The DNS modeling technique involves directly solving the Newtonian equations of motion for
each particle while ensuring that the Navier-Stokes and continuity equations are satisfied at every
point in the fluid phase. Modeling considerations involved with DNS of particle-laden flow include
the collisional and frictional interactions between particles as well as the boundary condition of the
particle surface with the surrounding fluid [3]. Due to the intense computational cost of resolving
the flow phenomena around each individual particle, DNS modeling of particle-laden flow is limited
to simulating systems containing only a relatively small number of particles [4,5]. Despite this
limitation, it is still invaluable in informing other modeling approaches when developing closures
and validating their results.

To avoid the computational burden of fully resolving the flow fields around each particle in DNS,
particles are often treated as point particles in simulations when the particle size is smaller than the
Kolmogorov scale [6]. Lagrangian tracking of these point particles has been employed in a variety of
particle-laden channel flow simulations. The effect of density ratio, mass loading, and particle inertia
in turbulent channel flow was studied in [7]. Reference [8] studied the effect of particle Stokes
number on near-wall turbulence using small, heavy particles. A closer examination of turbulent
near-wall structures was the focus of [9]. In [10], particle drag and the effect of the channel wall
were studied in dilute channel flow cases containing 500 and 4500 particles. Comparisons between
experiments and simulations have been reported in [11] for relatively dilute turbulent channel flows,
showing good agreement except near the walls.

EL simulations offer a further computational savings versus DNS techniques in modeling the
particle phase as point particles immersed in fluid-phase Eulerian cells. Similar to DNS modeling,
how the point particles collide and interact with each other and how the particles affect and are
affected by the flow of the surrounding fluid must be addressed as modeling considerations [3,12].
In addition, how the particle volume in the fluid is treated must be defined, especially in cases where
the volume of a particle ends up being a significant fraction of the volume of a fluid-phase cell [13].
Modeling the fluid phase in Eulerian cells offers the opportunity for further computational cost
reductions through modeling fluid-phase turbulence using large eddy simulation (LES) or Reynolds-
averaged Navier-Stokes (RANS) techniques [3]. An example of the former being applied to vertical
turbulent particle-laden channel flow can be found in [14], which found the fluid-phase turbulence
becoming more anisotropic with the addition of particles and demonstrated the significant impact
of particle-particle interactions in suitably dense systems.

As initially developed by Anderson and Jackson [15], EE continuum models of particle-laden
flow assume that the various properties of both the solid and fluid phases can be expressed as
interpenetrating continua that interact with each other through the application of interphase drag
terms [16]. Unlike point-particle DNS and EL techniques, the computational cost modeling the
particle phase in Eulerian cells scales by the refinement of the domain rather than the number of
particles, making it a more efficient choice when simulating systems containing a large number
density of particles, such as fluidized beds. These drag terms must be closed through modeling, often
by comparison with experimental data or more highly resolved simulation methods [17]. Another
important consideration is the application of particle-particle interactions, often modeled through
the kinetic theory of granular flow [18]. Finally, an array of multiphase turbulence models can
also be applied to both Eulerian phases, including k–ε, k–ω, and the Reynolds-stress model (RSM)
[19–22]. Application of any one of these turbulence models offers the tradeoff of exchanging the
requirement for a high degree of refinement to resolve the turbulent instabilities in each phase with
the need to accurately model its impact.

The presence of particles has shown to significantly alter the behavior of turbulence in the fluid
phase. In extracting the Reynolds-stress energy budgets in vertical channel flow with and without
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particles, Dritselis [23] demonstrated that the presence of particles dampens the production of fluid-
phase turbulence. Furthermore, Ref. [24] showed the fluid-phase turbulence in a vertical channel
transitioning from fully developed turbulence to a relaminarized state with fully dampened fluid-
phase turbulence to a state of cluster-induced turbulence (CIT) as the particle-phase mass loading
of the channel increased from a dilute particle concentration. CIT exists where the turbulence of the
fluid phase is dominated by the presence of particle-phase clusters. Clustering is initially prompted
by perturbations of the phase velocities inducing preferential concentrations in the particle phase
[25]. Within these preferential concentrations, any applied uniform force such as gravity that has
a disparate impact between the phases becomes more pronounced and self-reinforcing. Clusters
develop as areas with more particles travel at a different velocity than more dilute regions, resulting
in the more concentrated regions receiving a net increase of particles over time [26]. As in turbulent
bubbly flows [21,27], these clusters have a strong influence on the turbulent statistics, leading to
highly anisotropic Reynolds stresses and nonclassical near-wall turbulence profiles.

One aspect present in many existing applications of modeling particle-phase turbulence is that
it conflates the spatially correlated turbulence of the particle phase arising from turbulent-stress
production with the nonspatially correlated fluctuations from kinetic theory [20]. A modeling
study was done in [28] using Lagrangian particle tracking that extracted and separated these two
components and observed that the contribution of the fluctuating energy increases with increasing
particle inertia. This led to the development of a system of Eulerian equations for the particle phase
which solve for the turbulent kinetic energy and the fluctuating kinetic energy separately. Fox [20]
took this further and developed the exact Reynolds-averaged equations for two-phase particle flow
which separately solve for the turbulent kinetic energy of the particle phase and the fluctuating
energy. An important addition made in [20] was factoring in collisions, expanding the possible reach
of the model into moderately dense systems such as the recirculating components of a circulating
fluidized bed. The particle turbulence was applied in the k–ε framework, while the fluctuating energy
was solved through a granular energy balance from the kinetic theory of granular flow.

The RANS model in [20] was extended to account for the anisotropy of the Reynolds stresses in
[19] and used to model cluster-induced turbulence in vertical channel flow [29]. Data obtained from
a corresponding EL model was able to close the fluid-particle coupling terms vital in capturing the
impact of CIT [13]. The RSM in [19] included modeling the uncorrelated fluctuating particle kinetic
energy with an anisotropic granular pressure model that is able to track the granular particle energy
as a tensor. Tracking the particle in this way provides the ability to capture the kind of anisotropy
that characterizes many aspects of channel flow for the particle phase [30]. A second-order closure
with very similar structure to the RSM in [19] has been developed for bubbly flow in [21].

While the model in our prior work [19] focused on modeling only the one-dimensional wall-
normal profile of the vertical channel at steady state, this work expands on that through developing
a transient RANS model including a RSM that also resolves the length of the vertical channel
[19,29]. Unlike in single-phase RANS models for fully developed turbulent channel flows [31]
(which yield time-independent solutions), fully developed channel flow with CIT leads to time-
dependent volume-fraction fluctuations that dominant the flow physics. The application of steady-
state equations to the full channel cannot capture this transient behavior, and its results would be
indistinguishable from that seen in [19]. Additionally, turbulent statistics collected from both the
previously applied EL model [13] and a highly refined EE anisotropic-Gaussian (EE-AG) model
[30,32] of the channel are used as points of comparison and to inform the turbulent closures chosen
for the model developed in this work.

II. REYNOLDS-STRESS MODEL FOR GAS-PARTICLE FLOWS

The model introduced in this work solves the Reynolds-averaged transport equations for the
phase-averaged fluid and particle velocity, 〈ui, f 〉 f and 〈ui,p〉p, phase-averaged fluid and particle
Reynolds stresses, 〈u′′′

f ,iu
′′′
f , j〉 f and 〈u′′

p,iu
′′
p, j〉p, fluid and particle turbulent dissipation, ε f and εp, and

phase-averaged particle pressure tensor, 〈Pp,i j〉p. The equations defined in this section are derived
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from our previous work in [19,20,29]. The Reynolds-averaged particle-phase volume fraction,
〈αp〉, is developed using Eulerian continuum tracking based on the conservation of mass. The
phase-averaging procedure for an arbitrary variable N and phase n is defined by 〈N〉n = 〈αnN〉/〈αn〉,
where αn is the n-phase volume fraction [29]. The Reynolds stresses are defined through splitting
the velocity of each phase [20,33], u f ,i and up,i, into a mean and a fluctuating component defined
by u f ,i = 〈u f ,i〉 f + u′′′

f ,i for the fluid phase and up,i = 〈up,i〉p + u′′
p,i for the particle phase, where u′′′

f ,i

and u′′
p,i are the fluctuating velocities for the fluid and particle phases. For the interphase coupling,

only the fluid drag on the particle is accounted for due to the relatively high density of the particles
compared to the gas phase.

A. Mass

The closed equation for the particle-phase volume fraction (repeated Roman indices imply
summation)

∂〈αp〉
∂t

+ ∂〈αp〉〈up,i〉p

∂xi
= 0 (1)

is developed through applying the mean and fluctuating component velocity splitting to the Eulerian
conservation of particle mass and then ensemble-averaging the result [33]. The corresponding
profile for the fluid volume fraction can be computed from the particle volume fraction profile:
〈α f 〉 = 1 − 〈αp〉. For CIT in a vertical channel, (1) generates nonuniform and nonstationary fields
for 〈αp〉, which are only partially smoothed out as compared to αp. These flow structures are
reminiscent of shocks in gas dynamics and result from the relatively high particle-phase Mach
number, Map = |〈up,i〉p|

�
1/2
p

, where �p is the granular temperature, defined as one-third of the trace

of the particle pressure tensor, �p = 1
3Pkk .

B. Momentum

The Reynolds-averaged momentum transport equations for the fluid and particle phases, respec-
tively, are

∂ρ f 〈α f 〉〈ui, f 〉 f

∂t
+ ∂

∂x j
ρ f 〈α f 〉(〈ui, f 〉 f 〈u f , j〉 f + 〈u′′′

f , ju
′′′
f ,i〉 f ) = S f ,momentum,i (2)

and

∂ρp〈αp〉〈ui,p〉p

∂t
+ ∂

∂x j
ρp〈αp〉(〈ui,p〉p〈up, j〉p + 〈u′′

p, ju
′′
p,i〉p) = Sp,momentum,i, (3)

where S f ,momentum,i and Sp,momentum,i are the summed totals of the source and sink terms for each
phase [20,33]. These are defined as

S f ,momentum,i = S f ,viscous,i + S f ,pressure,i + S f ,gravity,i + S f ,drag,i (4)

for the fluid phase and

Sp,momentum,i = Sp,viscous,i + Sp,pressure,i + Sp,collision,i + Sp,gravity,i + Sp,drag,i (5)

for the particle phase. Both phases include terms for the viscous stresses, phase pressure, gravita-
tional hydrostatic force, and interphase drag. Only the particle phase includes an additional term for
the collisional pressure.

The viscous stress source term applicable to both phases is defined as [20,30]

Sn,viscous,i = ∂

∂x j
ρn〈αn〉νn

(
∂〈un,i〉n

∂x j
+ ∂〈un, j〉n

∂xi
− 2

3

∂〈un,k〉n

∂xk
δi j

)
, (6)

074304-4



REYNOLDS-STRESS MODELING OF CLUSTER-INDUCED …

where νn is the viscosity for a given phase n. The viscosity for the particle phase is defined from the
kinetic theory of granular flow as [1]

νp =
√

π

6(3 − ec)
dp

√
�p

(
1 + 2

5
(1 + ec)(3ec − 1)αpg0

)
+ 4(1 + ec)

5
√

π
αpg0dp

√
�p, (7)

where �p is the granular temperature, dp is the particle diameter, g0 is the radial distribution
function, and ec is the particle-particle collision restitution coefficient [30]. The radial distribution
function is defined as

g0 = 1

1 − ( αp

αp,max

)1/3 , (8)

where αp,max is the solid fraction at maximum packing, defined in this study as equal to the perfectly
uniform spheres packing limit [18]. In the turbulence model, (7) and (8) are evaluated using 〈αp〉
and 〈�p〉p.

The pressure gradient term for the fluid phase is defined as

S f ,pressure,i = −∂〈p f 〉
∂xi

, (9)

where 〈p f 〉 is the Reynolds-average fluid-phase pressure. The corresponding particle pressure term
applies the particle pressure tensor gradient:

Sp,pressure,i = −∂ρp〈αp〉〈Pp,i j〉p

∂x j
. (10)

The particle pressure momentum transport equation also includes a collisional pressure derived from
the Boltzmann-Enskog kinetic theory,

Sp,collision,i = −∂ρp〈αp〉〈Gp,i j〉p

∂x j
, (11)

where

〈Gp,i j〉p = 2
5 (1 + ec)〈αp〉g0(〈Pp,kk〉pδi j + 2〈Pp,i j〉p) (12)

is the collisional pressure tensor [30].
The gravity term for both phases is defined as

Sn,gravity,i = ρn〈αn〉gi, (13)

where gi is the gravitational acceleration. Finally, the drag terms for the fluid phase,

S f ,drag,i = ρp〈αp〉
τp

(1 − cg)(〈up,i〉p − 〈u f ,i〉 f ), (14)

and the particle phase,

Sp,drag,i = ρp〈αp〉
τp

(1 − cg)(〈u f ,i〉 f − 〈up,i〉p), (15)

use a Stokes drag model [20], where cg is the drift velocity correction to the drag coefficient and τp

is the Stokes particle timescale defined as τp = d2
pρp/(18ν f ρ f ).

C. Reynolds stresses

The Reynolds-averaged stress transport equations are defined as

∂ρ f 〈α f 〉〈u′′′
f ,iu

′′′
f , j〉 f

∂t
+ ∂ρ f 〈α f 〉〈u′′′

f ,iu
′′′
f , j〉 f 〈u f ,k〉 f

∂xk
= S f ,stress,i j (16)
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for the fluid phase and

∂ρp〈αp〉〈u′′
p,iu

′′
p, j〉p

∂t
+ ∂ρp〈αp〉〈u′′

p,iu
′′
p, j〉p〈up,k〉p

∂xk
= Sp,stress,i j (17)

for the particle phase, where S f ,stress,i j and Sp,stress,i j are the summed source and sink Reynolds-stress
terms for each phase [33,34]. For the fluid phase this sum is defined as

S f ,stress,i j = S f ,flux,i j + S f ,production,i j + S f ,pressure−strain,i j + S f ,dragstress,i j

+ S f ,dissipation,i j + S f ,interphase,i j (18)

and the corresponding particle-phase sum is

Sp,stress, ji = Sp,flux,i j + Sp,production,i j + Sp,pressure−strain,i j + Sp,dissipation,i j + Sp,interphase,i j . (19)

Both phases include terms for spatial flux, turbulent production, pressure-strain redistribution,
turbulent dissipation, and interphase coupling. Only the fluid phase has the turbulent drag-stress-
production term.

The spatial flux terms include contributions from the diffusive viscous stresses, the triple velocity
correlation, and the pressure transport. As done in [19], a gradient-diffusion model is used,

S f ,flux,i j = ∂

∂xk
ρ f 〈α f 〉 f

(
ν f + ν f ,T

ηk

)
∂〈u′′′

f ,iu
′′′
f , j〉 f

∂xk
, (20)

where ηk is the turbulent viscosity Reynolds-stress coefficient. The particle phase employs the same
model for the flux term,

Sp,flux,i j = ∂

∂xk
ρp〈αp〉p

[(
νp + νp,T

ηk

)
∂〈u′′

p,iu
′′
p, j〉p

∂xk
+ νp,T

ηk

∂〈�p〉p

∂xk
δi j

]
, (21)

and it includes a pressure transport term involving the gradient of the granular temperature. The
turbulent viscosity for either phase is defined as the ratio of the squared turbulent kinetic energy, kn,
and the turbulent dissipation,

νn,T = cn,μ

k2
n

εn
, (22)

where cn,μ is the turbulent viscosity coefficient [20]. The turbulent kinetic energy for both phases
are defined as half the trace of their corresponding Reynolds-stress tensor: k f = 1

2 〈u′′′
f ,ku′′′

f ,k〉 f for the

fluid phase and kp = 1
2 〈u′′

p,ku′′
p,k〉p for the particle phase.

The turbulent production term due to mean velocity gradients is defined as

S f ,production,i j = ρ f 〈α f 〉Pf ,i j with Pf ,i j = −〈u′′′
f ,iu

′′′
f ,k〉 f

∂〈u f , j〉 f

∂xk
− 〈u′′′

f , ju
′′′
f ,k〉 f

∂〈u f ,i〉 f

∂xk
(23)

for the fluid phase, and

Sp,production,i j = ρp〈αp〉Pp,i j with Pp,i j = −〈u′′
p,iu

′′
p,k〉p

∂〈up, j〉p

∂xk
− 〈u′′

p, ju
′′
p,k〉p

∂〈up,i〉p

∂xk
(24)

for the particle phase, where Pf ,i j and Pp,i j are the fluid and particle production tensors due to mean
shear.

The Rotta model is used as the basis for the pressure-strain redistribution term for both the
fluid and particle phases, with the former including an additional term for the redistribution of drag
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production [35]. They are defined as

S f ,pressure−strain,i j = −ρ f 〈α f 〉ε f

k f
c1, f

(
〈u′′′

f ,iu
′′′
f , j〉 f − 2

3
k f δi j

)
− ρ f 〈α f 〉c2, f

(
Pf ,i j − 1

3
Pf ,kkδi j

)

− ρ f 〈α f 〉cD

(
Pg,i j − 1

3
Pg,kkδi j

)
(25)

for the fluid phase, and

Sp,pressure−strain,i j = ρp〈αp〉εp

kp
c1,p

(
〈u′′

p,iu
′′
p, j〉p − 2

3
kpδi j

)
− ρp〈αp〉c2,p

(
Pp,i j − 1

3
Pp,kkδi j

)
(26)

for the particle phase, where c1,n is the Reynolds-stress redistribution coefficient, c2,n is the stress
production redistribution coefficient, and cD is the drag redistribution coefficient [36]. Pg,i j is the
turbulent drag production tensor and is defined in the turbulent drag production term [36]

S f ,dragstress,i j = ρp〈αp〉Pg,i j with Pg,i j = 2

τp
cg(〈u f ,k〉 f − 〈up,k〉p)2δikδ jk . (27)

As noted earlier, Pg,i j only appears in the fluid phase.
The turbulent dissipation term for the fluid phase,

S f ,dissipation,i j = −ρ f 〈α f 〉ε f ,i j with ε f ,i j =
(

c f

〈u′′′
f ,iu

′′′
f , j〉 f

k f
+ 2

3
(1 − c f )δi j

)
ε f , (28)

and the particle phase,

Sp,dissipation,i j = −ρp〈αp〉εp,i j with εp,i j =
(

cp

〈u′′
p,iu

′′
p, j〉p

kp
+ 2

3
(1 − cp)δi j

)
εp, (29)

uses a combination of the Rotta turbulent dissipation model and an isotropic turbulence model linked
through a blending coefficient c f for the fluid phase and cp for the particle phase [31].

The interphase Reynolds-stress coupling term is adapted from the closures in [19] as

S f ,interphase,i j = 2ρp〈αp〉
τp

(
β f pγsgn,i j |〈u′′′

f ,iu
′′′
f , j〉 f 〈u′′

p,iu
′′
p, j〉p|1/2 − β f 〈u′′′

f ,iu
′′′
f , j〉 f

)
(30)

in the fluid phase and

Sp,interphase,i j = 2ρp〈αp〉
τp

(
β f pγsgn,i j |〈u′′′

f ,iu
′′′
f , j〉 f 〈u′′

p,iu
′′
p, j〉p|1/2 − 〈u′′′

p,iu
′′′
p, j〉p

)
(31)

for the particle phase, where β f p and β f are interphase coupling coefficients. γsgn,i j is a sign control
coefficient for the asymmetric stresses, defined as

γsgn,i j =
{

sgn(〈u′′′
f ,iu

′′′
f , j〉 f ) if sgn(〈u′′′

f ,iu
′′′
f , j〉 f ) = sgn(〈u′′

p,iu
′′
p, j〉p),

0 otherwise.
(32)

Note that for the term |〈u′′′
f ,iu

′′′
f , j〉 f 〈u′′

p,iu
′′
p, j〉p| repeated indices are not summed.

D. Turbulent dissipation rates

The turbulent dissipation transport equation for the fluid and particle phases, respectively, are

∂ρ f 〈α f 〉ε f

∂t
+ ∂ρ f 〈α f 〉ε f 〈u f ,i〉 f

∂xi
= S f ,dissipation (33)

074304-7



M. C. BAKER et al.

and

∂ρp〈αp〉εp

∂t
+ ∂ρp〈αp〉εp〈up,i〉p

∂xi
= Sp,dissipation, (34)

where S f ,dissipation and Sp,dissipation are the dissipation source and sink terms for the fluid and particle
phases. The summed dissipation source terms are

S f ,dissipation = Sε f ,flux + Sε f ,generation + Sε f ,destruction + Sε f ,interphase + Sε f ,drag (35)

for the fluid phase and

Sp,dissipation = Sεp,flux + Sεp,generation + Sεp,destruction + Sεp,interphase (36)

for the particle phase. Both phases include terms for turbulent eddy generation and destruction,
turbulent diffusive flux, and interphase turbulent dissipation coupling. Only the fluid phase includes
a term for turbulent drag dissipation. The turbulent flux term is defined for both phases using an
eddy viscosity model as

Sεn,flux = ∂

∂xi
ρn〈αn〉

(
νn + νn,T

ηε

)
∂εn

∂xi
, (37)

where ηε is the dissipation turbulent viscosity coefficient that has a nominal value of unity.
The eddy generation and destruction terms for both phases are defined using the Rotta model as

Sε f ,generation = ρ f 〈α f 〉ε f

2k f
cε1Pf ,kk (38)

as the fluid-phase eddy generation term and

Sε f ,destruction = −ρ f 〈α f 〉ε f

k f
cε2ε f (39)

as the fluid-phase eddy destruction term, where cε1 is the eddy generation coefficient and cε2 is the
eddy destruction coefficient. The corresponding generation and destruction terms are

Sεp,generation = ρp〈αp〉εp

2kp
cε1Pp,kk (40)

and

Sεp,destruction = −ρp〈αp〉εp

kp
cε2εp (41)

for the particle phase.
The interphase term from [20] used in this model is defined as

Sε f ,interphase = 2ρp〈αp〉
τp

cε3(β f p
√

ε f εp − β f ε f ) (42)

for the fluid phase and

Sεp,interphase = 2ρp〈αp〉
τp

cε3(β f p
√

ε f εp − εp) (43)

for the particle phase, where cε3 is the interphase dissipation coupling coefficient. The drag
dissipation term from [20], used only for the fluid phase, is defined as

Sε f ,drag = ρp〈αp〉εp

kp
cε4Pg,kk, (44)

where cε4 is the drag dissipation coefficient.
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E. Particle pressure tensor

The particle pressure tensor transport equation is found by Reynolds averaging the second-order
particle velocity moment transport equation [30] and is defined as [19]

∂ρp〈αp〉〈Pp,i j〉p

∂t
+ ∂ρp〈αp〉〈Pp,i j〉p〈up,k〉p

∂xk
= SP,i j, (45)

where the final term represents production due to the dissipation of the particle-phase Reynolds
stresses [1]. The term SP,i j is the sum of the spatial flux and the granular temperature source and
sink terms. This sum,

SP,i j = SP,flux,i j + SP,dissipation,i j + SP,generation,i j + SP,collision,i j + SP,interphase,i j, (46)

includes terms representing generation, particle-particle collisions, and interphase dampening. The
flux term, which includes the turbulent flux,

SP,flux,i j = ∂

∂xk
ρp〈αp〉

(
κp + νp,T

η�

)
∂〈Pp,i j〉p

∂xk
, (47)

is a result of applying a gradient-diffusion model where κp = νp/Prp is the granular conductivity
coefficient. The granular Prandtl number is Prp = (16 − 11ec)/(15 − 5ec) [19]. The turbulent
Prandtl number η� is order unity [19]. In the turbulence model, κp is evaluated using 〈αp〉 and
〈�p〉p.

The generation term due to particle-phase velocity gradients is defined as

SP,generation,i j = −ρp〈αp〉
(

(〈Pp,ik〉p + 〈Gp,ik〉p)
∂〈up, j〉p

∂xk
+ (〈Pp, jk〉p + 〈Gp, jk〉p)

∂〈up,i〉p

∂xk

)
. (48)

The source term of granular energy resulting from the turbulent dissipation of turbulent kinetic
energy is defined as

SP,dissipation,i j = ρp〈αp〉εp,i j . (49)

εp,i j is the particle-phase dissipation tensor defined in (29). The term representing particle-particle
collisions was developed using a linearized Bhatnagar-Gross-Krook (BGK) inelastic collision model
[37],

SP,collision,i j = 2ρp〈αp〉
τc

(�∗
i j − 〈Pp,i j〉p), (50)

where �∗
i j is equal to

�∗
i j = (1 + ec)2

4
〈�〉pδi j + (1 − ec)2

4
〈Pp,i j〉p, (51)

and τc is the collisional timescale defined as

τc = dp

6〈αp〉g0
( 〈�p〉p

π

)1/2 . (52)

Finally, the term representing the interphase dampening of granular energy by the surrounding fluid
is defined as

SP,interphase,i j = −2ρp〈αp〉
τp

〈Pp,i j〉p. (53)

As they should be, all of the terms in (45) are symmetric with respect to indices i and j.
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TABLE I. Channel geometrical parameters.

Dimension label Size (m)

Spanwise (x) 0.054
Wall normal (y) 0.036
Streamwise (z) 0.36
RANS slice streamwise height (z) 0.144

III. SIMULATION AND BOUNDARY CONDITIONS

The geometry used in the simulation cases is a vertical rectangular channel [24,32]. The
dimensions of the EE-AG and EL simulations can be seen in Table I. Both EE-AG and EL cases
use an identical block grid as the solution mesh, including near-wall refinement based on the work
of Kim et al. [38]. The RSM model uses a uniform block grid that is close to the refinement of
the EE-AG and EL models, but it does not include near-wall refinement. Statistics for the RSM
model were collected on a two-dimensional slice on the y-z plane of the same channel. The physical
properties of the fluid and particle phases are contained in Table II.

The series of simulation cases done for this study are summarized in Table III. The particle size
was varied to execute cases with particles corresponding to a small Stokes number, 1.74, and a large
Stokes number, 17.86. The range of mass loadings corresponds to a particle-phase volume fraction
of 5 × 10−4 at a mass loading of 0.2 to a volume fraction of 5 × 10−3 at a mass loading of 10 for
the large-particle cases. The maximum mass loading for the small-particle case was set at volume
fraction of 2 × 10−3 corresponding to a mass loading of 4. Table IV displays the parameters related
to the turbulence and particle pressure models contained in this work. The values for the turbulence
model parameters are taken from [19]. The values for the Reynolds-stress wall distribution tensor
are taken from the documentation for ANSYS Fluent [39].

A. RANS boundary conditions

At the top and bottom of the channel domain, a cyclical periodic boundary is applied for all fields.
Flow in the channel is driven by adjusting the fluid-phase pressure gradient in (9) to maintain the
mean fluid velocity passing through the inlet and outlet boundary at the value specified in Table II.
The wall boundary condition is set as a zero-gradient boundary condition to solve the particle
volume fraction continuity equation in (1). Fluid- and particle-phase momentum transport in (2)
and (3) use a no-slip and full-slip model for the wall boundary, respectively.

Two different wall models are applied as the boundary condition to the Reynolds-stress transport
in (16) and (17), depending on the conditions of the flow. These boundary conditions are based on

TABLE II. Model parameters used in all simulations.

Model parameter Value

Fluid-phase density ρ f (kg/m3) 1
Fluid-phase viscosity ν f (m2/s) 1.8 × 10−5

Overall channel velocity Uf ,mean (m/s) 5.02
Pure-fluid channel Reynolds number Re f 12053
Particle-phase density ρp (kg/m3) 2000
Small particle diameter dp (μm) 45
Large particle diameter dp (μm) 144
Particle restitution coefficient ec 0.9
Gravitational acceleration gz (m/s2) −9.81
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TABLE III. Mass-loading cases for each particle size.

Mass loading 〈φ〉
Small particle 0.2, 1, 2, 4
Large particle 0.2, 1, 2, 4, 10

the low-Reynolds-number boundary condition applied in OpenFOAM [40]. For flow conditions for
either phase, when the wall boundary layer coordinate

y+
n = c1/4

n,μ

�wallk1/2
n

νn
, (54)

where �wall, the wall-normal mesh length of the wall cell, is more than the turbulent-laminar
threshold value of 11.5, the Reynolds stresses at the walls are defined as

〈u′′′
f ,iu

′′′
f , j〉 f , wall = −ν f ,T wall

(
∂〈u f ,i〉 f

∂x j
+ ∂〈u f , j〉 f

∂xi
− 2

3

∂〈u f ,k〉 f

∂xk
δi j

)
(55)

for the fluid phase and

〈u′′
p,iu

′′
p, j〉 f ,wall = −νp,T wall

(
∂〈up,i〉p

∂x j
+ ∂〈up, j〉p

∂xi
− 2

3

∂〈up,k〉p

∂xk
δi j

)
(56)

TABLE IV. Turbulence and particle pressure model parameters.

Model parameter Value

Pure-fluid stress redistribution coefficient c1 0.6
Pure-fluid production redistribution coefficient c2 0.6
Drag redistribution coefficient cD 0
Dissipation blending coefficient c f 0.93
Dissipation blending coefficient cp 0.93
Dissipation generation coefficient cε1 1.44
Dissipation destruction coefficient cε2 1.92
Dissipation interphase coupling coefficient cε3 0.736
Dissipation coefficient cε4 0
Turbulent coupling coefficient β f 1.03
Turbulent coupling coefficient β f p 0.876
Collision coefficient cc 2
von Kármán constant κ 0.41
Wall roughness coefficient E 9.0
Streamwise Reynolds-stress distribution tensor βw,zz 1.098
Wall-normal Reynolds-stress distribution tensor βw,yy 0.247
Spanwise Reynolds-stress distribution tensor βw,xx 0.655
Shear streamwise/wall-normal Reynolds-stress distribution tensor βw,yz 0.255
Shear streamwise/spanwise Reynolds-stress distribution tensor βw,xz 0
Shear spanwise/wall-normal Reynolds-stress distribution tensor βw,xy 0
Low-Reynolds-number wall parameter C 11
Specularity factor φs 0
Particle-wall restitution coefficient ew 1
Wall redistribution coefficient C� 0
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for the particle phase, where ν f ,T wall and νp,T wall are the fluid and particle-wall turbulent viscosity.
The latter is defined for both phases as

νn,T wall = νn

(
y+

n

κ

log(Ey+
n )

− 1

)
, (57)

where κ is the von Kármán constant and E is the wall roughness coefficient.
For a flow with the boundary layer coordinate below the turbulent-laminar threshold value of

11.5, the boundary conditions use the solution of the turbulent kinetic energy transport equation for
each phase. The fluid-phase turbulent kinetic energy transport equation is defined as

∂ρ f 〈α f 〉k f

∂t
+ ∂ρ f 〈α f 〉k f 〈u f ,k〉 f

∂xk
= S f ,k, (58)

and the particle-phase turbulent kinetic energy equation is defined as

∂ρp〈αp〉kp

∂t
+ ∂ρp〈αp〉kp〈up,k〉p

∂xk
= Sp,k, (59)

where S f ,k and Sp,k are the summed source and sink terms for the fluid and particle phases. These
sums are defined through half the trace of the sum of terms from the corresponding Reynolds-stress
transport equation:

Sn,k = 1
2 Sn,stress,kk . (60)

The wall boundary condition for the turbulent kinetic energy is defined through the relation

kn,wall = c1/2
n,μkn

2400

c2
ε2

(
1

(y+
n + C)2

+ 2
y+

n

C3
− 1√

C

)
, (61)

where C is the low-Reynolds-number turbulent kinetic energy fit parameter. This value for the
turbulent kinetic energy is related to the Reynolds stresses using constants developed in Gibson and
Launder’s work modeling near-wall turbulence [41]. In this method, the turbulent kinetic energy
at the wall from the boundary condition previously defined is parceled out to each individual
Reynolds-stress component:

〈u′′′
f ,iu

′′′
f , j〉 f ,wall = γ f ,i jk f ,wall, 〈u′′

p,iu
′′
p, j〉p,wall = γp,i jkp,wall, (62)

where γ f ,i j and γp,i j are the wall Reynolds-stress distribution tensors for the fluid and particle
phases. This tensor must be defined such that tr(γn,i j ) = 2. For this study, each component of this
tensor for both phases is defined as

γn,xx =βw,xx(1 − ηn,iso)

γn,yy =βw,yy(1 − ηn,iso)

γn,zz =βw,zz

(
2 − βw,zz

βw,zz
ηn,iso + 1

)
γn,xy =βw,xy,

γn,xz =βw,xz,

γn,yz =βw,yz,

(63)

where βw,i j is the wall Reynolds-stress distribution tensor for the fluid phase and ηn,iso is an
anisotropization factor. At an anisotropization factor value of zero, the stress is distributed at the wall
like a pure fluid. At a value of 1, the stress is distributed only to the single streamwise component.
This factor can be adjusted between these two values to modulate how Reynolds stress is distributed
at the wall.

The boundary conditions for the turbulent dissipation equation at the wall for both phases is
defined as

εn,wall = c3/2
n,μ

k3/2
n

κ�wall
. (64)
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Additionally, the trace of the production for each phase, Pn,ii, seen in the eddy generation term in
(38) and (40) is also modeled at the wall:

Pn,εwall,ii = 2c1/4
n,μ(νn + νn,T )

∣∣∣∣∂〈un,wall〉n

∂xk

∣∣∣∣ k1/2
n

κ�wall
, (65)

where 〈un,wall〉n is the phase-averaged velocity tangential to the wall. It is important to note that
the production term near the wall in the Reynolds-stress production terms in (23) and (24) are also
modified to make them consistent with the near-wall generation from the turbulent dissipation wall
functions:

Pn,wall,i j = min

(
Pn,εwall,ii

tr(Pn,i j )
, 1

)
Pn,i j . (66)

Capecelatro et al. [19] proposed a wall boundary condition for the granular pressure that
is analogous to Johnson-Jackson granular temperature wall boundary conditions. The boundary
condition proposed for the diagonal components of the granular pressure tensor is

k�

d〈Pp,wall,ii〉p

dxwall−normal
= 2Dw

(〈up,i〉2
p + 〈u′′

p,iu
′′
p,i〉p

) − D�〈Pp,ii〉p − C�Vw(〈�p〉p − 〈Pp,ii〉p), (67)

where Dw = φsVw is a part of a term for granular energy production due to wall slip, D� =
−(1 − ew )Vw is a component in a term representing the generation of granular energy due to
wall collisions, and C� is a coefficient for the wall granular energy redistribution term. φs is the
specularity factor, and Vw is the wall collision velocity defined as Vw = ccπ/6

√
3〈�p〉p. k� is the

granular conductivity coefficient defined as k� = νp/Prp, where Prp = (16 − 11ec)/(15 − 5ec) is
the particle-phase Prandtl number. The boundary condition for the asymmetric y-z component of
particle pressure is defined as

〈Pp,wall,yz〉p = Dw〈up,z〉p. (68)

Because this work assumes a full-slip boundary condition for the particle-phase velocity, fully
elastic particle-wall collisions and no redistribution of granular energy at the wall, the diagonal
components of the granular pressure effectively have a zero-gradient boundary condition. Cor-
respondingly, the asymmetric components of the granular pressure tensor have a fixed boundary
condition at zero.

B. Simulation solution algorithm

The overall solution algorithm for the model developed in this study is summarized in the
following steps:

(1) Initialization of all variables.
(2) Computation of the standard fluid-phase Courant-Friedrichs-Lewy (CFL) condition,

CCFL, f = max

(
1

2V
�t

∑
faces

|φ f |
)

, (69)

and the interphase CFL condition,

CCFL,interphase = max

(
1

2V
�t

∑
faces

|φp − φ f |
)

, (70)

where V is the cell volume, and φ f and φp are the fluid-phase and particle-phase surface velocity
fluxes, respectively. The overall CFL condition, which limits the timestep magnitude, is taken from
the maximum of these two conditions,

CCFL = max(CCFL, f ,CCFL,interphase ). (71)
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(3) Particle-phase fields for volume fraction, 〈αp〉, velocity, 〈up,i〉p, Reynolds stress, 〈u′′
p,iu

′′
p, j〉p,

dissipation, εp, and particle pressure, 〈Pi j〉p are updated using their corresponding equations in (1),
(3), (17), (34), and (45), respectively.

(4) Fluid-phase fields for Reynolds stress, 〈u′′′
f ,iu

′′′
f , j〉 f , and dissipation, ε f , are updated using their

corresponding equations in (2) and (33), respectively.
(5) The fluid-phase momentum transport equation from (2), 〈u f ,i〉 f , is constructed as a semidis-

cretized equation separating diagonal and off-diagonal elements,

〈u f ,i〉 f = λ f (H + ρ f 〈α f 〉gi + Kdrag〈up,i〉p − ∇P f ), (72)

where λ f = (A + Kdrag)−1 is the inverse of the sum of the diagonal coefficients A and the overall
drag coefficient Kdrag = φ(1 − cg)/τp and H represents the off-diagonal contributions to the fluid-
phase equation.

(6) The fluid-phase pressure-gradient equation constructed using the fluid-phase velocity fluxes
on each cell surface S,

(〈α f 〉λ f )face|S|∇⊥P f = dα f

dt
+ 〈α f ,face〉((λ f H)face · S + λ f ,faceρ f 〈α f ,face〉g · S

+ λ f ,face(Kdrag〈up〉p)face · S), (73)

develops the fluid-phase pressure field and its result is applied to update the fluid-phase velocity
field.

(7) Iterate steps 5 through 6 until the fluid-phase pressure converges.
(8) Advance in time and repeat from step 2 until the solution is complete.

IV. RESULTS AND DISCUSSION

In this section, results from the RSM are compared to predictions of EL and EE-AG simulations
for vertical channel flow with and without particles. First, however, an a priori analysis of the EL
data is employed to fit key parameters in the RSM as a function of the mass loading.

A. Parameter specification

Several parameters appearing in the RSM must be extracted from EL turbulence statistics to
determine how they change as the mass loading 〈φ〉 increases. Three sets of parameters were focused
on for modification in this model: the drag coefficient, the wall anisotropization factor, and the
pressure-strain redistribution coefficients.

The drag coefficient parameter cg present in the interphase drag exchange term in (14) and (15)
and the drag production term in (27) is directly computed from the EL data. Unlike in our previous
work [19], for simplicity here we do not make cg a function of the distance from the channel wall.
Figure 1 shows the drag coefficient as a function of the mass loading using both the small and large
particles. The constant drag coefficient is computed from the EL results as a constant computed
from averaging over the volume of channel. In both cases the drag coefficient increases with the
mass loading, and with the small particles it increases more gradually. Based on the results in our
prior work [19], the drift velocity (and hence cg) is very small near the channel wall. Thus we can
expect that using the channel-average value for cg is likely to overpredict the kinetic energy near the
wall.

The anisotropization factor for the Reynolds-stress wall boundary condition in (63), ηn,iso, is
taken directly from the values of the Reynolds stresses at the wall averaged over the channel in the
EL results for both phases. This value as a function of the mass loading for the small and large
particles can be seen in Fig. 2. As the mass loading increases, so does the fluid-phase anisotropy at
the wall. The anisotropy of the particle phase, on the other hand, at the wall remains consistently
highly anisotropic at all mass loadings.

074304-14



REYNOLDS-STRESS MODELING OF CLUSTER-INDUCED …

FIG. 1. EL average cg as a function of mass loading 〈φ〉 using small ( ) and large ( ) particles.

The parameters c1,n and c2,n used in the pressure-strain redistribution tensor in (25) and (26) were
also modified in a similar way based on the anisotropy seen in the stresses extracted from the EL
model for each phase for the entire wall-normal profile rather than just at the wall. Figure 3 shows
how the parameters were modified for the fluid and particle phase using each particle size. Through
an initial comparison with the pure-fluid EL model case, a value of 0.6 was chosen as the baseline
for both c1,n and c2,n. These constants were reduced up to a baseline of 0.18 to match the degree of
anisotropization observed in the EL model at each mass loading. The particle phase consistently had
a high degree of anisotropization, even at the smallest mass loadings. The only difference between
the large and small particles was that the larger particles had less anisotropization at higher mass
loadings than the small particles.

Using the parameters found above, in the following sections time-averaged statistics collected
from the EL and EE-AG simulations are compared with their counterparts obtained using the RSM
model.

B. Vertical channel flow without particles

For the pure-fluid case, Fig. 4 shows the velocity, Reynolds stresses, and turbulent kinetic energy
for all three simulations. The profiles for all models in this and all subsequent figures in this work

FIG. 2. EL average fluid-phase and particle-phase ansiotropization factor as a function of mass loading 〈φ〉
using small ( ) and large ( ) particles.
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FIG. 3. Fluid-phase and particle-phase Reynolds stress and redistribution coefficients based on EL data
using small ( ) and large ( ) particles.

are generated through averaging down the length of the channel over 1 s of flow time. The phase
velocity is normalized using the channel velocity from Table II, and the Reynolds stresses are
normalized using the corresponding turbulent kinetic energy of the phase. The turbulent kinetic
energy is normalized using the square of the channel velocity. Both the EL and EE-AG models solve
the same equations on the same grid, so any differences are a result of the numerical discretization.

The mean fluid velocity for the RSM shows excellent correspondence with the other models.
Towards the center of the channel, the RSM shows good correspondence with the Reynolds stresses
in the other models. One feature seen in the EL and EE-AG models that is not resolved in the
RSM is the peak of high anisotropy in the streamwise component near the walls. Additionally, the
overall fluid-phase turbulent kinetic energy decreases at a slower rate from the peak in the near-wall
region. One reason for this deviation in the near-wall region can be observed in Fig. 5, where the
RSM overpredicts the turbulent production in the streamwise direction in the near-wall region. This
appears to be a product of transitioning to low-Reynolds-number behavior as the wall is approached
from the channel center, which is not accounted for in the RSM.

From a purely computational standpoint, the same grid is used in the EL and EE-AG codes but
with different-order numerics (higher in EL than EE-AG). Thus the EL results can be taken as the
reference solution for all cases. As a general rule, the accuracy of the predictions from the RSM for
particle-laden cases cannot be expected to be better than for the pure-fluid case.

FIG. 4. Pure-fluid case comparison of EE-AG, EL, and RSM data. Streamwise components (z or zz) for
the EE-AG, EL, and RSM cases are respectively denoted as ( ), ( ), and ( ); wall-normal components
(yy) as ( ),( ), and ( ); spanwise components (xx) as ( ), ( ), and ( ); and shear components
(yz) as ( ), ( ), and ( ). Fluid-phase turbulent kinetic energy is denoted as ( ), ( ), and ( ).
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FIG. 5. Pure-fluid streamwise production term comparison.

C. Vertical channel flow with particles

Unlike in the pure-fluid case, the continuity equation for the particle volume fraction plays an
important role in particle-laden flows. While it is often assumed in RANS modeling studies [42] that
the Reynolds-average volume fraction is time independent in fully developed particle-laden channel
flows, this is not the case due to the hyperbolic nature of the particle-phase governing equations.
Thus, as shown in Fig. 6, the instantaneous RSM fields for small particles exhibit clustering much
like that seen in EE-AG. In comparison, for larger particles as shown in Fig. 7, clustering is less
pronounced in the RSM. Nonetheless, the ability to predict the particle-phase volume fraction
distribution is a significant challenge in the RSM context.

When examining the time-average particle distribution over the width of the channel for the small
particles in Fig. 8(a), preferential channeling of the particle phase towards the center of the channel
that does not appear in either the EE-AG or EL models occurs for all except the largest mass loading.
Because the RSM inherently dampens turbulent instabilities in the channel, the primary means of
the wall-normal transport of particles come from the gradient of the particle-phase Reynolds stress
seen in (3) or the particle pressure through the particle pressure gradient in (10) and the gradient
of the collisional flux in (12). The drag term in (15) also plays an important role in the distribution
of the particle phase through the increase of its magnitude in areas of high particle concentration.
The reason why these high particle concentrations are sustained at the center of the channel in these
cases is due to how the gradients of the Reynolds stresses and particle pressure are weakest there.
The greater particle velocity at the wall compared with the other models makes it easier for the

FIG. 6. Instantaneous velocity of the (a) EE-AG and (b) RSM with cells with particle volume fraction
greater than 1.75 αp,mean superimposed at mass loadings 〈φ〉 of (A) 0.2, (B) 1, (C) 2, and (D) 4 with small
particles.
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FIG. 7. Instantaneous volume fraction of the (a) EE-AG model and (b) RSM at mass loadings 〈φ〉 of (A)
2, (B) 4, and (C) 10 with large particles.

FIG. 8. Time-average particle-phase volume fraction profiles. ML = 0.2 cases are denoted as ( ), ML
= 1 cases are denoted as ( ), ML = 2 cases are denoted as ( ), ML = 4 cases are denoted as ( ),
and ML = 10 cases are denoted as ( ). (a) Small particles and (b) Large particles.
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particle phase to move away from the wall to get trapped in the center. The RSM also demonstrates
an increase in the granular energy in the approach to the wall, which causes the repulsion of particles
away from it. This increase was matched by the EL results but is absent in the EE-AG results.
RSM for the mass loading of 4 compares well with the EE-AG result. The overall decrease in
particle-phase kinetic energy as well as a smaller granular pressure gradient make it so that the
particles are no longer trapped in the center of the channel.

The time-average particle distribution of the large-particle case in Fig. 8(b) shows reasonably
good agreement between the EL and the RSM data in all cases but the most dilute one. In that
case, the particle phase was uniform in the center of the channel but showed accumulation at the
walls, not unlike what is observed in the most dilute EL case using smaller particles in Fig. 8(a)
(see also [11]). As discussed below, in all of these cases the particle-phase turbulence and granular
energy is relatively small and uniform. The increased decoupling from the fluid phase with the
greater Stokes timescale associated with larger particles in (15) and (31) means that less of the
fluid-phase momentum and turbulence is being transferred to the particle phase. This lack of
significant turbulence in the particle phase correspondingly creates a particle distribution that is
absent of clustering down the length of the channel, in contrast with the small-particle cases.

The time-average fluid-phase velocities, kinetic energy, and Reynolds stresses of the EL, EE-AG,
and RSM simulations with small particles can be seen in Fig. 9. The EL mass loading of 4 case is
omitted here due to a parameter error resulting in a slower mean channel velocity. The same profiles
for the cases using large particles can be seen in Fig. 10. The low-mass-loading cases with large
particles corresponding to a mass loading of 0.2, 1, and 2 using the EE-AG model are also omitted
due their extremely small particle number density. The EE-AG model does not accurately capture
the behavior of spatially intermittent systems such as these [32].

Overall, the RSM fluid-phase velocity profiles show reasonably good agreement with the EE-AG
and EL models, with the RSM consistently slightly underpredicting the slope as the profile begins
to level off going away from the wall. For the highest-mass-loading case using large particles in
Fig. 10(e), the RSM demonstrates the flattening of the fluid-velocity profile seen in the EE-AG and
EL simulations. Remarkably, the relatively poorer RSM predictions for the particle volume fraction
do not have a significant effect on the velocity profiles.

For both particle sizes and at all mass loadings, the RSM significantly overpredicts the fluid-
phase turbulent kinetic energy versus the other simulations near the wall. The largest contributor to
this overprediction of fluid-phase Reynolds stress comes from the use of a uniform drag coefficient.
This causes the drag-stress-production term in (27) to be at its largest value closest to the wall when
the difference between the fluid and particle velocities is correspondingly at its largest value. This
results in a significant amount of fluid-phase turbulent kinetic energy to be applied to the system
near the wall. Additionally, as observed in the pure-fluid-phase case in Fig. 5, the RSM inherently
overpredicts the fluid-phase turbulent production close to the wall. Despite this issue, the RSM does
come closer to matching the fluid-phase turbulent kinetic energy of other models towards the center
of the channel. Away from the walls, the RSM demonstrates the initial collapse in the fluid-phase
turbulent kinetic energy for both particle sizes as the mass loading is increased from the most dilute
case. For the large-mass-loading cases using the large particles in Figs. 10(d) and 10(e), the RSM
also shows the same recovery of the fluid-phase turbulent kinetic energy following this collapse
observed in the other models.

The anisotropy of the RSM fluid-phase Reynolds stresses shows good agreement with the other
models in the lower-mass-loading cases in Figs. 9 and 10(a) and 10(b). As in the pure-fluid
case, the RSM does not resolve the near-wall high-anisotropy peak for these cases and generally
underpredicts the anisotropy close to the wall at higher mass loadings as well. For both the small-
and large-particle cases, the RSM demonstrates the same increase in anisotropy with increased
mass loading as observed in the EL and EE-AG simulations. The anisotropy of the RSM matches
well with the other simulations at higher mass loadings for the small particles. The large-particle
intermediate-mass-loading RSM case in Fig. 10(c) slightly underpredicts the anisotropy of the other
simulations, but the subsequent high-Stokes cases in Figs. 10(d) and 10(e) match them at the center
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FIG. 9. Fluid-phase velocity and stress comparisons for small particles. Streamwise components (z or
zz) for the EE-AG, EL, and RSM cases are denoted, respectively, as ( ), ( ), and ( ); wall-normal
components (yy) as ( ),( ), and ( ); spanwise components (xx) as ( ), ( ), and ( ); and shear
components (yz) as ( ), ( ), and ( ). Fluid-phase turbulent kinetic energy is denoted as ( ), ( ),
and ( ). (a) 〈φ〉 = 0.2, (b) 〈φ〉 = 1, (c) 〈φ〉 = 2, and (d) 〈φ〉 = 4.
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FIG. 10. Fluid-phase velocity and stress comparisons for large particles. Streamwise components (z or
zz) for the EE-AG, EL, and RSM cases are denoted, respectively, as ( ), ( ), and ( ); wall-normal
components (yy) as ( ),( ), and ( ); spanwise components (xx) as ( ), ( ), and ( ); and shear
components (yz) as ( ), ( ), and ( ). Fluid-phase turbulent kinetic energy is denoted as ( ), ( ),
and ( ). (a) 〈φ〉 = 0.2, (b) 〈φ〉 = 1, (c) 〈φ〉 = 2, (d) 〈φ〉 = 4, and (e) 〈φ〉 = 10.
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of the channel. Both the EE-AG and EL simulations demonstrate a collapse in the shear stress
as the mass loading increases for both large and small particles that only begins to happen in the
large-particle case at the center of the channel at the largest mass loading in Figs. 10(d) and 10(e).

The corresponding time-average particle-phase profiles of the streamwise velocity, kinetic
energy, Reynolds stresses, and particle pressure are seen in Fig. 11 for the small particles and Fig. 12
for the large particles. While the RSM particle-phase velocity profiles show good agreement with
the EE-AG and EL simulations for both particle sizes, there exists a deviation in the particle-phase
velocity close to the wall for the small-particle cases. In those cases, the RSM consistently
overpredicts the particle-phase velocity close to the wall. The particle-phase turbulent kinetic energy
and fluctuating kinetic energy show reasonably good agreement between all three models, with
the exception of the dilute small-particle cases seen in Figs. 11(a) and 11(b), where agreement is
lacking between the EE-AG and EL models. All models demonstrate the overall decline in both
the particle-phase turbulent kinetic energy and fluctuating kinetic energy as the mass loading is
increased. The anisotropy of the particle stresses and granular pressure generally showed good
agreement between all models. For all cases, sizes, and models, the anisotropy was consistently
large for the particle-phase Reynolds stresses. For the particle pressure, the RSM was able to capture
the overall decline in anisotropy as the mass loading was increased that was observed in the other
models.

One important phenomena observed in both the EL and EE-AG simulations is a transition in
fluid-phase turbulence as the mass loading increases. At more dilute concentrations of particles,
the fluid-phase turbulence behaves much as it does in the pure-fluid case. As more particles are
added, interphase coupling causes more and more of the fluid turbulent kinetic energy to be
drained away, resulting in the turbulence of the fluid phase to enter a relaminarized state. As even
more particles are added, they form clusters that begin to generate turbulence in the fluid phase,
causing the turbulence of the system to enter a CIT regime. Figure 6(a) demonstrates this entire
transition through superimposing the cells with a particle volume fraction greater than 1.75αp on
the instantaneous streamwise fluid-phase velocity. Figure 6(a) panel (A) shows how the turbulent
instabilities fade as more particles are added at a mass loading of 1 and 2 in (B) and (C). At the
largest mass loading in (D), the fluid velocity carves a path around the areas of large particle
concentration, demonstrating CIT.

For the RSM cases in Fig. 6(b), evidence of CIT can be observed at larger mass loadings for small
particles. For the small particles in Fig. 6(b) panel (D) and to a lesser extent in (C), the fluid-phase
streamwise velocity carves itself around the large concentrations of particles. Likewise, for the large
particles in Fig. 7(b) panels (D) and (E), the fluid velocity weaves itself around the more singular
large-particle concentration. Unlike what was observed in the EE-AG large-particle cases, the direct
formation of fluid-phase turbulent instabilities that are not present for the RSM in Figs. 6(b) and
7(b) is instead prevented by design through the implementation of the turbulence model. Unlike
the small-particle cases, the RSM did not develop the same instantaneous clustering using large
particles and thus evidence of CIT cannot be identified in the instantaneous profiles in the same
way. In the EE-AG model in Fig. 7(a), only a single large cluster has developed at the largest mass
loading. Instead, as seen in Fig. 7(b), the RSM particle profile is nearly uniform over the length of
the channel for all cases.

The streamwise fluid-phase Reynolds-stress profiles for the small-particle cases in Fig. 13(a)
and the large-particle cases in Fig. 13(b) both show a collapse in the fluid-phase turbulence
as more particles are added starting from the pure-fluid phase for the RSM, the EE-AG, and
the EL simulations where there are data available. However, this collapse is not observed in
the RSM in the near-wall region, which remains at a consistently large magnitude for all mass
loadings. Additionally, while the small-particle EE-AG and EL cases show a recovery in fluid-phase
turbulence from CIT at the largest mass loadings, the same is not true for the RSM. For the
large-particle case, on the other hand, there is an increase in the fluid-phase turbulence in the center
of the channel at the two highest mass loadings using the RSM in line with the EE-AG and EL
results.
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FIG. 11. Particle-phase velocity, stress, and pressure comparisons for small particles. Streamwise compo-
nents (z or zz) for the EE-AG, EL, and RSM cases are denoted, respectively, as ( ), ( ), and ( );
wall-normal components (yy) as ( ),( ), and ( ); spanwise components (xx) as ( ), ( ), and
( ); and shear components (yz) as ( ), ( ), and ( ). Correlated particle-phase turbulent kinetic
energy is denoted as ( ), ( ), and ( ) and uncorrelated particle-phase fluctuating kinetic energy as
( ), ( ), and ( ). (a) 〈φ〉 = 0.2, (b) 〈φ〉 = 1, (c) 〈φ〉 = 2, and (d) 〈φ〉 = 4.
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FIG. 12. Particle-phase velocity, stress, and pressure comparisons for large particles. Streamwise compo-
nents (z or zz) for the EE-AG, EL, and RSM cases are denoted, respectively, as ( ), ( ), and ( );
wall-normal components (yy) as ( ),( ), and ( ); spanwise components (xx) as ( ), ( ), and
( ); and shear components (yz) as ( ), ( ), and ( ). Correlated particle-phase turbulent kinetic
energy is denoted as ( ), ( ), and ( ) and uncorrelated particle-phase fluctuating kinetic energy as
( ), ( ), and ( ). (a) 〈φ〉 = 0.2, (b) 〈φ〉 = 1, (c) 〈φ〉 = 2, (d) 〈φ〉 = 4, and (e) 〈φ〉 = 10.
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FIG. 13. Fluid-phase streamwise Reynolds-stress profile. ML=0.2 cases are denoted as ( ), ML=1
cases are denoted as ( ), ML=2 cases are denoted as ( ), ML=4 cases are denoted as ( ), and
ML=10 cases are denoted as ( ). (a) Small particles and (b) Large particles.

The reason for these differences in the behavior of the RSM and the other models can be seen
when examining the turbulent-stress-production term from (23) and the drag-production term from
(27) for the streamwise fluid-phase Reynolds stress extracted from all three models in Figs. 14 and
15. For the EL and EE-AG models, the fluid-phase turbulent production collapses as more particles,
large or small, are added. While the fluid-phase turbulent production erodes as more particles are
added, there is no significant decline in the near-wall region for the RSM. For the small particles,
the RSM model significantly underpredicts the turbulent drag production. This smaller drag term
explains the lack of a rebound in fluid-phase turbulence in Fig. 13(a) at the highest mass loadings.
The large-particle RSM cases, on the other hand, have a drag-production term that corresponds to
an increase in fluid-phase turbulence after relaminarization at the center of the channel in Fig. 13(b).
This is evidence of the impact of CIT. Having a large enough drag-production term also caused the
large particles to show a high degree of anisotropy at the center of the channel for the RSM that
matched the EE-AG and EL simulations in Figs. 10(d) and 10(e).

V. CONCLUSIONS

In this work, a transient Reynolds-stress model using Reynolds-averaged transport equations
for both phases was implemented to describe particle-laden vertical channel flow. Fluid-phase
turbulence and correlated particle-phase turbulence were captured using a RSM. Uncorrelated

074304-25



M. C. BAKER et al.

FIG. 14. Fluid-phase streamwise Reynolds-stress turbulent-production and drag-production terms with
small particles. ML = 0.2 cases are denoted as ( ), ML = 1 cases are denoted as ( ), ML = 2 cases
are denoted as ( ), and ML = 4 cases are denoted as ( ).

particle-phase fluctuating kinetic energy was captured using a Reynolds-averaged anisotropic
particle pressure model based on the kinetic theory of granular flow. EL data from this channel
were used to inform the RSM closures and parameters relating to the drag coefficient and the
redistribution of turbulent kinetic energy for both phases. Two sets of cases were done for a range of
mass loadings for small or large particles. The RSM was able to capture fluid and particle velocity
profiles similar to the EL and EE-AG models for both large and small particles and at all mass
loadings. The RSM features the same flattening of the fluid and particle velocity profile as more
particles are added. While the RSM was able to capture Reynolds stresses and their corresponding
statistics similar to the EL and EE-AG models at the center of the channel, there was significant
deviation in the RSM predictions close to the wall.

At greater mass loadings the RSM was able to capture the same behaviors of the particle volume
fraction. The small particles featured areas of high concentration that were long and stringlike down
the length of the channel, which were also observed in the EE-AG model. At lower mass loadings
using small particles, the RSM particle volume fraction featured a preferential concentration at
the center of channel that was not observed in the EE-AG or EL results. The large-particle cases
did not display any transient clustering down the length of the channel as was observed in the
most concentrated EE-AG case. The model introduced in this work was able to emulate many of
the changes in turbulence observed in the EL and EE-AG models as the mass loading was also
changed. The RSM was able to capture the increase in particle- and fluid-phase anisotropy in the
Reynolds stresses at higher mass loadings found in the other models. Additionally, the fluid-phase
turbulence declined in the center of the channel as particles were initially added for both the large-
and small-particle cases. While the large-particle cases were able to demonstrate a recovery in the
fluid-phase turbulence from CIT as even more particles were added, the same was not true for the
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FIG. 15. Fluid-phase streamwise Reynolds-stress turbulent-production and drag-production terms with
large particles. ML = 0.2 cases are denoted as ( ), ML = 1 cases are denoted as ( ), ML = 2 cases are
denoted as ( ), ML = 4 cases are denoted as ( ), and ML=10 cases are denoted as ( ).

small-particle cases. The reason behind this was that the drag coefficient extracted from the EL
underpredicted the amount of turbulent drag production for the small-particle cases.

Overall, the RSM introduced in this work presents a basis from which further study on how
turbulent statistics extracted from more computationally expensive models can be applied to further
improve its results. The limited parameter modifications implemented in this work demonstrate
this potential. Additional exploration of the behavior of the many parameters and terms involved
with the RSM for both phases and how they change based on flow conditions such as local
particle concentration or proximity to a wall is needed to improve the incongruities with the
other models observed in the current results. The development of a wall model applicable to
low-Reynolds-number behavior and a variety of mass loadings is essential for getting accurate
results for wall-bounded flow in systems such as this. Given the number of parameters and the degree
of complexity of balancing their interconnected impacts on the overall model, machine-learning
techniques present an extremely enticing path to go down. Additionally, isolating various turbulence
model parameters and terms in simpler domains or systems such as homogeneous shear flow offers
another way to more clearly understand their behavior.
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APPENDIX A: REYNOLDS-STRESS MODEL TABLES OF EQUATIONS

Tables V, VI, VII, and VIII contain the complete system of equations applied in the RSM
simulations introduced in this work.

TABLE V. Reynolds-stress model equations part I.

Particle-phase continuity
∂〈αp〉

∂t + ∂〈αp〉〈up,i〉p

∂xi
= 0

Fluid-phase momentum transport
∂ρ f 〈α f 〉〈ui, f 〉 f

∂t + ∂

∂x j
ρ f 〈α f 〉(〈ui, f 〉 f 〈uf , j〉 f + 〈u′′′

f , ju
′′′
f ,i〉 f ) = Sf ,momentum,i

S f ,momentum,i = Sf ,viscous,i + Sf ,pressure,i + Sf ,gravity,i + Sf ,drag,i

S f ,viscous,i = ∂

∂x j
ρ f 〈α f 〉ν f (

∂〈u f ,i〉 f

∂x j
+ ∂〈u f , j 〉 f

∂xi
− 2

3

∂〈u f ,k 〉 f

∂xk
δi j )

Sf ,pressure,i = − ∂〈p f 〉
∂xi

S f ,gravity,i = ρ f 〈α f 〉gi

S f ,drag,i = ρp〈αp〉
τp

(1 − cg)(〈up,i〉p − 〈uf ,i〉 f )

τp = d2
pρp

18ν f ρ f

Particle-phase momentum transport
∂ρp〈αp〉〈ui,p〉p

∂t + ∂

∂x j
ρp〈αp〉(〈ui,p〉p〈up, j〉p + 〈u′′

p, ju
′′
p,i〉p) = Sp,momentum,i

Sp,momentum,i = Sp,viscous,i + Sp,pressure,i + Sp,collision,i + Sp,gravity,i + Sp,drag,i

Sp,viscous,i = ∂

∂x j
ρp〈αp〉νp(

∂〈up,i〉p

∂x j
+ ∂〈up, j 〉p

∂xi
− 2

3

∂〈up,k 〉p

∂xk
δi j )

νp =
√

π

6(3−ec ) dp

√〈�p〉p(1 + 2
5 (1 + ec )(3ec − 1)〈αp〉g0) + 4(1+ec )

5
√

π
〈αp〉g0dp

√〈�p〉p

g0 = 1

1−(
〈αp〉

αp,max
)
1/3

Sp,pressure,i = − ∂ρp〈αp〉〈Pp,i j 〉p

∂x j

Sp,collision,i = − ∂ρp〈αp〉〈Gp,i j 〉p

∂x j

〈Gp,i j〉p = 2
5 (1 + ec )〈αp〉g0(〈Pp,kk〉pδi j + 2〈Pp,i j〉p)

Sp,gravity,i = ρp〈αp〉gi

Sp,drag,i = ρp〈αp〉
τp

(1 − cg)(〈uf ,i〉 f − 〈up,i〉p)
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TABLE VI. Reynolds-stress model equations part II.

Fluid-phase Reynolds-stress transport
∂ρ f 〈α f 〉〈u′′′

f ,iu
′′′
f , j 〉 f

∂t + ∂ρ f 〈α f 〉〈u′′′
f ,iu

′′′
f , j 〉 f 〈u f ,k 〉 f

∂xk
= Sf ,stress,i j

S f ,stress,i j = Sf ,flux,i j + Sf ,production,i j + Sf ,pressure−strain,i j + Sf ,dragstress,i j + Sf ,dissipation,i j + Sf ,interphase,i j

S f ,flux,i j = ∂

∂xk
ρ f 〈α f 〉 f (ν f + ν f ,T

ηk
)

∂〈u′′′
f ,iu

′′′
f , j 〉 f

∂xk

ν f ,T = c f ,μ
k2

f

ε f

S f ,production,i j = ρ f 〈α f 〉Pf ,i j

Pf ,i j = −〈u′′′
f ,iu

′′′
f ,k〉 f

∂〈u f , j 〉 f

∂xk
− 〈u′′′

f , ju
′′′
f ,k〉 f

∂〈u f ,i〉 f

∂xk

S f ,pressure−strain,i j = − ρ f 〈α f 〉ε f

k f
c1, f (〈u′′′

f ,iu
′′′
f , j〉 f − 2

3 k f δi j ) − ρ f 〈α f 〉c2, f (Pf ,i j − 1
3 Pf ,kkδi j )

− ρ f 〈α f 〉cD(Pg,i j − 1
3 Pg,kkδi j )

Pg,i j = 2
τp

cg(〈uf ,k〉 f − 〈up,k〉p)2δikδ jk

S f ,dragstress,i j = ρp〈αp〉Pg,i j

S f ,dissipation,i j = −ρ f 〈α f 〉ε f ,i j

ε f ,i j = (c f
〈u′′′

f ,iu
′′′
f , j 〉 f

k f
+ 2

3 (1 − c f )δi j )ε f

S f ,interphase,i j = 2ρp〈αp〉
τp

(β f pγsgn,i j |〈u′′′
f ,iu

′′′
f , j〉 f 〈u′′

p,iu
′′
p, j〉p|1/2 − β f 〈u′′′

f ,iu
′′′
f , j〉 f )

γsgn,i j = {sgn(〈u′′′
f ,iu

′′′
f , j〉 f ) if sgn(〈u′′′

f ,iu
′′′
f , j〉 f ) = sgn(〈u′′

p,iu
′′
p, j〉p),

0 otherwise.

Fluid-phase turbulent dissipation transport
∂ρ f 〈α f 〉ε f

∂t + ∂ρ f 〈α f 〉ε f 〈u f ,i〉 f

∂xi
= Sf ,dissipation

Sf ,dissipation = Sε f ,flux + Sε f ,generation + Sε f ,destruction + Sε f ,interphase + Sε f ,drag

Sε f ,flux = ∂

∂xi
ρ f 〈α f 〉(ν f + ν f ,T

ηε
)

∂ε f

∂xi

Sε f ,generation = ρ f 〈α f 〉ε f

2k f
cε1Pf ,kk

Sε f ,destruction = − ρ f 〈α f 〉ε f

k f
cε2ε f

Sε f ,interphase = 2ρp〈αp〉
τp

cε3(β f p
√

ε f εp − β f ε f )

Sε f ,drag = ρp〈αp〉εp

kp
cε4Pg,kk
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TABLE VII. Reynolds-stress model equations part III.

Particle-phase Reynolds-stress transport
∂ρp〈αp〉〈u′′

p,iu
′′
p, j 〉p

∂t + ∂ρp〈αp〉〈u′′
p,iu

′′
p, j 〉p〈up,k 〉p

∂xk
= Sp,stress,i j

Sp,stress, ji = Sp,flux,i j + Sp,production,i j + Sp,pressure−strain,i j + Sp,dissipation,i j + Sp,interphase,i j

Sp,flux,i j = ∂

∂xk
ρp〈αp〉p((νp + νp,T

ηk
)

∂〈u′′
p,iu

′′
p, j 〉p

∂xk
+ νp,T

ηk

∂〈�p〉p

∂xk
δi j )

νp,T = cp,μ
k2

p

εp

Sp,production,i j = ρp〈αp〉Pp,i j

Pp,i j = −〈u′′
p,iu

′′
p,k〉p

∂〈up, j 〉p

∂xk
− 〈u′′

p, ju
′′
p,k〉p

∂〈up,i〉p

∂xk

Sp,pressure−strain,i j = ρp〈αp〉εp

kp
c1,p(〈u′′

p,iu
′′
p, j〉p − 2

3 kpδi j ) − ρp〈αp〉c2,p(Pp,i j − 1
3 Pp,kkδi j )

Sp,dissipation,i j = −ρp〈αp〉εp,i j

εp,i j = (cp
〈u′′

p,iu
′′
p, j 〉p

kp
+ 2

3 (1 − cp)δi j )εp

Sp,interphase,i j = 2ρp〈αp〉
τp

(β f pγsgn,i j |〈u′′′
f ,iu

′′′
f , j〉 f 〈u′′

p,iu
′′
p, j〉p|1/2 − 〈u′′′

p,iu
′′′
p, j〉p)

Particle-phase turbulent dissipation transport

Sp,dissipation = Sεp,flux + Sεp,generation + Sεp,destruction + Sεp,interphase

Sεp,flux = ∂

∂xi
ρp〈αp〉(νp + νp,T

ηε
) ∂εp

∂xi

Sεp,generation = ρp〈αp〉εp

2kp
cε1Pp,kk

Sεp,destruction = − ρp〈αp〉εp

kp
cε2εp

Sεp,interphase = 2ρp〈αp〉
τp

cε3(β f p
√

ε f εp − εp)

TABLE VIII. Reynolds-stress model equations part IV.

Particle-phase pressure transport
∂ρp〈αp〉〈Pp,i j 〉p

∂t + ∂ρp〈αp〉〈Pp,i j 〉p〈up,k 〉p

∂xk
= SP,i j

SP,i j = SP,flux,i j + SP,dissipation,i j + SP,generation,i j + SP,collision,i j + SP,interphase,i j

SP,flux,i j = ∂

∂xk
ρp〈αp〉(κp + νp,T

η�
)

∂〈Pp,i j 〉p

∂xk

κp = νp

Prp

Prp = 16−11ec
15−5ec

SP,dissipation,i j = ρp〈αp〉εp,i j

SP,generation,i j = −ρp〈αp〉((〈Pp,ik〉p + 〈Gp,ik〉p)
∂〈up, j 〉p

∂xk
+ (〈Pp, jk〉p + 〈Gp, jk〉p)

∂〈up,i〉p

∂xk
)

SP,collision,i j = 2ρp〈αp〉
τc

(�∗
i j − 〈Pp,i j〉p)

�∗
i j = (1+ec )2

4 〈�p〉pδi j + (1−ec )2

4 〈Pp,i j〉p

τc = dp

6〈αp〉g0 (
〈�p〉p

π
)
1/2

SP,interphase,i j = − 2ρp〈αp〉
τp

〈Pp,i j〉p
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APPENDIX B: NOMENCLATURE

Tables IX, X, and XI contain the definitions and nominal values where applicable for the
parameters and variables applied in this work.

TABLE IX. Nomenclature and nominal values of parameters part I.

C 11 Low-Reynolds-number wall parameter
CCFL Courant number from the Courant-Friedrichs-Lewy (CFL) condition
C� Wall granular energy redistribution coefficient
c1,n Phase pressure-strain Reynolds-stress redistribution coefficient
c2,n Phase pressure-strain production redistribution coefficient
cc 2 Collision coefficient
cD Pressure-strain drag redistribution coefficient
cg Drift velocity coefficient
cn 0.93 Phase dissipation tensor blending coefficient
cn,μ 0.23 Phase turbulent viscosity coefficient
cε1 1.44 Turbulent eddy generation dissipation coefficient
cε2 1.92 Turbulent eddy destruction dissipation coefficient
cε3 0.736 Turbulent interphase dissipation coefficient
cε4 1.92 Turbulent drag dissipation coefficient
dp 45, 150 μm Particle diameter
ec 0.9 Particle restitution coefficient
ew 1 Wall restitution coefficient
g0 Radial distribution function
gi Gravitational acceleration
Kdrag Overall drag coefficient
kn Phase turbulent kinetic energy
k� Granular conductivity coefficient
Map Particle-phase Mach number
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TABLE X. Nomenclature and nominal values of parameters part II.

Pg,i j Drag production tensor
Pn,i j Phase production tensor
Pn,εwall,ii Near-wall modeled production tensor
Prp Granular Prandtl number
pf Fluid-phase pressure
Re f Fluid Reynolds number
S Cell surface
Sn Phase source or sink term
un,i Phase velocity
u′′′

f ,i Fluctuating component of fluid velocity

u′′
p,i Fluctuating component of particle velocity

〈u′′′
f ,iu

′′′
f , j〉 Fluid-phase Reynolds-stress tensor

〈u′′
p,iu

′′
p, j〉 Particle-phase Reynolds-stress tensor

V Cell volume
y+

n Phase boundary layer coordinate
A Diagonal coefficients
Dw Granular energy production from wall slip
D� Granular energy production from wall collisions
E 9.0 Wall roughness coefficient
Gp,i j Collisional pressure tensor
H Off-diagonal contributions to the fluid-phase equation
Pp,i j Particle-phase pressure tensor
Vw Wall collision velocity
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TABLE XI. Nomenclature and nominal values of parameters part III.

αn Phase volume fraction
αp,max 0.63 Maximum packing fraction
β f 1.03 Interphase drift coefficient
β f p 0.876 Interphase correlation coefficient
βw,i j Pure-fluid wall redistribution tensor
γ f Inverse sum of the diagonal coefficients and overall drag coefficient
γn,i j Phase wall boundary anisotropy coefficient
γsgn,ig Asymmetric sign control coefficient
ηε 1 Turbulent viscosity dissipation coefficient
ηk 1 Turbulent viscosity coefficient
ηn,iso Phase anisotropy parameter
η� 1 Turbulent Prandtl number
�∗ Collisional energy source term
�wall Wall-normal mesh length of near-wall cells
εn Phase turbulent dissipation
εn,i j Phase turbulent dissipation tensor
κ 0.41 von Kármán constant
κp Granular conductivity coefficient
φ Phase mass loading ratio
φs 0 Specularity coefficient
φn Phase surface velocity flux
ρn Phase density
τc Particle collision timescale
τp Stokes drag model constant
�p Granular temperature
νn Phase viscosity
νn,T Phase turbulent viscosity
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