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The three-dimensional flow around a spherical clean bubble translating steadily in a
wall-bounded linear shear flow is studied numerically. The present work is concerned
with the drag and lift forces experienced by the bubble over a wide range of Reynolds
number (0.1 � Re � 103, Re being based on the bubble diameter and relative velocity
with respect to the ambient fluid), wall distance (1.5 � LR � 8, LR being the distance from
the bubble center to the wall normalized by the bubble radius), and relative shear rate
(−0.5 � Sr � 0.5, Sr being the ratio between the velocity difference across the bubble
and the relative velocity). Based on the above range of parameters, situations where the
bubble is repelled from or attracted to the wall are both covered. The flow structure and
vorticity field are analyzed to obtain qualitative insight into the interaction mechanisms
at work. The drag and lift forces are computed as well. Their variations agree well with
theoretical predictions available in the limit of low-but-finite Reynolds number and, when
the fluid is at rest, in the potential flow limit. Numerical results and analytical expressions
are combined to provide accurate semiempirical expressions for the drag and lift forces at
arbitrary Reynolds number and separation distance.

DOI: 10.1103/PhysRevFluids.5.073601

I. INTRODUCTION

Determining the hydrodynamic force acting on bubbles, drops, and particles moving parallel to
a wall in a shear flow is a problem of fundamental importance, as this configuration is involved
in a variety of technical and natural systems. The presence of the wall tends to increase the drag
force and more importantly causes a transverse lift force acting on the body. This transverse force
may be directed towards the wall or away from it, depending on the detailed flow conditions.
The lift force, although often much smaller in magnitude than the drag force, plays a crucial role
in the accumulation of bubbles either close to or away from the wall [1]. This force also appears in
the closure relations involved in point-particle-based Eulerian-Lagrangian approaches (e.g., Ref. [2]
for bubbles) or in Eulerian-Eulerian approaches based on the interpenetrating continua concept (e.g.,
Ref. [3] for bubbly flows).

Asymptotic theories, laboratory experiments and direct numerical simulation (DNS) have been
employed to determine near-wall hydrodynamic loads under various flow conditions. Asymptotic
theories are suitable for studying low-Reynolds-number configurations (see Ref. [4] for a brief
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FIG. 1. Wall- and shear-induced contributions to the lift force acting on a spherical bubble in the low-
to-moderate Reynolds-number regime. (a) Stagnant fluid in the presence of a wall, where only the vortical
wall-induced lift exists and the bubble always leads the fluid. (b) Unbounded linear shear flow, where only
the shear-induced lift exists; the force points away from the wall when the bubble lags behind the fluid, and
its direction reverses if it leads the fluid. [(c), (d)] Wall-bounded linear shear flow. The bubble lags the fluid
in (c), where the two effects cooperate, while it leads the fluid in (d), making the two effects combine in an
antagonistic manner.

review). They may also be employed at very large Reynolds number for clean bubbles with a
prescribed shape [5]. Asymptotic solutions are explicit but are valid only within a limited range of
flow conditions. Experimental and DNS studies do not suffer from the same limitations and allow, in
principle, arbitrary Reynolds numbers to be considered in a range of flow configurations. However,
owing to mechanical limitations of the experimental devices [6,7] and numerical difficulties arising
in DNS [8,9], few studies to date provide reliable data describing the variations of the lift force
acting on a clean bubble moving in the vicinity of a wall as a function of the relevant parameters.
In particular, no systematic investigation of shear- and wall-induced effects has been reported in
the range of intermediate Reynolds numbers where inertial effects are dominant while bubbles still
maintain an approximately spherical shape.

As discussed in recent reviews [10,11] and illustrated in Fig. 1, the lift force acting on a sphere
translating in a wall-bounded shear flow at low-to-moderate Reynolds number arises from two
primary mechanisms. The first of these is the interaction between the wall and the vorticity produced
at the body surface due to its translation with respect to the ambient fluid (hereafter referred to
as the wall effect). When the undisturbed fluid is stagnant, [Fig. 1(a)], this contribution reduces
to a wall-normal lift force (so-called vortical wall-induced lift) pointing into the fluid [12,13].
The second mechanism is the distortion of the vorticity associated with the ambient shear by the
three-dimensional body (hereafter referred to as the shear effect), which results in the generation
of a nonzero vorticity component in the direction of the relative motion, concentrated within
two counterrotating trailing vortices. When the body is far enough from the wall [Fig. 1(b)], this
contribution reduces to the shear-induced lift force in an unbounded flow, the asymptotic expression
of which was derived in Ref. [14] and [15] for a rigid sphere and a drop of arbitrary viscosity,
respectively. In wall-bounded linear shear flows, both mechanisms are active. However, they do
not combine linearly, as the entire flow disturbance is governed by the Oseen equation, which
prevents the linear superposition of individual disturbances. Moreover, the body may either lag
or lead the fluid, which, as illustrated in Figs. 1(c) and 1(d), results in a cooperative or antagonistic
combination of the wall- and shear-induced lift effects. In the low-to-moderate Reynolds-number
regime, bubbles and drops behave similarly to rigid spherical particles at the surface of which the
no-slip condition applies, although the magnitude of the various contributions to the hydrodynamic
force differs according to the viscosity ratio of the inner and outer fluids.

Things become different when the translational Reynolds number Re is large. This is because
the vorticity produced at the surface of a clean bubble does not go on increasing with Re, unlike
the case of a solid sphere at the surface of which the no-slip condition applies and the surface
vorticity grows like Re1/2 when Re is large [16]. Because of this saturation of the surface vorticity,
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FIG. 2. Wall- and shear-induced contributions to the lift force acting on a spherical bubble in the moderate-
to-large Reynolds-number regime. (a) Stagnant fluid in the presence of a wall, where only the irrotational
(Bernoulli) transverse mechanism exists. (b) Same as in Fig. 1(b). [(c), (d)] Wall-bounded linear shear flow.
The bubble lags the fluid in (c), where the two effects act in an antagonistic manner, while it leads the fluid in
(d), where they cooperate.

the magnitude of the vortical wall-induced lift force at a given distance from the wall decreases
as the Reynolds number increases in the case of a clean spherical bubble. Then a second, inviscid
mechanism takes over. Indeed, according to potential flow theory, a sphere translating parallel to
a symmetry plane is attracted toward this plane because the fluid velocity reaches a maximum
in the gap, thus inducing a pressure gradient directed away from the symmetry plane, owing to
Bernoulli’s theorem [17–20]. Hence, there is a critical gap-dependent Reynolds number beyond
which the transverse force acting on the bubble switches from repulsive (corresponding to the
above vortical wall-induced lift mechanism) to attractive (corresponding to the above irrotational
mechanism) [6]. No such reversal of the transverse force takes place in the case of a solid sphere,
as the vortical wall-induced mechanism remains dominant however large the Reynolds number.
Compared to the low-to-moderate Re range, in the situation where the irrotational wall-induced
lift mechanism is dominant [Fig. 2(a)], the wall- and-shear-induced lift forces acting on a clean
bubble combine differently. As illustrated in Fig. 2(c), the two effects are now antagonistic (resp.
cooperative) if the bubble lags (resp. leads) the fluid.

Owing to its fore-aft symmetry, a sphere may experience a lift force only in the presence of
finite inertial effects [21]. In the low-but-finite Reynolds-number regime, when the distance r to the
sphere center increases, the magnitude of the translation-induced inertia term becomes comparable
to the viscous term at a distance r ∼ O(L̃u), where L̃u = ν/|Urel| is the Oseen length, ν and Urel

denoting the fluid kinematic viscosity and relative velocity between the body and fluid, respectively.
Similarly, the shear-induced inertia term becomes comparable to the viscous term at a distance
r ∼ O(L̃ω ), where L̃ω = (ν/ω)1/2 is the Saffman length, ω = ||ω|| denoting the norm of the vorticity
ω in the undisturbed flow. The parameter ε = L̃u/L̃ω determines whether the dominant inertial effect
arises from shear (ε > 1) or slip (ε < 1). When the flow is bounded by a flat wall, the distance L̃
separating the sphere from the wall may be compared to the two inertial length scales through the
ratios Lu = L̃/L̃u and Lω = L̃/L̃ω. Provided that min(Lu, Lω ) < 1 (strictly speaking � 1), the wall is
located in the inner region of the disturbance, while it stands in the outer region if max(Lu, Lω ) > 1
(strictly speaking � 1). These two situations and the various length scales involved are illustrated
in Fig. 3.

The wall-induced lift force acting on drops and bubbles in the low-Reynolds-number regime was
considered in Ref. [4], where its asymptotic expression was obtained for situations where the wall
lies in the inner region of the disturbance. The case where the wall lies in the outer region was
worked out in Ref. [13] for clean bubbles, adapting the singular perturbation analysis developed
in Ref. [12] for a rigid sphere. In both cases, the wall-induced lift force was predicted to decrease
with increasing the inertial wall distance Lu. The wall lies usually in the outer region when the
translational Reynolds number (based on the particle diameter and relative velocity with respect
to the ambient fluid) is larger than unity. Experiments performed in still fluid [6] revealed that the

073601-3



SHI, RZEHAK, LUCAS, AND MAGNAUDET

d 
inner region 

outer region

d
inner region

outer region

(a) (b) 

FIG. 3. Sketch of the various length scales and regions of the low-Re flow disturbance around a sphere
with diameter d standing a distance L̃ from the wall in a situation such that L̃u < L̃ω, i.e., ε < 1. The inner and
outer regions correspond to distances r from the sphere center such that r < min(L̃u, L̃ω ) and r > max(L̃u, L̃ω ),
respectively. The wall lies in the outer region in (a), where L̃ > max(L̃u, L̃ω ), and in the inner region in (b),
where L̃ < min(L̃u, L̃ω ).

vortical mechanism responsible for the wall-induced lift force dominates the interaction process for
Re � 30, while the irrotational mechanism becomes dominant at higher Re, making bubbles tend to
cluster at the wall.

The analytical expression for the low-Reynolds-number shear-induced lift force acting on a rigid
sphere moving in an unbounded flow domain was derived by Saffman [14,22] in the strong shear
limit (ε � 1), using matched asymptotic expansions. Extension of Saffman’s expression to finite ε,
i.e., to conditions under which advective effects due to the sphere translation cannot be neglected
with respect to those due to the shear, was later conducted independently in Refs. [23] and [24] using
a similar approach. The generalization of the above results to spherical drops of arbitrary viscosity
was achieved in Ref. [15]. This analysis indicates that the shear-induced lift force acting on a clean
bubble (i.e., a spherical drop with a vanishing inner viscosity) differs from that on a rigid sphere by
only a numerical factor of (2/3)2. For moderate Reynolds numbers, the vorticity generated at the
bubble surface by the shear-free boundary condition and the vorticity present in the ambient shear
flow both contribute to the lift force [8]. The latter becomes dominant for Re � 102 and the resulting
lift force then approaches the inviscid prediction obtained by Auton [25].

Shear- and wall-induced lift effects combine in wall-bounded shear flows. In situations where
the Reynolds number is small and the wall lies in the inner region of the disturbance, the resulting
lift force acting on deforming drops of arbitrary viscosity was derived in Ref. [4] through a regular
perturbation analysis. In this case, both inertia and deformation contribute to produce a nonzero
lift force. The wall may lie in the outer region of the disturbance while the Reynolds number is
still small, in which case the lift force may still be evaluated analytically using matched asymptotic
expansions. This problem was first considered in Ref. [26] in the strong shear limit for a rigid
sphere, and revisited independently in Refs. [27] and [28] where the solution was extended to finite
ε. Both studies concluded that the presence of the wall consistently reduces the shear-induced lift
force, which agrees with the behavior predicted in Ref. [4] in the case the wall lies in the inner
region. In Refs. [27] and [28] the solution for the lift force was obtained in the form of a three-
dimensional integral in Fourier space. In Ref. [7] it was assumed that, similar to the solutions derived
in Ref. [4], the lift force may still be expressed as a superposition of the wall- and the (unbounded
fluid) shear-induced lift forces in physical space when the wall stands in the outer region, provided
some modification due to the shear (resp. the presence of the wall) is introduced in the wall-induced
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(resp. shear-induced) contribution. This procedure yields an explicit approximate expression for the
lift force as a function of the various physical parameters.

At finite Reynolds number, the wall lies usually in the outer region. Investigations in this case rely
on experimental and numerical studies. Situations with bubbles rising at low-to-moderate Reynolds
number along the wall of a wall-bounded shear flow, with the bubble either lagging or leading
the fluid, were investigated experimentally in Ref. [7]. This allowed the authors to explore the
cooperative and antagonistic interactions between the wall- and shear-induced lift effects. Using
an appropriate drag law modified by the presence of the wall and the influence of inertial effects, the
resulting lift force was obtained from the measured migration velocity. A semiempirical prediction
for that force comparing well with the experimental data for Re < 1.5 was proposed. We are not
aware of any experimental or numerical study for clean spherical bubbles moving at moderate to
high Reynolds number in the same configuration.

The development of reliable approximate expressions with a wider range of applicability for
the transverse force requires the acquisition of new data and an identification of the underlying
mechanisms involved in the different flow regimes. In particular the proposal of Ref. [29] to conduct
simulations in a moving coordinate frame to account for the translation of the body with respect to
the wall possesses further potential to make progress in this direction. We apply this idea in the
present work, in which we report results of a systematic numerical study performed with clean
spherical bubbles translating in a wall-bounded linear shear flow with the bubble either leading or
lagging the fluid. The results provided in this paper may have an important bearing on the numerical
prediction of wall-bounded bubbly flows, especially because they are of direct use to improve the so-
called “point-particle” models in which wall effects are usually ignored. Such improved models for
bubble Lagrangian tracking may then be used to investigate situations as diverse as turbulent wall-
bounded bubbly flows [30], bubbly flows in vertical pipes and channels [31–34], drag reduction or
enhancement by microbubbles in turbulent boundary layers [35–40], or lateral migration of bubbles
in wall-bounded shear flows [41].

The paper is organized as follows. In Sec. II we formulate the problem and state more precisely
the scope of the present work together with basic definitions used throughout the paper. Section III
provides a short description of the numerical procedure and preliminary tests. Available expressions
for the drag and lift forces available in the literature and based on either theoretical or semiempirical
grounds are summarized in Sec. IV. Physical features and hydrodynamic mechanisms revealed by
the flow field are discussed in Sec. V, while results for the hydrodynamic forces are presented and
analyzed in Sec. VI. A summary of the results is provided in Sec. VII.

II. STATEMENT OF THE PROBLEM

Throughout the present work, we make use of a Cartesian coordinate system (Oxyz) with the
origin located at the center of the bubble, as illustrated in Fig. 4. We assume that the bubble moves
with a velocity V = V ez parallel to a single planar wall. The wall is located at x = −L̃ and ex

denotes the wall-normal unit vector pointing into the fluid. In the reference frame translating with
the bubble, the undisturbed flow is a one-dimensional linear shear flow with a velocity profile u∞ =
[γ (L̃ + x) − V ]ez and a nonzero spanwise vorticity ω∞ = −γ ey. The relative (or slip) velocity of
the fluid with respect to the bubble is then U rel = (γ L̃ − V )ez. The fluid velocity and pressure fields
in the presence of the bubble are denoted by u and p, respectively, and ω = ∇ × u denotes the
vorticity.

The suspending fluid is assumed to be Newtonian and the flow is considered incompressible. The
continuity and Navier-Stokes equations thus take the form

∇ · u = 0 ; (1a)

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ∇ · τ, (1b)
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FIG. 4. Schematic of a bubble moving in a wall-bounded linear shear flow.

where τ = ν[∇u + T ∇u] is the viscous part of the stress tensor � = −pI + ρτ and ρ is the fluid
density, I denoting the Kronecker delta. In the reference frame attached to the bubble center,
boundary conditions at the wall and in the far field are

u =
{

−V ez for x = −L̃,

u∞ = [γ (L̃ + x) − V ]ez for r → ∞,
(2)

where r = (x2 + y2 + z2)1/2 denotes the distance to the bubble center. On the bubble surface,
the normal velocity must vanish, owing to the nonpenetration condition. Moreover, the dynamic
viscosity of the gas within the bubble is assumed to be much smaller than that of the suspending
liquid and the bubble surface is considered to be free of any surfactant, so that the outer fluid obeys
a shear-free condition at the interface. Last, we assume surface tension to be strong enough for
the capillary force to be able to maintain the bubble spherical whatever the local strength of the
hydrodynamic stresses. Under such conditions, the boundary conditions at the bubble surface are

u · n = 0

n × (τ · n) = 0

}
for r = d

2
, (3)

where n denotes the outward unit normal to the bubble surface and d is the bubble diameter. With
the above boundary conditions, the steady flow field past the bubble depends on three characteristic
parameters, namely the Reynolds number Re, the dimensionless shear rate Sr, and the wall distance
LR. These are defined as

Re = |Urel|d
ν

, Sr = γ d

Urel
, LR = 2L̃

d
, (4)

with Urel = U rel · ez. A positive (resp. negative) Sr indicates that the bubble lags (resp. leads) the
fluid.

As stated in the introduction, we are particularly interested in obtaining the hydrodynamic force
acting on the bubble. This force may be split into its drag component FD parallel to U rel, and its lift
or transverse component, FL, parallel to ex. We thus define

FD = U rel

||U rel|| ·
∫

�

� · n d�, FL = ex ·
∫

�

� · n d�, (5)

where � is the bubble surface. Results concerning these forces will be expressed in terms of
the dimensionless lift and drag coefficients, CL and CD, obtained by dividing the corresponding
component of the force by πd2ρU 2

rel/8. Note that a negative (resp. positive) value of the lift
coefficient corresponds to an attractive (resp. repulsive) force with respect to the wall. We introduce
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the notations CW
D (resp. CW

L ) and CU
D (resp. CU

L ) to denote the drag (resp. lift) coefficients in
wall-bounded and unbounded flows, respectively. Situations where the wall lies in the inner or outer
region of the disturbance will be distinguished by the superscripts W-in and W-out, respectively. To
appreciate the modification of the drag force due to the wall and shear effects, results for the drag
coefficient are usually given in the form of the relative change 
CD = (CD − CU

D0)/CU
D0, where CU

D0
denotes the drag coefficient of a bubble moving in an unbounded uniform stream. Drag (resp. lift)
contributions corresponding to the wall-induced effect are denoted with the subscript Du (resp. Lu),
while those corresponding to the shear-induced effect are denoted with the subscript Dω (resp. Lω).

In most of the present work, Re, Sr, and LR are varied in the range [0.1, 103], [−0.5, 0.5], [1.5, 8],
respectively. Specifically, Sr = ±0.4 corresponds for instance to a 1 mm diameter bubble rising or
settling at 0.25 m s−1 in a downward or upward shear flow with γ = 100 s−1, an order of magnitude
typical of turbulent boundary layers. Of course, in most practical situations, rising bubbles do
not stay spherical at high Reynolds number, even in water, which has a strong surface tension.
Rather, they turn into oblate spheroids, characterized by an aspect ratio, χ , the length ratio of the
major-to-minor axis. The dynamics of moderately oblate bubbles is essentially similar to that of
spherical bubbles up to χ ≈ 1.65, beyond which a separated wake may exist within a certain range
of Reynolds number [42]. However, an oblate bubble opposes a greater resistance to the surrounding
flow than a spherical bubble with the same volume V . For instance, in the high-Re limit, the drag
and shear-induced lift coefficients are approximately 25% higher for a bubble with an aspect ratio
χ = 1.2 than for a spherical bubble [43,44]. In pure water under standard conditions, bubbles with
χ = 1.2 have an equivalent diameter D = 1.15 mm (with D = (6V/π )1/3), and a rise velocity
VT ≈ 0.305 ms−1 [45]. Therefore their rise Reynolds number ReT = VTD/ν is approximately
350. If one regards the above 25% difference as the upper limit below which predictions for
the hydrodynamic forces are reasonably accurate, results obtained with spherical bubbles may be
considered valid up to a Reynolds number Re ≈ 350, with Re based on the slip velocity between the
bubble and the local flow. Since we consider only shear rates such that |Sr| � 1 here, shear-induced
deformations are smaller than those due to slip, and the above conclusion extends to bubbles rising
in a linear shear flow.

Although effects of oblateness cannot be ignored for bubbles rising at larger Reynolds numbers
in water, there is a fundamental interest in considering fictitious conditions under which surface
tension is strong enough to prevent bubbles from deforming irrespective of the Reynolds number.
This is because, in contrast with the case of rigid spheres, asymptotic results are available in the
limit Re → ∞ for spherical bubbles at the surface of which the fluid obeys a shear-free condition,
making it possible to study how the corresponding asymptotic regime is reached for large-but-finite
Re. This is for instance the case with the viscous drag [46,47], the shear-induced lift force [8,25],
or the irrotational transverse force on a bubble rising parallel to a wall [17,18,48]. This is the reason
why Reynolds numbers are considered up to 103 in the present study.

Finally, although gravity does not appear in (1) or (3), it is a key player in the real system under
consideration, since it usually provides the driving force that sets the relative motion between the
bubble and the surrounding fluid. Equating the drag and buoyancy forces acting on a bubble rising
in a fluid at rest (neglecting the gas density) yields Re2

TCU
D0(ReT) = 4

3 gD3/ν2, g denoting gravity.
The dimensionless number Ar = (gD3)1/2/ν, frequently referred to as the Archimedes number,
compares buoyancy and viscous forces. Its value, which depends only on the bubble size, fluid
viscosity, and gravity conditions, determines the rise Reynolds number, ReT. Gravity has also a side
effect, since it tends to deform bubbles by inducing a hydrostatic pole-to-pole pressure difference
of O(ρgD) along their surface. This deformation remains weak as far as this pressure difference
is small compared to the capillary pressure jump across the bubble-fluid interface, of O(4σ/D).
Introducing the Bond number Bo = ρgD2/σ (σ denoting surface tension), this condition may be
expressed in the form Bo � 4. For the 1.15 mm bubble considered above, one has Bo ≈ 0.18, so
that the gravity-induced deformation is negligible. So, the 20% deformation corresponding to the
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FIG. 5. Illustration of the grid system. (a) Shape and size of the computational domain. (b) Definition of the
number of nodes in the computational domain. [(c), (d)] Partial view of the grid near the bubble with LR = 1.5
and 2δ/d = 0.01 in (c), and LR = 2.0 and 2δ/d = 0.002 in (d).

aspect ratio χ = 1.2 essentially results from dynamical effects, the Weber number We = ρV 2
T D/σ

being approximately 1.5 in this case.

III. NUMERICAL APPROACH

The computational results discussed below were obtained with the JADIM code developed at
IMFT. This code solves the three-dimensional unsteady Navier-Stokes equations with a finite-
volume discretization and, in the version used here, makes use of a boundary-fitted staggered grid.
Spatial derivatives are approximated using second-order centered schemes. The velocity field is
advanced in time with a third-order Runge-Kutta algorithm for the advective term, together with a
Crank-Nicolson semi-implicit algorithm for viscous terms. Incompressibility is satisfied at the end
of each time step through a projection technique which yields a Poisson equation for the pressure
correction. Details about this code may be found in previous publications, especially Ref. [49]
for most algorithmic aspects, and Ref. [50] (resp. Ref. [48]) for specific aspects concerned with
curvilinear grids in unbounded (resp. wall-bounded) flows.

The grid system used in this study is similar to the one employed in Ref. [48], based on which
the flow about two spherical bubbles rising side-by-side in a viscous liquid was simulated. A two-
dimensional grid is first built on the streamlines η = const and the equipotential lines ξ = const of
the potential flow around two circular cylinders moving in line along the z axis. Then this grid is
rotated about the x axis with an angle ϕ = π or 2π . The first choice, which we used in certain runs,
exploits the planar symmetry of the problem geometry with respect to the plane y = 0, reducing
the computational domain to a half-space by imposing a symmetry condition in this plane. Most
computations, however, were run in the full domain 0 � ϕ � 2π . There is a priori no guarantee
that the flow keeps its planar symmetry at high Reynolds number, owing to the combined presence
of wall and shear, but none of these computations revealed such a symmetry breaking. The resulting
computational domain with ϕ = 2π , shown in Fig. 5(a), has an inner boundary coinciding with the
bubble surface and a circular outer boundary of radius R∞. Its height between the bubble center
and the wall (resp. the outer boundary) is L̃ (resp. R∞). The (ξ, η, ϕ) grid is made of (NW + Np +
N∞) × Nη × Nϕ nodes as defined in Fig. 5(b). Here NW is the number of nodes between the wall
x = −L̃ and the bubble surface, Np is the number of nodes along half of the bubble circumference
(from x = −d/2 to x = d/2), N∞ is the number of nodes between the bubble surface and the outer
boundary in the x direction, Nη and Nϕ are the number of nodes along the radial (η) and azimuthal
(ϕ) directions, respectively. The bubble surface is thus discretized with Np × Nϕ nodes.
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In Ref. [48] it was found that the length R∞ and the distance δ from the bubble surface to the first
node above it near the singular points x = ±d/2 of the x axis are critical for an accurate calculation
of the transverse force. To reduce the effect of the outer boundary, we select R∞ such that 2R∞/d =
100 for Re < 1, 2R∞/d = 80 for Re < 100, and 2R∞/d = 40 for Re � 100. To improve accuracy
in the moderate and high-Reynolds-number regimes, the dimensionless distance 2δ/d is set to 0.01
for Re < 10 and to 0.002 for Re � 10. A constant spacing of nodes is chosen in the ϕ direction with
Nϕ = 128 (resp. 64) in the case of a full (resp. half) domain. In the ξ and η directions, a geometrical
progression ensuring that the width ratio of two successive cells is less than 1.15 is applied, with
N∞ = 58 and Nη = 54. Some tests were carried out at large Reynolds number with a finer resolution
in the radial direction, Nη = 80 and 108. Differences on the drag and lift coefficients were found
to be less than 0.4% in all cases, from which we concluded that Nη = 54 is sufficient throughout
the range of flow conditions considered here. In Ref. [48] it was shown that numerical results are
weakly sensitive to the number of nodes on the bubble surface, Np, and between the bubble and the
wall, NW. Regarding the former, the configuration considered here does not differ much from that
in Ref. [48]. Hence we followed this reference and set Np = 30. The situation is different regarding
NW, since the plane x = −L̃ corresponds to a rigid wall with a no-slip condition here, whereas it
was only a symmetry plane in Ref. [48]. For this reason, more grid points are required near the wall
when the Reynolds number becomes large to properly capture the corresponding boundary layer.
For Re � 10, we found it convenient to employ NW = 10 for LR � 2, NW = 15 for 2 � LR � 4,
and NW = 20 for LR > 4. At larger Reynolds numbers, the results to be discussed later show that
effects of the boundary layer are “felt” by the bubble only for short separation distances, typically
LR � 2. We increased NW up to 40 (resp. 60) for LR = 1.5 (resp. 2) and found that results are
grid-independent for NW � 30 (resp. 40) up to Re = 103. Therefore we adopted the latter values,
which allow to cluster approximately 10 grid points within the wall boundary layer for Re = 103,
guaranteeing a proper capture of the corresponding effects. Two examples of the near-bubble cell
distribution at low-to-moderate Reynolds numbers are provided in Fig. 5. The adequacy of the
resulting resolution is established in the Appendix, where we discuss results for the drag and lift
forces in the wall-bounded configuration with the fluid at rest at infinity, as well as predictions for
the lift force in an unbounded shear flow in the high-Reynolds-number range.

The velocity is assumed to correspond to the undisturbed flow (2) on the top plate x = R∞ and
the cylindrical surface (y2 + z2)1/2 = R∞. On the bottom plate x = −L̃, the no-slip condition in
the moving frame, u = −V ez, is applied. The ex-symmetry axis of the grid system introduces
an artificial singularity, since a given point (x = x0, y = 0, z = 0) on this axis is associated with
different values of ϕ. A specific condition described in Ref. [8] is employed to overcome this
problem. The techniques used to evaluate the various contributions to the hydrodynamic force
experienced by the bubble may be found in the same reference.

IV. AVAILABLE ANALYTICAL AND SEMIEMPIRICAL EXPRESSIONS

Before we discuss the numerical results, an overview of expressions available in the literature
to estimate wall- and shear-induced forces, based on either theoretical or semiempirical grounds, is
in order. Indeed, these results help to understand the dependence of wall- and shear-induced effects
with respect to Re, Sr, and LR and provide useful indications regarding the accuracy of the numerical
results.

A. Unbounded linear shear flow

At low-but-finite Reynolds number, the presence of a uniform shear tends to increase the drag,
and simultaneously causes a transverse or lift force in the direction of U rel × ω. Both forces are
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proportional to (|Sr|Re)1/2. They may be expressed in terms of the drag and lift coefficients in the
form

CU
Dω(Re � 1) − CU

D0(Re → 0) = 8

π2
εJD(ε), (6a)

CU
Lω(Re � 1) = 8

π2

Sr

|Sr|εJL(ε), (6b)

where CU
D0(Re → 0) denotes the drag coefficient in the creeping flow limit: CU

D0(Re → 0) = 16/Re
for a clean spherical bubble, and ε = L̃u/L̃ω = (|Sr|/Re)1/2 is the ratio of the Oseen and Saffman
length scales. The function JL(ε) was derived for arbitrary values of ε in Ref. [24] [Eq. (3.20)]. In
the limit ε → ∞, one has [51]

JD(∞) = 0.485, (7a)
JL(∞) = 2.254. (7b)

The way JD(ε) tends to zero as ε decreases is still unknown, but this is of little importance since the
relative magnitude of the shear-induced correction to the drag is small whatever ε in this regime. At
finite ε, JL may be approximated as [8]

JL(ε) ≈ JL(∞)(1 + 0.2ε−2)−3/2. (8)

In the inviscid limit, the lift force was determined analytically in Ref. [25] for a vanishingly small
shear (Sr → 0). The high-Reynolds-number behavior was investigated numerically in Ref. [8],
where it was found that [52]


CU
Dω(Re � 1) ≈ 0.55Sr2, (9a)

CU
Lω(Re � 1) ≈ 2

3
Sr(1 − 0.07|Sr|) 1 + 16Re−1

1 + 29Re−1 , (9b)

where 
CU
Dω = [CU

Dω(Re) − CU
D0(Re)]/CU

D0(Re), and CU
Lω = 2

3 Sr is the asymptotic value of the lift
coefficient found in the limit Sr → 0, Re → ∞ in Ref. [25]. The fit (9a) for the shear-induced drag
increase was confirmed in subsequent numerical studies [53,54].

B. Low-Re wall-bounded shear flow

The presence of a nearby wall results in a drag increase, while it may either increase or decrease
the transverse force, depending on the sign of the relative (slip) velocity with respect to the direction
of the shear. For Re � 1, situations where the wall lies in the inner region of the disturbance, i.e.,
max (Lu, Lω ) � 1, were investigated in Ref. [4]. The analytical solutions for the drag and lift forces
were found to be [55]


CW-in
D (Sr, LR) =

(
3

8
L−1

R + 3

64
L−4

R

)(
1 − 3

8
L−1

R − 3

64
L−4

R

)−1

︸ ︷︷ ︸

CW-in

Du

− 1

16

(
L−2

R + 3

8
L−3

R

)
Sr︸ ︷︷ ︸


CW-in
Dω

, (10a)

CW-in
L (Sr, LR) = 1

2

(
1 + 1

8
L−1

R − 33

64
L−2

R

)
︸ ︷︷ ︸

CW-in
Lu

+ 11

24

(
LR + 9

8
− 1271

3520
L−1

R

)
Sr + 11

144

(
1 + 3

8
L−1

R

)
Sr2︸ ︷︷ ︸

CW-in
Lω

, (10b)

where 
CW-in
D (Sr, LR) = [CW-in

D (Sr, LR) − CU
D0(Re → 0)]/CU

D0(Re → 0).
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FIG. 6. Predictions for LR
CW-out
Du and CW-out

Lu based on (11) for 0.01 � Lu � 300. Open symbols: numerical
integration; solid line: approximate expression (12). (a) LR
CW-out

Du ; (b) CW-out
Lu .

Equations (10) make it clear that the drag modification and the lift force result from two
contributions. One, denoted as 
CW-in

Du (resp. CW-in
Lu ), is due to the wall effect and depends on LR only.

The other, denoted as 
CW-in
Dω (resp. CW-in

Lω ), is due to the presence of the shear and depends linearly
and quadratically on Sr, although it is also altered by the wall proximity. The drag modification
vanishes in the limit of large separations. In the same limit, the lift force becomes governed by the
shear effect which grows linearly with LR. Since Lω = 1

2 LR(Re|Sr|)1/2, the term proportional to LR

in the CW-in
Lω contribution differs from the the lift coefficient CU

Lω in (6b) for the unbounded case by a
factor proportional to LωJL(ε), which indicates that the two expressions reach a similar magnitude
for some finite value of Lω.

When the wall lies in the outer region of the disturbance, Lu = 1
2 LRRe and Lω are not small

any more, so that the drag and lift forces depend on Lu and Lω in addition to LR. This situation
was investigated in the shearless case (Lω → 0) in Ref. [12] for a rigid sphere, then adapted to a
spherical bubble in Ref. [13]. The relevant solutions are found in the form of double integrals which
cannot be evaluated in closed form,


CW-out
Du = 1

2πLRLu

∫ 2π

0

∫ ∞

0

{
[(χ + λ)e−2λ + 2χe−2χ − 4χe−(χ+λ)]

i cos φ

χ − λ

+ iλ cos φ − Lu

χ
e−2χ

}
λdλdφ, (11a)

CW-out
Lu = 4

πL2
u

∫ 2π

0

∫ ∞

0

χ + λ

χ − λ
(e−λ − e−χ )2λ dλ dφ, (11b)

where 
CW-out
Du (Re � 1) = [CW-out

Du (Lu, LR) − CU
D0(Re → 0)]/CU

D0(Re → 0), and χ2 = λ2 +
iλLu cos φ with i2 = −1.

The right-hand side of (11) may be evaluated numerically using an adaptive integration
approach [56]. The corresponding values for the drag and lift coefficients, shown in Figs. 6(a)
and 6(b), respectively, may then be used to derive approximate fits, which we obtained in the form

8

3
LR
CW-out

Du (Re � 1) = f ′
D(Lu) ≈ 1

1 + 0.16Lu(Lu + 4)
, (12a)

2CW-out
Lu (Re � 1) = f ′

L(Lu) ≈ 1

1 + 0.13Lu(Lu + 0.53)
. (12b)
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The two functions f ′
D and f ′

L, shown in Fig. 6, describe how the wall-induced drag modification
and the transverse force relax to zero as inertial effects in the bulk become dominant. In the limit
Lu → 0, expressions (12a) and (12b) match predictions (10a) and (10b) taken in the limit LR → ∞.

In the presence of shear, the case where the wall stands in the outer region of the disturbance was
worked out in Ref. [28] for a rigid sphere. Again, the solution was obtained in the form of a volume
integral in Fourier space, the value of which cannot be put in closed form but was tabulated for
various values of Lω and ε = L̃u/L̃ω. These results were adapted to the case of a bubble in Ref. [7].
Variations of the volume integral with respect to Lω and ε were fitted to obtain tractable estimates of
the lift force, assuming that this force may approximately be expressed as the superposition of the
wall-induced effect and the unbounded shear-induced lift, provided each contribution is suitably
modified to account for the effect of the shear and the presence of the wall, respectively. The
resulting fit was obtained in the form

CW-out
L (Re � 1) ≈ fLCW-out

Lu (Re � 1) + hLCU
Lω(Re � 1), (13)

with CU
Lω(Re � 1) given by (6b) and CW-out

Lu (Re � 1) approximated by (12b). Appropriate fits for
fL and hL were found to be

fL(Lω, ε) = e−0.22ε0.8L2.5
ω , hL(Lω, ε) = 1 − e− 11

96 π2 Lω
JL(ε) , (14)

with JL(ε) as given by (8). In the double limit Lu → 0 and Lω → 0, the above expressions make
the leading-order contributions to CW-out

L in (13) match the leading-order terms of the inner solution
CW-in

L in (10b). No approximate expression for the drag force modification seems available in the
literature under similar flow conditions, although starting from (6a) and (12a), it can certainly be
built using the same procedure.

C. Approximate expression for the lift force at moderate-to-large Reynolds number

No theoretical solution for the hydrodynamic forces may be obtained when inertial effects
become dominant. Reliable extensions of the low-Reynolds-number and inviscid solutions to
this intermediate regime may however be achieved provided that sufficient and accurate data are
available. Experimental and numerical studies [6,9] devoted to the rise of a clean spherical bubble
close to a wall revealed that, for Re = O(10), the lift force exhibits a faster decay with increasing
Lu compared to the low-Re solution. In Ref. [6], experimental observations performed with bubbles
such that Re < 30 and theoretical considerations about the nature of the bubble-wall interaction
could be summarized through the following semiempirical relation [57]

CW
Lu[Re = O(1 − 10)] ≈ b2(LR/3)gCW-out

Lu (Re � 1), (15)

with

b = 1 + 2 tanh[0.17Re0.4 − 0.12Re0.05] (16a)

and g = −2.0 tanh(0.01Re). (16b)

The factor b expresses the increase of the vorticity at the bubble surface with the Reynolds number.
Indeed the maximum of the surface vorticity is three times larger in the limit Re → ∞ than in the
zero-Re limit. The exponent g accounts for the increase of the decay rate of the lift force with Lu

as Re increases, from L−2
u at low-but-finite Re to L−4

u in the inviscid limit [6]. At higher Reynolds
numbers, the irrotational mechanism illustrated in Fig. 2(a) becomes dominant. In the inviscid limit,
the transverse force becomes identical to that experienced by each of the two bubbles in a pair
rising perpendicular to its line of centers. The corresponding coefficient is obtained in the form
of an infinite series with respect to the inverse of the separation distance, the first terms of which
are [17,18,48]

CW
Lu(Re → ∞) ≈ − 3

8 L−4
R

[
1 + 1

8 L−3
R + 1

6 L−5
R

] + O
(
L−10

R

)
. (17)
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Still for a bubble pair rising in the above configuration, the transverse interaction yields an
asymmetry of the vorticity distribution within the boundary layer surrounding each bubble. For
this reason, a viscous correction arises in the transverse force at large-but-finite Re, yielding [5,48]

CW
Lu(Re � 1) ≈ CW

Lu(Re → ∞) + 15Re−1L−4
R . (18)

Returning to the problem of a single bubble translating parallel to a wall, the transition from
the low-to-moderate-Re regime corresponding to Fig. 1(a) to the high-Re regime illustrated in
Fig. 2(a) was discussed in Ref. [6]. It was shown that the two driving mechanisms superimpose
almost linearly, so that this transition is correctly captured by the empirical expression

CW
Lu ≈ CW

Lu[Re = O(1 − 10)] + cT ∞CW
Lu(Re → ∞), (19a)

with cT ∞ = 1 − e−0.22Re0.45
. (19b)

As Fig. 8 of Ref. [6] shows, predictions based on this linear fit compare well with the experimental
values of the lift coefficient determined for LR � 4 up to Re = 102, the largest Reynolds number
considered in that study.

Effects of the shear on the lift force for Re = O(1) were investigated experimentally in Ref. [7].
Based on the corresponding data, it was concluded that the linear superposition assumed in (13),
which applies theoretically only for Re � 1, still holds for Re = O(1), provided the bubble
deformation remains small. To the best of our knowledge, no empirical expression for CW

L (Re)
at higher Reynolds number in the presence of shear is available in the literature.

V. CHARACTERISTICS OF THE FLOW FIELD AND FUNDAMENTAL MECHANISMS

Figure 7(a) shows the computed profiles of the streamwise velocity disturbance along the line
(y = 0, z = 0) perpendicular to the wall (x axis) when the bubble translates in a stagnant fluid,
for different separation distances and Reynolds numbers ranging from 0.1 to 500. Note that Urel

is negative if the bubble rises towards positive z, so that negative (resp. positive) fluid velocities
normalized by Urel in this figure correspond to an upward (resp. downward) fluid motion with
respect to the bubble. At high Reynolds number (Re = 500) the disturbance decreases rapidly as
the distance to the bubble increases. In the gap [−LR < 2x/d � −1], this decrease results in a
pressure gradient directed towards the bubble, hence a transverse force toward the wall, in line
with the mechanism illustrated in Fig. 2(a). Due to the L−4

R decay of the wall-induced pressure
asymmetry [the footprint of which directly appears in (17)], wall effects are almost negligible for
LR = 4 but are well visible for LR = 2. Compared to the former case, the disturbance is larger in
the gap in the latter one, except within the thin boundary layer adjacent to the wall, in which it
vanishes rapidly to satisfy the no-slip condition. When the Reynolds number decreases, so does the
magnitude of the disturbance close to the bubble, owing to the growing influence of the boundary
layer that develops at its surface (compare the profiles found for Re = 500 and 100). This boundary
layer is totally distinct from the one that develops at the wall, being a direct consequence of the
shear-free condition at a curved interface [58]. At Re = 10, the disturbance changes sign close to
the bubble, within a layer whose thickness is of the order of the bubble radius. At small Reynolds
number (Re = 0.1) it is negative everywhere along the line (y = 0, z = 0), i.e., directed along the
direction of the bubble rise. The wall proximity significantly decreases the disturbance in the gap,
as may be seen by comparing its magnitude on the left and right halves of the red and green lines at
a given distance from the bubble center.

The influence of the shear is illustrated in Fig. 7(b), based on the results obtained with two
opposite shear rates, Sr = ±0.5, for a separation distance LR = 4. At high enough Reynolds number
(Re = 500 or 100), the presence of a positive (resp. negative) shear, corresponding to a configuration
where the bubble lags (resp. leads) the fluid, increases (resp. decreases) the magnitude of the
disturbance in the gap, while it decreases (resp. increases) it on the opposite side. At moderate
Reynolds number (Re = 10), this behavior subsists outside the boundary layer surrounding the
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FIG. 7. Distribution of the streamwise velocity disturbance (u − u∞) · ez/Urel along the line (y = 0, z = 0).
(a) Stagnant fluid (Sr = 0) for different separation distances; (b) linear shear flow for LR = 4. The wall stands
at position 2x/d = −2 (resp. −4) for LR = 2 (resp. 4).

bubble, within which only a tiny influence of Sr can be observed. In contrast, effects of the shear are
detected only close to the bubble when the Reynolds number is low (Re = 0.1). There, a positive
(resp. negative) shear decreases (resp. increases) the magnitude of the disturbance in the gap, while
it increases (resp. decreases) it on the opposite side.

Some aspects of these variations, and complementary features of the bubble-wall interaction, may
be better understood by examining the distribution of the y component of the vorticity disturbance
in the symmetry plane y = 0. This distribution is displayed in Fig. 8 for the specific separation
LR = 2. Vorticity is generated both at the bubble surface (due to the shear-free condition) and at
the wall (due to the no-slip condition). In what follows, the contributions provided by these two
distinct boundaries are referred to as surface vorticity and wall vorticity, respectively. The surface
vorticity diffuses around the bubble and is advected downstream in the wake. When the fluid is at
rest at infinity, the vorticity distribution in the high-Reynolds-number regime [Re = 500, Fig. 8(k)]
is almost symmetric with respect to the plane x = 0. Negative vorticity (see the sign convention
in the caption of Fig. 8) is generated at the wall, owing to the weakening of the disturbance by
the no-slip condition. However, in the high-Re regime, the wall shear layer is too thin to affect
the distribution of the surface vorticity, the isocontours of which would be virtually unchanged
if the bubble were rising in an unbounded expanse of fluid. Because of this almost symmetrical
vorticity distribution, it may be inferred that the asymmetry of the disturbance velocity observed in
Fig. 7(a) is mostly due to the irrotational mechanism illustrated in Fig. 2(a). When the Reynolds
number decreases, the thickness of the two boundary layers increases [Re = 100, Fig. 8(h)]. Then
they start to interact, making the asymmetry between the surface vorticity isocontours in the gap
(x < 0) and those on the opposite side of the bubble (x > 0) more prominent [Re = 10, Fig. 8(e)].
At low Reynolds number [Re = 0.1, Fig. 8(b)], the region containing positive vorticity originating
at the bubble surface and that containing negative wall vorticity interpenetrate each other, making
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FIG. 8. Isocontours of the normalized vorticity disturbance d/(2Urel )(ω − ω∞) · ey in the symmetry plane
y = 0 at LR = 2. Left column: Sr = −0.5 (Urel < 0); central column: Sr = 0 (Urel < 0); right column: Sr = 0.5
(Urel > 0). The wall stands at the bottom of each panel. The relative flow with respect to the bubble is from left
to right, i.e., in the +z (resp. −z) direction for Sr = 0.5 (resp. Sr = 0 and −0.5).

the resulting vorticity magnitude in the gap weaker than on the opposite side, especially around
the midplane z = 0. This asymmetry is responsible for the drag enhancement described by the
contribution 
CW-in

Du in (10a). In contrast, it is not directly responsible for the transverse force on
the bubble, owing to the reversibility of the flow in the Stokes region of the disturbance. The crucial
process responsible for this force component is the gradual slowing down of the fluid displaced
along the wall by the bubble translation as the downstream distance increases. This slowing down
corresponding to a negative ∂zuz near the wall, continuity implies the generation of a transverse flow
with a positive ∂xux. As ux = 0 at the wall, this tiny transverse flow is directed away from the wall,
yielding a pressure decrease as x increases. At downstream distances larger than the Oseen length
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FIG. 9. Isocontours of the normalized streamwise vorticity component d/(2|Urel|)ω · ez in the cross-
sectional plane z = d in an unbounded linear shear flow with Sr = 0.5. (a) Re = 100; (b) Re = 500. The
main flow is going inwards, along the z axis.

Lu (here Lu ≈ 10d), this process is no longer reversible, yielding a repulsive net transverse force on
the bubble.

The interaction between a uniformly sheared flow in an unbounded fluid and a three-dimensional
bluff body is well understood in the inviscid limit (e.g., Ref. [42] and references therein). A key
result of this interaction is the tilting of the upstream vorticity, ω∞ · ey = −γ , by the transverse
gradients of the streamwise velocity, ∂yuz, resulting from the flow around the body. This tilting
mechanism yields the generation of a nonzero streamwise (or trailing) vorticity component in the
wake, concentrated within the two threads of a horseshoe vortex. Figure 9 shows how the streamwise
vorticity ωz is distributed within a cross-sectional (x, y) plane located in the near wake of the bubble.
Since ω∞ · ey < 0 and Urel > 0, the resulting ωz is positive (resp. negative) for y < 0 (resp. y > 0) if
Sr is positive; the sign of ωz in each thread of the vortex reverses if Sr is negative. Consequently, the
fluid located between the two threads is entrained downwards (resp. upwards) if Sr > 0 (resp. Sr <

0), while the fluid located outside the double-threaded wake is entrained in the opposite direction.
This is the classical mechanism responsible for the inviscid lift force on a three-dimensional body,
illustrated in Fig. 2(b), which yields the result (9b) for a sphere [25]. The footprint of this mechanism
may be found in Figs. 8(j) and 8(l), where it is seen that the spanwise vorticity generated at the
bubble surface is advected asymmetrically with respect to the plane x = 0. Indeed, at such large
Reynolds number (Re = 500), the aforementioned downward (resp. upward) flow generated in the
midplane y = 0 by the double-threaded wake bends the isocontours of the spanwise vorticity in
the wake towards the x < 0 (resp. x > 0) direction when the bubble lags (resp. leads) the fluid.
Although this asymmetry arises in the wall vicinity in the present case, the wall plays no role in the
underlying process.

Figure 10 reveals the spatial structure of the streamwise vorticity distribution in the presence
of a nearby wall. Close to the bubble, the two halves of the horseshoe vortex are already visible
in the selected diametrical plane, and the sign of ωz within each of them reverses with the sign of
Sr as expected. When Sr = 0, two thin layers with significant values of ωz develop close to the
lower half of the bubble surface. This is because the streamwise fluid velocity uz increases with the
distance from the wall within the wall boundary layer, so that the lower part of the bubble is still
submitted to a nonzero shear (∂xuz 	= 0), even though there is no shear in the upstream flow. The
larger the Reynolds number, the thinner the wall boundary layer, which is why the two ωz layers
are much thinner and the magnitude of the streamwise vorticity within each of them is significantly

073601-16



HYDRODYNAMIC FORCES ON A CLEAN SPHERICAL …

y
x

(a) (b) (c)

y
x

y
x

Re = 100 

(d) (e) (f )

y
x

y
x

y
x

0.5 .5

Re = 500

-0.25    -0.2     -0.15       -0.1 -0.05    0        0.05       0.1       0.15      0.2       0.25

FIG. 10. Isocontours of the normalized streamwise vorticity component d/(2|Urel|)ω · ez in the diametrical
plane z = 0 in a wall-bounded linear shear flow, with the bubble standing a distance LR = 1.5 from the wall.
The main flow is going inwards, along the z (resp. −z) direction for Sr > 0 (resp. Sr � 0); the direction of the
y axis is adjusted such that the (x, y, z) coordinate system remains right-handed in all configurations.

weaker when Re = 500. This mechanism subsists when Sr 	= 0, and then combines with the tilting
mechanism associated with the outer shear. When Sr is positive, the two mechanisms cooperate,
yielding a constant sign of ωz on each side of the bubble [Figs. 10(c) and 10(f)]. In contrast,
they induce opposite signs of ωz when Sr is negative. This is visible in Fig. 10(a), where a thin
near-surface layer with ωz < 0 (resp. >0) is encapsulated within a thicker layer of positive (resp.
negative) ωz in the half-plane y > 0 (resp. y < 0). Clearly the inner layer results from the positive
near-wall shear, while the outer layer is due to the negative upstream shear. A salient feature
in Fig. 10 is the presence of two counterrotating “pancake” streamwise vortices within the wall
boundary layer. These structures merely result from the spanwise displacement of near-wall fluid
particles as the bubble moves parallel to the wall. Indeed, whatever the sign of Sr, fluid particles
standing between the bubble and the wall are displaced sideways towards positive (resp. negative)
y positions in the half-plane y > 0 (resp. y < 0), implying positive (resp. negative) spanwise local
velocities. Owing to the no-slip condition, uy vanishes at the wall, so that ∂xuy is positive (resp.
negative) near the wall in the half-plane y > 0 (resp. y < 0), which yields ωz > 0 (resp. <0).
Clearly this process is independent of the outer shear, as the constant sign of ωz in each half-plane
irrespective of Sr confirms (note that in Figs. 9 and 10 the vorticity is normalized by d/2|Urel|, not
d/2Urel as in Fig. 8).

The generation of the surface vorticity [ωy in the diametrical (x, z) plane] is also modified by the
shear. Indeed, for the shear-free condition to be satisfied at the bubble surface in the presence of an
outer shear, a shear-flow type correction has to take place within the boundary layer. Compared
to the unsheared case, this correction yields an additional positive vorticity component therein
when the bubble lags the fluid. Hence this vorticity correction cooperates with the primary positive
vorticity in the part of the bubble boundary layer corresponding to x < 0, whereas it mitigates the
primary negative vorticity on the opposite side. Consequently, the intensity of the overall vorticity
round the bubble is increased for x < 0 and decreased for x > 0, as Fig. 8(l) indicates, and the same
happens to the disturbance flow close to the bubble surface [see, e.g., the profile corresponding
to Re = 100 in Fig. 7(b)]. These conclusions reverse when the bubble leads the fluid, so that
the surface vorticity and streamwise velocity disturbance are lowered for x < 0 and enhanced for
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x > 0, in line with the distributions displayed in Figs. 8(j) and 7(b). Again, the wall plays little
role in these mechanisms as far as the Reynolds number is large. More specifically, for Re = 500,
Fig. 8(j) indicates that the flow region in which the vorticity originating from the bubble surface
takes significant values is disconnected from the wall shear layer when Sr is negative, while there
may be some weak connection between the two regions when Sr is positive [Fig. 8(l)], owing to the
bending of the wake toward the wall.

As the Reynolds number decreases, viscous effects tend to attenuate the efficiency of the
inviscid vortex tilting mechanism described above. This is why the bending of the surface vorticity
distribution in the wake becomes weaker at Re = 100 [Figs. 8(g) and 8(i)]. At the same time, the
boundary layers thicken, so that the flow near the lower edge of the vortical region in the near wake
starts to interact significantly with the wall shear layer, just as it does in the unsheared case. This
interaction strengthens as the Reynolds number decreases (Re = 10 and 0.1), making the situation
combine effects of the wall-induced asymmetry with those of the shear-induced asymmetry within
the wake itself. As the wall-induced and shear-induced lift mechanisms both result in a force directed
toward x > 0 if Sr is positive [Fig. 1(c)], they act together to yield an enhanced repulsive force in this
case, as reflected in (10b). Conversely, they produce antagonistic effects if Sr is negative [Fig. 1(d)],
which yields a reduced transverse force. Regarding viscous effects, the mechanisms described above
indicate that the wall interaction tends to reduce the spanwise vorticity in the gap, while the excess
surface vorticity resulting from the presence of the shear tends to enhance (resp. reduce) it when Sr
is positive (resp. negative). The two effects just do the opposite on the free side of the bubble. For
this reason, the top-bottom asymmetry of the ωy-vorticity distribution existing in the unsheared case
is lowered (enhanced) by the shear if the bubble lags (resp. leads) the fluid. This is why the drag is
decreased (resp. increased) by the shear for positive (resp. negative) Sr, as (10a) confirms.

VI. HYDRODYNAMIC FORCES ON THE BUBBLE

In this section, we discuss variations of the drag and lift forces on the bubble revealed by
numerical data in the light of the basic mechanisms described in Sec. V. Most of these data cover
the range 0.1 � Re � 500, |Sr| � 0.5, but some correspond to higher Reynolds number or shear
rate. We found such larger values useful to determine the dependence of several contributions
with respect to Re, Sr, and LR in the high-Reynolds-number range. Note that, following earlier
studies aimed at revealing fundamental mechanisms rather that sticking to specific experimental
conditions, we vary arbitrarily Re, Sr, and LR without considering whether or not a real bubble
would remain approximately spherical in a given fluid under such conditions. In all cases, we
make use of the numerical data to derive semiempirical models valid in either the low-to-moderate
or moderate-to-large Re range. Then we combine these models to propose empirical fits valid at
arbitrary Reynolds number.

A. Fluid at rest at infinity

1. Drag

The validity of the low-Re approximation for the wall-induced drag correction was confirmed
during the validation of the numerical approach [see (A1a) and Fig. 21(a) in the Appendix]. Hence
the primary focus here is on the behavior of the drag coefficient CW

Du(Re, LR) at moderate-to-high
Re. To appreciate the modification of the drag force due to the wall influence, we compare CW

Du to
its counterpart in an unbounded flow, CU

D0. The relative drag change 
CW
Du = (CW

Du − CU
D0)/CU

D0 is
plotted in Fig. 11(a). Beyond Re = 100, this figure reveals a clear increase, with both the Reynolds
number and the inverse of the separation distance, L−1

R , of the relative influence of the wall on the
drag. In that range of Reynolds number, the relative drag increase becomes significant only for
LR � 2. We are not aware of any theoretical prediction available for 
CW

Du in the limit of very large
Reynolds number. In contrast, the case of a spherical bubble rising along the axis of a circular pipe
was considered in Ref. [59], where it was established asymptotically (for both LR � 1 and Re � 1)
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FIG. 11. Relative wall-induced drag correction 
CW
Du for a bubble translating parallel to a wall in a fluid

at rest. (a) High-Re regime; (b) entire Re range investigated numerically. Symbols: numerical data; solid
lines: high-Re expression (20); dash-dotted lines: low-Re expression (A1a); dashed lines: low-to-moderate-Re
expression (22); dotted lines: composite fit (23).

that 
CW
Du ≈ 1.6L−3

R + 0.2Re1/2L−9/2
R . The L−3

R -drag increase is a confinement effect, the vanishing
of the fluid normal velocity at the pipe wall enhancing the local strain in the flow disturbance
throughout the fluid. The Re1/2L−9/2

R increase results from the wall boundary layer within which the
dominant velocity gradient varies as Re1/2. Due to the sharp decrease of the latter contribution with
LR, its influence is significant for large enough Re only. Conversely, it eventually becomes dominant
whatever LR provided Re is large enough. Although the geometrical configuration considered here
differs from that in Ref. [59], the physical mechanisms responsible for the drag increase remain
qualitatively unchanged. For this reason, we sought an empirical expression for 
CW

Du in the above
form, adjusting both the prefactors and the exponents to the numerical data. Fitting the numerical
results independently in the range 20 � Re � 50 (resp. Re > 50) to determine the Re-independent
(resp. dependent) contribution, yielded


CW
Du(Re � 1) ≈ 0.47L−4

R + 5.5 × 10−3L−6
R Re3/4. (20)

Figure 11(a) shows that (20) compares well with the DNS data for Re � 50. The surprising feature
in (20) is that the separation distance and Reynolds number appear with exponents significantly
different from those found in Ref. [59]. We carried out extensive tests to make sure that these
findings are not due to an insufficient grid resolution. In particular we increased the number of nodes
NW between the bubble and the wall up to 40 (resp. 60) for LR = 1.5 (resp. 2), and the number of
nodes Nη in the radial direction up to 108 without observing any significant change in the drag and
lift forces. This makes us confident that the results displayed in Fig. 11(a) are truly grid-independent.
Also, since the relative drag variation induced by the wall boundary layer is still small for LR = 2
and 1.5 (it amounts to only 9% for LR = 1.5 and Re = 103), we ran additional computations for
LR = 1.25, a shorter separation distance at which this effect is significantly larger. As the brown
line in Fig. 11(a) reveals, (20) still closely follows the corresponding data, confirming that this fit is
robust whatever LR within the range of Reynolds number we explored. This does not imply that it
is asymptotically correct in the limit Re → ∞, and there are indications that it is not. Consider the
situation in which the wall is replaced by a symmetry plane, which corresponds to the case of a pair
of identical bubbles rising side by side. No boundary layer exists along the symmetry plane, and the
drag modification in the limit Re → ∞ is then just a consequence of the nonpenetration condition
across this plane. In the inviscid limit, this condition generates an O(L−3

R ) increase in the relative
velocity Urel, which in turn yields an O(L−3

R ) relative drag increase [48]. However, numerical data
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provided in Ref. [48] show that, for LR � 1.5, 
CW
Du still increases with the Reynolds number up to

Re ≈ 500 before becoming Re-independent. Consequently the asymptotic regime in which 
CW
Du

no longer depends on Re is reached only for very large Reynolds numbers. Here, as previously
mentioned, the “Re-independent” contribution to (20) was determined from data corresponding to
Reynolds numbers of some tens because this is the range where the wall boundary layer effect is still
negligibly small. However, viscous effects are still present in this Re range, as the above example
revealed. This is confirmed by Figs. 8(h) and 10(b), which show that, for LR � 2, the vortical region
round the bubble directly interacts with the wall boundary layer at such moderate Reynolds numbers.
This interaction is much weaker when Re = 500 [Figs. 8(k) and 10(e)], suggesting that the ultimate
behavior corresponding to Re → ∞ is reached only for Re � 500.

Figure 11(b) displays the relative drag increase throughout the range of Reynolds number
explored in the simulations. Examination of the low-to-moderate-Re range indicates that (A1a)
underpredicts the drag increase at small separations as soon as the Reynolds number is beyond
the range 0.2–0.5 [see also Fig. 21(a)]. Following Ref. [13], this prediction may be improved by
noting that the drag increase at low-to-moderate-Re is proportional to the square of the maximum
vorticity at the bubble surface. Variations of this quantity with the Reynolds number are empirically
expressed by the fitting function b(Re) in (16a). However, we found that a more accurate fit of the
DNS data reported in Ref. [50] is provided by

b(Re) = 1 + tanh(0.012Re0.8) + tanh(0.07Re0.8). (21)

Making use of (21), we then extend (A1a) toward moderate Reynolds numbers by expressing the
drag increase in the form


CW
Du[Re = O(1)] ≈ f ′

Db2(Re)
CW-in
Du , (22)

with CW-in
Du and f ′

D as given in (10a) and (12a), respectively. As Fig. 11(b) shows, this expression
allows an accurate prediction of 
CW

Du up to Re ≈ 2. Obviously neither (22) nor (20) is accurate
in the intermediate range 2 � Re � 20. Nevertheless, a simple fit may be obtained by combining
empirically the above two models in the form


CW
Du(Re) ≈ 
CW

Du[Re = O(1)] + cDu∞
CW
Du(Re � 1), (23a)

with cDu∞ = 1 − e−0.07Re. (23b)

As Fig. 11(b) shows, this composite expression correctly reproduces the computed drag variations
throughout the entire range of Reynolds number.

2. Lift

Similar to wall-induced drag variations, the validity of the solution based on the combination
of (10b) and (12b) for the transverse (lift) force coefficient in the low-but-finite-Re regime was
confirmed during the validation of the numerical approach [see (A1b) and Fig. 21(b) in the
Appendix]. For this reason, we first discuss the behavior of CW

Lu(Re, LR) in the high-Re range
102 � Re � 103, before examining the variations of the transverse force at arbitrary Reynolds
number. Figure 12(a) compares the numerical data obtained for CW

Lu in that range with the irrotational
prediction (17). The agreement is excellent as soon as the Reynolds number is large enough
(Re � 300) and the separation distance is small enough (LR � 4). The viscous effect associated
with the asymmetry of the boundary layer surrounding the bubble, which yields the correction (18),
becomes significant at smaller Re, where it lowers the negative (i.e., attractive) transverse force.
Numerical results also confirm the sharp decay of the transverse force when LR increases, as
predicted by (17), which makes the attractive effect negligibly small for dimensionless separations
larger than a few units.

Figure 12(b) shows how CW
Lu(Re, LR) varies with the Reynolds number throughout the range

10−1 � Re � 103. In line with experiments reported in Ref. [6], the transverse force is found
to switch from positive (i.e., repulsive) to negative (i.e., attractive) in the range 40 � Re � 60,
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FIG. 12. Lift coefficient on a bubble translating parallel to a wall in a fluid at rest. (a) High-Reynolds-
number range 102 � Re � 103. Comparison of numerical results (symbols) with the potential flow pre-
diction (17) (solid lines), and the high-Re prediction (18) including the Re−1 vortical contribution (dotted
lines). (b) Complete Re range 10−1 � Re � 103. Comparison of numerical results (symbols) with the low-
to-moderate-Re semiempirical model (24) (dashed lines), the high-Re prediction (18) (dotted lines), and the
composite model (solid lines).

depending on LR; the smaller LR the lower the critical Reynolds number at which CW
Lu changes sign.

At low Reynolds number, numerical data indicate that CW
Lu → 1/2 for LR � 4, in agreement with

the asymptotic prediction (10b). Higher-order terms in (10b), which represent effects of the bubble
finite size, somewhat lower the transverse force when the bubble gets very close to the wall, owing
to the negative sign of the L−2

R contribution; numerical results confirm this trend (see especially the
data set corresponding to LR = 1.5). However, the increase of CW

Lu with increasing LR at a given Re
is not monotonic, as may be seen by spotting values of LR for increasing values of CW

Lu at Re = 0.1
and 1. This is because, beyond a certain LR, the wall stands in the outer region of the disturbance,
as illustrated in Fig. 3. Then, since Lu = LRRe/2, inertial effects due to the wall influence, which
are at the root of the wall-induced lift force, start to decrease as LR increases, in agreement with
(12b). This is also the origin of the large decrease of the lift force with Re observed at every
separation distance in the Reynolds number range where the flow disturbance gradually switches
from the low-Re regime to the moderate-Re regime; e.g., in the range 1 � Re � 30 for LR = 1.5
and 0.1 � Re � 10 for LR = 8. In Ref. [6], the semiempirical expression (15) was proposed to
estimate the transverse force for moderate separations and Reynolds numbers, typically LR � 2 and
Re = O(10). This expression accounts for the variations of the vorticity magnitude at the bubble
surface as a function of Re through the empirical function b(Re) given in (16a). In contrast, it does
not account for the aforementioned finite-size effects which become important for small separations,
as it makes use of the prediction for CW-out

Lu (Re � 1) resulting from (11b), in which the bubble is
treated as a point force. To improve this aspect, we heuristically replace CW-out

Lu (Re � 1) in (15) by
CW

Lu(Re � 1) ≈ f ′
LCW-in

Lu as given in (A1b), so that (15) becomes

CW
Lu[Re = O(1 − 10)] ≈ b2(LR/3)g f ′

LCW-in
Lu , (24)

with CW-in
Lu , f ′

L, b, and g as given in (10b), (12b), (21), and (16), respectively. The prediction of
(24) [dashed lines in Fig. 12(b)] is found to agree well with the DNS data up to Re ≈ 10. For
practical purpose, we sought an empirical composite model similar in essence to (19), capable of
fitting the variations of CW

Lu throughout the explored range of Reynolds number. In (19), the high-Re
viscous contribution which makes CW

Lu(Re � 1) differ from CW
Lu(Re → ∞) [see (17) and (18)] was

not considered, since the experiments reported in Ref. [6] were all run at Reynolds numbers less
than 100. However, as Fig. 12(a) shows, this viscous effect is significant for Re = O(100). We
found that the simplest way in which the various contributions may be combined while respecting
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FIG. 13. Transverse force on a bubble translating parallel to a wall in a fluid at rest in the range 0.6 �
Re � 300 according to various sources. Solid line: composite model (25) involving the low-to-moderate-Re
model (24)–(21); dashed line: low-but-finite-Re outer solution (12b); �: experimental data from [13] and [6];
∗: numerical data from Ref. [9].

the proper asymptotic behaviors and having a limited impact out of their own range of validity
reads

CW
Lu ≈ CW

Lu[Re = O(1 − 10)] + cT 1
[
CW

Lu(Re → ∞) + cT 2Re−1L−4
R

]
, (25a)

with cT 1(Re) = 1 − e−0.22Re0.6
, cT 2(Re) = 15 tanh(0.01Re). (25b)

As shown by the solid lines in Fig. 12(b), this empirical fit agrees well with the numerical data
throughout the explored range of parameters.

To further test the capabilities of the above composite model, Fig. 13 compares its predictions
with available numerical and experimental data taken from other sources. These data were obtained
by considering bubbles with different diameters and changing the separation distance for each of
them. This is why each series plotted in the figure corresponds to a fixed Reynolds number and
varying Lu = (Re/2)LR (LR varies from 2.5 to 10 in the reported experiments, and from 1.2 to 20
in the computations). As expected, low-Re data approach the outer solution (12b) as Lu becomes of
O(1) (consider especially the series corresponding to Re = 0.6). The transverse force decays more
slowly than predicted by this solution when the Reynolds number is of O(1–10). As discussed in
Ref. [6], this is primarily an effect of the finite-Re increase of the vorticity produced at the bubble
surface, which is reflected in the above fitting function b(Re). Last, the transverse force changes sign
for a critical Reynolds number of some tens, as it becomes dominated by the irrotational mechanism
when viscous effects are small enough. The composite model (25), which improves over the original
model (19) proposed in Ref. [6], is seen to properly capture these successive features.

B. Linear shear flow

We now perform the same type of analysis in the more complex situation where the effects of a
constant shear combine with those of the wall.

1. Drag

Results for the drag change ratio 
CW
D = (CW

D − CU
D0)/CU

D0 obtained in the low-but-finite
Reynolds-number regime, 0.1 � Re � 2, with a dimensionless shear rate Sr = ±0.5 are plotted
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FIG. 14. Relative near-wall drag increase 
CW
D for a bubble translating parallel to a wall in a linear shear

flow in the low-but-finite Reynolds-number regime for Sr = ±0.5. Symbols: numerical results for Sr = 0.5
(�), and Sr = −0.5 (◦). Dashed lines: asymptotic prediction (10a) corresponding to conditions Lu � 1, Lω �
1; solid lines: semiempirical model (26). Thick (resp. thin) lines correspond to positive (resp. negative) Sr.

in Fig. 14 for different separation distances. Results found with smaller shear rates behave similarly.
Clearly, the shear-induced drag modification is negligibly small compared with that due to the wall
effect when LR exceeds a few units. For the smallest two separations, the shear is found to increase
(resp. reduce) the drag when the bubble leads (resp. lags) the fluid, in line with the qualitative
discussion provided at the end of Sec. V. The solution (10a) assuming that the wall stands in the
inner region of the disturbance shows good agreement with numerical results at Re = 0.1 but,
not surprisingly, overestimates them at higher Reynolds number. No explicit counterpart of the
theoretical solution (11a) exists when the shear is nonzero and the wall stands in the outer region
of the disturbance. However, the relative influence of the shear is always small under the conditions
considered here (at Re = 0.1, the relative variation of 
CW

D is approximately 8% for Sr = ±0.5
compared to the unsheared case Sr = 0). For this reason, we merely duplicate empirically the
arguments employed in the unsheared configuration to derive (A1a) and (22), in order to obtain
an estimate of the drag variation valid up to Reynolds numbers of O(1). This yields


CW
D (Re = O(1)) ≈ f ′

D(Lu)b2(Re)
CW-in
D , (26)

with 
CW-in
D , f ′

D(Lu), and b(Re) as given in (10a), (12), and (21), respectively. As the solid lines in
Fig. 14 show, the corresponding predictions properly follow the numerical data up to Re ≈ 2.

To analyze results obtained in the moderate-to-high-Re range, we first consider the unbounded
configuration in which the generation of the lift force is dominated by the inviscid vortex tilting
mechanism described in Sec. V. Figure 15 shows how the relative drag change 
CU

Dω(Re, Sr) =
[CU

Dω(Re, Sr) − CU
D0(Re)]/CU

D0(Re) varies with both the Reynolds number and the dimensionless
shear rate. Symmetry considerations imply that 
CU

Dω(Re, Sr) cannot depend on the sign of Sr,
which numerical results confirm. If the carrying flow were irrotational, one would expect the relative
drag increase to be proportional to Sr2 and independent of Re in the limit Re → ∞, since boundary
layer effects are negligibly small in this limit. This may be confirmed by evaluating theoretically
the drag experienced by a spherical bubble translating in a pure axisymmetric straining flow of
the form u∞ = − γ

2 (xex + yey) + (γ z − V )ez. As there is no wake in that case in the limit Re →
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FIG. 15. Relative drag variation 
CU
Dω for a bubble translating at moderate-to-high Re in an unbounded

shear flow, with reference to the drag in a uniform stream. (a) Influence of the Reynolds number; (b) influence
of the shear rate. (a) Numerical results for Sr > 0 (�), and Sr < 0 (◦). (b) Numerical results for Re = 500
(�), and Re = 300 (◦). Solid line: prediction of (27); dashed line: prediction of (9a) taken from Ref. [8]; ×:
numerical results from Ref. [8].

∞, the work produced by the drag force exactly balances the dissipation in the entire flow [58].
Evaluating this dissipation yields 
CU

Dω(Re → ∞, Sr) = 2
9 Sr2, with Sr = γ d/|V |. The situation is

drastically different in the linear shear flow of interest here, since the disturbance is not irrotational
and a wake made of the two counterrotating trailing vortices discussed in Sec. V extends to infinity
downstream of the bubble. This configuration is similar to that of a wing of finite span, on which
the trailing vortices are known to produce a lift-induced drag force proportional to the square of
the lift force [58]. This additional drag is a second-order effect due to the interaction between the
upstream vorticity and the vortex-induced velocity disturbance induced by the trailing vortices, here
proportional to γ d . Consequently, it is proportional to ρd4γ 2, yielding an increase in the drag
force proportional to Sr2ρd2U2

rel, hence a relative drag variation 
CU
Dω proportional to Sr2Re since

CU
D0 ∝ Re−1 in this regime. Based on this analogy, we sought a fit of the results displayed in Fig. 15

in the form 
CU
Dω ∝ |Sr|mRen and obtained


CU
Dω(Re � 1) ≈ 2 × 10−3|Sr|1.9Re, (27)

which is seen to properly capture the trends revealed by numerical results. The fact that the
Sr exponent in (27) is slightly lower than predicted in the inviscid lift-induced drag scenario is
presumably a finite-Reynolds number effect that subsists in the limited Re range considered in
present simulations.

Now we need to evaluate how much the above results are altered when the bubble gets close
to the wall. Based on Figs. 8(j) and 8(l), one expects this alteration to be fairly weak, since
the wall boundary layer is thin in the considered Re range, and to depend on the sign of Sr,
owing to the bending of the bubble wake towards (resp. away from) the wall for positive (resp.
negative) Sr. To clarify the magnitude of the wall-shear interaction, we computed the difference
between the actual drag variation in the near-wall configuration, 
CW

D (Re, Sr, LR), and the sum

CW

Du(Re, LR) + 
CU
Dω(Re, Sr) of the two contributions discussed above. This difference, say,


CW−U
Dω (Re � 1), is displayed in Fig. 16. The results show that it is negligibly small whatever the

Reynolds number and for both shear rates for LR � 2. In addition to LR = 1.5, we ran computations
for LR = 1.25 in order to determine the sharp decrease of 
CW−U

Dω (Re � 1) as the separation
increases. Figure 16 indicates that 
CW−U

Dω (Re � 1) grows linearly with Sr and is positive (resp.
negative) when the bubble lags (resp. leads) the fluid. This was expected on the basis of Figs. 8(j)
and 8(l), since the interaction between the wake and the wall is stronger when Sr is positive, due to
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FIG. 16. Influence of the wall-shear interaction on the relative drag increase for Re � 100. Symbols:
numerical values of the difference between the relative drag variation in the presence of wall and shear (
CW

D ),
and the sum 
CW

Du + 
CU
Dω of the relative drag variation in the presence of the wall for Sr = 0 (
CW

Du), and the
relative drag variation in an unbounded shear flow (
CU

Dω). Solid (resp. dashed) lines: empirical expression (28)
for Sr > 0 (resp. Sr < 0).

the bending of the wake towards the wall. Based on DNS data, variations of 
CW−U
Dω (Re � 1) with

LR and Re are found to be correctly fitted in the form


CW−U
Dω (Re � 1) ≈ 0.05L−7/2

R Sr Re1/3. (28)

Again, the above fit is grounded on a limited set of data obtained in the range 50 � Re � 103.
Hence it is presumably not relevant in the limit Re → ∞. Nevertheless, up to Re ≈ 103, the above
decomposition allows us to model the entire wall-induced drag correction in the moderate-to-high-
Re regime in the form


CW
D (Re � 1) ≈ 
CW

Du(Re � 1) + 
CU
Dω(Re � 1) + 
CW−U

Dω (Re � 1), (29)

where the three contributions in the right-hand side are provided by (20), (27), and (28), respectively.
Figure 17 finally presents all numerical results obtained throughout the range 0.1 � Re � 103

together with the corresponding predictions based on the semiempirical expressions established
above. Comparing the two panels, which differ only by the magnitude of Sr, reveals that the shear
has only a secondary influence on the drag increase up to Reynolds numbers of O(102). In that
range, shear-induced drag variations do not exceed 10% of the total drag increase for Sr = ±0.5.
This is in contrast with the behavior observed at higher Reynolds number, where 
CW

D (Re = 500)
is found to be twice as large for Sr = ±0.5 than for Sr = ±0.2, owing to the large influence of
the lift-induced-drag contribution (27). Clearly, the sign of Sr has only a small influence on 
CW

D
at moderate-to-large Re, as the shear is seen to increase the drag in all cases. In other words,
the sign-dependent correction 
CW−U

Dω resulting from the wall-shear interaction is always small
compared to lift-the induced-drag contribution
CU

Dω(Re � 1). Interestingly, comparing 
CW
D in

two flow configurations differing only by the sign of Sr, it turns out that the drag increase is slightly
larger at low Reynolds number when the bubble leads the fluid (Sr < 0), in agreement with (10a).
However, the reverse holds at large (and even moderate) Reynolds number. In a way similar to (23),
one may seek an empirical expression combining linearly 
CW

D [Re = O(1)] and 
CW
D (Re � 1), as
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FIG. 17. Relative near-wall drag increase 
CW
D (Re, Sr, LR) for a bubble translating parallel to a wall in a

linear shear flow throughout the Re range investigated numerically. (a) Sr = ±0.2; (b) Sr = ±0.5. � and ◦:
numerical data for Sr > 0 and Sr < 0, respectively. Thick (resp. thin) solid lines: high-Re expression (29) for
positive (resp. negative) Sr; thick (resp. thin) dashed lines: low-Re expression (26) for positive (resp. negative)
Sr; thick (thin) dash-dotted lines: composite fit (30) for positive (resp. negative) Sr.

respectively given by (26) and (29), to improve the estimate of the drag increase in the intermediate
range 2 � Re � 20. As the dash-dotted lines in Fig. 17 show, the composite expression


CW
D (Re) ≈ 
CW

D [Re = O(1)] + cDω∞
CW
D (Re � 1) with cDω∞ = 1 − e−0.07Re (30)

correctly fits the DNS data throughout the entire range of Reynolds number.

2. Lift

The computed lift coefficient CW
L (Re, Sr, LR) in the low-but-finite Reynolds-number regime is

plotted in Fig. 18 for various normalized shear rates and separation distances. Numerical values
corresponding to LR � 2 only slightly change with increasing Re up to Re ≈ 0.5, which provides
an indication that the wall lies in the inner region of the disturbance in the corresponding (Re, LR)
range. To properly interpret variations of CW

L at larger Reynolds numbers and separation distances,
it is important to keep in mind that, since Sr is kept constant, increasing Re makes ε = (Sr/Re)1/2

decrease from left to right in each series. Consequently, for a given LR, the larger Re the smaller the
shear-induced lift force. The wall-induced contribution is also a decreasing function of the Reynolds
number, since it depends directly on Lu = 1

2 LRRe and sharply decreases when Lu becomes of O(1)
or larger in the shearless case, as shown in Fig. 6. Since the two contributions cooperate when the
bubble lags the fluid, their variations as Re increases reinforce each other, making the total lift force
decrease sharply as soon as the wall stands in the outer region (see, e.g., the data sets corresponding
to LR = 4 and 8 in the top left panel of Fig. 18). Conversely, these variations tend to compensate
when the bubble leads the fluid, which mitigates the CW

L variations (consider the same two data sets
in the bottom left panel, where these variations virtually cancel each other up to Re ≈ 1, resulting
in an almost Re-independent total lift force).

Keeping Re and Sr constant, the influence of the separation distance is closely related to the
successive behaviors of the shear-induced contribution as Lu and Lω increase. Indeed, as (10b)
shows, this contribution grows linearly with LR when the wall stands in the inner region. It grows
more slowly when it stands in the outer region, until it reaches a constant value for large enough
separations (this evolution is reflected in the hL function involved in (14); see also Figs. 4, 6, and 8 in
Ref. [28]). Because of this gradual evolution, different behaviors of the total lift force are observed
in Fig. 18. As far as the wall stands in the inner region or close to it, variations of CW

L with LR

are dominated by the nearly linear growth of the shear-induced contribution. Consequently, the lift
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FIG. 18. Variations of the lift coefficient CW
L (Re, Sr, LR) for a bubble translating parallel to a wall in a

linear shear flow in the low-but-finite Reynolds-number regime with (a) Sr = ±0.2 and (b) Sr = ±0.5. �
(resp. ◦): numerical data for Sr > 0 (resp. Sr < 0). Dashed lines: asymptotic prediction (10b) corresponding
to conditions Lu � 1, Lω � 1; dotted lines: fit (13) of the asymptotic prediction corresponding to conditions
Lu � 1, Lω � 1; solid lines: semiempirical model (31) taking into account finite-size effects.

force increases (resp. decreases, possibly changing sign) with increasing LR when Sr > 0 (resp. <0).
This is the behavior observed for Re � 0.5 (resp. � 0.8) with Sr = ±0.2 (resp. ±0.5). For larger
Reynolds numbers, variations of the shear-induced contribution (which depends on LR through
Lu and Lω) become weaker, so that the overall variation of the total lift force with LR is mostly
controlled by that of the wall-induced contribution (which depends on LR through Lu). Since this
contribution weakens dramatically as Lu increases, the magnitude of the total lift force decreases,
irrespective of its sign. When Re, Sr, and LR (hence Lu and Lω) are large enough, the wall-induced
contribution becomes negligibly small, so that the total lift force reduces to the shear-induced
contribution. In this situation, CW

L takes opposite values when the sign of Sr is reversed while Re
and LR are kept constant. This is what happens when the three parameters in Fig. 18 reach their
maximum, i.e., LR = 8, Re = 2 and Sr = ±0.5. Indeed, the corresponding DNS data in the right
two panels indicate CW

L ≈ ±0.54, depending on the sign of Sr. Interestingly, Fig. 18 of Ref. [8]
indicates CU

Lω(Re = 2, Sr = 0.5) ≈ 0.56 in an unbounded flow. Thus it can be concluded that the
wall virtually no longer influences the lift force for the considered set of parameters, Lu = 8 and
Lω = 4.

The asymptotic expression (10b) corresponding to situations in which the wall stands in the
inner region of the disturbance (dashed lines in Fig. 18) closely predicts the computed lift force for
small enough LR and Re, typically LR < 4 and Re � 0.2 for both shear rates. Not surprisingly, the
agreement deteriorates as LR or Re increases, owing to the increasing influence of inertial effects
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through Lu and Lω. Overall, the approximate fit (13)–(14) of the asymptotic solution obtained in
the case the wall stands in the outer region of the disturbance (dotted lines in Fig. 18) properly
accounts for these effects. A closer look reveals that the corresponding prediction is in good
agreement with the DNS data obtained for LR = 8, at least up to Re = 1, but increasingly deviates
from the computational results as LR decreases. This is no surprise, as (14) is based on the outer
solution of Ref. [28], which is valid only in the limit of large separations. Indeed, (14) approaches
the leading-order expression of the asymptotic solution (10b) in the double limit Lu → 0 and
Lω → 0, but does not account for the finite-size effects which affect both the wall-induced and the
shear-induced contributions. This limitation may be overcome by modifying heuristically (13)–(14)
in a way similar to that employed to obtain (24) in the unsheared case. That is, the outer solution
CW-out

Lu (Re � 1) for the wall effect may be replaced in (13) by the mixed expression CW
Lu(Re � 1) ≈

f ′
LCW-in

Lu [see (A1b)], and the hL(Lω, ε) weighting function in (14) may be substituted by a function
h′

L(Lω, ε, LR) incorporating finite-size effects and tending towards hL(Lω, ε) for large separations.
Instead of (13)–(14) one then has

CW
L (Re � 1) ≈ fLCW

Lu(Re � 1) + h′
LCU

Lω(Re � 1),

with h′
L(Lω, ε, LR) = 1 − e− 11

96 π2 Lω
JL (ε) (1+ 9

8 L−1
R − 1271

3520 L−2
R )

, (31)

and fL(Lω, ε) still given by the first of (14). With these modifications, the semiempirical model (31)
approaches the complete asymptotic solution (10b) when Lu → 0 and Lω → 0 (with the exception
of the Sr2 term, usually much smaller than the Sr term as far as Sr � 1), while the initial
approximation (14) of the outer solution is recovered in the limit LR � 1. Compared to (13)–(14),
the predictions of (31) (solid lines in Fig. 18) exhibit a significantly better agreement with numerical
results when LR and Re decrease.

Let us now examine the behavior of the lift force in the high-Reynolds-number range. At large
enough separations, the wake past the bubble does not interact significantly with the wall, so that
the lift coefficient must approach CU

Lω(Re � 1) as given in (10b). When the bubble gets close to
the wall, two distinct interaction mechanisms come into play. One is due to the bubble translation
and would yield the attractive transverse force discussed in Sec. VI A 2 in the absence of shear. The
other is due to the interaction of the shear-induced vortex structure past the bubble, especially the
trailing vortices which dominate the wake, with the wall. This is similar to the ground effect known
to increase the lift force on an aircraft flying very close to the ground. To quantify this second
effect, the difference between the actual lift coefficient CW

L (Re, Sr, LR) and the sum CU
Lω(Re �

1) + CW
Lu(Re � 1) [the latter as given in (18)] is plotted in Fig. 19(a). This figure shows that this

difference, say, 
CW
L , is small for LR > 2 but becomes significant at smaller separations, sharply

increasing as LR reduces. As expected from the above analogy, 
CW
L is positive (resp. negative) for

Sr > 0 (resp. Sr < 0) and is linearly proportional to Sr. Note that the sign of 
CW
L is in line with

what may physically be expected from Fig. 8(j)–8(l), given the direction in which the wake bends
for positive and negative Sr, respectively. 
CW

L is also seen to be a slowly decreasing function of
Re, an effect which may be attributed to the wall boundary layer. Based on these observations, and
fitting the numerical data of Fig. 19(a), we model the total lift coefficient in the form

CW
L (Re � 1) = CW

Lu(Re � 1) + CU
Lω(Re � 1) + 
CW

L (Re � 1), (32a)

with

CW

L (Re � 1)

CU
Lω(Re � 1)

= IWS ≈ aGL−7/2
R (1 + bGRe−1/2), where aG ≈ 0.23 and bG ≈ 13. (32b)

The performance of this model is assessed in Fig. 19(b) by computing the difference
CW

L (Re, Sr, LR) − CW
L (Re � 1) between the numerical value of the lift coefficient and the estimate

provided by the model (32a) and (32b). This difference is normalized by |CU
Lω|(Re � 1) +

|CW
Lu|(Re � 1), the sum of the estimated magnitudes of the two dominant contributions to the

transverse force. The normalized difference, εWS, is found to be only a few percent in all cases,
confirming that the above model captures the main characteristics of this interaction mechanism.
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FIG. 19. (a) Effect of the shear-wall coupling on the lift force in the high-Reynolds-number
regime. (a) Symbols: 
CW

L (Re, Sr, LR) = CW
L (Re, Sr, LR) − CU

Lω(Re � 1) − CW
Lu(Re � 1). (b) Performance

of the shear-wall coupling model (32a) and (32b) estimated through the normalized difference εWS =
[CW

L (Re, Sr, LR) − CW
L (Re � 1)]/[|CU

Lω|(Re � 1) + |CW
Lu|(Re � 1)].

Figure 20 gathers the complete set of numerical results for the lift coefficient CW
L obtained in

the range 0.1 � Re � 103. Clearly, most of the variations of the lift force with respect to both the
Reynolds number and the separation distance take place for Re � 10. At higher Reynolds numbers,
discernible variations with the separation distance subsist only for LR � 2. For larger separations,
the magnitude of the lift force becomes close to that found in an unbounded flow, as predicted by
(9b). Interestingly, for Sr = −0.2, the lift force changes sign at a critical Reynolds number in the
range 3 � Re � 15 when the separation decreases from LR = 4 to LR = 1.5. This feature implies
the existence of an equilibrium position of the bubble, resulting from a balance between the wall-
and shear-induced lift components. Indeed, only the repulsive transverse force associated with the
low-to-moderate-Re wall effect produces a positive transverse force in this case. This force may
dominate the attractive shear-induced lift, provided LR and Sr are small enough, which yields the
above change of sign. No such feature is observed for Sr = −0.5, since the negative shear-induced
component is always dominant, even at small separations. Note that another equilibrium position,
not encountered in Fig. 20, exists at large Reynolds number with weak positive shears and small
separations. Indeed, balancing the dominant contributions in (17) and (9b) in the limit Sr → 0+,
Re → ∞ implies that the transverse force vanishes for LR ≈ (3/4)1/2Sr−1/4, i.e. LR ≈ 1.3 for
Sr = 0.2. The predictors of this equilibrium position may be discerned in the panel of Fig. 20
corresponding to Sr = 0.2, as the lift coefficient exhibits only small positive values at large Reynolds
number, and these values are significantly decreasing with LR.

Predictions based on the low-Re model (31) and the high-Re model (32) are displayed in
Fig. 20. These predictions are seen to properly follow numerical results for Re � 2 and Re � 20,
respectively. To fill the gap in which none of these models apply, we empirically combine linearly
the composite model (25) for the wall-induced transverse force with a second composite model for
the shear-induced contribution, providing a smooth variation from the low-Re expression (31) to the
high-Re expression (32). Following this approach, the resulting composite fit reads

CW
L (Re, Sr, LR) = CW

Lu(Re, Sr, LR) + CW
Lω(Re, Sr, LR) (33)

with

CW
Lu(Re, Sr, LR) ≈ fL f ′

Lb2(LR/3)gCW-in
Lu + cT 1

[
CW

Lu(Re → ∞) + cT 2Re−1L−4
R

]
, (34a)

CW
Lω(Re, Sr, LR) ≈ h′

LCU
Lω(Re � 1) + cT 3(Re)(1 + IWS)CU

Lω(Re � 1) with cT 3(Re) = 1 − e−0.3Re,

(34b)
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FIG. 20. Lift coefficient CW
L (Re, Sr, LR) for a bubble translating parallel to a wall in a linear shear flow

throughout the Re range investigated numerically. (a) Sr = ±0.2; (b) Sr = ±0.5. � (resp. ◦): numerical data
for Sr > 0 (resp. Sr < 0). Solid lines: high-Re prediction (32); dashed lines: low-Re prediction (31); dotted
lines: composite expression (33); black dash-dotted line: moderate-to-high-Re behavior predicted by (9b) in an
unbounded shear flow.

where IWS is given in (32b). Figure 20 shows that this fit accurately follows the variations of the lift
coefficient throughout the range of Re, Sr, and LR covered by the simulations. Although it involves
several empirical functions which depend on LR, Lu, Lω, and Re, it properly reduces to the relevant
asymptotic expression in the various possible limits Sr → 0, Re � 1, Re � 1, and LR � 1.

VII. SUMMARY AND CONCLUSIONS

In this paper we reported on a numerical study of the drag and lift forces acting on clean spherical
bubbles rising along the wall of a wall-bounded linear shear flow. We considered flow configurations
with the bubble either lagging or leading the fluid, so as to explore cooperative and antagonistic
interactions between the wall- and shear-induced effects. With the selected range of wall distances,
situations with the wall lying in either the inner or the outer region of the disturbance were both
covered in the low-Reynolds-number regime. The selected Reynolds number range allowed us to
consider situations dominated by viscous effects as well as nearly inviscid flows. In both asymptotic
regimes, systematic comparisons with available analytical solutions were carried out.

For bubbles rising in a fluid at rest, low-Reynolds-number asymptotic solutions predict a drag
increase due to the presence of the wall. Additionally, a repulsive transverse force takes place,
due to the interaction between the wall and the wake resulting from the vorticity generated at the
bubble surface by the shear-free condition. For a given separation distance, the magnitude of this
repulsive force decreases with the Reynolds number when the wall lies in the outer region of the
disturbance. At low-but-finite Reynolds number, both the drag increase and the transverse force
are proportional to the square of the maximum vorticity at the bubble surface, which increases
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with the Reynolds number. Present computational results confirm these predictions, and support the
model proposed in Ref. [6] for the prediction of the transverse force at low-to-moderate Reynolds
number, albeit with some changes in the empirical coefficients. At higher Reynolds number, the
boundary layers originating at the bubble surface and wall become thin and no longer interact
significantly. This makes the flow in the gap almost irrotational, which results in an attractive
transverse force as predicted by potential flow theory. However, an O(Re−1L−4

R ) viscous correction
remains, and present results show that it significantly reduces the attractive transverse force for
Reynolds numbers of O(102). A drag increase also exists in the high-Reynolds-number regime but
is significant only when the separation distance is small, typically LR � 2. This increase results
from two separate mechanisms. On the one hand there is a “confinement” effect imposed by the
nonpenetration condition at the wall which induces an increase of the bubble relative velocity, hence
a Re-independent relative drag increase when the Reynolds number is large enough. On the other
hand, the wall boundary layer resulting from the no-slip condition provides a Re-dependent relative
drag increase. In the limited Re range considered here (Re � 103), we found these two effects to
be proportional to L−4

R and L−6
R Re3/4, respectively. A point of caution, however, is that although

these scalings accurately fit the numerical data in the moderate-to-large Re range investigated here,
various arguments suggest that they do not hold in the limit Re → ∞.

Interactions between shear and wall effects have essentially been considered in the low-
Reynolds-number range in the available literature. In this regime, the solution of Ref. [4] valid
when the wall stands in the inner region of the disturbance indicates a decrease (resp. an increase)
of the drag due to shear effects when the bubble lags (resp. leads) the fluid, while the reverse holds
for the transverse force. For this reason, the latter may switch from positive to negative at a given LR

if the bubble leads the fluid and the magnitude of the shear is large enough. Computational results
fully confirm these predictions, both qualitatively and quantitatively. When the wall stands in the
outer region of the disturbance, they also confirm the corresponding theoretical predictions and
their fit as proposed in Ref. [7]. Empirical expressions taking into account finite-size effects have
been established to estimate the drag increase and the lift force irrespective of the wall position in
the low-but-finite Reynolds-number regime. Comparison with numerical results indicates that they
provide reliable predictions up to Re = O(1).

To disentangle the various effects at play in a wall-bounded shear flow at moderate-to-high
Reynolds number, we first considered the well-documented unbounded configuration. The un-
derlying idea was to superimpose linearly the corresponding results with those obtained in the
wall-bounded situation in the absence of shear, in order to determine the strength of interactions not
taken into account in this crude superposition scheme. In the inviscid limit, the lift and lift-induced
drag forces on a bubble translating in an unbounded linear shear flow have the same origin as
those experienced by a wing with a finite span. The tilting of the upstream spanwise vorticity
past the body results in a horseshoe vortex in the wake, which, in the case of a sphere, yields
a lift force with a coefficient of 2

3 Sr in the weak-shear limit [25]. Similarly, the drag increase
due to the interaction between the upstream vorticity and the vortex-induced velocity disturbance
in the wake causes a relative drag variation proportional to Sr2Re. Computational results in the
range 102 � Re � 103 essentially confirm these predictions, although finite-Re effects are still
present at such Reynolds numbers and slightly decrease the Sr exponent involved in the lift-induced
drag correction. When a nearby wall is involved, the presence of the horseshoe vortex makes the
wall-shear interaction dependent on the sign of Sr. Indeed, this vortex deflects the fluid located
within the wake towards the wall or away from it, depending on whether the bubble lags or leads
the fluid. Since the interaction between the wake and wall is stronger in the former case, the drag
and total lift force are both increased (resp. decreased) when the bubble lags (resp. leads) the
fluid. Computational results confirm the various aspects of this scenario. They indicate that, for
moderate-to-large Reynolds numbers, say, Re � 100, the wall-shear interaction is significant only
when the bubble moves very close to the wall, typically for LR � 1.5. As the Reynolds number
decreases down to Re ≈ 50, viscous effects gradually inhibit the bending of the wake, reducing
the overall repulsive (resp. attractive) force for Sr > 0 (resp. Sr < 0). At somewhat lower Reynolds
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numbers, say, 5 � Re � 50, the two boundary layers thicken, strengthening the interaction between
the wake and the wall shear layer if the separation distance is small. This results in an enhanced
repulsive wall-induced contribution to the transverse force, which increases (resp. decreases) the
magnitude of this force when Sr > 0 (resp. Sr < 0). For Re � 5, the picture becomes more complex
because several mechanisms combine. First, the Saffman and Oseen length scales grow as Re
decreases in such a way that their ratio, ε, also grows. For a given Sr, this variation tends to
increase the shear-induced lift force in the unbounded configuration [see Fig. 23(b) below], because
the role of the shear increases at the expense of that of the relative velocity in the transport of
the disturbance downstream of the bubble. Then, in the wall-bounded configuration, the wake and
wall shear layer are thick enough that they interpenetrate each other some distance downstream
from the bubble, even for separation distances as large as LR = 8. Keeping Sr and Re constant, the
shear-induced lift mechanism experiences little change compared to the unbounded configuration
if LR is large, and essentially combines linearly with the wall-induced effect corresponding to the
shearless configuration. Combining the above two arguments explains why, for a given Re, the
lift coefficient experiences large variations when Sr changes sign and LR is large (consider the
pink symbols corresponding to LR = 8 in Fig. 20). However, as LR is decreased, the wall tends
to inhibit the tilting of the upstream vorticity past the bubble. Hence the shorter the separation
distance, the smaller the fraction of the transverse force provided by the shear-induced contribution,
so that this force becomes dominated by the repulsive wall-induced contribution. This is why, if the
bubble leads the fluid, the shear has to be large for the transverse force to remain attractive (i.e.,
CW

L < 0) when Re is of order unity or less and LR is small (red circles corresponding to LR = 1.5
in Fig. 20).

Present numerical results help rationalize and quantify the various mechanisms reviewed above
and the way they interact, provided the bubble surface is clean and its shape is approximately
spherical. In general, the influence of deformation effects can drastically change the conclusions
obtained with spherical bubbles. Let us just mention two examples in the case of an unbounded
linear shear flow. It was shown experimentally [60] that the lateral migration of bubbles with
equivalent diameters in the range 3–6 mm rising at moderate-to-large Reynolds number in highly
viscous fluids (water-glycerin mixtures) changes sign when the bubble deformation is large enough.
Similarly, the simulations in Ref. [44] revealed that the lift force experienced by spheroidal
bubbles with a large enough oblateness rising at Reynolds numbers of some hundreds changes
sign below a critical shear rate, Src, which depends on both the Reynolds number and the bubble
oblateness. The classical shear-induced mechanism illustrated in Fig. 9 dominates for |Sr| > Src,
while wake instability provides a larger contribution of opposite sign for |Sr| < Src. In the low-
Re regime, the theoretical predictions of Ref. [4] indicate that bubble deformation produces a
repulsive wall-induced transverse force in the case where the fluid is at rest, thus cooperating
with the inertia-induced transverse force. In contrast, in the case of a wall-bounded shear flow,
the low-Re deformation-induced migration is towards the wall. Therefore, there is a critical
deformation beyond which the total transverse force becomes attractive. It is clear that present
results are of no help when such large deformations are encountered. In contrast they remain
qualitatively valid for bubbles with small-to-moderate deformations. The high-Re situation was
already discussed at the end of Sec. II. Following this discussion, results based on the spherical
shape assumption are expected to be approximately valid up to Re ≈ 350, a situation where the
bubble oblateness is approximately 20% [45]. At low Reynolds number, the ratio of the deformation-
induced to inertia-induced contributions to the lateral force is governed by the Ohnesorge number,
Oh = ν(ρ/σd )1/2, with σ the surface tension. More precisely, this ratio is proportional to Oh2

and (Oh/LR)2 in the case of a wall-bounded linear shear flow and a wall-bounded stagnant fluid,
respectively [see Eqs. (48) and (49) in Ref. [4]]. Considering again that predictions remain useful
as far as the error on the total transverse force does not exceed 25%, present results may be
used up to Oh ≈ 0.5 in the case of a wall-bounded linear shear flow, and up to Oh ≈ 0.75 in
a wall-bounded stagnant fluid, provided LR � 1.5. Most oils have a surface tension 3–4 times
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TABLE I. Effect of grid resolution on the drag and lift coefficients of a bubble translating close to a wall
(LR = 2) in a stagnant fluid.

98 × 54 × 64 98 × 54 × 128 138 × 78 × 128 Analytical solution

Re = 0.1 CW
Du 196.4 196.9 197.7 197.6

CW
Lu 0.470 0.468 0.469 0.467

Re = 100 CW
Du 0.392 0.391 0.392 −

CW
Lu −0.016 −0.016 −0.016 −

Re = 500 CW
Du 0.092 0.092 0.092 −

CW
Lu −0.023 −0.023 −0.023 −0.024

smaller than pure water. Consequently, present low-Re results for a 1 mm-diameter bubble may
be considered reasonably accurate in oils with viscosities up to 70–80 times that of water.

From a practical point of view, present results provide several models for the drag correction and
transverse force acting on nearly spherical bubbles. By incorporating relevant empirical finite-Re
corrections, we proposed models grounded on asymptotic predictions established in the low-
or high-Reynolds-number limit. Then we combined these models to obtain composite fits valid
throughout the range of parameters explored numerically. Fits (23) and (24) may be used to predict
the wall-induced drag correction and transverse force in a fluid at rest, respectively. Similarly,
fits (30) and (33) and (34), which reduce to the former set for Sr = 0, apply in wall-bounded shear
flows irrespective of the sign of the shear rate and relative fluid-bubble velocity. These models
represent a significant improvement over current “point-particle” models of spherical bubbles which
do not account for any wall-induced effect but are nevertheless routinely used to simulate laminar
and turbulent wall-bounded bubbly flows. A similar investigation with rigid spheres, based on the
same numerical approach and considering the same variety of flow configurations and regimes, is
currently under way.
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APPENDIX: VALIDATION AND COMPARISON WITH EXISTING RESULTS

The capability of the JADIM code to accurately compute three-dimensional flows past bubbles
and rigid bodies over a wide range of Reynolds number has already been proved in various contexts,
(see e.g., Refs. [8,16,61]). The (ξ, η, ϕ) grid system used here was also shown to be suitable to obtain
accurate grid-independent results regarding the hydrodynamic interaction between two spherical
bubbles rising side-by-side in a stagnant liquid [48]. Therefore, here we mainly check grid effects
in wall-bounded flows and in an unbounded linear shear flow, respectively.

In a first series of tests, we computed the forces acting on a clean bubble translating in a
wall-bounded stagnant fluid at finite Reynolds number. To obtain some insight into the adequacy
of the grid resolution, this test was carried out first at Re = 0.1, 100, and 500 with LR = 2. Note
that for Re = 0.1 and LR = 2, Lu = 0.1. Thus, the wall lies in the inner region of the disturbance
and the solution (10) applies. The corresponding asymptotic drag and lift coefficients are 197.6 and
0.467, respectively. At Re = 500, the resulting lift coefficient should be close to the irrotational
prediction (17), CW

Lu = −0.024. Computational results obtained with three different grid resolutions
are listed in Table I. The obtained drag and lift coefficients show good agreement with the analytical
solution at Re = 0.1. At Re = 500, the deviation from (17) is approximately 4%. This deviation
is likely due to the viscous correction proportional to Re−1L−4

R in (18). For all three Reynolds

073601-33



SHI, RZEHAK, LUCAS, AND MAGNAUDET

(a) (b) 

0.1 10.2 0.5 2

0.0

0.1

0.2

0.3

0.4

C
W D

u

Re

LR=1.5 LR=2.0
LR=4.0 LR=8.0

0.1 10.2 0.5 2

0.0

0.1

0.2

0.3

0.4

C
W Lu

/L
R

Re

FIG. 21. Numerical predictions (�) for the wall-induced forces in a quiescent fluid at low-to-moderate
Reynolds number. (a) 
CW

Du; (b) CW
Lu (with CW

Lu multiplied by L−1
R for better readability). Dashed lines:

asymptotic solution (10a) and (10b) corresponding to conditions Lu � 1, Lω � 1; dotted lines: asymptotic
solution (11a) and (11b) corresponding to conditions Lu � 1, Lω � 1; solid lines: semiempirical model (A1a)
and (A1b).

numbers considered in this test, the numerical predictions exhibit only slight variations with the
resolution, the differences between the results obtained with the coarsest (98 × 54 × 64) grid and
those provided by the most refined one being less than 1%.

A second series of tests, still with the fluid at rest far from the bubble, was carried out on the 98 ×
54 × 128 grid with 0.1 � Re � 500 and 1.5 � LR � 8. The drag and lift coefficients obtained in the
range 0.1 � Re � 2 are compared with available analytical solutions in Fig. 21. The computational
results at Re = 0.1 show good agreement with the inner solution (10) [62]. On the other hand,
the results agree well with the outer solution (12) for LR = 4 and 8, i.e., for Lu � O(1). When
LR � 2, the results deviate somewhat from both the inner and outer solutions for Re � 0.5. This is
no surprise, as in these cases the wall lies in the intermediate region where none of these solutions
is valid [63]. More precisely, the outer solution is obtained by considering that the sphere is shrunk
to a point, whereas a uniformly valid approximation could be obtained only by taking into account
its finite size in the Oseen equation. On a purely heuristic basis, the inner and outer solutions may
be combined into expressions tending toward each of them in the appropriate limit, namely,


CW
Du(Re � 1) ≈ f ′

D
CW-in
Du , (A1a)

CW
Lu(Re � 1) ≈ f ′

LCW-in
Lu (A1b)

with f ′
D and f ′

L as given in (12a) and (12b), respectively. Based on these semiempirical ex-
pressions, (A1a) and (A1b) approach the inner and outer solutions in the limits Lu → 0 and
LR → ∞ combined with Lu � O(1), respectively. Predictions provided by these approximations are
displayed with solid lines in Fig. 21 and show good agreement with the numerical results.

At moderate Reynolds number, the calculated CW
Lu may be compared with the fit (15), under

conditions LR � 4. As shown in Fig. 22, the agreement is excellent for Re � 20, beyond which
both the numerical data and the prediction indicate vanishingly small values of CW

Lu. Numerical
predictions in the range 20 � Re � 500 are compared with the potential flow solution (17) at small
wall distances, namely, LR = 1.5 and 2.0. As seen in Fig. 22, the deviation from the irrotational
solution becomes negligible beyond Re ≈ 300. At moderate Re, the computed lift coefficient
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FIG. 22. Comparison of numerical predictions for CW
Lu (�) with the fit (15) of the asymptotic solution

corresponding to conditions Lu � 1, Lω � 1 (dashed lines), and the irrotational solution (17) (short-dashed
lines), for 1.5 � LR � 8 and 0.1 � Re � 500.

becomes negative for Re ≈ 35 (based on linear interpolation), which agrees well with the critical
value found in Refs. [6] and [9].

In a further series of tests, we computed the flow field with the 98 × 54 × 128 grid in situations
where the normalized wall distance LR is very large, more specifically L̃ = R∞. For this purpose,
the grid system was adjusted to obtain NW = N∞. The undisturbed flow is a one-dimensional linear
shear flow u∞ = (Urel + γ x)ez, and the forces experienced by the bubble are expected to correspond
to the unbounded shear flow configuration. This test was carried out for 0.1 < Re � 500 with two
different shear rates, Sr = 0.02 and 0.2. Note that these simulations differ from those carried out in
Ref. [8] only with respect to the flow direction: there, the undisturbed flow was set as u∞ = (Urel +

(a) (b) 

10-1 100 101 102 103
10-1

100

101

102

103 present DNS results:
Sr = 0.02
Sr = 0.2 

DNS results from LM 1998:
Sr = 0.02
Sr = 0.2

 fit from MKL 1994

C
U D

Re
10-1 100 101 102 103

10-2

10-1

100 composite fit from LM 1998:
Sr = 0.02
Sr = 0.2

C
U L

Re

FIG. 23. Comparison of present numerical predictions with available numerical results and semiempirical
expressions. (a) CU

Dω compared with numerical results from Ref. [8] (LM 1998) and semiempirical correlation
Re
16 CU

D0 ≈ 1 + [ 8
Re + 1

2 (1 + 3.315Re−1/2)]
−1

proposed in Ref. [64] (MKL 1994). (b) CU
Lω compared with

numerical results and the composite fit (A2) from Ref. [8].
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γ y)ex (in current notations), i.e., the flow was primarily along the grid symmetry axis, whereas it
stands in a plane perpendicular to this axis in the present case.

The comparison of the calculated drag coefficient with values obtained in Ref. [8] and with a
semiempirical fit proposed in Ref. [64] is shown in Fig. 23(a). As the shear has virtually no effect
on the drag for Sr � 0.2, only numerical data obtained for Sr = 0.2 in Ref. [8] are presented. Results
deviate from those of Ref. [8] by less than 2% for all values of Re and Sr. Figure 23(b) compares
the computed lift coefficient with those obtained in Ref. [8] and with the composite fit proposed
therein,

CU
Lω(Re, Sr) ≈ Sr

|Sr|
{[

CU
Lω(Re � 1)

]2 + [
CU

Lω(Re � 1)
]2}1/2

, (A2)

which combines the low- and high-Re results (6b) and (9b). Again, the agreement with these earlier
predictions is good. Some tiny differences may be noticed for Sr = 0.02 when Re � 2. They are
likely due to the difference in the two numerical settings. Indeed, compared with Ref. [8], the current
grid is somewhat more refined (98 × 54 × 128 instead of 90 × 45 × 64), especially near the sphere
surface (2δ/d = 0.002 instead of 2δ/d = 0.01).

In summary, the tests reported in this Appendix prove that the wall and shear effects are both
accurately captured by the present numerical procedure throughout the range of Reynolds number
0.1 � Re � 500.
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