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Ultralow effective interfacial tension between miscible molecular fluids
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We exploit the deformation of drops spinning in a denser background fluid to investigate
the effective interfacial tension (EIT) between miscible molecular fluids. We find that,
for sufficiently low interfacial tension, spinning drops develop dumbbell shapes, with two
large heads connected by a thinner central body. We show that this shape depends not only
on the density and viscosity contrast between the drop and background fluids, but also
on the fluid molecular structure, and hence on the stresses developing at their interface
due to a different molecular interaction. We systematically investigate the dynamics of
dumbbell-shaped drops of water-glycerol mixtures spinning in a pure glycerol reservoir. By
developing a model for the deformation based on the balance of the shear stress opposing
the deformation, the imposed normal stress on the drop, and an effective interfacial tension,
we exploit the time evolution of the drop shape to measure the EIT. Our results show
that the EIT in water-glycerol systems is orders of magnitude lower than that reported in
previous experimental measurements, and in excellent agreement with values calculated
via the phase field model proposed by Truzzolillo et al. [Phys. Rev. X 6, 041057 (2016)].
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I. INTRODUCTION

Interfacial tension between immiscible fluids is a well-defined, well-known quantity of
paramount importance in a wide range of phenomena, from soft matter and material science to
biophysics, oil recovery and multiphase flow [1]. By contrast, the presence of capillary stresses at
the interface between miscible fluids is still debated and actively investigated. For miscible fluids,
equilibrium thermodynamics states that interfacial tension should not exist, the equilibrium state
being a homogeneous mixture of the fluids. However, transient capillary stresses between miscible
fluids were first postulated in 1901 by Korteweg, who asserted that stresses due to density (or
composition) gradients in a multifluid system could act as an effective interfacial tension (EIT)
[2]. Following his work, one can write the EIT, hereinafter denoted by �e, similarly to the tension at
equilibrium between immiscible fluids, i.e., by expanding the mixing free energy in even powers of
the concentration gradient ∇ϕ̃ [3]. By considering only the first term of this expansion, �e can be
written as

�e =
∫ +∞

−∞
κ (ϕ̃)(∇ϕ̃)2dz. (1)

Here ϕ̃ is the space-dependent volume fraction of one of the two fluids, z is the coordinate orthogonal
to the interface, and κ (ϕ̃) is the so-called Korteweg parameter, embedding the effect of the specific
interaction between the fluids [4,5]. Clearly, �e tends to zero with time t , as diffusion smears out the
interface, whose thickness increases, reducing ∇ϕ̃ with t [6]. Such a transient, out-of-equilibrium
interfacial tension has been invoked in literature to rationalize the behavior of miscible fluids at short
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times, before they are fully mixed, and several works tried to elucidate the role of stresses at miscible
boundaries, both theoretically [7–12] and experimentally. Among the strategies adopted to measure
the EIT between miscible fluids, the most recent ones leverage on the study of hydrodynamic
instabilities [5,13], on light scattering experiments probing capillary waves [6,14], and on the
observation of the shape of drops and threads under an external forcing [15–17]. Despite this effort,
the magnitude and even the very existence of EIT between simple molecular fluids is still debated
and mostly unclear.

One technique to measure very low interfacial tensions (10−3–10−2 mN/m [18,19]) is spinning
drop tensiometry (SDT), which is based on the observation of drop shapes. In an SDT experiment a
drop is injected in a denser background fluid contained in a cylindrical capillary. When the capillary
is spun, the drop elongates on the axis of rotation due to centrifugal forces. Following the drop
shape by means of video imaging, one can then measure the interfacial tension between the drop
and the background fluid. In the case of immiscible fluids, for which SDT was initially conceived by
Vonnegut [20], one typically measures the equilibrium shape of the drop, which is dictated by the
balance between surface tension and centripetal forces. The interfacial tension � is then obtained
through the Vonnegut equation [20]:

� = �ρω2r3

4
, (2)

where �ρ is the density difference between the background and drop fluids, ω the angular velocity,
and r the equilibrium radius of the drop. A second possibility is to characterize the time evolution
of the drop after a sudden rotational speed jump. Recently, we have employed this technique to
study the elongation dynamics of drops, both in miscible and immiscible background fluids [16],
showing that the drop dynamics towards an equilibrium state are characterized by a relaxation
time fully determined by (i) the viscosity of the fluids, (ii) the drop size, and (iii) the interfacial
tension. In the past few decades, SDT experiments aiming at characterizing equilibrium states
and diffusion processes have been performed by several groups to investigate the presence and
the relevance of an EIT between miscible fluids, either close to [15,21] or far from a spinodal
decomposition of the fluids [22,23]. Unfortunately, in the case of fully miscible molecular liquids,
such as water and glycerol, diffusion hampers the measurement of stationary states and literature
data are conflicting, sometimes even in experiments by the same authors [23,24]. Indeed, when �

is negligible a stationary state is never attained, as we showed for one specific pair of miscible
fluids with small compositional mismatch, namely a drop of a water-glycerol mixture (5 wt % H2O)
spinning in pure glycerol. As a result, the question of whether an EIT exists or not in such a case
has not been settled yet.

SDT experiments at low � are furthermore complicated by the fact that drops do not always
maintain a simple ellipsoidal shape. Even for immiscible fluids, for sufficiently low interfacial
tensions, they can develop a “dumbbell” or “dog-bone” shape consisting of two large heads
connected by a thinner central body, as reported in the case of water-hydrocarbon-surfactant systems
with � < 10 μN/m [25]. In this case a satisfactory explanation of the phenomenon is still lacking.
More recently [22], such shapes have been also observed in miscible fluids and have been attributed
to the effect of perturbation due to viscous secondary flows in finite reservoirs of rotating fluids.
Such an effect, till now unexplored, is the focus of the present work.

To set the scene, Fig. 1 shows examples of such dumbbell shapes for drops rotating in a pure
glycerol reservoir. Drops in panels A and C are composed of mixtures of water and glycerol,
respectively with water mass concentration cw = 0.75 and cw = 0.20, whereas the drop in panel
B is made of triethylene glycol (TEG). All drops are fully miscible with the glycerol background.
Strikingly, Fig. 1 shows that the development of a dumbbell shape depends not only on the density
and viscosity contrast with respect to the background fluid, but also on the molecular structure of
the fluids. Indeed, in absence of any interfacial stresses, the TEG drop should have an intermediate
shape between drops in panels A and C, since it has intermediate density and viscosity. This is
evidently not the case; consequently, Fig. 1 cannot be explained only by means of hydrodynamic
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(a) (b) (c)

FIG. 1. Dyed drops containing 75% H2O–25% glycerol (panel A), TEG (panel B), and 20% H2O–80%
glycerol (panel C). All drops spin in a reservoir of pure glycerol. Images are optically compressed in the
horizontal direction and expanded in the vertical direction to improve resolution, as detailed in the main text
(Sec. II).

arguments. Thus, characterizing the evolution of such drop shapes appears to be a promising strategy
to measure the effect of interfacial stresses between the drop and background fluids. In this work,
we tackle this challenging task and investigate experimentally the time evolution and the origin of
dumbbell-shaped drops by systematically varying the composition of the drop fluid in a series of
SDT experiments. Furthermore, we exploit fluorescent drops to track the time evolution of the full
concentration profile of the fluids in the capillary, instead of simply measuring the intensity profile
of the collected light. We model the temporal dynamics of the drop shape by balancing the normal
stress imposed on the drop surface, the shear stress opposing the deformation, and the effect of an
EIT, and we exploit the deformation dynamics to measure the effective interfacial tension between
miscible molecular fluids.

The rest of the work is organized as follows. In Sec. II we present the setup and materials
employed, and elucidate the procedure to extract the concentration profile of the fluids in the
capillary. In Sec. III we present the data on the deformation dynamics of drops, discussing our
results in the light of a model allowing one to measure �e. Finally, in Sec. IV we make some
concluding remarks and summarize the key results of our work.

II. MATERIALS AND METHODS

Glycerol (�99.5 wt %) was purchased from Sigma Aldrich and used as received. Water-glycerol
mixtures were prepared using Milli-Q ultrapure water, with densities ρ and viscosities η reported
in Table I as a function of water mass fraction cw, for T = 25.0 ± 0.5 ◦C. The water mass fraction
was determined via rheological measurements as detailed in Table I. Fluorescein (disodium salt)
was purchased from Merck KGaA and dissolved in the drop fluids at two concentrations, 2 × 10−3

wt/wt and 10−3 wt/wt, for two independent sets of measurements as detailed later. Experiments
were performed with a Krüss spinning drop tensiometer at 25.0 ± 0.5 ◦C, with rates of rotation
ranging from 6000 to 15 000 rpm, so that buoyancy could be neglected. All drops were injected with
a 1 μl syringe in a capillary with an internal diameter of 3.25 mm, prefilled with glycerol before
each experiment. The time between the injection and the beginning of the rotation was typically
10–15 seconds. After each measurement, the fluids were replaced and a fresh new drop was injected
in the capillary. To image the drops, the tensiometer is equipped with a blue LED with dominant
wavelength of 469 nm for illumination and a CMOS camera (Toshiba Teli BU406M) for imaging.
Since the drops become very elongated, we use as an objective two cylindrical lenses (Newport
CKX17-C) that expand the field of view in the horizontal direction x and compress it in the vertical
direction y. As described in [16], the resulting magnification in the x (horizontal) direction is Mx =
0.3, while the magnification in the y (vertical) direction is My = 3.36. The different horizontal and
vertical magnifications allow one to follow the dynamics of very elongated drops along almost all
the capillary length (5 cm), while gaining at the same time in accuracy along the vertical direction.
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TABLE I. Densities and viscosities of the water-glycerol mixtures used in the experiments.

Liquid ρ (g/cm3)a η (mPa s)b

Glycerolc (cw � 0.02) 1.26 ± 0.01 800.0 ± 0.1
cw = 0.25 1.19 ± 0.01 33.8 ± 0.1
cw = 0.45 1.12 ± 0.01 9.0 ± 0.1
cw = 0.70 1.07 ± 0.01 2.8 ± 0.1
cw = 0.75 1.06 ± 0.01 2.3 ± 0.1
cw = 0.90 1.02 ± 0.01 2.2 ± 0.2
Waterd 0.996 ± 0.001 0.89 ± 0.01

aDensities of water-glycerol mixtures were obtained from tabulated values [26] corresponding to mixtures
having the measured zero-shear viscosities.
bThe viscosities of water-glycerol mixtures and pure glycerol were measured by performing steady rate
rheology experiments using a stress-controlled AR 2000 rheometer (TA Instruments) with a steel cone-and-
plate geometry (cone diameter = 50 mm, cone angle = 0.0198 rad). No dependence of the viscosity on the
shear rate was observed as all samples showed pure Newtonian response.
cThe viscosity of the glycerol used as the background fluid is lower than that tabulated for anhydrous glycerol
[26] because of the unavoidable adsorption of water from the atmosphere.
dThe viscosity and the density of water were measured using a rolling-ball Anton Paar Lovis 2000ME
microviscosimeter and a DMA 4500M densimeter, respectively.

Following the magnification stage, a blue light filter in front of the CMOS eliminates the blue
background light.

A. Concentration profiles

An example of the optically compressed images of the drops obtained with the experimental
setup is shown in Fig. 2(a), displaying the typical time evolution of a drop of pure water spinning
in pure glycerol. A further step is required to follow more precisely the evolution of the interface.
To this end, we extract the concentration profile of the drop fluid from the fluorescence intensity,
in order to define precisely the drop boundary. Note that, strictly speaking, the fluorescence signal

FIG. 2. (a) Time evolution of the fluorescence intensity recorded for a typical drop of pure water in
a pure glycerol background. Note the different magnification in the horizontal and vertical directions.
(b) Concentration profiles reconstructed from the fluorescence intensity images of panel (a), as detailed in
the text. In panel (b), the scale is the same in the horizontal and vertical directions. The black line represents
the drop surface, defined as the set of points where ϕ̃(x, r) = 0.5.
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FIG. 3. Scheme of the drop for the inversion routine to retrieve the concentration profile from the
fluorescence intensity. We typically use N = 204 shells; for clarity, only the first four shells are shown here. The
fluorescence intensity distribution generally varies along the x direction, yielding an x-dependent concentration
profile for the drop fluid ϕ̃(x, r).

comes from the spatial distribution of fluorescein, not that of the drop fluid. However, over the
timescale of our experiments (∼10 s) we assume the concentration profile of fluorescein to closely
follow the one of the drop fluid, since there is not enough time to develop an appreciable difference
in distribution of the two components. To support this claim, we compare the diffusion coefficients
of water (the drop fluid) and of fluorescein in the background glycerol. The self diffusion coefficient
of water is Dw = 1.025 × 10−9 m2/s and the diffusion coefficient of water in glycerol is Dwg =
1.4 × 10−11 m2/s [27]. On the other hand, the diffusion coefficient of fluorescein in water is D f w =
6.4 × 10−10 m2/s [28]. We estimate the diffusion coefficient of fluorescein in glycerol as D f g �
D f w

Dwg

Dw
� 8.7 × 10−12 m2/s. Therefore, the difference between the distances over which water and

fluorescein may diffuse over the time scale of our experiments is lw − l f ≈ 3 μm, much smaller
than the resolution with which we measure the drop shape, which we determine to be a few tens of
μm. Consequently, we can safely assume the concentration profile of the fluorophore to represent
well that of the drop fluid. Furthermore, by changing the concentration of fluorophore over more
than one decade (from 1 × 10−4 wt/wt to 2.5 × 10−3 wt/wt), we tested that the concentration of
fluorescein is directly proportional to the light intensity collected.

These considerations, together with an additional symmetry argument, allow linking the intensity
of the collected light to the x dependent radial concentration profile of the drop fluid. Exploiting
the cylindrical symmetry of the drops, one can move from a bidimensional intensity image to a
three-dimensional concentration map.

In order to do so, we divide the drop into N concentric cylindrical shells of radius ri and constant
thickness dr, each of them having a local value of water volume fraction ϕ̃i (see Fig. 3). The
fluorescence intensity at a given horizontal coordinate x and vertical coordinate y is be given by
the sum over the contributions of each shell, weighted by a geometric factor ci proportional to
the length of the chord that traverses such shell at coordinate y, along the z direction, i.e., the
line of sight.

Accordingly, the intensity distribution reads

I (xk, y j ) =
N∑

i=1

ci(y j )ϕ̃i(xk ), (3)
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(a) (b)

FIG. 4. (a) Time evolution of the deformation amplitude h for a drop of pure water in a pure glycerol
background, at different ω as shown by the labels. (b) Deformation velocity as a function of the centripetal
forcing, for various water mass fractions in the drop. The inset shows the slope of the velocity versus �Pω,
obtained by fitting independently datasets at a given cw with a straight line.

where the indexes k and j have been introduced to account for the discretization of I on the pixel
grid of the CMOS camera. For a given xk , one can recast the problem in the matrix form

I = Cϕ̃, (4)

with I = {I j}, C = {c ji}, and ϕ̃ = {ϕ̃i}; and I j ≡ I (xk, y j ), c ji ≡ ci(y j ), and ϕ̃i ≡ ϕ̃i(xk ). For each
k, the solution is thus ϕ̃ = C−1I. This procedure is mathematically equivalent to calculating a
discrete version of the inverse Abel transform of the intensity distribution of the fluorescent light.
Furthermore, the inversion of the matrix C is sped up by exploiting the symmetry of the drop around
the longitudinal axis, which translates into the condition that C is lower-diagonal. By solving Eq. (4)
for all xk of interest, one obtains the concentration map of the the drop fluid in the capillary, as shown
in Fig. 2(b). We use the maps to define the drop surface as the set of points where ϕ̃(x, r) = 0.5, with
ϕ̃(x, r) normalized to unity in the region of the drop close to the axis of rotation. The amplitude h
of the drop deformation is defined as the difference between the maximum radius of the drop, close
to the tips, and the minimum radius, at the center of the drop (see Fig. 5 below).

III. RESULTS AND DISCUSSION

We characterize the evolution of the drops towards a dumbbell shape by observing the time
evolution of the deformation amplitude h, varying systematically the drop composition. Figure 4(a)
shows the time evolution of h for a drop of pure water in pure glycerol, for various rotational speeds.
Time t = 0 corresponds to the onset of the deformation, shortly after the start of rotation. At short
time the deformation amplitude increases linearly with time, with a velocity v = dh

dt that depends
on the rotation speed. This dependence on ω stems from the fact that spinning drops are subject
at the head of the drop to a rotation-induced pressure jump �Pω = 1

2�ρω2r2 [16,29], where �ρ

is the density difference between the denser background fluid and the drop and r the drop radius.
This pressure jump �Pω induces the drop elongation in first place, but it is also responsible for a
secondary flow of the background fluid that leads to the dumbbell shape, as we shall detail below.
Figure 4(b) reports the radial deformation velocity as a function of �Pω, for various concentrations
of water in the drops.

It is worth underlining two features. First, the velocity of the radial deformation is approximately
a linear function of �Pω, with a slope that is essentially independent of the concentration of water in
the drop, as shown in the inset of Fig. 4(b). Second, even before trying to rationalize the dependence

074001-6



ULTRALOW EFFECTIVE INTERFACIAL TENSION …

FIG. 5. Scheme of the drop deformation. The dashed arrows show the secondary flow of the background
fluid induced by the capillary rotation.

of v on �Pω, it appears clearly that the data may be divided in two main families. All data for
drops with a mass concentration of water cw � 0.75 are compatible with a straight line through the
origin. By contrast, data from drops with cw = 0.9 and cw = 1 show a different behavior in that
a linear fit of v(�Pω ) displays a negative intercept with the v axis. This is counterintuitive if we
were to neglect interfacial tension: drops containing a larger fraction of water, being less viscous,
should be deformed more rapidly for a given centripetal forcing. Thus, the negative intercept of data
for cw � 0.9 strongly suggests a nonvanishing EIT for these systems. As a first step towards the
modeling of our experiments, we perform a linear fit of two families of data in Fig. 4(b), for water
concentrations up to cw = 0.75 and above cw = 0.9, respectively:

v = A�Pω + B, (5)

finding an R2 value of 0.98 and 0.97 respectively, keeping the slope A the same for the two data
families. The physical meaning of the terms A and B will be detailed later; however, we anticipate
that B depends on the concentration cw of water in the drop and hence on the EIT. It is thus crucial
to perform a statistical analysis of the data of Fig. 4(b) in order to assess whether the difference in
the offset B between data below and above cw = 0.9 (semifilled and solid symbols, respectively) is
statistically significant, or just due to experimental noise.

We perform a t test [30,31] on the difference between term B of the fit for the two data families,
for cw � 0.75 and cw � 0.9. As detailed in [32], for the data of Fig. 4(b) the Student t distribution
yields a value of the standardized variable t = 6.43. This is much larger than t0.995 = 2.95, the
edge of the 1% confidence interval for a two-tailed t distribution with N1 + N2 − 2 = 15 degrees of
freedom, where N1 = 9 and N2 = 8 are the numbers of data points in the two datasets. Hence we
conclude that the difference between the B parameter for the two datasets in Fig. 4(b) is statistically
significant, with a confidence level greater than 99%.

A. Model of the radial deformation and EIT

Having checked that the effect of the EIT on the data of Fig. 4(b) is statistically significant, we
propose a simple model to rationalize the data and extract from them �e. The model is based on the
balance of all sources of stress on the drop interface at the onset of the deformation. Similarly to the
approach by Lister and Stone in [29], we write an equilibrium equation for the stresses on the drop
surface, at the center of the drop:

nE = nS + nL, (6)
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where nE is the normal stress inducing the deformation and nS and nL are the normal stresses
opposing the deformation, with nS the shear stress arising from the motion of the drop and
background fluids and nL a Laplace-like term that takes into account the effect of the EIT. Since in
our experiments the viscosity ηe of the external background fluid is much higher than the viscosity
ηd of the drop fluid, the shear stress can be approximated as nS � 2ηev/l , where l is the distance over
which the radial deformation develops as shown in Fig. 5. The Laplace-like term nL is estimated
as the difference between the Laplace pressure jump at the heads of the drop and that at the central
body. At the onset of the deformation, the drop shape is well described by a cylinder with radius
r0 capped by two hemispheres. Consequently, the hemispherical heads and the cylindrical body
will be characterized by a pressure jump with respect to the background fluid of 2�e/r0 and �e/r0

respectively, leading to nL = �e/r0, where �e is the EIT.
The normal stress nE inducing the deformation and arising from the external forcing on the drop

deserves a further discussion. When investigating the limits of the SDT technique, as early as in
1982, Currie and Van Nieuwkoop observed that in any spinning capillary the background fluid is
not at rest, but rather flows towards the axis of the capillary at the center of the drop, thus inducing
an extra normal stress on the drop surface [25,33]. This secondary recirculating flow pushing on the
drop surface originates from the jump in centripetal pressure at the drop head, between regions I and
II in Fig. 5. The origin of this jump is easily understood by recalling that the hydrostatic pressure
induced by the rotational acceleration is proportional to the fluid density, which is smaller in the
drop as compared to the background fluid. By numerically solving the Navier-Stokes equations
[34], we verified that this secondary flow gives rise to a velocity field with a radial component
directly proportional to �Pω [32]. Since the external forcing on the drop originates from the
secondary recirculating flow and the latter is proportional to �Pω, we write nE = α�Pω with α a
positive constant.

Equation (6) can then be rewritten as

α�Pω − 2ηev

l
− �e

r0
= 0, (7)

which yields for the radial deformation velocity

v = αl

2ηe
�Pω − �el

2r0ηe
, (8)

i.e., the linear form introduced empirically in Eq. (5). Note that for miscible fluids �e decreases
over time, such that Eq. (8) holds only for short times after the onset of the radial deformation, well
before diffusion smears out the interface. For this reason, we measure the dynamics of the drop
deformation only for a few seconds, before diffusion becomes significant.

Albeit simple, Eq. (8) allows all the main features of the experimental data of Fig. 4(b) to be
rationalized: the velocity of the radial deformation at the onset of the instability varies linearly with
the centripetal forcing �Pω, with a prefactor that does not depend on the specific parameters of the
drop fluid, namely its viscosity and water concentration cw. Furthermore, Eq. (8) contains an offset
proportional to �e, which for miscible fluids is expected to depend on the concentration gradient
according to Eq. (1), and thus to be more significant at the highest cw. This explains why the data
for cw � 0.9 in Fig. 4(b) are not compatible with a line passing through the origin. Figure 6(a) shows
a master curve obtained by fitting each dataset at a given water concentration with Eq. (8) and then
rescaling the data using the parameters resulting from the best fit, by defining the scaled variables
v′ = (v r0

l + �e
2ηe

) 2ηe

α
and P′ = r0�Pω. In this representation, the data should fall on the straight line

v′ = P′. Figure 6 shows that within experimental error this is indeed the case, and that the results
do not depend on the fluorescein concentration.

The values of �e used to rescale the data in Fig. 6(a) are shown in Fig. 6(b) as a function of the
volume fraction φ and mass fraction cw of water in the drop, where solid and open symbols refer
to two concentrations of fluorescein. It is worth emphasizing the ultralow value of the EIT, which
attains at most 250 ± 50 nN/m for pure water drops in pure glycerol. This value is much lower
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(a) (b)

FIG. 6. (a) Mastercurve of the data of Fig. 4(b), obtained by using the scale variable introduced in the
text. (b) Experimental values of �e used to rescale the data in panel (a) as a function of the water volume
fraction φ (bottom axis) and the correspondent water mass fraction cw (top axis) in the drop. The black line
is the theoretical prediction for �e [Eq. (10)], discussed in the text. In both panels, solid (open) points refer to
measurements with fluorescein concentration 2 × 10−3 wt/wt (10−3 wt/wt).

than that previously reported in literature [23]. Our findings solve the longstanding controversy
stemming from conflicting literature values for the same system [23,24,35], as mentioned in Sec. I.
In particular, our result is in stark contrast with the value of EIT between water and glycerol reported
in [23], �e = 0.58 mN/m. Note that this latter value is also in contrast with the experimental
observation that drops of pure water spinning in glycerol keep on elongating without reaching a
stationary state, even in experiments lasting thousands of seconds. If the EIT was as high as reported
in [23], a drop of water in glycerol would deform towards a stationary state following an exponential
relaxation with time constant τ � 1.4 s, estimated following Ref. [16] and assuming a relaxation
dynamics similar to that of drops spinning in an immiscible background fluid. This is clearly not
the case. By contrast, the ultralow magnitude of the EIT measured here (a few hundreds of nN/m)
is consistent with several works [24,36,37] that report a negligible EIT for the same system.

A further support to our findings comes from a review of previous works investigating the
Saffman-Taylor instability occurring when water is injected in a Hele-Show cell containing glycerol.
Although a Saffman-Taylor instability does occur a few ms after the injection of the less viscous
fluid (water) into a Hele-Shaw cell and hence reduces the effects of diffusion, its visualization has
systematically suggested that viscous dissipation largely dominates over interfacial effects. In this
limit, the wavelength of the instability λST is only dictated by the gap of the injection cell b, and is
expected to satisfy

4b � λST � 5b. (9)

Previous works by Paterson [35] and more recently by Bischofberger and coworkers [36] and
Lajeunesse and coworkers [37] systematically find λST values in this regime, thus suggesting that the
EIT between water and glycerol is too low to be measurable through the Saffman-Taylor instability.
To corroborate this notion, we use Eq. (9) to extract a lower bound for the �e values measurable
with this technique [38,39], which we quantify as the EIT for which the wavelength observed at the
onset of the instability equals 4b. We show in [32] that this lower bound for water-glycerol systems
in a typical Hele-Show cell and for accessible injection rates is approximately 0.1 mN/m, while the
measurement of much lower values is hampered by diffusion.
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By contrast, the analysis of the radial deformation of drops towards dumbbell shapes proposed
here allows one to measure EIT values as low as hundreds of nN/m, well beyond the limits of any
other standard experimental technique. The strength of the method proposed in this work resides in
the fact that the forcing α�Pω is very weak, thus allowing relatively low values of the capillary (Ca)
and the Bond (Bo) numbers to be reached. The first is defined as the ratio between viscous forces
and surface tension forces acting across the interface between the fluids: Ca = ηv

�
. Considering

the viscosity of the background fluid (glycerol), the measured deformation speed v and �e, the
capillary numbers characterizing our experiments are in the range 2 � Ca � 20, which are relatively
low, taking into account that we probe miscible interfaces and hence �e is very small. The second
dimensionless number relevant for our experiments is the Bond number, the ratio of the external
forces to surface tension forces: Bo = α�Pωr0/�e. In our case, 0.4 � Bo � 4, corroborating a
scenario where capillary stresses are indeed relevant for the drop deformation. The estimates for
Ca and Bo also explain the large uncertainty on the value of �e at ϕ < 0.9 in Fig. 6(b): when the
EIT decreases to extremely low values, both the capillary and the Bond number increase well above
unity, making �e barely measurable.

In order to further validate our measurements, we calculate the expected EIT between water
and glycerol using a phase field model introduced in [5]. We briefly recall the main ingredients
of the model: by assuming local equilibrium between the two fluids [40–42], one computes both
the enthalpic and the entropic contributions to the Korteweg parameter κ (ϕ̃) using lattice theory
arguments and assuming for simplicity that the mixture is symmetric, i.e., that the two fluids have the
same molecular volume. The two terms are due, respectively, to the variation of the internal energy
density u and to the decrease of configurational entropy density s in the region where |∇ϕ̃| > 0. They
are obtained by expressing u and s as a function of the local concentration, assuming a concentration
gradient across three adjacent lattice layers orthogonal to the z direction, and finally by expanding
the local concentration around that of the central layer, up to second order in the spatial derivatives
of ϕ̃. Furthermore, in analogy to equilibrium systems, the local concentration profile is modeled by
ϕ̃ = φ

2 + φ

2 tanh( z
δ
), with φ the volume fraction of one kind of molecules, e.g., water, in the bulk

fluids. As detailed in Ref. [5], the model predicts

�e = RTa2

Vmδ

{
χwg

φ2

6
+ 2

3

[
1 + 1 − φ

φ
ln(1 − φ)

]}
, (10)

with R the ideal gas constant, a and Vm the diameter and the molar volume of the fluid molecules
respectively, and δ the interface thickness. The first term on the right-hand side of Eq. (10),
proportional to the χwg parameter characterizing the interaction between water and glycerol
molecules, quantifies the energy penalty (or gain) due to a local compositional inhomogeneity. The
second term is always positive and depends only on φ. It quantifies the entropy loss due to the
(transient) gradient of concentration. We note that the approximations used to derive Eq. (10) imply
that the concentration gradient at the interface is small, such that the effective interfacial tension is
dominated by the first term of the mixing free energy expansion, i.e., the square gradient one.

To estimate �e for our water-glycerol mixtures we use Eq. (10) and take the average of
the molecular diameter and molar volume of water and glycerol: 〈a〉 = 0.45 nm and 〈Vm〉 =
45.5 ml/mol. We further consider the effect of diffusion by calculating the thickness of the interface
as δ = √

2Dwgt where Dwg = 1.4 × 10−11 m2/s is the diffusion coefficient of water in glycerol [27]
and t ≈ 15 s is the typical time elapsing between the drop injection and the observation of the
instability. The result is displayed in Fig. 6(b) (line), showing that our data are very well captured
by the theoretical �e obtained via Eq. (10), with no adjustable parameter. The agreement between
the data and Eq. (10) suggests that the model of Ref. [5], albeit very simple, may be reliably used
to estimate the EIT. Since −1 < χ < 1 for most pairs of miscible substances [43], for φ � 1 the
effective interfacial tension between miscible molecular fluids is well approximated by

�e ≈ 2RTa2

3Vmδ
. (11)
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As an example, for liquids with characteristics similar to water (a ≈ 0.1 nm, Vm = 18 ml/mol,
D = 1.025 × 10−9 m2/s [27] at T = 298.15 K), Eq. (11) predicts a tension ranging from
�e ≈ 13 mN/m to �e ≈ 20 × 10−6 mN/m as the interface thickness increases from a value
comparable to the molecular size (δ ≈ a for t = 0) to 45 μm after t = 1 s of interdiffusion. This
supports the fact that for fully miscible low-viscosity fluids capillary effects decay very rapidly with
time and can be safely neglected in most cases. However, this may not be the case when diffusivity
is very low, a condition that can be attained in many simple liquids like silicon oils [44], colloidal
and polymer suspensions [5], or in geologically relevant fluids such as silicate fluids in the Earth
mantle [45,46]. Finally, we note that this argument offers also a possible explanation for the absence
of deformation for the triethylene glycol drop in Fig. 1, panel B. Indeed, TEG has a miscibility with
glycerol similar to that of water, the three liquids having similar Hansen solubility parameters [47],
but it is significantly more viscous than water (ηTEG = 49 mPa s). Therefore, one may expect, on the
timescale of our experiments, a stronger effect of the EIT as compared to the case of water drops,
thus preventing the development of the dumbbell shape.

IV. CONCLUSIONS

We have experimentally characterized the time evolution of the shape of miscible drops in SDT
experiments. We have shown that a dumbbell shape arises for sufficiently low values of EIT, which
depends not only on the density and viscosity contrast between the drop and the background fluids,
but also on the molecular structure of the fluids. We have focused on mixtures of water and glycerol,
for which literature data were conflicting [23,24,35], and employed the dynamics of the drop shape
as a tool to measure the EIT. By means of a simple model which takes into account the normal stress
on the drop surface, the shear stress opposing the deformation, and a Laplace-like term containing
an effective interfacial tension, we obtained an EIT of 250 ± 50 nN/m for water in contact with
pure glycerol, decreasing rapidly below the resolution limit of the method as the amount of glycerol
in the drops increases above 10%. This result is in excellent agreement with an estimate of the order
of magnitude for the EIT for the same system obtained from a phase field model [5], while it is
orders of magnitude lower than the experimental limit of all conventional techniques for measuring
interfacial tensions. Therefore, besides shedding light on the controversy stemming from conflicting
literature data on the EIT between water and glycerol, our work demonstrates a new method to
measure extremely low interfacial tensions and in particular the EIT, paving the way for a thorough
understanding of Korteweg stresses and capillary phenomena in miscible fluids.
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