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Marangoni effect on the impact of droplets onto a liquid-gas interface
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The impact dynamics and internal mixing of a droplet onto a liquid-gas interface of
lower surface tension was studied both experimentally and numerically, with both the
Ohnesorge number (Oh) and the Bond number (Bo) being fixed. Compared to the droplet
impact onto a pool of identical liquid, the interfacial Marangoni flow entrains abundant
fluid upward and hence induces an additional jet breakup during crater formation (the
first breakup), and it facilitates the emergence of the Rayleigh jet breakup (the second
breakup) during crater restoration and enhances the vortical mixing beneath the liquid
surface. Specifically, with the increase of the impact inertia, the first breakup manifests
a nonmonotonic trend of “absence-presence-absence.” The former transition of “absence-
presence” at a low droplet-based Weber number (Wed) is caused by the shortened path
of the Marangoni flow on the faster-growing liquid bridge, and the later transition of
“presence-absence” at a high Wed is resulted from the reduced displacement velocity of the
pool fluid on the expanding crater surface. The second breakup corresponds to the Rayleigh
jet breakup without surface tension difference and occurs monotonically beyond a certain
Wed. Due to the relatively short displacement time of the Marangoni flow on the crater
surface compared to the time for crater formation, the critical condition for the emergence
of the second jet breakup could be described by the critical reservoir-fluid-based We
number (Wer). The critical Wer contains two parts: the Bo-dependent critical Wer0 without
surface tension difference, and the increased viscous dissipation from the wrap-up motion
of the Marangoni flow. Furthermore, capillary waves are also induced by the Marangoni
flow during crater restoration, and the accompanied vorticity generation causes the mixing
pattern to exhibit multiple vortex rings and even a clawlike structure, which is substantially
enhanced compared to the vortical mixing without surface tension difference.

DOI: 10.1103/PhysRevFluids.5.073605

I. INTRODUCTION

The impact of droplets onto a liquid surface occurs universally in a number of natural and
industrial processes including precipitation [1], spray atomization in engines [2], spray cooling
[3], etc. For decades, most studies have focused on the droplet impact of an identical liquid, and
various impact outcomes have been reported, including bouncing, complete coalescence, partial
coalescence, jet breakup (singular jet and cavity jet), and splashing [4–8]. Beneath the liquid surface,
jetlike mixing was also identified [9,10].

With the rapid development of novel technologies such as microfluidic devices [11,12], material
synthesis [13,14], and hypergolic propulsion systems [15,16], the impact of droplets onto a liquid
surface of unlike physical properties has attracted increasing attentions due to its practical relevance.
Physically, the droplet impact process is synergistically controlled by the impact inertia, surface

*Author to whom correspondence should be addressed: sunkai@tju.edu.cn

2469-990X/2020/5(7)/073605(21) 073605-1 ©2020 American Physical Society

https://orcid.org/0000-0001-6409-792X
https://orcid.org/0000-0002-1806-4200
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.5.073605&domain=pdf&date_stamp=2020-07-27
https://doi.org/10.1103/PhysRevFluids.5.073605


JIA, SUN, ZHANG, YIN, AND WANG

tension, and viscous dissipation, therefore the disparity in either the viscosity or the surface tension
between the droplet and the pool could significantly affect the impact dynamics and the internal
mixing. In the presence of viscosity disparity, the internal flow would be passively modulated
by the viscous dissipation, resulting in vortex-induced buckling of the droplet [17], bursting of
microbubbles during the air layer rupture [18,19], as well as distinct morphology of the splashing
corolla [20].

In contrast, the surface tension difference between the droplet and the reservoir fluid may
also arise from differences in their composition or temperature. It induces tangential stress on
the liquid-gas interface upon coalescence and therefore generates additional interfacial Marangoni
flow to interact with the complex bulk flow. In this regard, Blanchette et al. [21] experimentally
identified the emergence of “partial coalescence” when the surface tension of the reservoir fluid,
σr, is substantially smaller compared to that of the droplet fluid, σd. Sun et al. [22] further revealed
that the critical condition for such “partial coalescence” depends on the ratio of two characteristic
timescales of the vertical collapse and the horizontal collapse during droplet deformation. Martin
and Blanchette [23] numerically showed that a moderate surface tension difference induced by
surfactant also facilitates complete coalescence. Kim et al. [24] experimentally found that, when an
alcohol droplet is placed on a water reservoir of infinite miscibility, a static “liquid lens” is formed
in the middle without immediately spreading and mixing, and a quasisteady, outward Marangoni
flow is established along the rim of the “liquid lens.” Furthermore, the coalescence of two droplets
of different surface tensions was found to result in encapsulation of the droplet with higher surface
tension into the other droplet with lower surface tension, and enhanced mixing was also identified
with such “wrapping” motion [25].

The above studies have identified the significant influence of Marangoni flow on the droplet
coalescence with a near-zero impact velocity. When the impact velocity is non-negligible, which
occurs much more frequently in reality, the synergistic effect of impact inertia, surface tension,
viscous force, and Marangoni flow on the droplet impact process would be even more complicated,
and it still remains to be explored. In the present study, therefore, we aim to experimentally
and numerically investigate the Marangoni effect on the impact of a droplet onto a liquid pool.
Only the scenario of σd > σr is considered, as the Marangoni-flow-driven “wrapping” motion
imposes a counter action to the impact-inertia-driven “spreading” motion. In the following, the
experimental and numerical methods, results and discussion, and concluding remarks will be
sequentially presented in Secs. II to IV.

II. EXPERIMENTAL AND NUMERICAL METHODS

A. Experimental setup

The experimental setup is schematically shown in Fig. 1. Deionized water droplets were
generated from a syringe pump (Harvard Apparatus, Pump 11 elite Pico plus) and freely fell onto
a liquid pool of ethanol or ethanol-water solution by gravity. A high-speed camera (Photron SA
1.1) was used to record the impact process twice from both front view and aerial views, with
a shooting speed of 5400 frames per second and a resolution of 1024 × 1024 pixels. An LED
lamp and a diffuser were also used to provide even light for imaging. The droplet diameter D0

was controlled by the size of the needle, and exactly measured by counting the number of pixels
on the recorded images. The impact velocity U was tuned by the falling height of the droplet,
and exactly determined through the displacement of the droplet center (an average coordinate of
the lower and upper interfaces) within the last two frames prior to impact. The surface tension
of the reservoir fluid σr was varied by the ethanol concentration. The size of the liquid reservoir
(4 × 4 × 4 cm3) was large enough compared to the droplet to eliminate possible boundary effects.
During the experiment, room temperature was 24 ◦C and humidity was 28.6%.

According to dimensional analysis, eight nondimensional parameters are required to describe
the flow similarity of the present problem, including the nondimensional surface tension difference
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FIG. 1. Schematic of the experimental setup.

1 − σ ∗ = (σd − σr )/σd, the droplet-based Weber number Wed = ρdD0U 2/σd, the Ohnesorge num-
ber Oh = μd/

√
ρdD0σd, the Bond number Bo = (ρd − ρg)gD2

0/σd, the droplet-gas density ratio
ρd/ρg, the droplet-gas viscosity ratio μd/μg, the reservoir-droplet density ratio ρr/ρd, and the
reservoir-droplet viscosity ratio μr/μd. In the present water-ethanol system, ρr/ρd is close to unity,
and we neglected the density disparity between the droplet and the reservoir fluid; μd/μg may vary
in the range of 1.0–2.4, depending on the volume fraction of ethanol in the reservoir liquid, and
we approximate this factor to be an increased effective Oh number in the following discussion;
both ρd/ρg and μd/μg are large enough to eliminate inertia and viscous effects from the ambient
gas. Furthermore, the droplet diameter was fixed at approximately 2.4 mm, and hence Oh and Bo
are close to 0.0022 and 0.75, respectively. Therefore, among the eight nondimensional parameters,
1 − σ ∗ and Wed are varied as two controlling parameters in the present study. The ranges of the
parameters are summarized in Table I, and an error analysis of the nondimensional parameters is

TABLE I. Nondimensional parameters in the experiment.

Parameter Value or range

Nondimensional surface tension difference, 1 − σ ∗ = (σd − σr )/σd 0.0–0.7
Droplet-based Weber number, Wed = ρdU 2D0/σd 5–300
Ohnesorge number, Oh = μd/

√
ρdσdD0 0.0022

Bond number, Bo = (ρd − ρg)gD2
0/σd 0.75

Droplet-gas density ratio, ρd/ρg 1000
Droplet-gas viscosity ratio, μd/μg 55
Reservoir-droplet density ratio, ρr/ρd 0.8–1.0
Reservoir-droplet viscosity ratio, μr/μd 1.0–2.4
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given in Appendix A. It is also noted that, in the experiment, although the falling droplets are still
subject to avoidable oscillation upon impact for Wed < 30, such effect is negligible on the following
results according to our test.

B. Numerical method

In view of the fact that the normal impact of a droplet onto a liquid pool is symmetric with respect
to the axis across the center of the droplet and normal to the pool interface, we performed numerical
simulation in an axisymmetric domain, where the bottom of the reservoir is a rigid wall and the other
two sides are open boundaries. The liquid pool and the ambient gas are initially stationary, while
the droplet is placed above the pool with a short distance of 1/8D0 and given a downward velocity
U (the acceleration of the droplet by gravity prior to impact is negligible). The droplet and the pool
are given different surface tensions, while their differences in density and viscosity are neglected.

The phase-field method [26,27] is employed to model the interface dynamics. A composition C,
which denotes the volume fraction of liquid in local fluid, is used to capture the interface between
the liquid and the ambient gas. The evolution of C is governed by the Cahn-Hilliard equation:

∂C

∂t
+ u · ∇C = M∇2μC, (1)

where u is the velocity, M is the interface mobility, and μC = μ0 − k∇2C = ∂E0/∂C − k∇2C is
the chemical potential with E0 being the bulk free energy and k the gradient factor. The bulk free
energy takes a double-well function E0 = βC2(1 − C)2 and the chemical potential is given by μC =
β(4C3 − 6C2 + 2C) − k∇2C [28]. For single-component two-phase flows, β and k are constants
that determine the surface tension and the interface thickness by σ = √

2kβ/6 and ξ = √
8k/β,

respectively.
To capture the temporal and spatial variation in the local surface tension along the liquid-gas

interface, another passive scalar C1 is employed to capture the convective and diffusive transport of
the lower surface tension fluid (i.e., the pool liquid):

∂C1

∂t
+ u · ∇C1 = ∇ · (D∇C1) + ∼

C1 M∇2μC, (2)

where D is the composition diffusivity and
∼

C1 = C1/C denotes the proportion of pool fluid in local
liquid. The second term on the right-hand side (RHS) of Eq. (2) describes the partial contribution of
the pool liquid to the total Cahn-Hilliard diffusion of the liquid-gas interface.

In the simulation, to maintain a uniform interface thickness, β, k, and M in Eq. (1) are chosen
to vary with the local surface tension by k = k0σ/σd, β = β0σ/σd, and M = M0σd/σ , where the

normalized local surface tension σ/σd is determined by
∼

C1 and takes the following fitting expression
[21]:

σ/σd = 0.21551e−0.03727
∼

C1 + 0.49521e−0.29957
∼

C1 + 0.28761. (3)

In addition to Eqs. (1) and (2), the continuity equation and the momentum equation for
incompressible flows are also included:

∇ · u = 0 (4)

and

ρ

[
∂u
∂t

+ u · ∇u
]

= −∇p + ∇ · [μ(∇u + ∇uT )] + μC∇C + |∇C|2∇k − (∇k · ∇C)∇C + ρg,

(5)
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TABLE II. Simulation cases in the present study.

Case Wed 1 − σ ∗ Oh Fixed parameters

1 10 0.7 0.0022
2 40 0.7 0.0022
3 70 0.7 0.0022 Bo = 0.75
4 20 0.5 0.004 ρd/ρg = 500
5 90 0.5 0.004 μd/μg = 50
6 120 0.5 0.004 ρr/ρd = 1
7 10 0 0.0022 μr/μd = 1
8 40 0 0.0022
9 70 0 0.0022

where p is the pressure, μ is the dynamic viscosity, and g is the gravitational acceleration. On the
RHS of Eq. (5), the third term represents surface tension, and the fourth and fifth terms represent
the Marangoni stress in potential form.

Moreover, the local fluid density and dynamic viscosity are taken linear functions of C by

ρ = ρdC + ρg(1 − C), (6)

and

μ = Cμd + (1 − C)μg. (7)

In the present study, Eqs. (1), (4), and (5) are numerically solved by using the lattice Boltzmann
method (LBM) [29], which has been developed to be an efficient flow solver for multiphase
flows with high density ratios and viscosity ratios in recent years [30–35]. In the present LBM
simulation, two distribution functions are used to recover Eqs. (1), (4), and (5) [28,31]. The
multiple-relaxation-time collision operator [36] is adopted to improve the numerical stability, and
the potential form of interfacial forces and the isotropic finite difference are employed to suppress
the notorious spurious current to a relatively low level at realistic liquid-gas density ratios [31].
Detailed transformation from the macroscopic governing equations to the LBM evolution equations
in an axisymmetric coordinate can be found in the authors’ previous paper [37]. Furthermore, it is
also noted that modeling the Marangoni flow is rather challenging within a finite interface thickness.
As such, Eq. (2) is not included in the framework LBM but instead solved by using the finite
difference method with the third-order Runge-Kutta method [38] for time discretization and the
fifth-order weighted essentially nonoscillatory (WENO) scheme [39] for spatial discretization.

We also note that numerical simulation of the present problem is indeed not an easy task. To
the authors’ knowledge, similar scenarios with a large liquid-gas density ratio and a large surface
tension difference have been rarely simulated in literature. Moreover, a few different length scales
are involved in the present problem such as the droplet diameter, the impact crater diameter, the
Marangoni-flow-induced shear layer beneath the interface, the diameters of the ejected satellite
droplets, etc., which make the numerical simulation even more challenging. Therefore, the aim
of the present simulations is only to provide supplementary explanations to the experimental
results, without performing further parametric numerical studies to predict any phenomenon or
regime boundary. In the following, the simulations (summarized in Table II) are compared to the
experimental images to ensure that the primary experimental phenomena are well reproduced, and
the validity of the axisymmetric computation is substantiated. According to the validation of the
numerical method shown in Appendix B, a grid resolution of D0/ξ = 80 can adequately capture the
deformation and breakup of the interface and the mixing pattern in the pool. Therefore, the following
simulations of long-time mixing (Cases 1–3 and 7–9) utilize such a grid resolution of D0/ξ = 80,
while a more refined grid resolution of D0/ξ = 160 is employed in the simulations of short-time
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dynamics of the first breakup (Cases 4–6). For all the cases, the numerical interface Pèclet number
Pei = ξ

√
σd/(ρdR0)/(M0β0) is fixed at 1.16 to keep the liquid-gas interface close to the equilibrium

profile throughout the droplet impact process. Time is normalized by t∗ = (t − t0)/tosc, where t0

denotes the onset of coalescence, and tosc=
√

ρR3
0/σd is the oscillation time of the droplet.

III. RESULTS AND DISCUSSION

Figure 2 shows the typical phenomena observed in the experiments of a water droplet impacts
on an ethanol reservoir, including two jet breakups of the liquid-gas interface and strong vortical
mixing in the reservoir. Specifically, the first breakup occurs shortly upon coalescence, the second
breakup occurs after the crater has restored, and the vortical mixing pattern forms gradually during
crater formation and restoration. In the following, these three typical phenomena will be separately
discussed to clarify the Marangoni effect on the droplet impact process.

A. First breakup during impact crater formation

Compared to droplet impact on a liquid surface of identical fluid, the occurrence of the first
breakup is unique in the presence of surface tension difference. This is caused by the “climbing”
Marangoni flow along the droplet surface, which entrains abundant fluid upwards and generates
a vertical “stretching” effect. In previous studies on droplet coalescence with a negligible impact
velocity, such Marangoni effect was found to result in partial coalescence and even intensive droplet
ejection [21], which mechanistically corresponds to the first breakup observed in the present study.
Therefore, we further conducted experiments in a wide range of (1 − σ ∗) and Wed to clarify the
effect of impact inertia on the occurrence of first breakup. As shown in Fig. 3, the occurrence of the
first breakup shows strong dependency on the impact inertia. Specifically, with the increase of Wed,
the first breakup transits from “absence” to “presence” and to “absence” at a medium (1 − σ ∗) [see
Fig. 3(a)] and from “presence” to “absence” at a large (1 − σ ∗) [see Fig. 3(b)]. This indicates that
the effect of impact inertia on the interfacial Marangoni flow is positive at a low Wed and negative
at a high Wed.

FIG. 2. Typical phenomena during a droplet impacts on a pool of lower surface tension [Wed = 55.6,
(1 − σ ∗) = 0.7].
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FIG. 3. Nonmonotonic emergence of the first breakup with increasing Wed: (a) (1 − σ ∗) = 0.5 the first
breakup shows a trend of “absence-presence-absence”; (b) (1 − σ ∗) = 0.7, the first breakup shows a trend of
“presence-absence.”

To understand these two contradicting effects, we simulated the droplet impact process at three
representative Wed of 20, 90, and 120 and a fixed (1 − σ ∗) = 0.5, and successfully reproduced the
abovementioned non-monotonic emergence of the first breakup. As shown in Fig. 4, the interfacial
Marangoni flow converges at the droplet apex and forms a protrusion at t∗ = 0.5 for Wed = 20,
while it emerges earlier at t∗ = 0.35 for Wed = 90 and is even absent for Wed = 120. By further
looking into the time evolution of the interface morphology, the early impact process can be divided
into two stages as illustrated in Fig. 5(a): Stage I, a liquid bridge forms upon coalescence and
expands radially outward, while the upper interface of the droplet is almost unaffected; Stage II, the
radius of the liquid bridge exceeds R0 and an impact crater forms with the droplet spreading on its
surface.

During Stage I, the growth rate of the liquid bridge is governed by both the capillary pressure
and the inertia-driven spreading of the fluid. As illustrated in Fig. 5(b), at a larger Wed, the liquid
bridge grows faster and the path for the pool liquid to displace the droplet interface (denoted as l)
is reduced. Therefore, the Marangoni flow could converge earlier at the droplet apex with a higher
momentum, which is favorable for the occurrence of the first breakup. During Stage II, as illustrated
in Fig. 5(c), the absolute displacement velocity of the pool liquid on the expanding crater surface udis

can be decomposed into udis = uMF − uc, in which uMF is the inward converging Marangoni flow
velocity and uc denotes the outward expanding velocity of the crater. Temporally, thickness of the
mixing front of the Marangoni flow ds tends to diffuse due to continuous dilution by the entrained
droplet fluid. With the increase of Wed, the enlarged stretch of the expanding crater surface causes ds

to further thicken and thereby reduces uMF, while uc is increased meanwhile. As a result, the outward
expansion of the crater becomes increasingly capable of counteracting the inward Marangoni flow,
and the first jet no longer emerges beyond a certain high Wed.

The above analysis identified two opposite effects of increased impact inertia on the Marangoni
flow during Stage I and during Stage II, respectively, which could be the possible cause for the
nonmonotonic emergence of the first jet breakup with an increasing Wed. To verify such hypothesis,
theoretical analysis is further conducted. For simplicity, we denote the transition from “no first
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FIG. 4. Simulation of the nonmonotonic emergence of the first breakup at (1 − σ ∗) = 0.5. The viscosity
disparity between the pool (2.4 mPa s) and the droplet (1 mPa s) is not directly included, but alternatively taken
into account by using a uniform yet higher Oh = 0.004. The grayscale images are experimental results and the
colored images are simulation results.

breakup” to “first breakup” at a small Wed as Boundary 1, and the other transition from “first
breakup” to “no first breakup” at a large Wed as Boundary 2. In the following, the characteristic
timescales of the crater formation and the Marangoni flow are estimated and compared.

To estimate the timescale for the crater formation, we conceptually simplify the completely
formed crater to be an ideal hemisphere with an equivalent radius of Rc and denote the characteristic
time for crater formation as tc. Through balancing the impact inertia (∼ρRc/t2

c ) with capillarity

(∼σd/R2
0), we have tc ∼

√
ρdRcR2

0/σd . At t = tc, the surface energy of the crater Ec = 2πR2
cσr

should be comparable with the initial total energy of the system (including the droplet and the
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FIG. 5. Schematic of (a) two stages of the droplet impact process; (b) shortened path for the Marangoni flow
during Stage I with increasing Wed; (c) decomposition of the absolute displacement velocity on the expanding
crater surface during Stage II.

pool of the final crater region) Ea = 4πR2
0σd + πR2

cσr + (2π/3)ρdR3
0U 2, therefore we have Rc ∼

R0(Wed/σ
∗)1/2 and hence tc ∼

√
ρdR3

0/σd (Wed/σ
∗)1/4 = tosc(Wed/σ

∗)1/4.
To estimate the timescale for the Marangoni flow to displace the droplet surface tMF, we follow

the above-mentioned division of the impact process, i.e., tMF1 denotes the time for the liquid
bridge radius rb to reach R0 during Stage I, and tMF2 denotes the time for the Marangoni flow
to propagate on the crater surface during Stage II. For both situations, we assume a constant
Marangoni flow velocity uMF, which can be derived through balancing the Marangoni stress and the
viscous stress as uMF ∼ (δ/R0)	σ/μd, where δ denotes the fluid layer thickness entrained by the

interfacial shear flow. By estimating δ ∼
√

μd

√
ρdR3

0 /σd/ρd ∼ R0

√
Oh [22], uMF can be simplified

as uMF ∼ √
Oh	σ/μd. For Stage I, by balancing the inertia of the expanding bridge (∼ ρdR0/t2

MF1)
with capillarity and the increased internal dynamic pressure due to impact [∼(σr/R0 + ρdU 2)/R0],
tMF1 can be estimated as tMF1 ∼ tosc/

√
σ ∗ + Wed/2 ∼ toscWe−1/2

d . For Stage II, by considering a
limiting case that the Marangoni flow propagates over the entire crater surface of (π/2)Rc length,
tMF2 can be estimated by tMF2 ∼ (π/2)Rc/uMF ∼ R0μd(Wed/σ

∗)1/2/[
√

Ohσd(1 − σ ∗)]. Therefore,
tMF is finally derived as tMF ∼ tMF1 + tMF2 ∼ toscWed

−1/2 + R0μd(Wed/σ
∗)1/2/[Oh1/2σd(1 − σ ∗)].

By comparing these two timescales of the displacement of Marangoni flow on the droplet
surface tMF and the formation of the impact crater tc, we have tMF/tc ∼ W ed

−3/4σ ∗1/4 +
We1/4

d Oh1/2σ ∗−1/4/(1 − σ ∗) ∼ We−3/4
d [1 − (1 − σ ∗)]1/4 + We1/4

d Oh1/2[1 − (1 − σ ∗)]−1/4/(1 −
σ ∗). With the increase of Wed, We−3/4

d [1 − (1 − σ ∗)]1/4 decreases while
We1/4

d Oh1/2[1 − (1 − σ ∗)]−1/4/(1 − σ ∗) increases, which represent the “promotion” and the
“suppression” effects on the first breakup at a low Wed and a high Wed, respectively. Therefore, for
Boundary 1, the shortened duration of Stage I that represented by We−3/4

d [1 − (1 − σ ∗)]1/4

is dominant, suggesting the critical Wed for the transition might show a dependence on
[1 − (1 − σ ∗)]1/3. For Boundary 2, the contribution of We1/4

d Oh1/2[1 − (1 − σ ∗)]−1/4/(1 − σ ∗) is
determinative, indicating a correlation could exist between Wed and [1 − (1 − σ ∗)](1 − σ ∗)4/Oh2.
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FIG. 6. Experimental regime diagram for the first breakup. The green dotted line indicates the transition
from “absence” to “presence” of the first breakup at a small Wed, and the black dotted line indicates the
transition from “presence” to “absence” of the first breakup at a large Wed.

To verify these two hypotheses, we further plot all the experimental outcomes in the regime
diagram of Fig. 6, and readily find that Boundary 1 agrees well with Wed= 68[0.6 − (1 − σ ∗)]1/3,
and Boundary 2 agrees well with Wed = 0.0065[1 − (1 − σ ∗)](1 − σ ∗)4/Oh2 + 47. The shift of
Boundary 1 towards a smaller (1 − σ ∗) (i.e., the appearance of [0.6 − (1 − σ ∗)]1/3 instead of
[1 − (1 − σ ∗)]1/3 is caused by the fact that, for the limiting situation of droplet coalescence
with negligible impact inertia, the first breakup depends on the competition between the upward
Marangoni flow and the downward retraction of droplet towards the pool and occurs as long as
(1 − σ ∗)/

√
Oh > 6.75 [22], which is not included in the above analysis. The shift of Boundary 2

towards a larger Wed (i.e., the appearance of “+47”) originates from the shortened Stage I that is
represented in We−3/4

d [1 − (1 − σ ∗)]1/4. The overprediction of the Boundary 2 at (1 − σ ∗) = 0.7
is because of that we assume a constant Marangoni flow velocity, which cannot represent the
increasingly prominent dilution of the mixing front of the Marangoni flow on the expanding crater
interface at an extremely large Wed.

B. Second breakup during crater restoration

Figure 7 shows the droplet impact process at different Wed and two (1 − σ ∗) of 0.4 and 0.6.
The second breakup occurs monotonically beyond a certain Wed, and both singular jet and cavity
jet were identified. This indicates that, the second breakup for (1 − σ ∗) > 0 corresponds to the
Rayleigh jet breakup for (1 − σ ∗) = 0, which is caused by the pinch-off of the liquid column by
Rayleigh-Plateau instability. Moreover, by comparing the two cases at Wed = 70, it is also found
that the critical Wed for the second breakup decreases with (1 − σ ∗), as the second breakup is
absent for (1 − σ ∗) = 0.4 but is present for (1 − σ ∗) = 0.6. Therefore, we plot all the experimental
results in the Wed vs (1 − σ ∗) regime diagram of Fig. 8(a), and surprisingly find that the critical Wed

decreases linearly with (1 − σ ∗).
It is noted that, by using ethanol-water mixture as the pool liquid, μr may increase to over

twice μd at medium (1 − σ ∗) and therefore enlarges the effective Oh number. However, since the
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FIG. 7. Experimental results on the second breakup: (a) (1 − σ ∗) = 0.4, (b) (1 − σ ∗) = 0.6. For both
cases, the second breakup occurs beyond a certain Wed.

formation and retraction of the crater can be viewed as a large-wavelength, low-frequency oscillation
of the interface, its breakup dynamics is insignificantly affected by the viscous effect [40]. This
indicates that the decrease of critical Wed with (1 − σ ∗) is not affected by the unavoidable variation
of μr but dominated by the surface tension of the interface.

FIG. 8. Experimental regime diagram of the second breakup in the coordinate system of (a) Wed vs (1 −
σ ∗) and (b) Wer vs (1 − σ ∗).
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We also note that the effect of gravity is critical on the crater collapse, and thus affects the critical
Wed for the emergence of the second jet breakup. For droplet impacts onto a pool of same fluid
with (1 − σ ∗), such effect has been widely studied in literature. It was found that gravity exhibits
rather complex influences on the singularity formation, bubble entrainment and crater restoration by
affecting the growth of crater and the propagation of the surface waves [41–49]. At maximum crater
deformation, the gravitational potential energy may even take up most of the crater energy, which
will be subsequently transformed into the energy of the central jet including the kinetic energy
required for jet breakup [49–51]. In the present study with a fixed Bo = 0.75, the role of gravity is
implicitly included in the critical Wed number at (1 − σ ∗) = 0, which is identified to be Wed0 = 130
and agrees well with the results by Rein et al. [43] and Michon et al. [49]. On this basis, the focus
of the present study is to further clarify the Marangoni effect on the critical Wed at (1 − σ ∗) > 0
under a fixed Bo.

In this regard, recall that the relative displacement time of the Marangoni flow
on the expanding crater surface was estimated by tMF/tc ∼ We−3/4

d [1 − (1 − σ ∗)]1/4 +
We1/4

d Oh1/2[1 − (1 − σ ∗)]−1/4/(1 − σ ∗), which is smaller than unity for most experimental cases
with the second breakup. This indicates that the Marangoni flow has converged at central crater
surface before the crater reaches maximum deformation, and σr should govern the capillary force of
the impact crater. As such, we redefined another We number based on σr as Wer = ρdU 2D0/σr , and
replotted the experimental outcomes in Fig. 9(b). As shown in the figure, the critical Wer increases
with (1 − σ ∗), which could be caused by the increased viscous dissipation from the Marangoni flow.
This is because that the utilization of Wer conceptually corresponds to an idealized situation that the
droplet surface is instantaneously wrapped up by the pool liquid upon coalescence, while in reality
the Marangoni-flow-induced viscous dissipation during the finite-time “wrap up” process consumes
additional kinetic energy.

To derive such increased viscous dissipation energy Ed induced by the Marangoni flow, we
estimate the viscous dissipation rate by 
 ∼ μd(uMF/δ)2 ∼ σ 2

d (1 − σ ∗)2/(μdR2
0), estimate the

volume of the Marangoni flow shear layer as Vshear ∼ 2πRcδa1 ∼ 2πa1R3
0Wer

√
Oh, and estimate the

time for the convergence of Marangoni flow as tMF ∼ a2tMF2 ∼ a2R0μdWe1/2
r /[Oh1/2σd(1 − σ ∗)],

in which a1 and a2 are two coefficients of O(10−1) since the Marangoni flow converges early
before the crater completely forms. It is also noted that tMF1 is not included in estimating tMF

since the second breakup occurs at a certain large Wed. As such, we have Ed ∼ 
VsheartMF ∼
a1a2We3/2

r σd(1 − σ ∗)R2
0.

For the emergence of the second breakup, such excessive Ed is consumed by a certain additional
initial kinetic energy, therefore the critical Wer could show a form of Wer ∼ Wer0 + Ed/(4πR2

0σr ) ∼
Wer0 + a3We3/2

r0 (1 − σ ∗)/[1 − (1 − σ ∗)], in which Wer0 = Wed0 = 130 is the critical Wer at (1 −
σ ∗) = 0 and Bo = 0.75, and a3We3/2

r0 (1 − σ ∗)/[1 − (1 − σ ∗)] represents the additional viscous
loss, with a3 being a coefficient of O(10−3). According to the present experimental results, we
readily find that the critical condition agrees well with Wer = 130 + 25(1 − σ ∗)/[1 − (1 − σ ∗)],
which can be equivalently expressed by the abovementioned Wed = 130 − 105(1 − σ ∗). As such,
the experimentally identified linear decrease of the critical Wed with (1 − σ ∗) is directly caused
by both the reduction of the crater surface tension and the associated viscous dissipation from the
Marangoni flow.

C. Vortical mixing beneath the liquid surface

During droplet impact, vorticity is generated on the deformable liquid-gas interface by the
baroclinic torque, which then detaches from the interface and forms a vortical mixing pattern. In the
presence of surface tension difference, as shown in Fig. 9, vortical mixing is found to be enhanced
compared to the situation with (1 − σ ∗) = 0. Specifically, at a small Wed (e.g., Wed = 10), although
a similar mixing pattern of “a central jet with a vortical structure” is formed as in the situation
with (1 − σ ∗) = 0, the vortical structure appears to be more intensive. With the increase of Wed,
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FIG. 9. Vortical mixing beneath the liquid surface: (a) Wed = 10, (b) Wed = 40, (c) Wed = 70. The
grayscale images are experimental results and the colored images are simulation results.

multiple layers of vortical structure were observed for Wed = 40 and Wed = 70. In contrast, the
simulations with (1 − σ ∗) = 0 show no enhancement of mixing at enlarged Wed, and the central jet
is no longer observed for Wed = 70. Figure 10 compares the vorticity fields with the concentration
fields at t∗ = 4.5 for the three cases at (1 − σ ∗) = 0.7, which clearly shows that the vortical mixing
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FIG. 10. Comparison of the mixing pattern and the vorticity field at t∗ = 4.5: (a) Wed = 10, (b) Wed = 40,
(c) Wed = 70. (1 − σ ∗)= 0.7 in all three cases.

structures in the concentration field correspond well with the vortex rings in the vorticity field.
In addition, most of the vorticity is located in the twin-fluid mixing region instead of in the pure
reservoir-fluid region, which could therefore result in enhanced mixing between the droplet and the
reservoir.

To explain the enhanced mixing with surface tension difference, we schematically summarize
the formation of the vortex rings from numerical simulations in Fig. 11. For simplicity, we follow
the definition of two stages of the early impact process used above, i.e., Stage I corresponds to
the expansion of the liquid bridge, Stage II denotes the formation of the crater, and we further
denominate a Stage III as the restoration of the crater. During Stage I, the rapid expansion of the
liquid bridge induces an anticlockwise rotating vortex (vortex 1) in the vicinity of the droplet-side
interface, which soon detaches from the interface with negative vorticity generation from interface
deformation. For (1 − σ ∗) > 0, however, the interfacial Marangoni flow entrains the interior liquid
towards the interface, thus the detached vortex 1 could stay much closer to the interface compared
to the case of (1 − σ ∗) = 0. Consequently, during Stage II, deformation of the interface is largely
affected by such vortex, whose rotating motion causes the outer crater to form an inward rim for (1 −
σ ∗) > 0, while a smooth bowl-shaped crater is formed for (1 − σ ∗) = 0 without much interference
from vortex 1.

FIG. 11. Comparison of the formation of vortical mixing pattern of (a) with surface tension difference, i.e.,
(1 − σ ∗) > 0; (b) without surface tension difference, i.e., (1 − σ ∗)=0.
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FIG. 12. Experimental regime diagram of the mixing pattern beneath the liquid surface.

Meanwhile, the convergence of Marangoni flow at central crater surface forms a protrusion for
(1 − σ ∗) > 0, which finally retracts under the capillary pressure gradient and forms the central jet
into the pool. For (1 − σ ∗) = 0, although a protrusion can also form by the convergence of capillary
wave, it appears to be much less sharp in morphology and flattens with the spreading motion of the
interface at increased Wed. Therefore, in the presence of surface tension difference, the central jet
exhibits a more intensive pattern with a deeper penetration depth and a stronger vortex ring at the
head, and such a pattern could be sustained in a much wider range of Wed.

During subsequent crater formation and restoration, i.e., late Stage II and Stage III, the inwardly
curved rim retracts under surface tension for (1 − σ ∗) > 0, and capillary waves are consequently
induced on the crater surface. As the capillary waves propagate towards the crater center, additional
vortices are induced on the deformed interface, which then detach from the interface and eventually
form multiple vortex rings in the reservoir. For (1 − σ ∗) = 0, in contrast, the expansion and
restoration of the smooth crater is not accompanied by such capillary waves and associated vorticity
generation, and the mixing pattern remains to further evolve a central jet with a single vortex ring.

Having understood the underlying physics of vortical mixing formation, the experimental
regime diagram for the mixing pattern is finally presented in Fig. 12. The mixing pattern is
characterized from two aspects: (1) the appearance of a central jet and (2) the number of vortex
rings. At a large Wed, radial asymmetry becomes prominent and the multiple vortex rings turn
into clawlike structures. However, due to the difficulty in clearly identifying the vortical structures
from experimental results, we only classify the number of vortex rings into single structrues and
multiple or clawlike structures. As shown in the figure, the emergence of more complex vortical
mixing pattern is facilitated by enlarging the surface tension difference, which further substantiates
the abovementioned critical role of Marangoni flow in facilitating vortical mixing. Moreover, the
central jet is absent above a certain large Wed of approximately 160, which also substantiates the
negative effect of crater expansion on the converging Marangoni flow during the formation of the
central jet.

IV. CONCLUDING REMARKS

In the present study, the impact dynamics and internal mixing of a droplet onto a liquid-
gas interface of lower surface tension was studied experimentally by high-speed imaging and
numerically by using the lattice Boltzmann phase-field method. Particular attention was paid to three
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characteristic phenomena identified in the experiments, including the first breakup during impact
crater formation, the second breakup during crater restoration, and the vortical mixing beneath the
liquid surface. In the study, Oh and Bo are fixed, and Wed and (1 − σ ∗) are varied as controlling
parameters.

The emergence of the first breakup during impact crater formation is unique in the presence of
surface tension difference. With the increase of the impact inertia, the first breakup shows a non-
monotonic trend of “absence-presence-absence.” Two opposite effects of the impact inertia imposes
on the Marangoni flow were identified at a low Wed and a high Wed, respectively. Specifically, at
a low Wed, a higher impact inertia shortens the path of the Marangoni flow on the faster growing
liquid bridge surface, and the critical condition for the emergence of the first jet was identified to
be Wed= 68(σ ∗ − 0.4)1/3; at a high Wed, the absolute displacement velocity of the Marangoni flow
is largely offset by the expanding motion of the crater surface, and the critical condition for the
disappearance of the first breakup was found to be Wed= 0.0065σ ∗(1 − σ ∗)4/Oh2+47.

The second breakup corresponds to the Rayleigh jet breakup for (1 − σ ∗) = 0 and occurs mono-
tonically beyond a certain Wed. Due to the relatively short displacement time of the Marangoni flow
on the crater surface compared to the time for crater formation, the critical Wed for the emergence of
the second jet breakup was found to be determined by the surface tension of the reservoir fluid and
affected by the increased viscous dissipation from the Marangoni flow. The critical condition was
theoretically derived and experimentally validated as Wer = 130 + 25(1 − σ ∗)/[1 − (1 − σ ∗)] or
equivalently a linear dependence of Wed = 130 − 105(1 − σ ∗), in which 130 is the Bo-dependent,
critical We number at (1 − σ ∗)=0.

Furthermore, Marangoni effect was also found to enhance mixing beneath the liquid surface. At
a small Wed, the mixing pattern exhibits a central jet with a single vortex ring, while multiple vortex
rings and even clawlike structures were observed at a large Wed. The generation of multiple vortex
rings is caused by the propagation of capillary waves on the crater surface. Such capillary waves
originate from the restoration of the Marangoni-flow-induced, inwardly curved rim during impact
crater formation.

Finally, we note that the results presented in this paper were conducted at fixed Bo and Oh
numbers. With other Bo and Oh numbers, the underlying physics of the Marangoni effect on the
droplet impact process is believed to be the same, while the exact boundaries for different regimes
should vary. A further quantitative study has gone beyond the capability of the present experiments
and simulations and merits further studies in future.
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APPENDIX A: EXPERIMENTAL ERROR ANALYSIS

Among the four major nondimensional parameters in the present study, (1 − σ ∗) is only related
to the preparation of the water-ethanol solutions of different compositions, while Wed, Oh, and Bo
involve both physical properties such as density ρ, dynamic viscosity μ, and surface tension σ , as
well as the droplet diameter D0 and the impact velocity U . The physical properties are believed to
be accurate, and the errors are therefore mainly originating from D0 and U .

In the present experiments, the droplet diameter D0 was fixed at approximately 2.4 mm by using
the same needle, and this approximate D0 was used to calculate the “fixed” Oh and Bo. However,
and the exact value of D0 varied in the range of 2.33–2.40 mm, thereby inducing a relative error
δD0,1 of −2.9% to 0%. In addition, exact measurements of D0 were done by counting pixels in the
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TABLE III. Relative errors of the nondimensional parameters in the experimental results.

Nondimensional parameter Sources of error Relative error

1 − σ ∗ = (σd − σr )/σd solution preparation negligible

Wed = ρdU 2D0/σd U (recognition of pixels), D0 (recognition of pixels) −4.8% to 4.8%

Oh = μd/
√

ρdσdD0 D0 (recognition of pixels, variation in the droplet size) −0.8% to 2.3%

Bo = (ρd − ρg)gD2
0/σd D0 (recognition of pixels, variation in the droplet size) −8.8% to 3.2%

camera-recorded images, and recognition of an unsharp droplet morphology may also include an
error of ±2 pixels on D0. Since the average number of pixels to resolve D0 is 124, this also includes
a relative error δD0,2 of −1.6% to 1.6%. We also note that, in the experimental regime diagrams,
Wed was calculated by using exact pixels of each individual experimental case, while Oh and Bo are
approximately fixed and estimated by using D0 ≈ 2.40 mm. Therefore, both δD0,1 and δD0,2 (totally
−4.5% to 1.6%) were included in estimating Oh and Bo, while only δD0,2 (totally −1.6% to 1.6%)
was included in determining Wed.

Moreover, the impact velocity U was determined by counting the number of pixels of the droplet
center (an average coordinate of the lower and the upper interface) moved within the last two frames
prior to impact (at a constant frame rate of 5400 fps). Therefore, an error of ±2 pixels in recognizing
the droplet displacement could be also involved, yielding a relative error δU0 of −1.6% to 1.6%.

In view of above, the errors for Wed, Oh, and Bo are further calculated based on their
dependences on D0 and U , which are given in Table III.

APPENDIX B: NUMERICAL VALIDATION

Case 1 in Table II [Wed = 10, Oh = 0.0022, (1 − σ ∗) = 0.7] was employed to validate the
numerical method. Figure 13 compares the experimental result with simulations by using different
grid resolutions. In the simulations, the interface thickness ξ is consistently resolved by five grid
points, and the droplet diameter D0 is resolved by 250–450 grids, corresponding to an increased
grid resolution from D0/ξ = 50 to D0/ξ = 90. As shown in the figure, both the first jet breakup of
the liquid-gas interface and the vortical mixing pattern in the pool can be adequately captured by
using a grid resolution of D0/ξ = 80. A further refined grid of D0/ξ = 90 only leads to slightly
different temporal evolution of the mixing pattern.

Regarding the conservations of energy and mass during the droplet impact simulations, we
further note that the impact velocities in our experiments were determined from the two sequential
images before impact occurs, and accordingly in the simulations the droplet was initially placed
above the interface with a short distance of 1/8D0. During the free fall, losses in both the energy
and the mass are less than 0.1%. Upon impact (t∗ = 0), the evolution of the normalized total energy
(i.e., the sum of kinetic energy, cumulative dissipation energy, surface energy, and gravitational
energy) and the normalized droplet liquid mass, with normalization being made by their values at
initial condition, are plotted in Fig. 14, and their exact values at t∗ = 4 are given in Table IV. It is
seen that, by using a grid resolution of D0/ξ = 80, the total energy conserves over 95%, and the
mass of the droplet liquid conserves over 99% throughout the simulation. In view of the above, a
minimum grid resolution of D0/ξ = 80 was used in the present study.
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FIG. 13. Experimental validation of the simulations with different grid resolutions [Wed = 10, Oh =
0.0022, (1 − σ ∗) = 0.7].

FIG. 14. Conservation of (a) normalized total energy and (b) normalized droplet liquid mass during the
simulations with different grid resolutions [Wed = 10, Oh = 0.0022, (1 − σ ∗) = 0.7].
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TABLE IV. Normalized total energy and normalized droplet liquid mass at t∗ = 4 [Wed = 10, Oh =
0.0022, (1 − σ ∗) = 0.7].

Grid resolution Normalized total energy Normalized droplet liquid mass

D0/ξ = 50 0.9253 0.9975
D0/ξ = 60 0.9233 0.9987
D0/ξ = 70 0.9403 0.9942
D0/ξ = 80 0.9501 0.9918
D0/ξ = 90 0.9562 0.9937
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