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Designing locomotory gaits for synthetic microswimmers has been a challenge due to
stringent constraints on self-propulsion at low Reynolds numbers (Re). Here, we introduce
a new theoretical approach of designing a class of self-learning, adaptive (or “smart”)
microswimmers via reinforcement learning. Diverging from the traditional paradigm of
specifying locomotory gaits a priori, here a self-learning swimmer can develop and adapt
its propulsion strategy based on its interactions with the surrounding medium. We illustrate
this new approach using a minimal but representative model swimmer consisting of an
assembly of spheres connected by extensible rods. Without requiring any prior knowledge
of low Re locomotion, we demonstrate that this self-learning swimmer can recover a
previously known propulsion strategy, identify more effective locomotory gaits, and adapt
its locomotory gaits in different media. This approach opens an alternative avenue to
designing the next generation of smart microrobots with robust locomotive capabilities.

DOI: 10.1103/PhysRevFluids.5.074101

I. INTRODUCTION

Swimming at the microscopic scale encounters stringent constraints due to the dominance of vis-
cous over inertial forces at low Reynolds numbers (Re) [1,2]. As a result of kinematic reversibility,
Purcell’s scallop theorem rules out reciprocal motion (i.e., strokes with time-reversal symmetry)
for effective locomotion in the absence of inertia [1]. Common macroscopic propulsion strategies
thus become ineffective in the microscopic world. Microorganisms have evolved diverse locomotion
strategies [2,3], for instance, by rotating helical slender appendages (termed flagella) or propagating
deformation waves along flagella via actions of molecular motors, to escape the constraints of the
scallop theorem. Extensive efforts in the past few decades have sought to elucidate physical princi-
ples that underlie cell motility [4—8]. This has improved our general understanding of locomotion
at low Re, which in recent years has engendered a variety of synthetic microswimmers [9-11].

Synthetic microswimmers capable of navigating biological environments offer exciting opportu-
nities for biomedical applications, such as microsurgery and targeted drug delivery [12,13]. Purcell
pioneered the design of synthetic microswimmers by inventing a sequence of movements with
a three-link swimmer (known as Purcell’s swimmer) in a nonreciprocal manner to generate self-
propulsion [1,14,15]. Subsequent interdisciplinary efforts have recently resulted in major advances
in the design and fabrication of synthetic microswimmers. While some designs are biomimetic or
bioinspired (e.g., swimmers with appendages that resemble flagella of microorganisms [16-20]),
others ingeniously exploit physical (e.g., Najafi-Golestanian’s swimmer [21] and Purcell’s “rotator”
[22]) and/or physicochemical (e.g., catalytic Janus motors [23,24]) mechanisms available in the
microscopic world to self-propel in the absence of inertia.

Successful biomedical applications of synthetic microswimmers rely on their ability to traverse
vastly different biological environments, including blood-brain, gastric mucosal barriers, and

2469-990X/2020/5(7)/074101(12) 074101-1 ©2020 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.5.074101&domain=pdf&date_stamp=2020-07-10
https://doi.org/10.1103/PhysRevFluids.5.074101

TSANG, TONG, NALLAN, AND PAK

Reinforcement learning (¢) 25

Self-learning

Q(S’Vl7 an) — Q(5n7 an) 2 in progress
+a [Tn + v gla‘XQ(SnJrla (ln+1) - Q(Sna (ln)} !
n1 e o—o
157 &%=
Reward (rr) Action (an) oo

Interaction with surrounding fluid 1 Learning
Vp = puV3v D outcome
State (Sn) V-v=0 0.5 o oo
l—e o—o—o
(b) —¢ q12 0 oo —o
—eo—o o—o—o
2R ol q21 Cy o——o—o
: : 05 oo
’141“"114 q32 \ l q23 1 oo —o
o —o . ~o—0o—o i 20 40 60 80 100 120
C4 34 05 n

FIG. 1. A self-learning swimmer at low Reynolds numbers. (a) Schematic of reinforcement learning of
a swimmer that progressively learns how to swim by interacting with the surroundings. (b) A state diagram
for a three-sphere swimmer, where ¢;; are entries in the Q-matrix that evolve based on reinforcement learning.
(c) A typical learning process of a self-learning three-sphere swimmer. The learning outcome is consistent with
Najafi-Golestanian’s swimmer [21]. We set y = 0.8 and € = 0.05 in (c) and £ = 10R and e = 4R in all cases
in this work.

tumor microenvironments [25-27]. Despite significant progress over the past decades, existing
microswimmers are typically designed to have fixed locomotory gaits for a particular type of
medium or environmental condition. However, gaits that are optimal in one medium may become
ineffective in a different medium; hence, locomotion performance of synthetic microswimmers with
fixed locomotory gaits may not be robust to environmental changes. In contrast, natural organisms
show robust locomotion performance across varying environments by adapting their locomotory
gaits to the surroundings [28-30]. Without adaptability like their biological counterparts, it remains
formidable for synthetic microswimmers to operate in complex biological media with unpredictable
environmental factors. Novel approaches via modular microrobotics and the use of soft active
materials have been recently proposed to tackle these challenges [31-36].

Here we leverage the prowess of machine learning to investigate a new approach in designing
low Re swimmers. Machine learning has enabled the design of artificial intelligent systems that can
perform complex tasks without being explicitly programed [37]. This approach has also sparked
several novel directions in fluid mechanics, including modeling of turbulence [38,39], fish schooling
[40—42], soaring birds [43,44], bacterial swarms [45], wake detection [46], and navigation problems
[47,48]. Unlike other pioneering works that coarse-grained microswimmers as active particles and
assumed a priori the existence of a self-propelling velocity [47,48], here we focus on a more fun-
damental challenge of generating self-propulsion at low Re. We ask the general questions: Without
any prior knowledge on low Re locomotion, can a swimmer learn how to escape the constraints of
the scallop theorem for self-propulsion via a simple machine learning algorithm? How well does
this self-learning approach perform for a system with multiple degrees of freedom? Can such a
self-learning swimmer adapt its locomotory gaits to traverse media with vastly different properties?

This work contributes to the development of microswimmers by leveraging machine learning
to move away from the traditional paradigm of specifying locomotory gaits in advance; instead,
a self-learning swimmer can develop and adapt its propulsion strategy based on its interactions
with the surrounding environment. Through a minimal but representative canonical swimmer,
we demonstrate how a standard reinforcement learning technique already equips the swimmer
with previously unattainable capabilities. Specifically, we show that, without requiring any prior
knowledge of low Re locomotion, a self-learning swimmer can (1) recover the swimming strategy
by Najafi and Golestanian [21] (Fig. 1), (2) identify more effective locomotory gaits with increased
degrees of freedom (Figs. 2 and 3), and (3) adapt locomotory gaits in different media (Fig. 4).
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This approach offers a new avenue for resolving outstanding challenges in the application of
microswimmers in complex environments.

II. SWIMMING AT LOW RE VIA REINFORCEMENT LEARNING

As a model swimmer, we consider here a simple reconfigurable system consisting of N spheres
connected by N — 1 extensible rods of negligible diameters [Fig. 1(b)]. Each configuration of
the N-sphere system can transition to N — 1 different configurations by extending or contracting
one of the connecting rods. Previous studies have used similar reconfigurable systems to generate
net translation (e.g., Najafi-Golestanian’s swimmer [21] and its variants [49-52]), rotation [22],
and combined motion [53,54]. Unlike these traditional approaches where the swimming strokes
were specified, here the spheres will self-learn propulsion policies based on knowledge gained by
interacting with the surroundings via reinforcement learning [55].

A. Reinforcement learning

The use of reinforcement learning enables the swimmer to progressively learn how to act by
interacting with the surrounding fluid [Fig. 1(a)]. For a given configuration of the swimmer (the
state, s,,) in the n-th learning step, the swimmer can extend or contract one of its rods (the action,
ap) to transforms from the current state to a new state. Such an action results in a displacement of
the swimmer’s body centroid (the reward, r,,), which measures the immediate success of the action
relative to its goal. Here we scale the cumulative displacement d of the swimmer’s body centroid by
the sphere radius R to track the dimensionless cumulative displacement D = d/R of the swimmer.

We implemented reinforcement learning by a standard Q-learning algorithm for its simplicity
and expressiveness [56]. The experience gained by the swimmer is stored in a Q-matrix, Q(s,, a,),
which is an action-value function that captures the expected long-term reward for taking the action
a, given the state s,,. After each learning step,

O(Sn, an) < O(sn, an) + a[rn + v maxQ(sp+1, @n+1) — Q(sn, an)] (D

An+1

Here, « is the learning rate (0 < o < 1), which determines to what extent new information overrides
old information in the Q-matrix. Unless otherwise specified, we fixed « = 1 to maximize learning
in a fully deterministic system. The Q-matrix encodes the adaptive decision-making intelligence of
the swimmers by accounting for both immediate reward r,, and maximum future reward at the next

state, maxQ(s,+1, an+1). The discount factor y assigns a weight to immediate versus future rewards
Apt1

(0 <y < 1). When y is small, the swimmer is shortsighted and tends to maximize the immediate
reward; when y is large, the swimmer is farsighted and focuses more on future rewards. In addition,
we incorporated an e-greedy selection scheme: in each learning step, the swimmer chooses the
best action advised by the Q-matrix with a probability 1 — € or takes a random action with a small
probability €, which allows the swimmer to explore new solutions and avoids being trapped in only
locally optimal policies.

B. Hydrodynamic interactions

The interaction between the spheres and the surrounding viscous fluid is governed by the Stokes
equation, Vp = uV?2v. For incompressible flows, V - v = 0. Here, p and v represent, respectively,
the pressure and velocity fields, and u represents the dynamic viscosity. We used the Oseen tensor to
consider the hydrodynamic interaction between spheres that are spaced far apart (R/¢ < 1) [21,57].
The linearity of the Stokes equation allows us to relate the velocities of the sphere V; and the forces
F; acting on them as

N
Vi=) H;F;. 2)
j=1
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Here, the Oseen tensor H;; for spheres is given by

H. — I/6m uR, ifi=j 3)
Q8 i DA+ xijxi /1xi1%),if i
where I is the identity matrix and x;; = X; — X; denotes the vector between spheres i and j. The

instantaneous positions of the spheres x; are determined by enforcing, respectively, the force-free
and torque-free conditions,

N
> Fi=0, “4)
i=1

N

ZF,’ X X; = 0. (5)

i=1

The linearity and time-independence of the Stokes equation imply that the displacement of a
swimmer depends only on the sequence of configurations (or states) changes of the swimmer. The
sequence of state changes hence defines the propulsion policy of a low Re swimmer [1,2].

III. RESULTS AND DISCUSSION

A. A self-learning three-sphere swimmer

We first considered a three-sphere swimmer (N = 3), which has the minimal degrees of freedom
for swimming at low Re [1,21] [Figs. 1(b) and 1(c), Movie S1]. The swimmer has four different
configurations [Fig. 1(b)]. In each learning step, the swimmer switches from one configuration
to another, and updates the corresponding entry in the Q-matrix according to Eq. (1) (see Sec. II
in the Supplemental Material [58] for the evolution of the entries). Figure 1(c) depicts a typical
self-learning process: the swimmer initially struggles to find a policy to swim forward and thus
moves back and forth (left inset), where D remains close to 0. The swimmer keeps exploring
the surrounding medium by taking different actions and adapting its propulsion policy. After
accumulating enough knowledge, the swimmer develops an effective propulsion policy that repeats
the same sequence of action (except with € probability, at which a random action is chosen), and
swims with increasing D (right inset). The propulsion policy obtained by our learning algorithm
for a three-sphere swimmer is consistent with Najafi-Golestanian’s swimmer [21]. This example
demonstrates, for the first time, how reinforcement learning enables a swimmer to self-learn how to
swim with no prior knowledge of low Re locomotion.

B. Extending to N-sphere swimmers

We applied this self-learning approach to systems with increased number of spheres. Unlike the
three-sphere (N = 3) swimmer, where only one propulsion policy leads to net translation, multiple
propulsion policies are possible when the number of spheres increases [53]. In Fig. 2(a), we first use
a four-sphere system (N = 4) to illustrate that a swimmer equipped with reinforcement learning is
not only able to identify multiple propulsion policies (e.g., policies I-III) but also self-improves and
evolves a better policy during the learning process (e.g., from policy I to policy II; see Movie S2). We
illustrate the effect of discount factor y on the learning outcomes: first, with y = 0.6, the swimmer
learns one propulsion policy in the initial stage [Fig. 2(a), policy I]. Through continuous learning,
the swimmer keeps modifying its Q-matrix and eventually identifies a better propulsion policy
[Fig. 2(a), policy II], as indicated by the increased slope of D in the left panel of Fig. 2(a). We note
that this propulsion policy [Fig. 2(a), policy II] is reminiscent of the propagation of a longitudinal
traveling wave along a cell body [59] and was shown to be optimal for a four-sphere system
[53]. We note that continuous improvement of the propulsion policy does not always happen, as
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FIG. 2. Self-learning of N-sphere swimmers. (a) A four-sphere swimmer learns several propulsion policies
depending on y. We set ¢ = 0.05. Panels (I)~(IV) depict four different policies obtained throughout the learning
process, showing number of strokes (Nyyoke) and net displacement over one cycle (A, scaled by R): (II) is the
optimal policy with a longitudinal traveling wave pattern and (IV) is a failed policy with which the swimmer
does not swim. (b) The learning outcome as a function of y and total number of learning steps Me.r. Here, we
varied y from 0.1 to 0.9 in increments of 0.1 and Ny, between 100 (shaded regions in gray), 500 (yellow),
and 5000 (purple), with a fixed € = 0.1. Each bar represents the results of 1,000 individual simulations and
the colors of each segment represent the net displacement over one cycle divided by the number of strokes,
A. Since distinct propulsion policies can have the same A and hence the same color, they are separated by
a black border in the bar. The middle of each bar represents the averaged A for the 1,000 simulations, (A).
(c, d) Trade-off between exploration and exploitation. Introducing an e-greedy scheme with € = 0.05 allows
the swimmer to escape from locally trapped policies and evolve a better propulsion policy: (c¢) The swimmer
transitions from a failed to a successful policy at y = 0.4. (d) The swimmer transitions from a sub-optimal to
an optimal propulsion policy at y = 0.9.

demonstrated with y = 0.3 in Fig. 2(a). In this case, the swimmer learns a different but suboptimal
propulsion policy [Fig. 2(a), policy III] and cannot improve the policy further. When y is even
smaller (e.g., y = 0.1), the swimmer fails to learn any effective propulsion policy; the swimmer
moves back-and-forth with zero net translation [Fig. 2(a), policy IV].

C. Influences of learning parameters on self-learning swimmers

In this section, we systematically investigated the influences of learning parameters on self-
learning swimmers. Here we consider a four-sphere swimmer as an example; as shown in Fig. 2(a),
the four-sphere swimmer can evolve to multiple propulsion strategies as a result of the reinforcement
learning. The learning outcome depends on how much the swimmer values an immediate reward
(y), how often the swimmer explores randomly (¢), and how many learning steps the swimmer takes
(MNearn)- We explored different possibilities by performing simulations with random initial states,
where we fixed € = 0.1 and varied y and MNe,m. We performed 1000 simulations for each set of
parameters and extracted the resulting propulsion policies given by the Q-matrix after learning. To
distinguish propulsion policies with different numbers of strokes per cycle, we characterized each
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propulsion policy by the displacement per stroke, A = A /Ngyoke, Which divides the net displacement
over one cycle A by the number of strokes in the cycle Nygow. The average of A over 1000
simulations is defined as (A). The simulation results revealed three main findings [Fig. 2(b)]:

First, given sufficiently large Nieyrm (€.2., NMearn = 5000), the learning process evolves into three
major outcomes, depending on the value of y [Fig. 2(b)]. At a small y (<£0.2), the swimmer fails to
swim [e.g., a two-stroke policy in Fig. 2(a), policy IV]. At an intermediate y (e.g., y = 0.3 to 0.4),
the swimmer identifies an effective but suboptimal policy [e.g., a four-stroke policy in Fig. 2(a),
policy III]. At a large y (=0.5), the swimmer learns the optimal policy [a six-stroke policy in in
Fig. 2(a), policy II], which corresponds to a longitudinal traveling wave pattern.

Second, there exists a threshold of y, below which the swimmer cannot learn the optimal
propulsion policy (e.g., for a four-sphere system, the critical y < 0.5). The learning process leads to
suboptimal policies even with many learning steps. This occurs because compared to the suboptimal
policies, the optimal policy involves more swimming strokes, including those that contribute
immediate, negative rewards in the cycle. Therefore, only a far-sighted swimmer (large y) can learn
the optimal propulsion policy. Before the propulsion policy converges (e.g., when Nig,m = 100),
a small portion of swimmers at y = 0.4 follow the optimal policy due to random initialization
of the Q-matrix, but the policy eventually converges to a suboptimal policy at large Nje,m (e.2.,
Mearn = 5000)

Third, for a given number of learning steps Njeam, an optimal y maximizes the portion of swim-
mers that can acquire the optimal propulsion policy [Fig. 2(b)]. As Njeam increases, the optimal y
increases its value from y ~ 0.5 for Nieam = 100 to y & 0.7 for Mearn = 500. These results illustrate
that while a sufficiently large y is necessary to acquire the optimal policy, an excessively large y
(e.g., y = 0.9) can delay the learning of the optimal policy because the swimmer becomes too far-
sighted and largely ignores immediate rewards for new possibilities. In addition, when there is only
a small number of learning steps [e.g., Mearn = 100 in Fig. 2(b)], this emphasis on long-term benefits
results in harvesting more distinct policies as y increases, which can hamper the overall learning
outcomes [see decrease in (A) for learning processes with Njegrn = 100 and y > 0.5 in Fig. 2(b)].

The effects of € on self-learning the propulsion policy are obvious when we compared € = 0 and
€ > 0 1in Figs. 2(c) and 2(d). When € = 0 (greedy policy), the swimmer can get trapped in certain
suboptimal propulsion policies. For instance, a swimmer may be trapped in a failed policy that
yields no net displacement [white region in Fig. 2(c)] or an effective but suboptimal policy [white
region in Fig. 2(d)]. In either case, the introduction of € > O (epsilon-greedy policy) helps kick
the swimmer away from these locally trapped policies, thus enabling the swimmer to continually
improve its propulsion policy to its fullest extent for a given value of y [blue regions in Figs. 2(c)
and 2(d)]. We remark that, however, the e-greedy scheme does not show any significant effect in
the regime of small y (<0.2), where the swimmer fails to learn any effective policy as shown in
Fig. 2(a), even with a fourfold increase in €.

Taken together, these findings reveal how learning parameters influence the robustness of the
self-learning approach for identifying effective propulsion policies.

D. Benchmarking the self-learning approach

Next we probed the performance of the Q-learning approach for swimmers consisting of up
to ten spheres (i.e., N = 3 to 10) in Fig. 3. With sufficiently large number of learning steps, we
found that these N-sphere swimmers all learn the propulsion policy reminiscent of the longitudinal
traveling wave pattern illustrated in Fig. 2(a), policy II. For every N considered, we evaluated the
minimum number of learning step required for a swimmer to learn the traveling-wave propulsion
policy (NgL, blue box plots in Fig. 3). More learning steps are required for systems with increased
number of spheres as expected, but the rate of increase levels off for larger values of N. We note that
the learning algorithm harvests effective policies from a pool consisting of a tremendous number
of stroke combinations as the number of spheres increases. A crude estimate of the size of the
pool of combinations goes as follows: the number of combinations that have the same number of
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FIG. 3. The number of learning steps required for an N-sphere swimmer to learn the traveling-wave
propulsion policy is shown in the box plot. Here N, (blue box plots), Ny (red box plots), and Ngr (green
circles) represent results for Q-learning, Monte Carlo method, and brute-force search, respectively. In the
box plots, the midlines represent the median, and the box’s upper and lower bounds indicate the interquartile
range; the upper and lower whiskers denote the 9th and 91st percentile of the simulation data, respectively. We
performed 100 simulations for each value of N, where y = 0.9 and € = 0.3.

strokes as the traveling wave policy [i.e., 2(N — 1) number of strokes] is (N — 1)>**~D_ To perform
a brute-force search, a total number of Ngg = 2(N — 1)*¥~! steps are required to go through all
combinations (green dashed line, Fig. 3). The brute-force search becomes quickly intractable as
N increases and Ngr are orders of magnitude greater than Ng,. We also benchmark the results
with another commonly used scheme based on the Monte Carlo method [55]. Q-learning clearly
outperforms the Monte Carlo method as the degree of freedom of the system increases (e.g., N > 5).
See Sec. III in the Supplemental Material [58] for more details. These results indicate how standard
machine learning methods can be leveraged in Stokesian locomotion to harvest effective propulsion
policies from a tremendous number of stroke combinations. We remark that while the standard
Q-learning algorithm employed here can be extended to consider even larger values of N, there
exists a vast potential for improving the scalability for large state and action spaces using more
advanced machine learning approaches (e.g., combining Q-learning with deep convolutional neural
networks [60]).

E. Swimming performance in a noisy environment

We assessed how a self-learning swimmer behaves under the influence of random noises from
the environment. In each learning step, we introduced noise to the displacement Ad (and hence
reward) of the swimmer: r, = Ad(1 + £U), where £ is the noise level and U is a random variable
with a uniform distribution in [—1, 1]. To illustrate, we considered a three-sphere swimmer and
used cumulative displacement D at n = 200 as a metric for the performance of the swimmer under
increasing noise levels & [Fig. 4(a), Movie S3]. When the noise is weak (¢ < 0.5), the swimmer
with a learning rate @ = 1 (blue line) performs the best. As the noise level increases, « = 1 no
longer guarantees the best performance and different optimal values of « exist depending on the
noise level. Remarkably, when the noise level is as large as 100% of the instantaneous displacement
(¢ = 1), a self-learning swimmer with o = 0.8 still reaches over 85% of the mean displacement
compared with the noise-free environment (§ = 0); even when the noise level is twice as much as
the instantaneous displacement (§ = 2), a swimmer with « = 0.4 to 0.6 can retain over 60% of its
noise-free performance [Fig. 4(a)]. Thus, a self-learning swimmer can robustly adapt to swim in a
noisy environment, and further improve its performance by adjusting its learning rate.
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FIG. 4. A self-learning swimmer can adapt to different environments. (a) The performance of a self-
learning swimmer in a noisy environment. We measured the swimmer’s displacement D after n = 200 under
increasing noise level & and various learning rates «. Each data point represents the mean of D for 1000
simulations. The error bars denote the standard error of the mean. (b, c) A self-learner adapts its locomotory gait
to propel effectively in vastly different media: (b) In a frictional medium, Najafi-Golestanian’s strokes (termed
N-G-strokes; left inset) fails to propel (region I). When the learning algorithm is turned on, the self-learner
rapidly identifies new locomotory gaits (termed F-strokes; right inset) to propel effectively (region II); (c) in a
viscous fluid medium, F-strokes (left inset) also propels the swimmer (region III), but reinforcement learning
(region IV) enables the swimmer to re-learn the more effective N-G-strokes (right inset). In all cases, y = 0.7,
€ = 0.05.

F. Adaptive locomotion across different media

Finally, we demonstrated the adaptivity of this self-learning approach in a medium vastly
different from viscous fluids—a frictional environment [30,61,62] where motion arises by the
interaction of surface friction F; and net driving forces f; exerted on each sphere by the rods. We
considered here again a three-sphere swimmer for illustration. As will be shown below, the lack
of hydrodynamic interaction causes the Najafi-Golestanian’s strokes to become ineffective in the
frictional medium. We therefore incorporate additional degrees of freedom into the three-sphere
swimmer by allowing both rods to move in the same step, thereby enabling free transitions between
the four states in Fig. 1(b). We restricted our analysis to a standard Coulomb sliding friction law
[61,62]: when the magnitude of the net driving force on a sphere is greater than the sliding friction
F; (i.e., |f;| > Fy), the friction acting on the sphere is given by F; = —FSV,», where Vi =V,;/|Vil is
the velocity direction of the sphere. When |[f;| < Fj, the static friction balances the net driving force,
F,‘ = —f,'.

We consider again the inertialess regime, where inertial forces are subdominant to frictional
forces [62]. Frictional forces are therefore transduced directly to velocities instead of accelerations,
similar to the low Re regime in viscous flows. As a result, locomotion in frictional media in this
inertialess regime is kinematic (also a feature of Stokesian locomotion), in that the net displacement
is independent of its rate but only the sequence of deformations [63]. Despite the similarities
between frictional and viscous fluid media, a key difference is the absence of hydrodynamic
interactions in the frictional medium. This difference renders Najafi-Golestanian’s strokes (N-G-
strokes) of a three-sphere swimmer ineffective in a frictional medium [region I in Fig. 4(b); without
learning, Movie S4]. Nevertheless, when we turn on reinforcement learning and allow simultaneous
actuation of both rods, the self-learner rapidly adapts to the frictional medium and identifies a
new, effective propulsion policy (region II; F-strokes). We note that it takes significantly fewer
steps to learn propulsion policies in the frictional medium than in the viscous medium because the
F-strokes do not involve steps that contribute intermediate, negative rewards. Finally, we found that
the new locomotory gaits identified in the frictional medium (F-strokes) also propel a swimmer in
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a viscous fluid [region III in Fig. 4(c); without learning, Movie S5]; nevertheless, a swimmer with
reinforcement learning will explore, relearn, and evolve a better propulsion policy to adapt to the
surrounding medium (region IV; returning to the N-G-strokes). The adaptivity demonstrated here
represents a first step in realizing a smart “amphibian” microrobot that can move effectively in both
liquid and solid terrains by adjusting its locomotory gaits.

IV. CONCLUDING REMARKS

This work presents the first integration of machine learning into the design of locomotory gaits
at low Reynolds numbers. Several novel features emerge as a result of such integration, from the
self-learning of effective propulsion strategies to adaptive locomotion in response to environmental
changes. We considered a canonical example of N-sphere swimmer to illustrate this new approach
and set a benchmark for future applications of this new approach in other biological or synthetic
systems. There exists vast potential in further optimizing the learning algorithms or pursuing more
advanced machine learning approaches. Subsequent works will also focus on designing self-learning
swimmers with more complex maneuvers than net translation. We will also extend the investigation
to account for more realistic biological environments, which are typically highly heterogeneous
and display complex (non-Newtonian) rheological properties. We envision that this new approach
would be particularly relevant for complex environments where the physics of locomotion remains
not poorly understood, or when the properties of the medium are unpredictable or impossible to
characterize in advance.

Finally, while technological implementation is beyond the scope of this work, we discuss
several possible experimental platforms for implementation. Swimmers comprising of linked
spheres have already been realized experimentally by various actuation mechanisms, which enable
the transformation of a swimmer between different configurations, via optical tweezers [64] or
external magnetic fields [65-67]. In addition, soft active materials, including hydrogels [68,69]
and liquid-crystal elastomers [70], which exhibit configurational changes in response to heat or
light, form another class of potential actuation mechanisms for our model system [32,71]. These
actuation mechanisms are programmable and can be integrated with real-time microscopy [48]
to generate different locomotory gaits informed by reinforcement learning. To conclude, we have
leveraged the prowess of machine learning to demonstrate an alternative avenue to designing the
next generation of smart microrobots with robust locomotive capabilities. These initial theoretical
efforts and plausible implementation ideas call for future experimental realizations.
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