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Effect of surfactant-laden droplets on turbulent flow topology
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In this work we investigate flow topology modifications produced by a swarm of large
surfactant-laden droplets released in a turbulent channel flow. Droplets have the same
density and viscosity of the carrier fluid, so only surface tension effects are considered.
We run one single-phase flow simulation at Reτ = ρuτ h/μ = 300 and ten droplet-laden
simulations at the same Reτ with a constant volume fraction � � 5.4%. For each simula-
tion, we vary the Weber number We (ratio between inertial and surface tension forces) and
the elasticity number βs (parameter that quantifies the surface tension reduction). We use
direct numerical simulations of turbulence coupled with a phase-field method to investigate
the role of capillary forces (normal to the interface) and Marangoni forces (tangential
to the interface) on turbulence (inside and outside the droplets). As expected, due to the
low volume fraction of droplets, we observe minor modifications in the macroscopic flow
statistics. However, we observe major modifications of the vorticity at the interface and
important changes in the local flow topology. We highlight the role of Marangoni forces
in promoting an elongational type of flow in the dispersed phase and at the interface. We
provide detailed statistical quantification of these local changes as a function of the Weber
number and elasticity number, which may be useful for simplified models.

DOI: 10.1103/PhysRevFluids.5.073606

I. INTRODUCTION

The evaluation of mass, momentum, and heat transfers across a deformable interface is a crucially
important design parameter in many industrial applications [1,2]. Usual engineering practice is
however based on strong simplifying assumptions of the flow field in the proximity of the interface
[3–5]. The development of correlations able to accurately predict these transfer rates is extremely
difficult due to the limited amount of experimental and numerical data available. Indeed, obtaining
accurate information on physical quantities of interest near a deformable interface is challenging:
Experimental measurements on multiphase flows require the development of specific methods [6,7]
or a combination of them [8], while accurate simulations of multiphase flows require numerical
methods able to capture the topology of the dispersed phase and its changes, e.g., coalescence and
breakage events [9–11].

The quest for this type of information becomes even more problematic when real-life envi-
ronmental and industrial applications are considered and thus the presence of impurities and/or
surface-active agents (surfactants) has to be accounted for [2,12]. These agents, which collect at the
interface between the two phases, locally reduce surface tension and might generate surface tension
gradients, strongly modifying the system evolution [13–16]. This further complexity requires the
adoption of more sophisticated experimental [17,18] and numerical techniques able to describe the
surfactant dynamics [19–22]. In this work, in an attempt to lay useful guidelines for the development
of physics-aware empirical correlations, we aim at characterizing the flow modifications produced
by a swarm of surfactant-laden droplets released in a turbulent flow.
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The study of the flow modifications produced by a dispersed phase has drawn the attention of
many researchers in recent years, since the presence of deformable droplets or bubbles (and of
the accompanying surface tension forces) can generate strong modifications in the carrier flow
[23–26]. In this context, the role of the bubble-droplet interface is crucial since it introduces an
elasticity element in the system and can modulate the transfer of momentum between the two
phases and thus modifies the overall flow dynamics. Previous numerical works studied different
aspects of the problem: Lu and co-workers [13,23,27–31] investigated the macroscopic flow
modifications produced by a swarm of bubbles, Ferrante and co-workers [32,33] studied the effects
of droplets properties on turbulence decay, Brandt and co-workers [34–37] investigated the effects
of coalescence and volume fraction on system rheology, Mukherjee et al. [38] and Shao et al. [39]
studied the influence of volume fraction and Weber number on homogeneous isotropic turbulence,
and Scarbolo et al. [40] and Spandan et al. [41] investigated the effects of droplets deformability on
drag.

In this work we aim at characterizing the flow modifications introduced by a swarm of surfactant-
laden droplets released in a turbulent channel flow. Due to the relatively low volume fraction of
the dispersed phase (� � 5.4%), important macroscopic flow modifications are not expected and
indeed we find an extremely limited increase of the flow rate (�1%) for all cases (with respect to the
single-phase case). However, important local flow modifications due to the presence of the interfaces
are expected. The interface is an elastic boundary that separates the two phases and confines the
flow within; further, the soluble surfactant introduces additional effects locally reducing the surface
tension according to its concentration and strength and possibly generating forces tangential to the
interface (Marangoni forces). To characterize these local modifications, we analyze the vorticity
field at the interface and we study the spatial distribution of the flow topology parameter Q in
the different regions of the domain: carrier phase, dispersed phase, and interface. The topology
parameter locally defines the type of flow (purely rotational, pure shear, and purely elongational
flow) based on the symmetric and antisymmetric parts of the velocity gradient tensor (i.e., the rate-
of-deformation and the rate-of-rotation tensors, respectively).

The analyses presented here are based on the simulation database developed in [14], in
which a two-order-parameter phase-field method [20,42–44] is adopted to describe the interfacial
phenomena. The first order parameter φ defines the morphology of the interface, while the second
order parameter ψ describes the dynamics of the soluble surfactant. For all the simulations, the shear
Reynolds number (ratio between inertial and viscous forces) is kept fixed at Reτ = 300. We consider
two different values of the Weber number, We = 1.50 (high surface tension) and We = 3.00 (low
surface tension), and four different surfactant strengths, from βs = 0.50 (weaker surfactant) up
to βs = 4.00 (stronger surfactant). The simulation database is completed by two simulations of
surfactant-free systems (We = 1.50 and We = 3.00) and by a single-phase flow simulation.

The paper is organized as follows. The numerical method and the simulation setup are introduced
in Sec. II. The effects introduced by a surfactant-laden and deformable interface are presented in
Sec. III for different surface tension values and surfactant strengths. Section IV summarizes the
results presented.

II. METHODOLOGY

The dynamics of a swarm of surfactant-laden droplets in wall-bounded turbulence is described
employing direct numerical simulations of the Navier-Stokes equations coupled with a two-
order-parameter phase-field method [14,20,42–44]. The Navier-Stokes equations, which include an
additional term to account for the presence of a surfactant-laden interface, define the hydrodynamics
of the system. The two-order-parameter phase-field method instead describes the transport of the
phase field and of the surfactant concentration. In the following sections, first the phase-field
method in its two-order-parameter formulation is introduced and then the force coupling with the
Navier-Stokes equations is described.
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A. Modeling of interface and surfactant concentration dynamics

The two-order-parameter phase-field formulation uses two scalar fields (order parameters) to
define the transport of the phase field and of the surfactant concentration. The phase field φ defines
the local concentration of the two phases; it varies between φ = −1 in the carrier phase and φ = +1
in the dispersed phase. Across the interface, the phase field changes smoothly between the two
bulk values; the interface is defined as the isolevel φ = 0. The second order parameter ψ defines
the local surfactant concentration in the entire domain [20,42,43,45]; here a soluble surfactant is
used and thus, in addition to the dynamics of surfactant over the interface, also adsorption and
desorption of surfactant to and from the interface are taken into account. Surfactant molecules are
amphiphilic (i.e., molecules composed of a hydrophilic head and a hydrophobic tail), thus they are
preferentially found at the interface between different phases. Indeed, the surfactant concentration
has a low uniform value in the bulk of the phases (surfactant bulk concentration ψb) and reaches
its maximum value at the interface. In the following all equations are in dimensionless form; the
nondimensional procedure can be found in our previous works [14,20]. Two separate Cahn-Hilliard-
like equations define the dynamics of the phase field and of the surfactant concentration

∂φ

∂t
+ u · ∇φ = 1

Peφ

∇2μφ + fp, (1)

∂ψ

∂t
+ u · ∇ψ = 1

Peψ

∇ · [ψ (1 − ψ )∇μψ ], (2)

where u = (u, v,w) is the velocity field (streamwise, spanwise, and wall-normal components), Peφ

and Peψ are the phase-field and surfactant Péclet numbers, μφ and μψ are their respective chemical
potentials, and fp is the penalty flux introduced with the profile-corrected formulation of the phase-
field method [46–48]. The profile-corrected formulation constitutes an improvement to the standard
phase-field formulation; it allows one to maintain the equilibrium interfacial profile and it overcomes
the drawbacks of the method (e.g., mass leakages among the phases and misrepresentation of the
interfacial profile [46,49]). The penalty flux is defined as

fp = λ

Peφ

[
∇2φ − 1√

2Ch
∇ ·

(
(1 − φ2)

∇φ

|∇φ|
)]

, (3)

where the numerical parameter λ can be set via the scaling λ = 0.0625/Ch [48]. The Cahn number
Ch is the dimensionless parameter which defines the thickness of the thin interfacial layer. The
Péclet number is a dimensionless quantity, which defines the ratio of diffusive over convective
timescales for the phase field and the surfactant concentration, respectively.

The chemical potentials are derived from a two-order-parameter Ginzburg-Landau free-energy
functional F[φ,∇φ,ψ]. This functional is composed of the sum of five different contributions

F[φ,∇φ,ψ] =
∫




( f0 + fm + fψ + f1 + fb)d
, (4)

where 
 is the domain considered. The five different contributions are defined as

f0 = 1

4
(φ − 1)2(φ + 1)2, (5)

fm = Ch2

2
|∇φ|2, (6)

fψ = Pi[ψ ln ψ + (1 − ψ )ln(1 − ψ )], (7)

f1 = −1

2
ψ (1 − φ2)2, (8)

fb = 1

2Ex
φ2ψ. (9)
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The first two contributions f0 and fm are a function of the phase-field variable alone and are the
same used in the single-order-parameter phase-field formulation [50,51]. The term f0 defines the
tendency of the multiphase system to separate in two pure phases; this phobic behavior is described
by a double-well potential, with minima corresponding to the pure phases. The interfacial term
fm accounts for the energy stored in the interfacial layer (i.e., the surface tension); it allows for a
limited mixing between the two phases at the interface. The three latter terms define the dynamics
of the surfactant: the entropy term fψ , the surfactant adsorption term f1, and the bulk term fb.
The entropy reduction obtained when surfactant is uniformly distributed throughout the entire
domain is accounted for by the entropy term. The temperature-dependent parameter Pi defines the
diffusivity of surfactant: Higher values of Pi (higher temperatures) favor a more uniform surfactant
distribution in the domain. This term strictly limits the surfactant concentration between ψ = 0
(absence of surfactant) and ψ = 1 (saturation of surfactant). The surfactant adsorption term defines
the amphiphilic behavior of the surfactant; it is maximum at the interface, while it vanishes in the
bulk of the phases. The last contribution, the bulk term, controls the solubility of the surfactant in
the bulk of the phases; it vanishes at the interface and it is maximum in the bulk of the phases. The
surfactant solubility parameter Ex quantifies the solubility of the surfactant; highly soluble surfactant
are characterized by high values of Ex.

The phase-field and surfactant chemical potentials are obtained by taking the variational
derivative of the free-energy functional with respect to the two order parameters:

μφ = δF[φ,∇φ,ψ]

δφ
= φ3 − φ − Ch2∇2φ + Ch2(ψ∇2φ + ∇ψ · ∇φ) + 1

Ex
φψ︸ ︷︷ ︸

Cφψ

, (10)

μψ = δF[φ,∇φ,ψ]

δψ
= Pi ln

(
ψ

1 − ψ

)
− (1 − φ2)2

2
+ φ2

2Ex
. (11)

As discussed in previous works [43,44], the term Cφψ in the phase-field chemical potential might
introduce an unphysical behavior of the thin interfacial layer; on this basis, it is neglected to
restore the correct interfacial dynamics [44]. Surface tension forces then must be calculated using a
geometrical approach [52], as an alternative to the thermodynamic approach based on the chemical
potential gradients [43,45]. The use of a geometrical approach provides an additional advantage:
The effect of surfactant on surface tension can be selected via a suitable surface tension equation of
state. Thus, surface tension forces are calculated here with a geometrical approach, which relies on
the phase field for the computation of the local curvature and on a surface tension equation of state
accounting for the effect of surfactant.

From the expression of the two chemical potentials, the equilibrium profiles of the order
parameters can be obtained; at the equilibrium, the chemical potentials are uniform in all the domain.
For a planar interface located at s = 0, with s a coordinate normal to the interface, an analytic
equilibrium profile can be derived for both the phase field and the surfactant concentration

φ(s) = tanh

(
s√
2Ch

)
, (12)

ψ (φ) = ψb

ψb + ψc(φ)(1 − ψb)
. (13)

The auxiliary variable ψc depends on the phase field only:

ψc(φ) = exp

[
−1 − φ2

2 Pi

(
1 − φ2 + 1

Ex

)]
. (14)

The phase field is uniform in the bulk of the phases, φ = −1 in the carrier phase and φ = +1 in the
dispersed phase, and it follows a hyperbolic tangent profile across the interface. In a similar way, the
surfactant concentration is uniform in the bulk of the phases, equal to the surfactant bulk concen-
tration ψb, and it peaks at the interface, where surfactant molecules preferentially accumulate. The
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FIG. 1. (a) Equilibrium profiles for the phase field (red solid line, linear scale on the left) and for the
surfactant concentration (blue solid line, logarithmic scale base 10 on the right). (b) Modified Langmuir
equation of state for different elasticity numbers (solid lines). To remove unphysical surface tension values,
the surface tension reduction is limited to fσ = 0.5 (colored dots). The behavior predicted by the original
Langmuir equation of state is reported with dashed lines below the minimum surface tension fσ = 0.5.

maximum value of the surfactant concentration depends on the surfactant parameters Pi and Ex and
on the surfactant bulk concentration ψb, as shown in Eqs. (13) and (14). The equilibrium profiles
for the two order parameters are reported in Fig. 1(a): The phase field is shown in red (linear scale
on the left) and the surfactant concentration in blue (logarithmic scale on the right).

B. Hydrodynamics

The hydrodynamics of the multiphase system is described using a one-fluid formulation, in
which the effects of a surfactant-laden interface are introduced via an additional interfacial term in
the Navier-Stokes equations. In particular, surface tension forces are computed with a geometrical
approach [44]: The Korteweg tensor [53] is used to compute the curvature of the interface, while
an equation of state is used to define the surfactant action on the surface tension. In this work,
to highlight the effects of the surfactant, two phases with matched density (ρ1 = ρ2 = ρ) and
matched viscosity (μ1 = μ2 = μ) are considered. With these hypotheses, the mass and momentum
conservation equations can be written as (dimensionless form)

∇ · u = 0, (15)

∂u
∂t

+ u · ∇u = −∇p + 1

Reτ

∇2u + 3√
8

Ch

We
∇ · [ fσ (ψ )Tc], (16)

where u = (u, v,w) is the velocity field, ∇p is the pressure gradient (sum of a mean component that
drives the flow and of a fluctuating part), fσ (ψ ) is the surface tension equation of state [54,55], and
Tc = |∇φ|2I − ∇φ ⊗ ∇φ is the Korteweg tensor [53]. The last term in the Navier-Stokes equations,
which includes the surface tension equation of state and the Korteweg tensor, accounts for the
surface tension forces introduced by the surfactant-laden interface. This term can be divided into
two separate contributions, one normal to the interface (capillary forces) and one tangential to the
interface (Marangoni forces),

∇ · [ fσ (ψ )Tc] = fσ (ψ )∇ · Tc︸ ︷︷ ︸
normal (capillary)

+ ∇ fσ (ψ ) · Tc︸ ︷︷ ︸
tangential (Marangoni)

. (17)
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When the surface tension is uniform, the tangential contribution vanishes, leaving only the normal
contribution (capillary forces). The shear Reynolds number Reτ = ρuτ h/μ is defined using the
friction velocity uτ = √

τw/ρ as the velocity scale (where τw is the mean wall-shear stress) and
the channel half height h as the length scale. The Weber number We = ρu2

τ h/σ0 is defined with the
surface tension of a clean interface (absence of surfactant) σ0 as a reference.

The surface tension equation of state adopted here is a modified Langmuir equation of state
[56]. Experimental measurements on liquid-liquid [57,58] and gas-liquid [54] systems showed that
surface tension never decreases below about half its clean value for any surfactant concentration.
This characteristic originates from the saturation of the interface; once the surfactant saturation
concentration is reached at the interface, no more surfactant molecules can accumulate there and
thus surface tension remains constant [59]. This behavior is not captured in the original formulation,
which closely aligns with experimental measurements at low surfactant concentrations, but fails to
reproduce the surface tension plateau above the surfactant saturation concentration. For this reason,
we adopt a modified equation of state, in which the minimum surface tension value has been
limited according to experimental measurements; here the minimum value is set to 0.5σ0, which
is within the range of values measured in experiments (30%–60% [54,57,58] of the clean value σ0).
The modified Langmuir equation of state thus combines the accuracy of the original equation of
state at surfactant concentrations lower than the saturation value with the surface tension saturation
observed in experiments. The equation reads

fσ (ψ ) = σ (ψ )

σ0
= max

[
1 + βs ln (1 − ψ )︸ ︷︷ ︸

Langmuir EOS

, 0.5

]
. (18)

A similar equation of state has also been employed in previous works [22,60]; the authors,
however, selected a much lower minimum surface tension value to keep the surface tension value
strictly positive. The equation of state is made dimensionless using the surface tension of a clean
interface as a reference: When surfactant is absent (ψ = 0), the dimensionless surface tension
results in fσ (ψ = 0) = σ (ψ = 0)/σ0 = 1. The elasticity number βs quantifies the strength of the
surfactant: Higher values of the elasticity number lead to a stronger reduction in the surface tension
for the same surfactant concentration. The modified Langmuir equation of state for the four elasticity
numbers used in this work is reported in Fig. 1(b).

The surfactant saturation value [colored dots in Fig. 1(b)], above which surface tension remains
constant at fσ (ψ ) = 0.5, is here referred to as the shutdown concentration ψs and can be calculated
as

ψs(βs) = 1 − e−0.5/βs . (19)

The shutdown concentration is an important parameter that influences the action of the Marangoni
forces: These forces are proportional to the surface tension gradients [Eq. (17)]; thus they vanish
whenever surface tension is uniform (i.e., when ψ > ψs or when a clean system is considered).

Finally, it is worth mentioning that the accumulation of the surfactant molecules at the interface
introduces also an additional effect: the interface viscosity [61,62]. This effect is however negligible
for soluble surfactants [61], and thus it is not here considered.

C. Numerical method

The governing equations (1), (2), (15), and (16) are solved in a closed-channel geometry
using a pseudospectral method [63–65]. Fourier series are used to discretize the variables in the
two homogeneous directions (streamwise x and spanwise y), while Chebyshev polynomials are
used along the wall-normal direction z. All five unknowns (velocity, phase field, and surfactant
concentration) are Eulerian fields defined on the same Cartesian grid (uniform spacing in the
homogeneous directions and Chebyshev-Gauss-Lobatto points in the wall-normal direction).
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The time advancement of the equations is performed using an implicit-explicit integration
scheme. The linear diffusive term of the equations is discretized with an implicit scheme: Crank-
Nicolson for the Navier-Stokes equations and implicit Euler for the phase-field and surfactant
transport equations. This latter scheme damps eventual unphysical high-frequency oscillations that
could originate from the steep gradients present in the two Cahn-Hilliard-like equations [66,67].
In contrast, the nonlinear part is integrated explicitly over time using a two-step Adams-Bashforth
scheme.

A velocity-vorticity formulation is adopted to avoid the costly computation of the pressure field
[68,69]: The Navier-Stokes equations are recast in a fourth-order equation for the wall-normal
component of the velocity (twice the curl on the Navier-Stokes equations) and a second-order
equation for the wall-normal component of the vorticity ωz (curl on the Navier-Stokes equations).
This set of equations in four unknowns (velocity and wall-normal vorticity) is completed by
the continuity equation (mass conservation) and by the definition of wall-normal vorticity. The
phase-field transport equation (fourth order) is split into two second-order equations [67], while the
surfactant transport equation (second order) is directly solved in its original formulation [14,20,48].

Boundary conditions

For the Navier-Stokes equations, no-slip boundary conditions are applied on the velocity at both
solid walls z/h = ±1,

u(z/h = ±1) = 0,
∂w

∂z
(z/h ± 1) = 0; (20)

the no-flux condition comes from the continuity equation at the wall. From the no-slip conditions on
the velocity, the boundary conditions for the wall-normal component of the vorticity are obtained:

ωz(z/h = ±1) = ∂v

∂x

∣∣∣∣
z/h=±1

− ∂u

∂y

∣∣∣∣
z/h=±1

= 0. (21)

No-flux boundary conditions are imposed on the phase field, surfactant concentration, and respective
chemical potentials at the two solid walls. This is formally equivalent to the following boundary
conditions:

∂φ

∂z

∣∣∣∣
z/h=±1

= 0,
∂3φ

∂z3

∣∣∣∣
z/h=±1

= 0,
∂ψ

∂z

∣∣∣∣
z/h=±1

= 0. (22)

Finally, periodic boundary conditions are applied to all variables along the homogeneous directions
(Fourier discretization). The set of boundary conditions employed strictly enforces the conservation
of the total mass of the two phases and the surfactant over time:

∂

∂t

∫



φ d
 = 0,
∂

∂t

∫



ψ d
 = 0. (23)

Despite the total mass of the two phases being conserved, mass conservation of each phase is not
guaranteed [48,49]; limited mass leakages among the phases may occur. This issue is rooted in
the phase-field method and can be strongly mitigated with the adoption of corrected formulations
[46–48]; in particular, here the profile-corrected formulation is used [46,48]. In the cases presented
here, mass leakages are limited to at most 8% of the dispersed phase and occur only in the initial
transient phase; at steady state, the mass of each phase remains constant. The mass leakage in the
initial part of the simulations is linked with the initial condition chosen and will be better addressed
in the following section.

D. Simulation setup

The same simulation setup adopted in [14] is used in this work (Table I). A closed-channel config-
uration with dimensions Lx × Ly × Lz = 4πh × 2πh × 2h (L+

x × L+
y × L+

z = 3770 × 1885 × 600
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TABLE I. Overview of the parameters used in the different simulations performed. For each Weber number,
one surfactant-free and four surfactant-laden systems have been analyzed. Surfactant-laden systems consider
different elasticity numbers: from βs = 0.50 (weaker surfactant) up to βs = 4.00 (stronger surfactant). In
addition, a simulation of a single-phase flow has been performed.

System Reτ We Ch Peφ Peψ Pi Ex ψb βs

Single-phase 300

Surfactant-free 300 1.50 0.025 40
Surfactant-laden 300 1.50 0.025 40 100 1.35 0.117 0.01 0.50
Surfactant-laden 300 1.50 0.025 40 100 1.35 0.117 0.01 1.00
Surfactant-laden 300 1.50 0.025 40 100 1.35 0.117 0.01 2.00
Surfactant-laden 300 1.50 0.025 40 100 1.35 0.117 0.01 4.00

Surfactant-free 300 3.00 0.025 40
Surfactant-laden 300 3.00 0.025 40 100 1.35 0.117 0.01 0.50
Surfactant-laden 300 3.00 0.025 40 100 1.35 0.117 0.01 1.00
Surfactant-laden 300 3.00 0.025 40 100 1.35 0.117 0.01 2.00
Surfactant-laden 300 3.00 0.025 40 100 1.35 0.117 0.01 4.00

wall units) has been selected (see Fig. 2). The computational domain is discretized with Nx ×
Ny × Nz = 1024 × 512 × 513 grid points; the computational grid has uniform spacing in the
homogeneous directions and Chebyshev-Gauss-Lobatto points in the wall-normal direction.

The flow is driven by an imposed constant pressure gradient in the streamwise direction; the
shear Reynolds number is kept fixed at Reτ = 300 for all the cases. Two different values of
the reference surface tension (clean interface), set via the Weber number, have been selected:
We = 1.50 (higher surface tension) and We = 3.00 (lower surface tension). The selected values
are characteristics of oil-water mixtures [70]. For each surface tension value (Weber number), four
different elasticity numbers have been tested: βs = 0.50 (weaker surfactant), βs = 1.0, βs = 2.0,
and βs = 4.0 (stronger surfactant). In addition, two simulations of surfactant-free systems (We =
1.50 and We = 3.00) and a single-phase flow simulation also have been performed.

For the phase field, the Cahn number is set to Ch = 0.025. This value is selected based on the grid
resolution; at least five grid points are required across the interface to accurately describe the steep
gradients present [20]. The phase-field Péclet number has been set according to the scaling Peφ =
1/Ch = 40 to achieve the convergence to the sharp interface limit [49,71]. Higher grid resolutions
allow one to reduce the thickness of the interface (smaller Cahn numbers); the computational cost
would however increase dramatically (roughly as the third power of the refinement factor). With

FIG. 2. Instantaneous representation of the droplets at t+ = 3750 for the case We = 3.00 and βs = 4.00.
The interface of the droplets (isocontour φ = 0) is colored by the local surfactant concentration (white, low;
black, high). The flow field is visualized via the streamwise velocity isosurface (corresponding to u = 15) and
is colored by the distance from the bottom wall (black, near wall; yellow, channel center). For the sake of
clarity, the top wall has been removed and the flow field is shown only in the bottom half of the channel.
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the aim of evaluating the influence of the grid resolution (and of the Cahn number) on the results,
the case We = 3.00 and βs = 4.00 has been rerun on a refined grid (twice the resolution in each
direction: Nx × Ny × Nz = 2048 × 1024 × 1025) and with a halved Cahn number (Ch = 0.0125).
A specific discussion on the effect of the grid resolution on the results presented here can be found
in Sec. III C.

For the surfactant, the bulk concentration is set equal to ψb = 0.01 for all cases. The surfactant
Péclet number is set to Peψ = 100, a typical value for nonionic and anionic surfactants in aqueous
solutions [72]. The temperature-dependent parameter has been set equal to Pi = 1.35 and the
surfactant solubility parameter to Ex = 0.117. The effect of the surfactant parameters is not
investigated here, as we focus on the effects of the global (set via the Weber number) and local
(set via the elasticity number) surface tension modifications.

At the beginning of each simulation, a regular array of 256 spherical droplets with diameter d =
0.4h (corresponding to d+ = 120 wall units) is initialized in a fully developed single-phase turbulent
channel flow. The total volume fraction of the dispersed phase is � = Vd/(Vc + Vd ) � 5.4%, with Vd

and Vc the volumes of the dispersed and carrier phases, respectively. The very same configuration
(volume fraction, droplet size, and number) was used in previous works [40,50], thus allowing
for a direct comparison. The phase field and the surfactant concentration are initialized with their
equilibrium profile [Eqs. (12) and (13)]. As the array of spherical droplets is suddenly released in
a single-phase turbulent flow, turbulent velocity fluctuations strongly perturb the interfacial profile;
during this initial coupling phase, mass leakages among the phases may occur. After this initial
transient, the mass of each phase remains constant over time.

While the initial condition chosen for the dispersed phase may seem unphysical, after a short
transient, memory of the initial condition is completely lost and the analysis performed at a
statistically steady-state condition is not affected by the initial condition selected. Different initial
conditions have been tested, for instance, the injection of a thin liquid sheet at the channel center, and
the same statistically steady-state results were obtained. In addition, the selected initial condition
has a shorter transient before reaching statistically steady-state results with respect to the other
configurations tested. Thus, to reduce the computational cost of the simulations and to better
compare the obtained results with previous works [40,50,51], the present initial condition for the
dispersed phase has been used.

III. RESULTS

We characterize the flow modifications produced by the surfactant-laden droplets from both a
global and a local point of view. First we focus on the macroscopic flow modifications produced by
the presence of a surfactant-laden interface. In particular, we analyze the wall-normal behavior of
the mean streamwise velocity profiles and the root mean square of the streamwise and wall-normal
velocity fluctuations. Then we move to analyze the local flow modifications produced by the surface
tension forces, analyzing first the alignment between the interface normal and vorticity vector at the
interface and then the distribution of the flow topology parameter Q in the two phases (carrier and
dispersed) and at the interface. In this work we focus only on the flow modifications produced by
the droplets; a detailed characterization of the dispersed phase morphology can be found in our
previous related work [14].

A. Macroscopic flow modifications

We quantify the effects of the dispersed phase on the macroscopic flow, analyzing the changes
in the mean streamwise velocity and in the root mean square of the streamwise and wall-normal
velocity fluctuations. Once the droplets are released in the turbulent channel flow, a transient is
required to adapt the flow field to the presence of the droplets. After this transient, the system
reaches a new steady-state configuration and the statistics are computed. The statistics have been
obtained averaging the entire velocity fields in the two homogeneous directions and over time.
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FIG. 3. Profiles of the mean streamwise velocity 〈u〉 at Reτ = 300 for (a) We = 1.50 and (b) We = 3.00
(z+ axis is reported in logarithmic scale, base 10). The single-phase velocity profile is reported with a black
dashed line while the multiphase cases are reported with different colors: βs = 0.50, blue; βs = 1.00, green;
βs = 2.00, yellow; and βs = 4.00, red. For all multiphase cases, mean velocity profiles are overlapped and a
small increase of the velocity profiles can be observed with respect to the single phase. The classical law of the
wall, u = z+ and u = (1/k)ln z+ + 5 (with k = 0.41 the von Kármán constant) is also reported as a reference.

1. Mean velocity profiles

We start by considering the profiles of the mean streamwise velocity 〈u〉 for We = 1.50 [Fig. 3(a)]
and We = 3.00 [Fig. 3(b)]. The multiphase cases are reported with solid lines using different
colors: clean, black; βs = 0.50, blue; βs = 1.00, green; βs = 2.00, yellow; and βs = 4.00, red.
The single-phase results are indicated using a black dashed line. In addition, the classic law of
the wall [73], u = z+ and u = (1/k)ln z+ + 5 (where k = 0.41 is the von Kármán constant [74]),
is reported as reference. For both Weber numbers, we can observe that all the mean streamwise
velocity profiles are almost unaffected by the presence of the dispersed phase and all multiphase
cases fall almost on top of each other. Thus, for the range of parameters considered here, the surface
tension modifications, either global (Weber number) or local (elasticity number), do not modify
significantly the mean flow. Nevertheless, with respect to the single-phase case (black dashed line),
we can observe a slight increase of the mean velocity and indeed an increase in the flow rate of about
1% is observed for all the multiphase cases. These observations are in agreement with the results
obtained previously by Scarbolo et al. [40] and Roccon et al. [51], in a similar configuration, albeit
at a lower Reynolds number (Reτ = 150). In this paper we also perform simulations at a lower
Reynolds number, Reτ = 150, maintaining the grid resolution to better address the effect of the
Reynolds number on the macroscopic flow indicators; a full discussion on this issue can be found
in the Appendix.

2. Root mean square of the velocity fluctuations

More significative effects of the dispersed phase on the flow statistics can be appreciated in the
root mean square (rms) of the streamwise and wall-normal velocity fluctuations, which are shown
in Fig. 4 for We = 1.50 [Figs. 4(a) and 4(c)] and We = 3.00 [Figs. 4(b) and 4(d)]. The multiphase
cases are reported with different colors: clean, black; βs = 0.50, blue; βs = 1.00, green; βs = 2.00,
yellow; and βs = 4.00, red, while the single-phase results are reported with a black dashed line.
We focus on the modifications which occur in the core of the channel, where most of the droplets
are located. For all the multiphase cases, with respect to the single phase, we observe a decrease
in the amplitude of the streamwise and wall-normal velocity fluctuations. This decrease is more
pronounced for the wall-normal velocity fluctuations [Figs. 4(c) and 4(d)], while it is milder for the
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FIG. 4. Root mean square of the velocity fluctuations for (a) and (b) the streamwise component u′ and
(c) and (d) the wall-normal component w′ with (a) and (c) We = 1.50 and (b) and (d) We = 3.00. The different
cases are reported with different colors: clean, black; βs = 0.50, blue; βs = 1.00, green; βs = 2.00, yellow;
and βs = 4.00, red. A black dashed line identifies single-phase flow results. For all multiphase cases, a slight
reduction of the amplitude of the velocity fluctuations is observed in the channel center.

streamwise velocity fluctuations [Figs. 4(a) and 4(b)]. These modifications can be directly traced
back to the presence of the droplets: Indeed, the interface acts as a decoupling element between the
carrier phase fluid and the dispersed phase fluid, modulating turbulence and momentum exchanges
across it. Thus, the presence of the interface damps the fluid velocity fluctuations (in all directions).
There is also an additional factor, which will be better addressed and quantified later on, which
modifies the local flow within the droplets: the confinement effect due to the interface enclosing
portions of fluid. Specifically, the fluid within the droplets is confined by the interface, which
modulates momentum exchanges with the external flow and suppresses the larger flow structures
enclosed by the interface. This confinement effect is inversely proportional to the size of droplets:
Internal flowing is strongly suppressed in smaller droplets. This latter aspect will be better addressed
in Sec. III B 2, which is dedicated to the flow topology parameter, in which the effect of the flow
confinement will be clear (see Fig. 9 and the related discussion).

B. Local flow modifications

We move now to analyze the modifications produced by the surface tension forces (capillary
and Marangoni) on the local flow field. First we consider the changes in the local vorticity at the
interface [38,39]. Then we consider the spatial distribution of the flow topology parameter [34,75]
in the different regions of the domain: carrier phase, dispersed phase, and interface.
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FIG. 5. Probability density function of cos θ computed at the interface, with θ the angle between normal-
ized vorticity ω/|ω| and interface normal n (see the inset), for (a) We = 1.50 and (b) We = 3.00. The different
cases are reported using different colors: clean, black; βs = 0.50, blue; βs = 1.00, green; βs = 2.00, yellow;
and βs = 4.00, red. We can distinguish among three different reference configurations: cos θ = −1 (interface
normal and vorticity opposed), cos θ = 0 (interface normal and vorticity perpendicular), and cos θ = +1
(interface normal and vorticity concordant).

1. Vorticity and interface normal alignment

To characterize the modifications produced by the capillary and Marangoni forces in the vorticity
field at the interface, we analyze the alignment between the vorticity vector ω = ∇ × u and the
interface normal n. In particular, we compute the cosine of the angle θ , where θ is the angle between
the vorticity vector (evaluated at the interface) and the interface normal (see Fig. 5). Using a phase-
field approach, the interface normal can be directly computed from the phase field [51,76,77]

n = − ∇φ

|∇φ| , (24)

where the minus sign is needed to obtain the outward-pointing normal [from the droplet towards the
carrier phase (see Fig. 5)]. To obtain the cosine of the angle θ , we can compute the scalar product
between the interface normal and the vorticity normalized by its magnitude:

cos θ = n · ω

|ω| . (25)

The range of values assumed by the cosine of θ spans from cos θ = −1 (interface normal and
vorticity opposed) to cos θ = 0 (interface normal and vorticity perpendicular) up to cos θ = +1
(interface normal and vorticity concordant).

To characterize the alignment between these two quantities at the interface of the droplets, we
compute the probability density function (PDF) of cos θ . The results are shown in Fig. 5 for We =
1.50 [Fig. 5(a)] and We = 3.00 [Fig. 5(b)]. The different cases are reported using different colors:
clean, black; βs = 0.50, blue; βs = 1.00, green; βs = 2.00, yellow; and βs = 0.50, red.

We start by considering the cases at We = 1.50 [Fig. 5(a)]. For all cases, we observe that the
PDF is symmetric and the most probable value is cos θ = 0. In contrast, larger values of cos θ

(in magnitude) are very unlikely to be found. This indicates that there is a strong probability that
the interface normal and the vorticity vector are perpendicular. Conversely, there is a much lower
probability that the interface normal and the vorticity are aligned along the same direction (with
the same or opposite sign). The larger probability of finding vorticity tangential to the interface can
be attributed to the action of the surface tension forces [78,79]. Increasing the elasticity number
(from clean, i.e., βs = 0, to βs = 4.00), we can appreciate a clear modification of the PDF shape,

073606-12



EFFECT OF SURFACTANT-LADEN DROPLETS ON …

Q = −1 Q = 0 Q = +1

Rotational Pure shear Elongational

(a () b) (c)

FIG. 6. Qualitative representation of the flow topologies obtained for different values of Q: (a) rotational
flow for Q = −1, (b) pure shear flow for Q = 0, and (c) elongational flow for Q = +1. The boxes are colored
by the value of Q.

which becomes slightly wider, and the amplitude of the peak shifts downward (from �4.6 for the
surfactant-free system down to �3.5 for βs = 4.00). This modification of the PDF is produced by
the action of the surfactant, which reduces the local surface tension (and also the average). Thus, the
interface becomes more deformable and in turn less capable of modifying the local vorticity field.

Moving to We = 3.00 [Fig. 5(b)], a similar trend can be appreciated. However, with respect to
We = 1.50, the PDFs are slightly wider and the amplitude of the peaks decreases. Also for these
cases, the widening of the PDFs can be traced back to the lower surface tension. Indeed, when higher
Weber numbers (i.e., lower reference surface tension) or stronger surfactants (i.e., larger elasticity
numbers) are considered, the PDFs become wider and the amplitude of the peak further decreases
(from �3.5 for the surfactant-free system down to �2.1 for βs = 4.00).

Finally, it is interesting to observe that the PDFs of the cases We = 1.50 and βs = 4.00 [Fig. 5(a),
red] and the clean case at We = 3.00 [Fig. 5(b), black] are characterized by a similar behavior. This
similarity can be justified considering that the average surface tension of the case We = 1.50 and
βs = 4.00 is σav � 0.55σ0. Thus, its equivalent Weber number Weeq = (σ0/σav)We computed using
the average surface tension as a reference is Weeq � 2.7. As a consequence, the PDFs of the two
cases are very similar.

In an effort to investigate the effect of the Reynolds number on the vorticity and interface
normal alignment, we have examined the same statistics for a lower Reynolds number running
two additional simulations. A detailed discussion is reported in the Appendix.

2. Flow topology parameter

The flow topology parameter Q [80] is used to characterize the effects of the interface on the
flow field in the different regions of the domain (carrier phase, dispersed phase, and interface).
The parameter Q has recently gained popularity in the study of multiphase flows [34,36,75,81,82]
and allows one to distinguish among three different types of flow topology: purely rotational flow
for Q = −1 [Fig. 6(a)], pure shear flow for Q = 0 [Fig. 6(b)], and purely elongational flow for
Q = +1 [Fig. 6(c)]. The flow topology parameter Q is calculated as the second invariant of the
velocity gradient tensor ∇u,

Q = D2 − 
2

D2 + 
2
=

⎧⎨
⎩

−1 for purely rotational flow
0 for pure shear flow
+1 for purely elongational flow,

(26)
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FIG. 7. Flow topology parameter Q for different Weber and elasticity numbers at t+ = 3750 for (a) and
(b) surfactant-free simulations, panels (c) and (d) βs = 1.0 (mild surfactant), and (e) and (f) βs = 4.00 (stronger
surfactant) and (a), (c), and (e) We = 1.50 and (b), (d), and (f) We = 3.00. Each panel shows the flow topology
parameter Q on the channel midplane (x+-y+ plane); white solid lines identify the position of the droplet
interface (isolevel φ = 0).

with D2 = D : D and 
2 = Ω : Ω, where D and Ω are the rate-of-deformation and rate-of-rotation
tensors [79], respectively, and are defined as

D = ∇u + ∇uT

2
, (27)

Ω = ∇u − ∇uT

2
. (28)

We start by discussing the behavior of the flow topology parameter Q qualitatively. Figure 7
shows the spatial distribution of the flow topology parameter Q in an x+-y+ plane located at the
channel center for six different cases for We = 1.50 [Figs. 7(a), 7(c), and 7(e)] and We = 3.00
[Figs. 7(b), 7(d), and 7(f)]. Each row corresponds to a different elasticity number: surfactant-free
[Figs. 7(a) and 7(b)], βs = 1.00 [Figs. 7(c) and 7(d)], and βs = 4.00 [Figs. 7(e) and 7(f)]. The
interface of the droplets (isolevel φ = 0) is reported using solid white lines. At first glance, we
can observe how the presence of the interface influences the local flow behavior: While the carrier
phase appears to be characterized mainly by pure shear flow regions (Q = 0, green) with small

073606-14



EFFECT OF SURFACTANT-LADEN DROPLETS ON …

0

1

2

3

−1 −0.5 0 0.5 1

P
D

F
(Q

)

Q

Clean
βs = 0.5
βs = 1.0
βs = 2.0
βs = 4.0

Single-phase

0

1

2

3

−1 −0.5 0 0.5 1
Q

Clean
βs = 0.5
βs = 1.0
βs = 2.0
βs = 4.0

Single-phase

(a () b)

We = 1.50 We = 3.00

FIG. 8. Probability density function of the flow topology parameter Q in the carrier phase for (a) We =
1.50 and (b) We = 3.00. The different cases are reported using different colors: clean, black; βs = 0.50, blue;
βs = 1.00, green; βs = 2.00, yellow; and βs = 4.00, red. The single-phase flow results (black dashed line) are
also reported as a reference. In the carrier phase, no significative differences are observed and all the multiphase
cases overlap with the single-phase flow results.

fragmented regions of rotational (Q = −1, blue) and elongational (Q = +1, red) flow, the dispersed
phase seems to be characterized by the strong presence of both shear and elongational flow regions.
From Fig. 7 we can also consider the effects of the Weber and elasticity numbers on the dispersed
phase morphology, which will be useful later on. In particular, for increasing Weber and/or elasticity
numbers, the number of droplets increases and, as a consequence, the average size of the droplets
decreases (constant volume fraction). This modification of the dispersed phase morphology can be
directly related to the lower surface tension corresponding to larger Weber and/or elasticity numbers
[14]. To quantify these observations, we compute the PDF of Q distinguishing among the different
regions of the domain: carrier phase, dispersed phase, and interface.

In Fig. 8 we show the PDF of Q in the carrier phase for We = 1.50 [Fig. 8(a)] and We = 3.00
[Fig. 8(b)]. The different cases are reported using different colors: single-phase, black dashed line;
surfactant-free, black solid line; βs = 0.50, blue solid line; βs = 1.00, green solid line; βs = 2.00,
yellow solid line; and βs = 4.00, red solid line. For the single-phase case, the PDF is slightly
asymmetric and positive values of Q (elongational flow events) are more likely to be found (with
respect to negative values). In addition, the PDF exhibits a very sharp peak for Q = 0 (pure shear
flow events), indicating that the single-phase flow is dominated by pure shear flow events and
that purely rotational and purely elongational flow events are less frequent. For the multiphase
(surfactant-free and surfactant-laden) cases, the situation is unchanged and all the PDFs overlap
with the single-phase flow results. This suggests that the low volume fraction strongly limits the
modifications induced by the droplets in the flow topology of the carrier [37]. Thus, the mean shear
generated by the two walls bounding the flow determines the flow topology in the carrier (which is
identical to that observed in a canonical single-phase flow).

The PDFs of Q in the dispersed phase are reported in Fig. 9 for We = 1.50 [Fig. 9(a)] and We =
3.00 [Fig. 9(b)]. The different cases are reported using different colors: clean, black; βs = 0.50,
blue; βs = 1.00, green; βs = 2.00, yellow; and βs = 4.00, red. Compared to the single-phase flow
(Fig. 8, black dashed line), the shape of the PDFs is very different for all multiphase cases.

At We = 1.50 [Fig. 9(a)], the PDFs for all cases are negatively skewed and there is a higher
probability of observing purely elongational flow events (with respect to pure shear flow events).
We also observe that for larger elasticity numbers (except the case βs = 4.00, which will be
considered later on), the probability of finding elongational flow events (characterized by Q > 0.9)
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FIG. 9. Probability density function of the flow topology parameter Q in the dispersed phase for (a) We =
1.50 and (b) We = 3.00. The different cases are reported using different colors: clean, black; βs = 0.50,
blue; βs = 1.00, green; βs = 2.00, yellow; and βs = 4.00, red. For We = 1.50, Marangoni forces lead to a
larger probability of finding elongational flow events; for We = 3.00, the lower surface tension and the flow
confinement increase the probability of observing pure shear flow events.

increases. This behavior reflects the action of the Marangoni forces, whose amplitude is proportional
to the elasticity number. Indeed, larger elasticity numbers (stronger surfactants) lead to stronger
surface tension reductions and thus larger surface tension gradients (i.e., larger Marangoni forces).
Marangoni forces, which are tangential to the interface and are directed as the surface tension
gradients, generate a flow similar to an elongational flow (see Fig. 10) and thus for increasingly
larger elasticity numbers, the probability of finding elongational flow events is larger. For βs = 4.00,

High ψ (low σ)

Low ψ (high σ)

Marangoni forces

0.05

0.1
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0.2

ψ

−1

0

1

Q

FIG. 10. Qualitative sketch of the elongational-like flow (Q = +1) induced by the Marangoni forces. The
background is colored by the topology parameter Q (blue, low; red, high), while the interface (isolevel φ = 0)
is colored by the surfactant concentration (black, low; white, high). The Marangoni forces (black arrows) are
directed from higher surfactant concentration regions (white) towards low surfactant regions (black), thus from
regions characterized by a lower surface tension (white) towards regions characterized by a larger surface
tension (black). The background velocity field is represented with gray arrows.
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an additional effect enters the picture and the trend is lost. This effect is linked to the shutdown
of Marangoni forces: For surfactant concentrations above the shutdown concentration ψs, surface
tension remains constant and Marangoni forces vanish. For the strongest surfactant (i.e., βs = 4.00),
the shutdown concentration is extremely low, ψs � 0.12; thus most of the interface is characterized
by a lower, but constant, surface tension σ/σ0 = 0.5. As Marangoni forces vanish, the flow inside
the droplets is less likely to be extensional and thus the trend is lost. This effect is also partially
visible for βs = 2.0 [inset of Fig. 9(a)]; the increase in the probability of having elongational flow
inside the droplets is still higher than the cases at βs = 1.0, but the difference between the two cases
is rather small. The shift of the PDFs towards rotational and pure shear flow events (Q � 0) for
increasing elasticity numbers is determined also by two additional factors: the smaller droplet size
and the average surface tension reduction. These two factors promote the presence of rotational flow
(smaller droplet size) and of pure shear flow regions (average surface tension reduction) [37].

At We = 3.00 [Fig. 9(b)], the PDFs of the flow topology parameter exhibit some remarkable
changes with respect to We = 1.50: For all the cases, the probability of observing rotational and
shear flow events increases, while that of observing elongational flow events decreases. These
modifications can be linked to the two above-mentioned factors (smaller droplet size and average
surface tension reduction), which lead to a larger probability of finding rotational and pure shear flow
regions. In particular, the smaller droplet size introduces a strong confinement effect: The flow inside
the droplets is more confined by the interface and thus the internal flowing is suppressed. As the
internal flow becomes more confined, the droplets are less subjected to the mean shear imposed by
the external flow and rotational flow events are promoted [37]. Similarly, the lower surface tension
of these cases reducing the damping capability of the interface and the internal flow field becomes
more similar to that of the carrier phase (dominated by pure shear flow events). These two effects are
in competition with the Marangoni forces, which, in contrast, favor an elongational type of flow. The
outcome of this competition can be appreciated by comparing the PDFs obtained from the different
elasticity numbers. While for βs = 0.50 and βs = 1.00 the probability of finding elongational flow
events increases, suggesting the dominance of the Marangoni forces, for βs = 2.00 and βs = 4.00
the trend is lost and a larger probability of finding rotational and pure shear flow events is observed.
This latter observation, which can be only partially linked to the shutdown of the Marangoni forces
[14], indicates that for these two latter cases the effects induced by the smaller droplet size and
surface tension reduction are predominant. As a consequence, the PDFs shift towards rotational and
pure shear flow events.

Finally, we consider the PDF of the flow topology parameter at the interface in Fig. 11 for
We = 1.50 [Fig. 11(a)] and We = 3.00 [Fig. 11(b)]. The different cases are plotted with different
colors: clean, black; βs = 0.50, blue; βs = 1.00, green; βs = 2.00, yellow; and βs = 4.00, red. The
computation of the statistics only at the interface (and thus excluding the internal part of the droplets)
enables us to sort out the effects induced by the smaller droplet size and by the surface tension
reduction.

We start by considering the behavior of the PDFs in the region 0 < Q < +1. For both Weber
numbers, increasing the elasticity number (i.e., increasing the surfactant strength), we observe
a larger probability to find elongational flow events. This observation reflects the action of the
Marangoni forces (whose magnitude increases with the elasticity number), which generate an
elongational type of flow. In addition, the effect of the shutdown of Marangoni forces is also visible:
For We = 1.50 it involves a considerable part of the surfactant at the interface and thus the difference
between the cases βs = 2.00 and βs = 4.00 is very small [see the inset of Fig. 11(a)]. Conversely,
for We = 3.00, the results are less influenced by the shutdown of the Marangoni forces (the larger
interfacial area leads to a lower average surfactant concentration [14]) and the trend is kept.

Turning to the behavior of the PDFs in the region −1 < Q < 0, for all multiphase cases (except
for βs = 4.00), we observe a decreasing probability of observing rotational-like flow events for
increasing elasticity numbers (surfactant strengths). This indicates that the surface tension forces
(especially the capillary ones) generate a rotational type of flow at the interface. Indeed, the
amplitude of these forces is larger when surfactant-free systems or weaker surfactants are considered
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FIG. 11. Probability density function of the flow topology parameter Q at the interface for (a) We = 1.50
and (b) We = 3.00. The different cases are reported using different colors: clean, black; βs = 0.50, blue; βs =
1.00, green; βs = 2.00, yellow; and βs = 4.00, red. For both Weber numbers, the probability of observing
elongational flow events increases for increasing elasticity numbers and, conversely, the probability of finding
rotational flow events decreases.

and vorticity tangential to the interface is generated (see Fig. 5). Focusing on the cases at βs = 4.00
(especially at We = 1.50), the trend is partially lost since the shutdown of the Marangoni forces
strongly limits the occurrence of elongation flow events. Thus, the resulting PDF is somehow
more similar to that obtained from a surfactant-free case (absence of Marangoni forces). This
similarity can be appreciated comparing the case We = 1.50 and βs = 4.00 [Fig. 11(a), red] and the
surfactant-free case at We = 3.00 [Fig. 11(a), black], which indeed are characterized by a similar
equivalent Weber number We � 2.70 for the first case and We = 3.00 for the second. In addition,
for the first case, the shutdown of the Marangoni forces involves a wider portion of the interface
(i.e., capillary forces are predominant), explaining the similarity between the two PDFs.

A detailed discussion on the effect of the Reynolds number on the PDF of the flow topology
parameter is reported in the Appendix, where the same statistic has been analyzed at a lower
Reynolds number.

C. Effect of grid resolution on the results

In this section we address the effect of the grid resolution on the local flow indicators obtained. In
the framework of phase-field approaches, the thickness of the interfacial transition layer is set via the
Cahn number; it is however good practice to select the Cahn number according to the grid resolution.
Thus, here we investigate the effect of grid resolution and interface thickness (i.e., Cahn number)
on the alignment between vorticity and interface and on the flow topology parameter sampled at
the interface. To this end, we consider the case at We = 3.00 and βs = 4.00 and we compare the
results obtained from two different grid resolutions (and thus two different Cahn numbers): Nx ×
Ny × Nz = 1024 × 512 × 513 (standard grid used for all cases, Ch = 0.025) and Nx × Ny × Nz =
2048 × 1024 × 1025 (finer grid, refined twice in all directions, Ch = 0.0125).

In Fig. 12 we show the PDF of cos θ [Fig. 12(a)] and of the flow topology parameter Q at the
interface [Fig. 12(b)] for the two different grid resolutions considered. The results obtained from
the standard grid simulation are reported with solid lines, while those obtained from the refined grid
simulation are reported with dashed lines.

Considering the PDF of cos θ [Fig. 12(a)], we observe that increasing the grid resolution (and
consequently decreasing the Cahn number), the probability of having the vorticity unit vector
perpendicular to the interface normal slightly increases [39]. This modification of the PDF can
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dashed lines.

be traced back mainly to two effects: As the grid resolution is increased, smaller droplets can be
better captured and the interfacial layer is thinner. Smaller droplets are characterized by a very low
deformability (i.e., a smaller Weber number, computed using the droplet diameter as a reference
length scale) and thus produce stronger modifications of the local flow field. Indeed, as the droplet
becomes less deformable, the probability of finding vorticity perpendicular to the interface normal
increases. The second effect (thinner interfacial layer) leads to a local increase in surface tension
forces: While the integral of surface tension forces across the interfacial layer is the same for both
cases, when the Cahn number is halved (i.e., the interface thickness is halved), surface tension forces
are smeared out on a thinner interfacial layer and are thus locally higher.

Similar effects can be appreciated as well for the PDF of the flow topology parameter sampled at
the interface [Fig. 12(b)]: Smaller droplets suppress internal flowing (i.e., reduce elongational-like
events), while higher surface tension forces increase the stiffness of the interface [i.e., increase pure
shear flow events, which can be appreciated by comparing Figs. 11(a) and 11(b)]. Indeed, as the
thickness of the interfacial layer is reduced (lower Cahn number, refined grid), the peak of the PDF
shifts towards smaller values of Q.

The weak dependence on the grid resolution of the results presented above can be justified as
follows: As the grid resolution is increased, the dynamics of smaller structures (e.g., smaller droplets
and ligaments) can be captured. Whether or not these smaller structures affect the results depends
on the statistic considered: They have a negligible effect on macroscopic flow indicators, while
a slightly more pronounced effect is observed on local flow indicators and on droplet statistics
[14,39,83]. Thus, for the interface-vorticity alignment and the flow topology parameter, which are
local quantities computed at the interface (whose shape and extension depend on the dispersed phase
morphology), a weak dependence of the results on the grid resolution can be expected and has been
also observed in previous studies [39].

IV. CONCLUSION

In this work we have investigated the modifications on the flow field induced by a swarm of
surfactant-laden droplets. The dynamics of the multiphase flow is described via direct numerical
simulations of the Navier-Stokes equation coupled with a two-order-parameter phase-field method.
The first order parameter, the phase field, describes the local concentration of the carrier and
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dispersed phase and the second order parameter defines the surfactant concentration. The feedback
of the surfactant-laden interface onto the flow field is accounted for via a force-coupling term
in the Navier-Stokes equations. The effects of both Weber number (ratio of inertial forces over
surface tension forces) and elasticity number (surfactant strength) on both global and local flow
parameters have been investigated. We found that the macroscopic flow is almost unaffected by the
presence of the surfactant-laden droplets since the total volume fraction of the dispersed phase is
rather low (� � 5.4%), as also observed at lower Reynolds number by Scarbolo et al. [40] and
Roccon et al. [51]. However, we could observe a mild suppression of the turbulence fluctuations
(streamwise and wall normal) in the channel core, where the majority of the droplets are located.
In contrast, remarkable modifications of the local flow field are observed. The vorticity field at
the interface is influenced by the presence of surface tension forces and a larger probability of
finding vorticity tangential at the interface is obtained when lower Weber and elasticity numbers
are considered (i.e., when larger surface tension values are considered). Large modifications are
observed also for the flow topology parameter Q, which we compute separately in the carrier phase,
in the dispersed phase, and at the interface. In the carrier phase, the flow is dominated by the
mean shear arising from the two solid walls bounding the flow and thus mainly pure shear flow
events (Q = 0) are observed, as in a canonical single-phase flow. Differently, the dispersed phase
is characterized by a combination of rotational (Q = −1), pure shear (Q = 0), and elongational
(Q = +1) flow regions. Elongational flow regions are predominant for We = 1.50, while the
probability of observing rotational and pure shear flow regions increases for the cases at We = 3.00.
The different flow topology observed in the dispersed phase is the result of the competition between
different factors: the Marangoni forces, which promote an elongational flow, and the smaller droplet
size and surface tension reduction, which promote the presence of rotational and pure shear flow
regions. At the interface, the action of the Marangoni forces on the flow topology parameter can
be clearly observed: For both Weber numbers, increasing the elasticity number (i.e., increasing the
magnitude of the Marangoni forces) increases the probability of finding elongational flow regions,
while the probability of observing rotational flow regions decreases.
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APPENDIX: EFFECT OF REYNOLDS NUMBER

Three additional simulations were performed to investigate the effect of the Reynolds number on
the quantities of interest. In particular, two droplet-laden cases (clean droplets at different Weber
numbers We = 1.50 and 3.00) and one reference single-phase case at shear Reynolds number
Reτ = 150 have been performed. The very same numerical setup has been adopted: The boundary
and initial conditions, the grid resolution (Nx × Ny × Nz = 1024 × 512 × 513), and the phase-field
parameters (Ch = 0.025 and Peφ = 150) are unchanged with respect to the cases presented in
Table I. First the effect of the Reynolds number on the macroscopic indicators will be presented;
then the local flow indicators will be investigated.

1. Macroscopic flow modifications

Similarly to what is observed at the higher shear Reynolds number Reτ = 300, the relatively
low volume fraction of the dispersed phase (about 5%) limits its effect on the macroscopic flow. In
particular, a slight increase in the mean streamwise velocity profile (Fig. 13) is observed also at the
lower shear Reynolds number Mτ = 150 in the core region of the channel. The mean streamwise
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velocity profiles for both Weber numbers are superposed; for the considered volume fraction, the
Weber number has no influence on the mean velocity.

A decrease in the amplitude of velocity fluctuations in the channel core [streamwise and wall-
normal components in Figs. 14(a) and 14(b), respectively] is observed for both shear Reynolds
number values considered (Reτ = 150 in Fig. 14 and Reτ = 300 in Fig. 4); the magnitude of the
reduction is similar for both Reτ values. Indeed, the dispersed phase introduces a mild turbulence
modulation in the core of the channel; a stronger effect is observed for the wall-normal component.

2. Local flow modifications

The alignment between the vorticity at the interface and the interface normal is almost unchanged
for different shear Reynolds numbers; Fig. 15 shows the PDF of cos θ , with θ the angle between the
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FIG. 14. Root mean square of the velocity fluctuations for the simulations performed at Reτ = 150:
(a) streamwise component and (b) wall-normal component. The different cases are shown using different line
styles: We = 1.50, black solid lines; We = 3.00, red solid lines. Black dashed lines identify the single-phase
flow results.
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vorticity ω and the interface normal n. The PDFs for the two shear Reynolds numbers are almost
superposed at the lower Weber number We = 1.50, while at We = 3.00 a stronger preferential
alignment is observed for the higher shear Reynolds number Reτ = 300. Indeed, at higher shear
Reynolds number the vorticity is more likely to be orthogonal to the interface normal. This
difference can be traced back to the different dispersed phase morphology observed when the shear
Reynolds number is increased: An increase in the shear Reynolds number leads to a reduction
in the Hinze diameter [84] through an increase in the dissipation rate, thus lowering the average
droplet size and moving the droplet size distribution towards smaller diameters. This effect is clear
for the cases at We = 3.00 (lower surface tension), while for the cases at We = 1.50 the higher
surface tension keeps the larger droplets stable despite the increase in the dissipation rate. This way,
almost no shear-Reynolds-number effect can be observed for the low-Weber-number case, while a
minor effect is observed for the high-Weber-number case. The smaller droplets that are generated
when the shear Reynolds number is increased (cases at We = 3.00) have a higher curvature and
thus are less deformable. Indeed, a stronger preferential alignment at θ = 90◦ is observed when the
shear Reynolds number is increased. Thus, the shear Reynolds number has an indirect effect on the
alignment of vorticity at the interface: By increasing the dissipation rate (hence decreasing the value
of the Hinze diameter), it changes the morphology of the dispersed phase, leading to the formation
of smaller and less deformable droplets. In turn, these smaller droplets favor the production of
vorticity perpendicular to the interface normal (i.e., cos θ = 0).

A relevant effect of the shear Reynolds number is observed when the flow topology parameter
is considered (Fig. 16). In particular, the carrier phase is characterized by a strong reduction in
pure shear and an increase in elongational type of flow. The increase in the pure shear contribution
observed for the lower shear Reynolds number is linked to the higher fraction of the channel
occupied by the viscous sublayer, with respect to the case at Reτ = 300. The thickness of the viscous
sublayer remains the same when the shear Reynolds number is changed (about ten wall units), but
the total channel height is different: 300 wall units at Reτ = 150 and 600 wall units at Reτ = 300.
Therefore, the presence of a dispersed phase has almost no effect on the flow topology parameter in
the carrier phase, which is instead dominated by the imposed flow, and the differences observed are
to be attributed to the different extension of the viscous sublayer with respect to the total size of the
channel.

The dispersed phase (Fig. 17), however, is mainly located in the inner layer; thus it is mostly
unaffected by the viscous sublayer (as can be confirmed by the absence of a strong peak of pure
shear). Again, the main differences observed are to be linked to the different imposed flow: As the
shear Reynolds number is increased, the PDF of the flow topology parameter (in the carrier phase
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or for a single-phase flow case) shows a reduction in pure shear type of flow and an increase in
elongational type of flow. This change is then reflected in the PDF of the flow topology parameter
(Fig. 17), which exhibits a higher probability of finding elongational type of flow inside the droplets.
The reduction in the probability of an elongational type of flow inside the droplets for the lower shear
Reynolds number is also linked to a stronger internal flow suppression: The droplets are roughly of
similar size (when comparing data at the same Weber number), but viscous effects are stronger (i.e.,
lower shear Reynolds number).

Considerations similar to those for the effect of the shear Reynolds number on the flow topology
parameter in the dispersed phase still apply at the interface (Fig. 18): An increase in the probability
of pure shear and a decrease in the probability of elongational flow are observed as the shear
Reynolds number is decreased. Indeed, as the shear Reynolds number is increased the probability of
elongational and rotational flows increases, while that of pure shear decreases. Here, however, the
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confinement effect is filtered out (the PDF is computed only at the interface); hence the effect of the
shear Reynolds number is much less marked.

[1] I. Kralova and J. Sjöblom, Surfactants used in food industry: A review, J. Disper. Sci. Technol. 30, 1363
(2009).

[2] M. Rosen and J. Kunjappu, Surfactants and Interfacial Phenomena (Wiley, New York, 2012).
[3] A. Kiyomi and Y. Fumitake, Bubble size, interfacial area, and liquid-phase mass transfer coefficient in

bubble columns, Ind. Eng. Chem. Process Des. Dev. 13, 84 (1974).
[4] J. E. Kelly and M. S. Kazimi, Interfacial exchange relations for two-fluid vapor-liquid flow: A simplified

regime-map approach, Nucl. Sci. Eng. 81, 305 (1982).
[5] J. M. Delhaye and P. Bricard, Interfacial area in bubbly flow: Experimental data and correlations, Nucl.

Eng. Des. 151, 65 (1994).
[6] R. Lindken, L. Gui, and W. Merzkirch, Velocity measurements in multiphase flow by means of particle

image velocimetry, Chem. Eng. Technol. 22, 202 (1999).
[7] N. Reinecke, G. Petritsch, D. Schmitz, and D. Mewes, Tomographic measurement techniques – Visual-

ization of multiphase flows, Chem. Eng. Technol. 21, 7 (1998).
[8] R. Lindken and W. Merzkirch, A novel PIV technique for measurements in multiphase flows and its

application to two-phase bubbly flows, Exp. Fluids 33, 814 (2002).
[9] S. Elghobashi, Direct numerical simulation of turbulent flows laden with droplets or bubbles, Annu. Rev.

Fluid Mech. 51, 217 (2019).
[10] A. Prosperetti and G. Tryggvason, Computational Methods for Multiphase Flow (Cambridge University

Press, Cambridge, 2009).
[11] G. Tryggvason, R. Scardovelli, and S. Zaleski, Direct Numerical Simulations of Gas-Liquid Multiphase

Flows (Cambridge University Press, Cambridge, 2011).
[12] R. Pereira, I. Ashton, B. Sabbaghzadeh, J. D. Shutler, and R. C. Upstill-Goddard, Reduced air-sea CO2

exchange in the Atlantic Ocean due to biological surfactants, Nat. Geosci. 11, 492 (2018).
[13] J. Lu, M. Muradoglu, and G. Tryggvason, Effect of insoluble surfactant on turbulent bubbly flows in

vertical channels, Int. J. Multiphas. Flow 95, 135 (2017).
[14] G. Soligo, A. Roccon, and A. Soldati, Breakage, coalescence and size distribution of surfactant-laden

droplets in turbulent flow, J. Fluid Mech. 881, 244 (2019).

073606-24

https://doi.org/10.1080/01932690902735561
https://doi.org/10.1021/i260049a016
https://doi.org/10.13182/NSE82-A20276
https://doi.org/10.1016/0029-5493(94)90034-5
https://doi.org/10.1002/(SICI)1521-4125(199903)22:3<202::AID-CEAT202>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1521-4125(199801)21:1<7::AID-CEAT7>3.0.CO;2-K
https://doi.org/10.1007/s00348-002-0500-1
https://doi.org/10.1146/annurev-fluid-010518-040401
https://doi.org/10.1038/s41561-018-0136-2
https://doi.org/10.1016/j.ijmultiphaseflow.2017.05.003
https://doi.org/10.1017/jfm.2019.772


EFFECT OF SURFACTANT-LADEN DROPLETS ON …

[15] S. Takagi, T. Ogasawara, and Y. Matsumoto, The effects of surfactant on the multiscale structure of bubbly
flows, Philos. Trans. R. Soc. A 366, 2117 (2008).

[16] S. Takagi and Y. Matsumoto, Surfactant effects on bubble motion and bubbly flows, Annu. Rev. Fluid
Mech. 43, 615 (2011).

[17] J. L. Bull, L. K. Nelson, J. T. Walsh, Jr., M. R. Glucksberg, S. Schürch, and J. B. Grotberg, Surfactant-
spreading and surface-compression disturbance on a thin viscous film, J. Biomech. Eng. 121, 89 (1999).

[18] A. D. Dussaud, O. K. Matar, and S. M. Troian, Spreading characteristics of an insoluble surfactant film
on a thin liquid layer: Comparison between theory and experiment, J. Fluid Mech. 544, 23 (2005).

[19] S. Adami, X. Y. Hu, and N. A. Adams, A conservative SPH method for surfactant dynamics, J. Comput.
Phys. 229, 1909 (2010).

[20] G. Soligo, A. Roccon, and A. Soldati, Coalescence of surfactant-laden drops by phase field method,
J. Comput. Phys. 376, 1292 (2019).

[21] J.-J. Xu, Z. Li, J. Lowengrub, and H. Zhao, A level-set method for interfacial flows with surfactant,
J. Comput. Phys. 212, 590 (2006).

[22] M. Muradoglu and G. Tryggvason, A front-tracking method for computation of interfacial flows with
soluble surfactants, J. Comput. Phys. 227, 2238 (2008).

[23] J. Lu, A. Fernández, and G. Tryggvason, The effect of bubbles on the wall drag in a turbulent channel
flow, Phys. Fluids 17, 095102 (2005).

[24] L. Scarbolo and A. Soldati, Wall drag modification by large deformable droplets in turbulent channel flow,
Comput. Fluids 113, 87 (2014).

[25] R. A. Verschoof, R. C. A. van der Veen, C. Sun, and D. Lohse, Bubble Drag Reduction Requires Large
Bubbles, Phys. Rev. Lett. 117, 104502 (2016).

[26] F. Risso, Agitation, mixing, and transfers induced by bubbles, Annu. Rev. Fluid Mech. 50, 25 (2018).
[27] J. Lu and G. Tryggvason, Numerical study of turbulent bubbly downflows in a vertical channel, Phys.

Fluids 18, 103302 (2006).
[28] J. Lu and G. Tryggvason, Effect of bubble size in turbulent bubbly downflow in a vertical channel, Chem.

Eng. Sci. 62, 3008 (2007).
[29] J. Lu and G. Tryggvason, Effect of bubble deformability in turbulent bubbly upflow in a vertical channel,

Phys. Fluids 20, 040701 (2008).
[30] J. Lu and G. Tryggvason, Direct numerical simulations of multifluid flows in a vertical channel undergoing

topology changes, Phys. Rev. Fluids 3, 084401 (2018).
[31] J. Lu and G. Tryggvason, Multifluid flows in a vertical channel undergoing topology changes: Effect of

void fraction, Phys. Rev. Fluids 4, 084301 (2019).
[32] M. S. Dodd and A. Ferrante, On the interaction of Taylor length scale size droplets and isotropic

turbulence, J. Fluid Mech. 806, 356 (2016).
[33] A. Freund and A. Ferrante, Wavelet-spectral analysis of droplet-laden isotropic turbulence, J. Fluid Mech.

875, 914 (2019).
[34] F. De Vita, M. E. Rosti, S. Caserta, and L. Brandt, On the effect of coalescence on the rheology of

emulsions, J. Fluid Mech. 880, 969 (2019).
[35] M. E. Rosti, L. Brandt, and D. Mitra, Rheology of suspensions of viscoelastic spheres: Deformability as

an effective volume fraction, Phys. Rev. Fluids 3, 0123301(R) (2018).
[36] M. E. Rosti, F. De Vita, and L. Brandt, Numerical simulations of emulsions in shear flows, Acta Mech.

230, 667 (2019).
[37] M. E. Rosti, Z. Ge, S. S. Jain, M. S. Dodd, and L. Brandt, Droplets in homogeneous shear turbulence,

J. Fluid Mech. 876, 962 (2019).
[38] S. Mukherjee, A. Safdari, O. Shardt, S. Kenjereš, and H. E. A. Van den Akker, Droplet-turbulence

interactions and quasi-equilibrium dynamics in turbulent emulsions, J. Fluid Mech. 878, 221 (2019).
[39] C. Shao, K. Luo, Y. Yang, and J. Fan, Direct numerical simulation of droplet breakup in homogeneous

isotropic turbulence: The effect of the Weber number, Int. J. Multiphas. Flow 107, 263 (2018).
[40] L. Scarbolo, F. Bianco, and A. Soldati, Turbulence modification by dispersion of large deformable

droplets, Eur. J. Mech. B 55, 294 (2016).

073606-25

https://doi.org/10.1098/rsta.2008.0023
https://doi.org/10.1146/annurev-fluid-122109-160756
https://doi.org/10.1115/1.2798049
https://doi.org/10.1017/S002211200500621X
https://doi.org/10.1016/j.jcp.2009.11.015
https://doi.org/10.1016/j.jcp.2018.10.021
https://doi.org/10.1016/j.jcp.2005.07.016
https://doi.org/10.1016/j.jcp.2007.10.003
https://doi.org/10.1063/1.2033547
https://doi.org/10.1016/j.compfluid.2014.06.027
https://doi.org/10.1103/PhysRevLett.117.104502
https://doi.org/10.1146/annurev-fluid-122316-045003
https://doi.org/10.1063/1.2353399
https://doi.org/10.1016/j.ces.2007.02.012
https://doi.org/10.1063/1.2911034
https://doi.org/10.1103/PhysRevFluids.3.084401
https://doi.org/10.1103/PhysRevFluids.4.084301
https://doi.org/10.1017/jfm.2016.550
https://doi.org/10.1017/jfm.2019.515
https://doi.org/10.1017/jfm.2019.722
https://doi.org/10.1103/PhysRevFluids.3.012301
https://doi.org/10.1007/s00707-018-2265-5
https://doi.org/10.1017/jfm.2019.581
https://doi.org/10.1017/jfm.2019.654
https://doi.org/10.1016/j.ijmultiphaseflow.2018.06.009
https://doi.org/10.1016/j.euromechflu.2015.10.002


SOLIGO, ROCCON, AND SOLDATI

[41] V. Spandan, R. Verzicco, and D. Lohse, Physical mechanisms governing drag reduction in turbulent
Taylor-Couette flow with finite-size deformable bubbles, J. Fluid Mech. 849, R3 (2018).

[42] S. Komura and H. Kodama, Two-order-parameter model for an oil-water-surfactant system, Phys. Rev. E
55, 1722 (1997).

[43] S. Engblom, M. Do-Quang, G. Amberg, and A.-K. Tornberg, On diffuse interface modeling and
simulation of surfactants in two-phase fluid flow, Commun. Comput. Phys. 14, 879 (2013).

[44] A. Yun, Y. Li, and J. Kim, A new phase-field model for a water-oil-surfactant system, Appl. Math.
Comput. 229, 422 (2014).

[45] M. Laradji, H. Guo, M. Grant, and M. J. Zuckermann, The effect of surfactants on the dynamics of phase
separation, J. Phys.: Condens. Matter 4, 6715 (1992).

[46] Y. Li, J. Choi, and J. Kim, A phase-field fluid modeling and computation with interfacial profile correction
term, Commun. Nonlinear Sci. 30, 84 (2016).

[47] Y. Zhang and W. Ye, A flux-corrected phase-field method for surface diffusion, Commun. Comput. Phys.
22, 422 (2017).

[48] G. Soligo, A. Roccon, and A. Soldati, Mass-conservation-improved phase field methods for turbulent
multiphase flow simulation, Acta Mech. 230, 683 (2019).

[49] P. Yue, C. Zhou, and J. Feng, Spontaneous shrinkage of drops and mass conservation in phase-field
simulations, J. Comput. Phys. 223, 1 (2007).

[50] L. Scarbolo, F. Bianco, and A. Soldati, Coalescence and breakup of large droplets in turbulent channel
flow, Phys. Fluids 27, 073302 (2015).

[51] A. Roccon, M. De Paoli, F. Zonta, and A. Soldati, Viscosity-modulated breakup and coalescence of large
drops in bounded turbulence, Phys. Rev. Fluids 2, 083603 (2017).

[52] S. Popinet, Numerical models of surface tension, Annu. Rev. Fluid Mech. 50, 49 (2018).
[53] D. Korteweg, Sur la forme que prennent les equations du mouvements des fluides si l’on tient compte des

forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de
la capillarité dans l’hypothèse d’une variation continue de la densité, Arch. Neerl. Sci. Exactes Nat. 6, 1
(1901).

[54] C.-H. Chang and E. I. Franses, Adsorption dynamics of surfactants at the air/water interface: A critical
review of mathematical models, data, and mechanisms, Colloids Surf. A 100, 1 (1995).

[55] I. B. Bazhlekov, P. D. Anderson, and H. E. H. Meijer, Numerical investigation of the effect of insoluble
surfactants on drop deformation and breakup in simple shear flow, J. Colloid Interf. Sci. 298, 369 (2006).

[56] B. Szyszkowski, Experimental studies of the capillary properties of aqueous solutions of fatty acids, Z.
Phys. Chem. 64, 385 (1908).

[57] D. López-Díaz, I. García-Mateos, and M. M. Velázquez, Surface properties of mixed monolayers of
sulfobetaines and ionic surfactants, J. Colloid Interf. Sci. 299, 858 (2006).

[58] H. Ju, Y. Jiang, T. Geng, Y. Wang, and C. Zhang, Equilibrium and dynamic surface tension of quaternary
ammonium salts with different hydrocarbon chain length of counterions, J. Mol. Liq. 225, 606 (2017).

[59] M. R. Porter, Handbook of Surfactants (Springer, New York, 1991).
[60] M. Muradoglu and G. Tryggvason, Simulations of soluble surfactants in 3D multiphase flow, J. Comput.

Phys. 274, 737 (2014).
[61] D. Langevin, Rheology of adsorbed surfactant monolayers at fluid surfaces, Annu. Rev. Fluid Mech. 46,

47 (2014).
[62] G. Elfring, L. Leal, and T. Squires, Surface viscosity and Marangoni stresses at surfactant laden interfaces,

J. Fluid Mech. 792, 712 (2016).
[63] M. Hussaini and T. Zang, Spectral methods in fluid dynamics, Annu. Rev. Fluid Mech. 19, 339 (1987).
[64] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods in Fluid Dynamics (Springer,

Berlin, 1988).
[65] R. Peyret, Spectral Methods for Incompressible Viscous Flow (Springer Science+Business Media,

New York, 2002), Vol. 148.
[66] V. E. Badalassi, H. D. Ceniceros, and S. Banerjee, Computation of multiphase systems with phase field

models, J. Comput. Phys. 190, 371 (2003).

073606-26

https://doi.org/10.1017/jfm.2018.478
https://doi.org/10.1103/PhysRevE.55.1722
https://doi.org/10.4208/cicp.120712.281212a
https://doi.org/10.1016/j.amc.2013.12.054
https://doi.org/10.1088/0953-8984/4/32/006
https://doi.org/10.1016/j.cnsns.2015.06.012
https://doi.org/10.4208/cicp.OA-2016-0150
https://doi.org/10.1007/s00707-018-2304-2
https://doi.org/10.1016/j.jcp.2006.11.020
https://doi.org/10.1063/1.4923424
https://doi.org/10.1103/PhysRevFluids.2.083603
https://doi.org/10.1146/annurev-fluid-122316-045034
https://doi.org/10.1016/0927-7757(94)03061-4
https://doi.org/10.1016/j.jcis.2005.12.017
https://doi.org/10.1016/j.jcis.2006.02.030
https://doi.org/10.1016/j.molliq.2016.11.084
https://doi.org/10.1016/j.jcp.2014.06.024
https://doi.org/10.1146/annurev-fluid-010313-141403
https://doi.org/10.1017/jfm.2016.96
https://doi.org/10.1146/annurev.fl.19.010187.002011
https://doi.org/10.1016/S0021-9991(03)00280-8


EFFECT OF SURFACTANT-LADEN DROPLETS ON …

[67] P. Yue, J. J. Feng, C. Liu, and J. Shen, A diffuse-interface method for simulating two-phase flows of
complex fluids, J. Fluid Mech. 515, 293 (2004).

[68] J. Kim, P. Moin, and R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds
number, J. Fluid Mech. 177, 133 (1987).

[69] C. G. Speziale, On the advantages of the vorticity-velocity formulation of the equations of fluid dynamics,
J. Comput. Phys. 73, 476 (1987).

[70] P. Than, L. Preziosi, D. D. Joseph, and M. Arney, Measurement of interfacial tension between immiscible
liquids with the spinning rod tensiometer, J. Colloid Interface Sci. 124, 552 (1988).

[71] F. Magaletti, F. Picano, M. Chinappi, L. Marino, and C. M. Casciola, The sharp-interface limit of the
Cahn–Hilliard/Navier–Stokes model for binary fluids, J. Fluid Mech. 714, 95 (2013).

[72] R. M. Weinheimer, D. F. Evans, and E. L. Cussler, Diffusion in surfactant solutions, J. Colloid Interface
Sci. 80, 357 (1981).

[73] H. Schlichting and K. Gersten, Boundary-Layer Theory (Springer, Berlin, 2016).
[74] T. von Kármán, Mechanical similitude and turbulence, NACA Report No. 611, 1931 (unpublished)

[reprint from Nachr. Ges. Wiss. Gottingen 58, 322 (1931)].
[75] S. De, J. A. M. Kuipers, E. A. J. F. Peters, and J. T. Padding, Viscoelastic flow simulations in random

porous media, J. Non-Newton. Fluid 248, 50 (2017).
[76] R. Aris, Vectors, Tensors and the Basic Equations of Fluid Mechanics (Dover, New York, 1989).
[77] Y. Sun and C. Beckermann, Sharp interface tracking using the phase-field equation, J. Comput. Phys. 220,

626 (2007).
[78] L. G. Leal, Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis

(Butterworth-Heinemann, Boston, 1992).
[79] G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 2000).
[80] A. E. Perry and M. S. Chong, A description of eddying motions and flow patterns using critical-point

concepts, Annu. Rev. Fluid Mech. 19, 125 (1987).
[81] F. De Vita, M. E. Rosti, D. Izbassarov, L. Duffo, O. Tammisola, S. Hormozi, and L. Brandt, Elastovis-

coplastic flows in porous media, J. Non-Newton. Fluid 258, 10 (2019).
[82] M. S. Dodd and L. Jofre, Small-scale flow topologies in decaying isotropic turbulence laden with finite-

size droplets, Phys. Rev. Fluids 4, 064303 (2019).
[83] S. Vincent, L. Osmar, J. L. Estivalezes, S. A. Zaleski, F. Auguste, W. Aniszewski, Y. Ling, T. Ménard,

A. Pedrono, J. Magnaudet et al., A phase inversion benchmark for multiscale multiphase flows,
arXiv:1906.02655.

[84] J. D. Hinze, Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE
J. 1, 289 (1955).

073606-27

https://doi.org/10.1017/S0022112004000370
https://doi.org/10.1017/S0022112087000892
https://doi.org/10.1016/0021-9991(87)90149-5
https://doi.org/10.1016/0021-9797(88)90191-9
https://doi.org/10.1017/jfm.2012.461
https://doi.org/10.1016/0021-9797(81)90194-6
https://doi.org/10.1016/j.jnnfm.2017.08.010
https://doi.org/10.1016/j.jcp.2006.05.025
https://doi.org/10.1146/annurev.fl.19.010187.001013
https://doi.org/10.1016/j.jnnfm.2018.04.006
https://doi.org/10.1103/PhysRevFluids.4.064303
http://arxiv.org/abs/arXiv:1906.02655
https://doi.org/10.1002/aic.690010303

